mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
1866d483dc
Miller Rabin algorithm can be used to test primality for integers smaller than a max value "MaxMR" (~3e24) It can be much faster than previous implementation: ~100x faster for numbers with 13 digits, at least 5 orders of magnitude for even larger numbers (previous implementation is so slow that it requires more patience than I have for more precise estimate). Miller Rabin test becomes faster than previous implementation at somewhere in the range 1e5-1e6. It seems that the range 62000..66000 is where Miller Rabin starts being always faster, so I picked 0xffff arbitrarily; before that, or above "MaxMR", the previous implementation remains. I compared the `faster_prime` gem too. It is slower than previous implementation up to ~1e4. After that it becomes faster and faster compared to previous implementation, but is still slower than Miller Rabin starting at ~1e5 and up to MaxMR. Thus, after this commit, builtin `Integer#prime?` will be similar or faster than `faster_prime` up to "MaxMR". Adapted from patch of Stephen Blackstone [Feature #16468] Benchmark results and code: https://gist.github.com/marcandre/b263bdae488e76dabdda84daf73733b9 Co-authored-by: Stephen Blackstone <sblackstone@gmail.com>
561 lines
15 KiB
Ruby
561 lines
15 KiB
Ruby
# frozen_string_literal: false
|
|
#
|
|
# = prime.rb
|
|
#
|
|
# Prime numbers and factorization library.
|
|
#
|
|
# Copyright::
|
|
# Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
|
|
# Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
|
|
#
|
|
# Documentation::
|
|
# Yuki Sonoda
|
|
#
|
|
|
|
require "singleton"
|
|
require "forwardable"
|
|
|
|
class Integer
|
|
# Re-composes a prime factorization and returns the product.
|
|
#
|
|
# See Prime#int_from_prime_division for more details.
|
|
def Integer.from_prime_division(pd)
|
|
Prime.int_from_prime_division(pd)
|
|
end
|
|
|
|
# Returns the factorization of +self+.
|
|
#
|
|
# See Prime#prime_division for more details.
|
|
def prime_division(generator = Prime::Generator23.new)
|
|
Prime.prime_division(self, generator)
|
|
end
|
|
|
|
# Returns true if +self+ is a prime number, else returns false.
|
|
# Not recommended for very big integers (> 10**23).
|
|
def prime?
|
|
return self >= 2 if self <= 3
|
|
|
|
if (bases = miller_rabin_bases)
|
|
return miller_rabin_test(bases)
|
|
end
|
|
|
|
return true if self == 5
|
|
return false unless 30.gcd(self) == 1
|
|
(7..Integer.sqrt(self)).step(30) do |p|
|
|
return false if
|
|
self%(p) == 0 || self%(p+4) == 0 || self%(p+6) == 0 || self%(p+10) == 0 ||
|
|
self%(p+12) == 0 || self%(p+16) == 0 || self%(p+22) == 0 || self%(p+24) == 0
|
|
end
|
|
true
|
|
end
|
|
|
|
MILLER_RABIN_BASES = [
|
|
[2],
|
|
[2,3],
|
|
[31,73],
|
|
[2,3,5],
|
|
[2,3,5,7],
|
|
[2,7,61],
|
|
[2,13,23,1662803],
|
|
[2,3,5,7,11],
|
|
[2,3,5,7,11,13],
|
|
[2,3,5,7,11,13,17],
|
|
[2,3,5,7,11,13,17,19,23],
|
|
[2,3,5,7,11,13,17,19,23,29,31,37],
|
|
[2,3,5,7,11,13,17,19,23,29,31,37,41],
|
|
].map!(&:freeze).freeze
|
|
private_constant :MILLER_RABIN_BASES
|
|
|
|
private def miller_rabin_bases
|
|
# Miller-Rabin's complexity is O(k log^3n).
|
|
# So we can reduce the complexity by reducing the number of bases tested.
|
|
# Using values from https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
|
|
i = case
|
|
when self < 0xffff then
|
|
# For small integers, Miller Rabin can be slower
|
|
# There is no mathematical significance to 0xffff
|
|
return nil
|
|
# when self < 2_047 then 0
|
|
when self < 1_373_653 then 1
|
|
when self < 9_080_191 then 2
|
|
when self < 25_326_001 then 3
|
|
when self < 3_215_031_751 then 4
|
|
when self < 4_759_123_141 then 5
|
|
when self < 1_122_004_669_633 then 6
|
|
when self < 2_152_302_898_747 then 7
|
|
when self < 3_474_749_660_383 then 8
|
|
when self < 341_550_071_728_321 then 9
|
|
when self < 3_825_123_056_546_413_051 then 10
|
|
when self < 318_665_857_834_031_151_167_461 then 11
|
|
when self < 3_317_044_064_679_887_385_961_981 then 12
|
|
else return nil
|
|
end
|
|
MILLER_RABIN_BASES[i]
|
|
end
|
|
|
|
private def miller_rabin_test(bases)
|
|
return false if even?
|
|
|
|
r = 0
|
|
d = self >> 1
|
|
while d.even?
|
|
d >>= 1
|
|
r += 1
|
|
end
|
|
|
|
self_minus_1 = self-1
|
|
bases.each do |a|
|
|
x = a.pow(d, self)
|
|
next if x == 1 || x == self_minus_1 || a == self
|
|
|
|
return false if r.times do
|
|
x = x.pow(2, self)
|
|
break if x == self_minus_1
|
|
end
|
|
end
|
|
true
|
|
end
|
|
|
|
# Iterates the given block over all prime numbers.
|
|
#
|
|
# See +Prime+#each for more details.
|
|
def Integer.each_prime(ubound, &block) # :yields: prime
|
|
Prime.each(ubound, &block)
|
|
end
|
|
end
|
|
|
|
#
|
|
# The set of all prime numbers.
|
|
#
|
|
# == Example
|
|
#
|
|
# Prime.each(100) do |prime|
|
|
# p prime #=> 2, 3, 5, 7, 11, ...., 97
|
|
# end
|
|
#
|
|
# Prime is Enumerable:
|
|
#
|
|
# Prime.first 5 # => [2, 3, 5, 7, 11]
|
|
#
|
|
# == Retrieving the instance
|
|
#
|
|
# For convenience, each instance method of +Prime+.instance can be accessed
|
|
# as a class method of +Prime+.
|
|
#
|
|
# e.g.
|
|
# Prime.instance.prime?(2) #=> true
|
|
# Prime.prime?(2) #=> true
|
|
#
|
|
# == Generators
|
|
#
|
|
# A "generator" provides an implementation of enumerating pseudo-prime
|
|
# numbers and it remembers the position of enumeration and upper bound.
|
|
# Furthermore, it is an external iterator of prime enumeration which is
|
|
# compatible with an Enumerator.
|
|
#
|
|
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
|
|
# There are few implementations of generator.
|
|
#
|
|
# [+Prime+::+EratosthenesGenerator+]
|
|
# Uses Eratosthenes' sieve.
|
|
# [+Prime+::+TrialDivisionGenerator+]
|
|
# Uses the trial division method.
|
|
# [+Prime+::+Generator23+]
|
|
# Generates all positive integers which are not divisible by either 2 or 3.
|
|
# This sequence is very bad as a pseudo-prime sequence. But this
|
|
# is faster and uses much less memory than the other generators. So,
|
|
# it is suitable for factorizing an integer which is not large but
|
|
# has many prime factors. e.g. for Prime#prime? .
|
|
|
|
class Prime
|
|
|
|
VERSION = "0.1.1"
|
|
|
|
include Enumerable
|
|
include Singleton
|
|
|
|
class << self
|
|
extend Forwardable
|
|
include Enumerable
|
|
|
|
def method_added(method) # :nodoc:
|
|
(class<< self;self;end).def_delegator :instance, method
|
|
end
|
|
end
|
|
|
|
# Iterates the given block over all prime numbers.
|
|
#
|
|
# == Parameters
|
|
#
|
|
# +ubound+::
|
|
# Optional. An arbitrary positive number.
|
|
# The upper bound of enumeration. The method enumerates
|
|
# prime numbers infinitely if +ubound+ is nil.
|
|
# +generator+::
|
|
# Optional. An implementation of pseudo-prime generator.
|
|
#
|
|
# == Return value
|
|
#
|
|
# An evaluated value of the given block at the last time.
|
|
# Or an enumerator which is compatible to an +Enumerator+
|
|
# if no block given.
|
|
#
|
|
# == Description
|
|
#
|
|
# Calls +block+ once for each prime number, passing the prime as
|
|
# a parameter.
|
|
#
|
|
# +ubound+::
|
|
# Upper bound of prime numbers. The iterator stops after it
|
|
# yields all prime numbers p <= +ubound+.
|
|
#
|
|
def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
|
|
generator.upper_bound = ubound
|
|
generator.each(&block)
|
|
end
|
|
|
|
# Returns true if +obj+ is an Integer and is prime. Also returns
|
|
# true if +obj+ is a Module that is an ancestor of +Prime+.
|
|
# Otherwise returns false.
|
|
def include?(obj)
|
|
case obj
|
|
when Integer
|
|
prime?(obj)
|
|
when Module
|
|
Module.instance_method(:include?).bind(Prime).call(obj)
|
|
else
|
|
false
|
|
end
|
|
end
|
|
|
|
# Returns true if +value+ is a prime number, else returns false.
|
|
# Integer#prime? is much more performant.
|
|
#
|
|
# == Parameters
|
|
#
|
|
# +value+:: an arbitrary integer to be checked.
|
|
# +generator+:: optional. A pseudo-prime generator.
|
|
def prime?(value, generator = Prime::Generator23.new)
|
|
raise ArgumentError, "Expected a prime generator, got #{generator}" unless generator.respond_to? :each
|
|
raise ArgumentError, "Expected an integer, got #{value}" unless value.respond_to?(:integer?) && value.integer?
|
|
return false if value < 2
|
|
generator.each do |num|
|
|
q,r = value.divmod num
|
|
return true if q < num
|
|
return false if r == 0
|
|
end
|
|
end
|
|
|
|
# Re-composes a prime factorization and returns the product.
|
|
#
|
|
# For the decomposition:
|
|
#
|
|
# [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],
|
|
#
|
|
# it returns:
|
|
#
|
|
# p_1**e_1 * p_2**e_2 * ... * p_n**e_n.
|
|
#
|
|
# == Parameters
|
|
# +pd+:: Array of pairs of integers.
|
|
# Each pair consists of a prime number -- a prime factor --
|
|
# and a natural number -- its exponent (multiplicity).
|
|
#
|
|
# == Example
|
|
# Prime.int_from_prime_division([[3, 2], [5, 1]]) #=> 45
|
|
# 3**2 * 5 #=> 45
|
|
#
|
|
def int_from_prime_division(pd)
|
|
pd.inject(1){|value, (prime, index)|
|
|
value * prime**index
|
|
}
|
|
end
|
|
|
|
# Returns the factorization of +value+.
|
|
#
|
|
# For an arbitrary integer:
|
|
#
|
|
# p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
|
|
#
|
|
# prime_division returns an array of pairs of integers:
|
|
#
|
|
# [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].
|
|
#
|
|
# Each pair consists of a prime number -- a prime factor --
|
|
# and a natural number -- its exponent (multiplicity).
|
|
#
|
|
# == Parameters
|
|
# +value+:: An arbitrary integer.
|
|
# +generator+:: Optional. A pseudo-prime generator.
|
|
# +generator+.succ must return the next
|
|
# pseudo-prime number in ascending order.
|
|
# It must generate all prime numbers,
|
|
# but may also generate non-prime numbers, too.
|
|
#
|
|
# === Exceptions
|
|
# +ZeroDivisionError+:: when +value+ is zero.
|
|
#
|
|
# == Example
|
|
#
|
|
# Prime.prime_division(45) #=> [[3, 2], [5, 1]]
|
|
# 3**2 * 5 #=> 45
|
|
#
|
|
def prime_division(value, generator = Prime::Generator23.new)
|
|
raise ZeroDivisionError if value == 0
|
|
if value < 0
|
|
value = -value
|
|
pv = [[-1, 1]]
|
|
else
|
|
pv = []
|
|
end
|
|
generator.each do |prime|
|
|
count = 0
|
|
while (value1, mod = value.divmod(prime)
|
|
mod) == 0
|
|
value = value1
|
|
count += 1
|
|
end
|
|
if count != 0
|
|
pv.push [prime, count]
|
|
end
|
|
break if value1 <= prime
|
|
end
|
|
if value > 1
|
|
pv.push [value, 1]
|
|
end
|
|
pv
|
|
end
|
|
|
|
# An abstract class for enumerating pseudo-prime numbers.
|
|
#
|
|
# Concrete subclasses should override succ, next, rewind.
|
|
class PseudoPrimeGenerator
|
|
include Enumerable
|
|
|
|
def initialize(ubound = nil)
|
|
@ubound = ubound
|
|
end
|
|
|
|
def upper_bound=(ubound)
|
|
@ubound = ubound
|
|
end
|
|
def upper_bound
|
|
@ubound
|
|
end
|
|
|
|
# returns the next pseudo-prime number, and move the internal
|
|
# position forward.
|
|
#
|
|
# +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
|
|
def succ
|
|
raise NotImplementedError, "need to define `succ'"
|
|
end
|
|
|
|
# alias of +succ+.
|
|
def next
|
|
raise NotImplementedError, "need to define `next'"
|
|
end
|
|
|
|
# Rewinds the internal position for enumeration.
|
|
#
|
|
# See +Enumerator+#rewind.
|
|
def rewind
|
|
raise NotImplementedError, "need to define `rewind'"
|
|
end
|
|
|
|
# Iterates the given block for each prime number.
|
|
def each
|
|
return self.dup unless block_given?
|
|
if @ubound
|
|
last_value = nil
|
|
loop do
|
|
prime = succ
|
|
break last_value if prime > @ubound
|
|
last_value = yield prime
|
|
end
|
|
else
|
|
loop do
|
|
yield succ
|
|
end
|
|
end
|
|
end
|
|
|
|
# see +Enumerator+#with_index.
|
|
def with_index(offset = 0, &block)
|
|
return enum_for(:with_index, offset) { Float::INFINITY } unless block
|
|
return each_with_index(&block) if offset == 0
|
|
|
|
each do |prime|
|
|
yield prime, offset
|
|
offset += 1
|
|
end
|
|
end
|
|
|
|
# see +Enumerator+#with_object.
|
|
def with_object(obj)
|
|
return enum_for(:with_object, obj) { Float::INFINITY } unless block_given?
|
|
each do |prime|
|
|
yield prime, obj
|
|
end
|
|
end
|
|
|
|
def size
|
|
Float::INFINITY
|
|
end
|
|
end
|
|
|
|
# An implementation of +PseudoPrimeGenerator+.
|
|
#
|
|
# Uses +EratosthenesSieve+.
|
|
class EratosthenesGenerator < PseudoPrimeGenerator
|
|
def initialize
|
|
@last_prime_index = -1
|
|
super
|
|
end
|
|
|
|
def succ
|
|
@last_prime_index += 1
|
|
EratosthenesSieve.instance.get_nth_prime(@last_prime_index)
|
|
end
|
|
def rewind
|
|
initialize
|
|
end
|
|
alias next succ
|
|
end
|
|
|
|
# An implementation of +PseudoPrimeGenerator+ which uses
|
|
# a prime table generated by trial division.
|
|
class TrialDivisionGenerator < PseudoPrimeGenerator
|
|
def initialize
|
|
@index = -1
|
|
super
|
|
end
|
|
|
|
def succ
|
|
TrialDivision.instance[@index += 1]
|
|
end
|
|
def rewind
|
|
initialize
|
|
end
|
|
alias next succ
|
|
end
|
|
|
|
# Generates all integers which are greater than 2 and
|
|
# are not divisible by either 2 or 3.
|
|
#
|
|
# This is a pseudo-prime generator, suitable on
|
|
# checking primality of an integer by brute force
|
|
# method.
|
|
class Generator23 < PseudoPrimeGenerator
|
|
def initialize
|
|
@prime = 1
|
|
@step = nil
|
|
super
|
|
end
|
|
|
|
def succ
|
|
if (@step)
|
|
@prime += @step
|
|
@step = 6 - @step
|
|
else
|
|
case @prime
|
|
when 1; @prime = 2
|
|
when 2; @prime = 3
|
|
when 3; @prime = 5; @step = 2
|
|
end
|
|
end
|
|
@prime
|
|
end
|
|
alias next succ
|
|
def rewind
|
|
initialize
|
|
end
|
|
end
|
|
|
|
# Internal use. An implementation of prime table by trial division method.
|
|
class TrialDivision
|
|
include Singleton
|
|
|
|
def initialize # :nodoc:
|
|
# These are included as class variables to cache them for later uses. If memory
|
|
# usage is a problem, they can be put in Prime#initialize as instance variables.
|
|
|
|
# There must be no primes between @primes[-1] and @next_to_check.
|
|
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
|
|
# @next_to_check % 6 must be 1.
|
|
@next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7
|
|
@ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n|
|
|
# n < Math.sqrt(@@next_to_check) })
|
|
@ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2
|
|
end
|
|
|
|
# Returns the +index+th prime number.
|
|
#
|
|
# +index+ is a 0-based index.
|
|
def [](index)
|
|
while index >= @primes.length
|
|
# Only check for prime factors up to the square root of the potential primes,
|
|
# but without the performance hit of an actual square root calculation.
|
|
if @next_to_check + 4 > @ulticheck_next_squared
|
|
@ulticheck_index += 1
|
|
@ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
|
|
end
|
|
# Only check numbers congruent to one and five, modulo six. All others
|
|
|
|
# are divisible by two or three. This also allows us to skip checking against
|
|
# two and three.
|
|
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
|
|
@next_to_check += 4
|
|
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
|
|
@next_to_check += 2
|
|
end
|
|
@primes[index]
|
|
end
|
|
end
|
|
|
|
# Internal use. An implementation of Eratosthenes' sieve
|
|
class EratosthenesSieve
|
|
include Singleton
|
|
|
|
def initialize
|
|
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
|
|
# @max_checked must be an even number
|
|
@max_checked = @primes.last + 1
|
|
end
|
|
|
|
def get_nth_prime(n)
|
|
compute_primes while @primes.size <= n
|
|
@primes[n]
|
|
end
|
|
|
|
private
|
|
def compute_primes
|
|
# max_segment_size must be an even number
|
|
max_segment_size = 1e6.to_i
|
|
max_cached_prime = @primes.last
|
|
# do not double count primes if #compute_primes is interrupted
|
|
# by Timeout.timeout
|
|
@max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked
|
|
|
|
segment_min = @max_checked
|
|
segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min
|
|
root = Integer.sqrt(segment_max)
|
|
|
|
segment = ((segment_min + 1) .. segment_max).step(2).to_a
|
|
|
|
(1..Float::INFINITY).each do |sieving|
|
|
prime = @primes[sieving]
|
|
break if prime > root
|
|
composite_index = (-(segment_min + 1 + prime) / 2) % prime
|
|
while composite_index < segment.size do
|
|
segment[composite_index] = nil
|
|
composite_index += prime
|
|
end
|
|
end
|
|
|
|
@primes.concat(segment.compact!)
|
|
|
|
@max_checked = segment_max
|
|
end
|
|
end
|
|
end
|