mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@28771 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			89 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* erf.c  - public domain implementation of error function erf(3m)
 | 
						|
 | 
						|
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
 | 
						|
            (New Algorithm handbook in C language) (Gijyutsu hyouron
 | 
						|
            sha, Tokyo, 1991) p.227 [in Japanese]                 */
 | 
						|
#include "ruby/missing.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
# include <float.h>
 | 
						|
# if !defined __MINGW32__ || defined __NO_ISOCEXT
 | 
						|
#  ifndef isnan
 | 
						|
#   define isnan(x) _isnan(x)
 | 
						|
#  endif
 | 
						|
#  ifndef isinf
 | 
						|
#   define isinf(x) (!_finite(x) && !_isnan(x))
 | 
						|
#  endif
 | 
						|
#  ifndef finite
 | 
						|
#   define finite(x) _finite(x)
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
static double q_gamma(double, double, double);
 | 
						|
 | 
						|
/* Incomplete gamma function
 | 
						|
   1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt  */
 | 
						|
static double p_gamma(double a, double x, double loggamma_a)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
    double result, term, previous;
 | 
						|
 | 
						|
    if (x >= 1 + a) return 1 - q_gamma(a, x, loggamma_a);
 | 
						|
    if (x == 0)     return 0;
 | 
						|
    result = term = exp(a * log(x) - x - loggamma_a) / a;
 | 
						|
    for (k = 1; k < 1000; k++) {
 | 
						|
        term *= x / (a + k);
 | 
						|
        previous = result;  result += term;
 | 
						|
        if (result == previous) return result;
 | 
						|
    }
 | 
						|
    fprintf(stderr, "erf.c:%d:p_gamma() could not converge.", __LINE__);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Incomplete gamma function
 | 
						|
   1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt  */
 | 
						|
static double q_gamma(double a, double x, double loggamma_a)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
    double result, w, temp, previous;
 | 
						|
    double la = 1, lb = 1 + x - a;  /* Laguerre polynomial */
 | 
						|
 | 
						|
    if (x < 1 + a) return 1 - p_gamma(a, x, loggamma_a);
 | 
						|
    w = exp(a * log(x) - x - loggamma_a);
 | 
						|
    result = w / lb;
 | 
						|
    for (k = 2; k < 1000; k++) {
 | 
						|
        temp = ((k - 1 - a) * (lb - la) + (k + x) * lb) / k;
 | 
						|
        la = lb;  lb = temp;
 | 
						|
        w *= (k - 1 - a) / k;
 | 
						|
        temp = w / (la * lb);
 | 
						|
        previous = result;  result += temp;
 | 
						|
        if (result == previous) return result;
 | 
						|
    }
 | 
						|
    fprintf(stderr, "erf.c:%d:q_gamma() could not converge.", __LINE__);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
#define LOG_PI_OVER_2 0.572364942924700087071713675675 /* log_e(PI)/2 */
 | 
						|
 | 
						|
double erf(double x)
 | 
						|
{
 | 
						|
    if (!finite(x)) {
 | 
						|
        if (isnan(x)) return x;      /* erf(NaN)   = NaN   */
 | 
						|
        return (x>0 ? 1.0 : -1.0);   /* erf(+-inf) = +-1.0 */
 | 
						|
    }
 | 
						|
    if (x >= 0) return   p_gamma(0.5, x * x, LOG_PI_OVER_2);
 | 
						|
    else        return - p_gamma(0.5, x * x, LOG_PI_OVER_2);
 | 
						|
}
 | 
						|
 | 
						|
double erfc(double x)
 | 
						|
{
 | 
						|
    if (!finite(x)) {
 | 
						|
        if (isnan(x)) return x;      /* erfc(NaN)   = NaN      */
 | 
						|
        return (x>0 ? 0.0 : 2.0);    /* erfc(+-inf) = 0.0, 2.0 */
 | 
						|
    }
 | 
						|
    if (x >= 0) return  q_gamma(0.5, x * x, LOG_PI_OVER_2);
 | 
						|
    else        return  1 + p_gamma(0.5, x * x, LOG_PI_OVER_2);
 | 
						|
}
 |