mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
003c45f9cd
* complex.c, rational.c: compatible marshal loader for compatibilities with 1.8. [ruby-core:45775] [Bug #6625] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36538 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019 lines
42 KiB
C
2019 lines
42 KiB
C
/*
|
|
complex.c: Coded by Tadayoshi Funaba 2008-2011
|
|
|
|
This implementation is based on Keiju Ishitsuka's Complex library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "ruby.h"
|
|
#include "internal.h"
|
|
#include <math.h>
|
|
|
|
#define NDEBUG
|
|
#include <assert.h>
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
|
|
VALUE rb_cComplex;
|
|
|
|
static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert,
|
|
id_denominator, id_divmod, id_eqeq_p, id_expt, id_fdiv, id_floor,
|
|
id_idiv, id_imag, id_inspect, id_negate, id_numerator, id_quo,
|
|
id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s,
|
|
id_i_real, id_i_imag;
|
|
|
|
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
|
|
|
#define binop(n,op) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, (op), 1, y);\
|
|
}
|
|
|
|
#define fun1(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 0);\
|
|
}
|
|
|
|
#define fun2(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 1, y);\
|
|
}
|
|
|
|
#define math1(n) \
|
|
inline static VALUE \
|
|
m_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(rb_mMath, id_##n, 1, x);\
|
|
}
|
|
|
|
#define math2(n) \
|
|
inline static VALUE \
|
|
m_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(rb_mMath, id_##n, 2, x, y);\
|
|
}
|
|
|
|
#define PRESERVE_SIGNEDZERO
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
#ifndef PRESERVE_SIGNEDZERO
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 0)
|
|
return x;
|
|
else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
|
|
return y;
|
|
#endif
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_cmp(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long c = FIX2LONG(x) - FIX2LONG(y);
|
|
if (c > 0)
|
|
c = 1;
|
|
else if (c < 0)
|
|
c = -1;
|
|
return INT2FIX(c);
|
|
}
|
|
return rb_funcall(x, id_cmp, 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 1)
|
|
return x;
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
|
|
return rb_funcall(x, '>', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_lt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
|
|
return rb_funcall(x, '<', 1, y);
|
|
}
|
|
|
|
binop(mod, '%')
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
#ifndef PRESERVE_SIGNEDZERO
|
|
if (FIXNUM_P(y)) {
|
|
long iy = FIX2LONG(y);
|
|
if (iy == 0) {
|
|
if (FIXNUM_P(x) || RB_TYPE_P(x, T_BIGNUM))
|
|
return ZERO;
|
|
}
|
|
else if (iy == 1)
|
|
return x;
|
|
}
|
|
else if (FIXNUM_P(x)) {
|
|
long ix = FIX2LONG(x);
|
|
if (ix == 0) {
|
|
if (FIXNUM_P(y) || RB_TYPE_P(y, T_BIGNUM))
|
|
return ZERO;
|
|
}
|
|
else if (ix == 1)
|
|
return y;
|
|
}
|
|
#endif
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
#ifndef PRESERVE_SIGNEDZERO
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 0)
|
|
return x;
|
|
#endif
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
fun1(abs)
|
|
fun1(abs2)
|
|
fun1(arg)
|
|
fun1(conj)
|
|
fun1(denominator)
|
|
fun1(floor)
|
|
fun1(imag)
|
|
fun1(inspect)
|
|
fun1(negate)
|
|
fun1(numerator)
|
|
fun1(real)
|
|
fun1(real_p)
|
|
|
|
inline static VALUE
|
|
f_to_i(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return rb_str_to_inum(x, 10, 0);
|
|
return rb_funcall(x, id_to_i, 0);
|
|
}
|
|
inline static VALUE
|
|
f_to_f(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return DBL2NUM(rb_str_to_dbl(x, 0));
|
|
return rb_funcall(x, id_to_f, 0);
|
|
}
|
|
|
|
fun1(to_r)
|
|
fun1(to_s)
|
|
|
|
fun2(divmod)
|
|
|
|
inline static VALUE
|
|
f_eqeq_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
|
|
return rb_funcall(x, id_eqeq_p, 1, y);
|
|
}
|
|
|
|
fun2(expt)
|
|
fun2(fdiv)
|
|
fun2(idiv)
|
|
fun2(quo)
|
|
|
|
inline static VALUE
|
|
f_negative_p(VALUE x)
|
|
{
|
|
if (FIXNUM_P(x))
|
|
return f_boolcast(FIX2LONG(x) < 0);
|
|
return rb_funcall(x, '<', 1, ZERO);
|
|
}
|
|
|
|
#define f_positive_p(x) (!f_negative_p(x))
|
|
|
|
inline static VALUE
|
|
f_zero_p(VALUE x)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_FIXNUM:
|
|
return f_boolcast(FIX2LONG(x) == 0);
|
|
case T_BIGNUM:
|
|
return Qfalse;
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num = RRATIONAL(x)->num;
|
|
|
|
return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
|
|
}
|
|
}
|
|
return rb_funcall(x, id_eqeq_p, 1, ZERO);
|
|
}
|
|
|
|
#define f_nonzero_p(x) (!f_zero_p(x))
|
|
|
|
inline static VALUE
|
|
f_one_p(VALUE x)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_FIXNUM:
|
|
return f_boolcast(FIX2LONG(x) == 1);
|
|
case T_BIGNUM:
|
|
return Qfalse;
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
|
|
FIXNUM_P(den) && FIX2LONG(den) == 1);
|
|
}
|
|
}
|
|
return rb_funcall(x, id_eqeq_p, 1, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_integer_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cInteger);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_fixnum_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cFixnum);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_bignum_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cBignum);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_float_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cFloat);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_rational_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cRational);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_complex_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cComplex);
|
|
}
|
|
|
|
#define k_exact_p(x) (!k_float_p(x))
|
|
#define k_inexact_p(x) k_float_p(x)
|
|
|
|
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
|
|
#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
|
|
|
|
#define get_dat1(x) \
|
|
struct RComplex *dat;\
|
|
dat = ((struct RComplex *)(x))
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RComplex *adat, *bdat;\
|
|
adat = ((struct RComplex *)(x));\
|
|
bdat = ((struct RComplex *)(y))
|
|
|
|
inline static VALUE
|
|
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
|
|
{
|
|
NEWOBJ(obj, struct RComplex);
|
|
OBJSETUP(obj, klass, T_COMPLEX);
|
|
|
|
obj->real = real;
|
|
obj->imag = imag;
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_alloc(VALUE klass)
|
|
{
|
|
return nucomp_s_new_internal(klass, ZERO, ZERO);
|
|
}
|
|
|
|
#if 0
|
|
static VALUE
|
|
nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, imag;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
|
|
case 1:
|
|
if (!k_numeric_p(real))
|
|
real = f_to_i(real);
|
|
imag = ZERO;
|
|
break;
|
|
default:
|
|
if (!k_numeric_p(real))
|
|
real = f_to_i(real);
|
|
if (!k_numeric_p(imag))
|
|
imag = f_to_i(imag);
|
|
break;
|
|
}
|
|
|
|
return nucomp_s_new_internal(klass, real, imag);
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_new_internal(klass, x, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
assert(!k_complex_p(y));
|
|
return nucomp_s_new_internal(klass, x, y);
|
|
}
|
|
|
|
#ifdef CANONICALIZATION_FOR_MATHN
|
|
#define CANON
|
|
#endif
|
|
|
|
#ifdef CANON
|
|
static int canonicalization = 0;
|
|
|
|
RUBY_FUNC_EXPORTED void
|
|
nucomp_canonicalization(int f)
|
|
{
|
|
canonicalization = f;
|
|
}
|
|
#endif
|
|
|
|
inline static void
|
|
nucomp_real_check(VALUE num)
|
|
{
|
|
switch (TYPE(num)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
case T_RATIONAL:
|
|
break;
|
|
default:
|
|
if (!k_numeric_p(num) || !f_real_p(num))
|
|
rb_raise(rb_eTypeError, "not a real");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
|
|
{
|
|
#ifdef CANON
|
|
#define CL_CANON
|
|
#ifdef CL_CANON
|
|
if (k_exact_zero_p(imag) && canonicalization)
|
|
return real;
|
|
#else
|
|
if (f_zero_p(imag) && canonicalization)
|
|
return real;
|
|
#endif
|
|
#endif
|
|
if (f_real_p(real) && f_real_p(imag))
|
|
return nucomp_s_new_internal(klass, real, imag);
|
|
else if (f_real_p(real)) {
|
|
get_dat1(imag);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(real, dat->imag),
|
|
f_add(ZERO, dat->real));
|
|
}
|
|
else if (f_real_p(imag)) {
|
|
get_dat1(real);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
dat->real,
|
|
f_add(dat->imag, imag));
|
|
}
|
|
else {
|
|
get_dat2(real, imag);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(adat->real, bdat->imag),
|
|
f_add(adat->imag, bdat->real));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex.rect(real[, imag]) -> complex
|
|
* Complex.rectangular(real[, imag]) -> complex
|
|
*
|
|
* Returns a complex object which denotes the given rectangular form.
|
|
*/
|
|
static VALUE
|
|
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, imag;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
|
|
case 1:
|
|
nucomp_real_check(real);
|
|
imag = ZERO;
|
|
break;
|
|
default:
|
|
nucomp_real_check(real);
|
|
nucomp_real_check(imag);
|
|
break;
|
|
}
|
|
|
|
return nucomp_s_canonicalize_internal(klass, real, imag);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_canonicalize_internal(klass, x, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex(x[, y]) -> numeric
|
|
*
|
|
* Returns x+i*y;
|
|
*/
|
|
static VALUE
|
|
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return rb_funcall2(rb_cComplex, id_convert, argc, argv);
|
|
}
|
|
|
|
#define imp1(n) \
|
|
inline static VALUE \
|
|
m_##n##_bang(VALUE x)\
|
|
{\
|
|
return rb_math_##n(x);\
|
|
}
|
|
|
|
#define imp2(n) \
|
|
inline static VALUE \
|
|
m_##n##_bang(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_math_##n(x, y);\
|
|
}
|
|
|
|
imp2(atan2)
|
|
imp1(cos)
|
|
imp1(cosh)
|
|
imp1(exp)
|
|
imp2(hypot)
|
|
|
|
#define m_hypot(x,y) m_hypot_bang((x),(y))
|
|
|
|
static VALUE
|
|
m_log_bang(VALUE x)
|
|
{
|
|
return rb_math_log(1, &x);
|
|
}
|
|
|
|
imp1(sin)
|
|
imp1(sinh)
|
|
imp1(sqrt)
|
|
|
|
static VALUE
|
|
m_cos(VALUE x)
|
|
{
|
|
if (f_real_p(x))
|
|
return m_cos_bang(x);
|
|
{
|
|
get_dat1(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_cosh_bang(dat->imag)),
|
|
f_mul(f_negate(m_sin_bang(dat->real)),
|
|
m_sinh_bang(dat->imag)));
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
m_sin(VALUE x)
|
|
{
|
|
if (f_real_p(x))
|
|
return m_sin_bang(x);
|
|
{
|
|
get_dat1(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_sin_bang(dat->real),
|
|
m_cosh_bang(dat->imag)),
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_sinh_bang(dat->imag)));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static VALUE
|
|
m_sqrt(VALUE x)
|
|
{
|
|
if (f_real_p(x)) {
|
|
if (f_positive_p(x))
|
|
return m_sqrt_bang(x);
|
|
return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
|
|
}
|
|
else {
|
|
get_dat1(x);
|
|
|
|
if (f_negative_p(dat->imag))
|
|
return f_conj(m_sqrt(f_conj(x)));
|
|
else {
|
|
VALUE a = f_abs(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
|
|
m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_complex_polar(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
assert(!k_complex_p(y));
|
|
return nucomp_s_canonicalize_internal(klass,
|
|
f_mul(x, m_cos(y)),
|
|
f_mul(x, m_sin(y)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex.polar(abs[, arg]) -> complex
|
|
*
|
|
* Returns a complex object which denotes the given polar form.
|
|
*
|
|
* Complex.polar(3, 0) #=> (3.0+0.0i)
|
|
* Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
|
|
* Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
|
|
* Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
|
|
*/
|
|
static VALUE
|
|
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE abs, arg;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
|
|
case 1:
|
|
nucomp_real_check(abs);
|
|
arg = ZERO;
|
|
break;
|
|
default:
|
|
nucomp_real_check(abs);
|
|
nucomp_real_check(arg);
|
|
break;
|
|
}
|
|
return f_complex_polar(klass, abs, arg);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.real -> real
|
|
*
|
|
* Returns the real part.
|
|
*/
|
|
static VALUE
|
|
nucomp_real(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->real;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.imag -> real
|
|
* cmp.imaginary -> real
|
|
*
|
|
* Returns the imaginary part.
|
|
*/
|
|
static VALUE
|
|
nucomp_imag(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->imag;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -cmp -> complex
|
|
*
|
|
* Returns negation of the value.
|
|
*/
|
|
static VALUE
|
|
nucomp_negate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_negate(dat->real), f_negate(dat->imag));
|
|
}
|
|
|
|
inline static VALUE
|
|
f_addsub(VALUE self, VALUE other,
|
|
VALUE (*func)(VALUE, VALUE), ID id)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
VALUE real, imag;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = (*func)(adat->real, bdat->real);
|
|
imag = (*func)(adat->imag, bdat->imag);
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, imag);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(dat->real, other), dat->imag);
|
|
}
|
|
return rb_num_coerce_bin(self, other, id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp + numeric -> complex
|
|
*
|
|
* Performs addition.
|
|
*/
|
|
static VALUE
|
|
nucomp_add(VALUE self, VALUE other)
|
|
{
|
|
return f_addsub(self, other, f_add, '+');
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp - numeric -> complex
|
|
*
|
|
* Performs subtraction.
|
|
*/
|
|
static VALUE
|
|
nucomp_sub(VALUE self, VALUE other)
|
|
{
|
|
return f_addsub(self, other, f_sub, '-');
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp * numeric -> complex
|
|
*
|
|
* Performs multiplication.
|
|
*/
|
|
static VALUE
|
|
nucomp_mul(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
VALUE real, imag;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_sub(f_mul(adat->real, bdat->real),
|
|
f_mul(adat->imag, bdat->imag));
|
|
imag = f_add(f_mul(adat->real, bdat->imag),
|
|
f_mul(adat->imag, bdat->real));
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, imag);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(dat->real, other),
|
|
f_mul(dat->imag, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
|
|
inline static VALUE
|
|
f_divide(VALUE self, VALUE other,
|
|
VALUE (*func)(VALUE, VALUE), ID id)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
int flo;
|
|
get_dat2(self, other);
|
|
|
|
flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
|
|
k_float_p(bdat->real) || k_float_p(bdat->imag));
|
|
|
|
if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
|
|
VALUE r, n;
|
|
|
|
r = (*func)(bdat->imag, bdat->real);
|
|
n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
|
|
if (flo)
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(self, n),
|
|
(*func)(f_negate(f_mul(self, r)), n));
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(f_add(adat->real,
|
|
f_mul(adat->imag, r)), n),
|
|
(*func)(f_sub(adat->imag,
|
|
f_mul(adat->real, r)), n));
|
|
}
|
|
else {
|
|
VALUE r, n;
|
|
|
|
r = (*func)(bdat->real, bdat->imag);
|
|
n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
|
|
if (flo)
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(f_mul(self, r), n),
|
|
(*func)(f_negate(self), n));
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(f_add(f_mul(adat->real, r),
|
|
adat->imag), n),
|
|
(*func)(f_sub(f_mul(adat->imag, r),
|
|
adat->real), n));
|
|
}
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(dat->real, other),
|
|
(*func)(dat->imag, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, id);
|
|
}
|
|
|
|
#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp / numeric -> complex
|
|
* cmp.quo(numeric) -> complex
|
|
*
|
|
* Performs division.
|
|
*
|
|
* For example:
|
|
*
|
|
* Complex(10.0) / 3 #=> (3.3333333333333335+(0/1)*i)
|
|
* Complex(10) / 3 #=> ((10/3)+(0/1)*i) # not (3+0i)
|
|
*/
|
|
static VALUE
|
|
nucomp_div(VALUE self, VALUE other)
|
|
{
|
|
return f_divide(self, other, f_quo, id_quo);
|
|
}
|
|
|
|
#define nucomp_quo nucomp_div
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.fdiv(numeric) -> complex
|
|
*
|
|
* Performs division as each part is a float, never returns a float.
|
|
*
|
|
* For example:
|
|
*
|
|
* Complex(11,22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
|
|
*/
|
|
static VALUE
|
|
nucomp_fdiv(VALUE self, VALUE other)
|
|
{
|
|
return f_divide(self, other, f_fdiv, id_fdiv);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_reciprocal(VALUE x)
|
|
{
|
|
return f_quo(ONE, x);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp ** numeric -> complex
|
|
*
|
|
* Performs exponentiation.
|
|
*
|
|
* For example:
|
|
*
|
|
* Complex('i') ** 2 #=> (-1+0i)
|
|
* Complex(-8) ** Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
|
|
*/
|
|
static VALUE
|
|
nucomp_expt(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && k_exact_zero_p(other))
|
|
return f_complex_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (k_rational_p(other) && f_one_p(f_denominator(other)))
|
|
other = f_numerator(other); /* c14n */
|
|
|
|
if (k_complex_p(other)) {
|
|
get_dat1(other);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
other = dat->real; /* c14n */
|
|
}
|
|
|
|
if (k_complex_p(other)) {
|
|
VALUE r, theta, nr, ntheta;
|
|
|
|
get_dat1(other);
|
|
|
|
r = f_abs(self);
|
|
theta = f_arg(self);
|
|
|
|
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
|
|
f_mul(dat->imag, theta)));
|
|
ntheta = f_add(f_mul(theta, dat->real),
|
|
f_mul(dat->imag, m_log_bang(r)));
|
|
return f_complex_polar(CLASS_OF(self), nr, ntheta);
|
|
}
|
|
if (k_fixnum_p(other)) {
|
|
if (f_gt_p(other, ZERO)) {
|
|
VALUE x, z;
|
|
long n;
|
|
|
|
x = self;
|
|
z = x;
|
|
n = FIX2LONG(other) - 1;
|
|
|
|
while (n) {
|
|
long q, r;
|
|
|
|
while (1) {
|
|
get_dat1(x);
|
|
|
|
q = n / 2;
|
|
r = n % 2;
|
|
|
|
if (r)
|
|
break;
|
|
|
|
x = nucomp_s_new_internal(CLASS_OF(self),
|
|
f_sub(f_mul(dat->real, dat->real),
|
|
f_mul(dat->imag, dat->imag)),
|
|
f_mul(f_mul(TWO, dat->real), dat->imag));
|
|
n = q;
|
|
}
|
|
z = f_mul(z, x);
|
|
n--;
|
|
}
|
|
return z;
|
|
}
|
|
return f_expt(f_reciprocal(self), f_negate(other));
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
VALUE r, theta;
|
|
|
|
if (k_bignum_p(other))
|
|
rb_warn("in a**b, b may be too big");
|
|
|
|
r = f_abs(self);
|
|
theta = f_arg(self);
|
|
|
|
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
|
|
f_mul(theta, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, id_expt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp == object -> true or false
|
|
*
|
|
* Returns true if cmp equals object numerically.
|
|
*/
|
|
static VALUE
|
|
nucomp_eqeq_p(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
get_dat2(self, other);
|
|
|
|
return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
|
|
f_eqeq_p(adat->imag, bdat->imag));
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
|
|
}
|
|
return f_eqeq_p(other, self);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_coerce(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && f_real_p(other))
|
|
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
|
|
if (RB_TYPE_P(other, T_COMPLEX))
|
|
return rb_assoc_new(other, self);
|
|
|
|
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
|
rb_obj_classname(other), rb_obj_classname(self));
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.abs -> real
|
|
* cmp.magnitude -> real
|
|
*
|
|
* Returns the absolute part of its polar form.
|
|
*/
|
|
static VALUE
|
|
nucomp_abs(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (f_zero_p(dat->real)) {
|
|
VALUE a = f_abs(dat->imag);
|
|
if (k_float_p(dat->real) && !k_float_p(dat->imag))
|
|
a = f_to_f(a);
|
|
return a;
|
|
}
|
|
if (f_zero_p(dat->imag)) {
|
|
VALUE a = f_abs(dat->real);
|
|
if (!k_float_p(dat->real) && k_float_p(dat->imag))
|
|
a = f_to_f(a);
|
|
return a;
|
|
}
|
|
return m_hypot(dat->real, dat->imag);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.abs2 -> real
|
|
*
|
|
* Returns square of the absolute value.
|
|
*/
|
|
static VALUE
|
|
nucomp_abs2(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_add(f_mul(dat->real, dat->real),
|
|
f_mul(dat->imag, dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.arg -> float
|
|
* cmp.angle -> float
|
|
* cmp.phase -> float
|
|
*
|
|
* Returns the angle part of its polar form.
|
|
*
|
|
* Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
|
|
*
|
|
*/
|
|
static VALUE
|
|
nucomp_arg(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return m_atan2_bang(dat->imag, dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.rect -> array
|
|
* cmp.rectangular -> array
|
|
*
|
|
* Returns an array; [cmp.real, cmp.imag].
|
|
*/
|
|
static VALUE
|
|
nucomp_rect(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_assoc_new(dat->real, dat->imag);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.polar -> array
|
|
*
|
|
* Returns an array; [cmp.abs, cmp.arg].
|
|
*/
|
|
static VALUE
|
|
nucomp_polar(VALUE self)
|
|
{
|
|
return rb_assoc_new(f_abs(self), f_arg(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.conj -> complex
|
|
* cmp.conjugate -> complex
|
|
*
|
|
* Returns the complex conjugate.
|
|
*/
|
|
static VALUE
|
|
nucomp_conj(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
|
|
}
|
|
|
|
#if 0
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_true(VALUE self)
|
|
{
|
|
return Qtrue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.real? -> false
|
|
*
|
|
* Returns false.
|
|
*/
|
|
static VALUE
|
|
nucomp_false(VALUE self)
|
|
{
|
|
return Qfalse;
|
|
}
|
|
|
|
#if 0
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_exact_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_inexact_p(VALUE self)
|
|
{
|
|
return f_boolcast(!nucomp_exact_p(self));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.denominator -> integer
|
|
*
|
|
* Returns the denominator (lcm of both denominator - real and imag).
|
|
*
|
|
* See numerator.
|
|
*/
|
|
static VALUE
|
|
nucomp_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.numerator -> numeric
|
|
*
|
|
* Returns the numerator.
|
|
*
|
|
* For example:
|
|
*
|
|
* 1 2 3+4i <- numerator
|
|
* - + -i -> ----
|
|
* 2 3 6 <- denominator
|
|
*
|
|
* c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
|
|
* n = c.numerator #=> (3+4i)
|
|
* d = c.denominator #=> 6
|
|
* n / d #=> ((1/2)+(2/3)*i)
|
|
* Complex(Rational(n.real, d), Rational(n.imag, d))
|
|
* #=> ((1/2)+(2/3)*i)
|
|
* See denominator.
|
|
*/
|
|
static VALUE
|
|
nucomp_numerator(VALUE self)
|
|
{
|
|
VALUE cd;
|
|
|
|
get_dat1(self);
|
|
|
|
cd = f_denominator(self);
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(f_numerator(dat->real),
|
|
f_div(cd, f_denominator(dat->real))),
|
|
f_mul(f_numerator(dat->imag),
|
|
f_div(cd, f_denominator(dat->imag))));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_hash(VALUE self)
|
|
{
|
|
st_index_t v, h[2];
|
|
VALUE n;
|
|
|
|
get_dat1(self);
|
|
n = rb_hash(dat->real);
|
|
h[0] = NUM2LONG(n);
|
|
n = rb_hash(dat->imag);
|
|
h[1] = NUM2LONG(n);
|
|
v = rb_memhash(h, sizeof(h));
|
|
return LONG2FIX(v);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_eql_p(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
get_dat2(self, other);
|
|
|
|
return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
|
|
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
|
|
f_eqeq_p(self, other));
|
|
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
inline static VALUE
|
|
f_signbit(VALUE x)
|
|
{
|
|
#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
|
|
!defined(signbit)
|
|
extern int signbit(double);
|
|
#endif
|
|
switch (TYPE(x)) {
|
|
case T_FLOAT: {
|
|
double f = RFLOAT_VALUE(x);
|
|
return f_boolcast(!isnan(f) && signbit(f));
|
|
}
|
|
}
|
|
return f_negative_p(x);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_tpositive_p(VALUE x)
|
|
{
|
|
return f_boolcast(!f_signbit(x));
|
|
}
|
|
|
|
static VALUE
|
|
f_format(VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE s, impos;
|
|
|
|
get_dat1(self);
|
|
|
|
impos = f_tpositive_p(dat->imag);
|
|
|
|
s = (*func)(dat->real);
|
|
rb_str_cat2(s, !impos ? "-" : "+");
|
|
|
|
rb_str_concat(s, (*func)(f_abs(dat->imag)));
|
|
if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
|
|
rb_str_cat2(s, "*");
|
|
rb_str_cat2(s, "i");
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_s -> string
|
|
*
|
|
* Returns the value as a string.
|
|
*/
|
|
static VALUE
|
|
nucomp_to_s(VALUE self)
|
|
{
|
|
return f_format(self, f_to_s);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.inspect -> string
|
|
*
|
|
* Returns the value as a string for inspection.
|
|
*/
|
|
static VALUE
|
|
nucomp_inspect(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = rb_usascii_str_new2("(");
|
|
rb_str_concat(s, f_format(self, f_inspect));
|
|
rb_str_cat2(s, ")");
|
|
|
|
return s;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_dumper(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_loader(VALUE self, VALUE a)
|
|
{
|
|
get_dat1(self);
|
|
|
|
dat->real = rb_ivar_get(a, id_i_real);
|
|
dat->imag = rb_ivar_get(a, id_i_imag);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_marshal_dump(VALUE self)
|
|
{
|
|
VALUE a;
|
|
get_dat1(self);
|
|
|
|
a = rb_assoc_new(dat->real, dat->imag);
|
|
return a;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
Check_Type(a, T_ARRAY);
|
|
if (RARRAY_LEN(a) != 2)
|
|
rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
|
|
rb_ivar_set(self, id_i_real, RARRAY_PTR(a)[0]);
|
|
rb_ivar_set(self, id_i_imag, RARRAY_PTR(a)[1]);
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_complex_raw(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_new_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_new(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_polar(VALUE x, VALUE y)
|
|
{
|
|
return f_complex_polar(rb_cComplex, x, y);
|
|
}
|
|
|
|
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
VALUE
|
|
rb_Complex(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nucomp_s_convert(2, a, rb_cComplex);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_i -> integer
|
|
*
|
|
* Returns the value as an integer if possible.
|
|
*/
|
|
static VALUE
|
|
nucomp_to_i(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Integer",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_i(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_f -> float
|
|
*
|
|
* Returns the value as a float if possible.
|
|
*/
|
|
static VALUE
|
|
nucomp_to_f(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Float",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_f(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_r -> rational
|
|
*
|
|
* If the imaginary part is exactly 0, returns the real part as a Rational,
|
|
* otherwise a RangeError is raised.
|
|
*/
|
|
static VALUE
|
|
nucomp_to_r(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Rational",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_r(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.rationalize([eps]) -> rational
|
|
*
|
|
* If the imaginary part is exactly 0, returns the real part as a Rational,
|
|
* otherwise a RangeError is raised.
|
|
*/
|
|
static VALUE
|
|
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
rb_scan_args(argc, argv, "01", NULL);
|
|
|
|
if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Rational",
|
|
StringValuePtr(s));
|
|
}
|
|
return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.to_c -> (0+0i)
|
|
*
|
|
* Returns zero as a complex.
|
|
*/
|
|
static VALUE
|
|
nilclass_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.to_c -> complex
|
|
*
|
|
* Returns the value as a complex.
|
|
*/
|
|
static VALUE
|
|
numeric_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(self);
|
|
}
|
|
|
|
static VALUE comp_pat0, comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
|
|
null_string, underscores_pat, an_underscore;
|
|
|
|
#define WS "\\s*"
|
|
#define DIGITS "(?:[0-9](?:_[0-9]|[0-9])*)"
|
|
#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
|
|
#define DENOMINATOR DIGITS
|
|
#define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
|
#define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
|
#define PATTERN0 "\\A" WS "(" NUMBER ")@(" NUMBER ")" WS
|
|
#define PATTERN1 "\\A" WS "([-+])?(" NUMBER ")?[iIjJ]" WS
|
|
#define PATTERN2 "\\A" WS "(" NUMBER ")(([-+])(" NUMBERNOS ")?[iIjJ])?" WS
|
|
|
|
static void
|
|
make_patterns(void)
|
|
{
|
|
static const char comp_pat0_source[] = PATTERN0;
|
|
static const char comp_pat1_source[] = PATTERN1;
|
|
static const char comp_pat2_source[] = PATTERN2;
|
|
static const char underscores_pat_source[] = "_+";
|
|
|
|
if (comp_pat0) return;
|
|
|
|
comp_pat0 = rb_reg_new(comp_pat0_source, sizeof comp_pat0_source - 1, 0);
|
|
rb_gc_register_mark_object(comp_pat0);
|
|
|
|
comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0);
|
|
rb_gc_register_mark_object(comp_pat1);
|
|
|
|
comp_pat2 = rb_reg_new(comp_pat2_source, sizeof comp_pat2_source - 1, 0);
|
|
rb_gc_register_mark_object(comp_pat2);
|
|
|
|
a_slash = rb_usascii_str_new2("/");
|
|
rb_gc_register_mark_object(a_slash);
|
|
|
|
a_dot_and_an_e = rb_usascii_str_new2(".eE");
|
|
rb_gc_register_mark_object(a_dot_and_an_e);
|
|
|
|
null_string = rb_usascii_str_new2("");
|
|
rb_gc_register_mark_object(null_string);
|
|
|
|
underscores_pat = rb_reg_new(underscores_pat_source,
|
|
sizeof underscores_pat_source - 1, 0);
|
|
rb_gc_register_mark_object(underscores_pat);
|
|
|
|
an_underscore = rb_usascii_str_new2("_");
|
|
rb_gc_register_mark_object(an_underscore);
|
|
}
|
|
|
|
#define id_match rb_intern("match")
|
|
#define f_match(x,y) rb_funcall((x), id_match, 1, (y))
|
|
|
|
#define id_gsub_bang rb_intern("gsub!")
|
|
#define f_gsub_bang(x,y,z) rb_funcall((x), id_gsub_bang, 2, (y), (z))
|
|
|
|
static VALUE
|
|
string_to_c_internal(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = self;
|
|
|
|
if (RSTRING_LEN(s) == 0)
|
|
return rb_assoc_new(Qnil, self);
|
|
|
|
{
|
|
VALUE m, sr, si, re, r, i;
|
|
int po;
|
|
|
|
m = f_match(comp_pat0, s);
|
|
if (!NIL_P(m)) {
|
|
sr = rb_reg_nth_match(1, m);
|
|
si = rb_reg_nth_match(2, m);
|
|
re = rb_reg_match_post(m);
|
|
po = 1;
|
|
}
|
|
if (NIL_P(m)) {
|
|
m = f_match(comp_pat1, s);
|
|
if (!NIL_P(m)) {
|
|
sr = Qnil;
|
|
si = rb_reg_nth_match(1, m);
|
|
if (NIL_P(si))
|
|
si = rb_usascii_str_new2("");
|
|
{
|
|
VALUE t;
|
|
|
|
t = rb_reg_nth_match(2, m);
|
|
if (NIL_P(t))
|
|
t = rb_usascii_str_new2("1");
|
|
rb_str_concat(si, t);
|
|
}
|
|
re = rb_reg_match_post(m);
|
|
po = 0;
|
|
}
|
|
}
|
|
if (NIL_P(m)) {
|
|
m = f_match(comp_pat2, s);
|
|
if (NIL_P(m))
|
|
return rb_assoc_new(Qnil, self);
|
|
sr = rb_reg_nth_match(1, m);
|
|
if (NIL_P(rb_reg_nth_match(2, m)))
|
|
si = Qnil;
|
|
else {
|
|
VALUE t;
|
|
|
|
si = rb_reg_nth_match(3, m);
|
|
t = rb_reg_nth_match(4, m);
|
|
if (NIL_P(t))
|
|
t = rb_usascii_str_new2("1");
|
|
rb_str_concat(si, t);
|
|
}
|
|
re = rb_reg_match_post(m);
|
|
po = 0;
|
|
}
|
|
r = INT2FIX(0);
|
|
i = INT2FIX(0);
|
|
if (!NIL_P(sr)) {
|
|
if (strchr(RSTRING_PTR(sr), '/'))
|
|
r = f_to_r(sr);
|
|
else if (strpbrk(RSTRING_PTR(sr), ".eE"))
|
|
r = f_to_f(sr);
|
|
else
|
|
r = f_to_i(sr);
|
|
}
|
|
if (!NIL_P(si)) {
|
|
if (strchr(RSTRING_PTR(si), '/'))
|
|
i = f_to_r(si);
|
|
else if (strpbrk(RSTRING_PTR(si), ".eE"))
|
|
i = f_to_f(si);
|
|
else
|
|
i = f_to_i(si);
|
|
}
|
|
if (po)
|
|
return rb_assoc_new(rb_complex_polar(r, i), re);
|
|
else
|
|
return rb_assoc_new(rb_complex_new2(r, i), re);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
string_to_c_strict(VALUE self)
|
|
{
|
|
VALUE a = string_to_c_internal(self);
|
|
if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) {
|
|
VALUE s = f_inspect(self);
|
|
rb_raise(rb_eArgError, "invalid value for convert(): %s",
|
|
StringValuePtr(s));
|
|
}
|
|
return RARRAY_PTR(a)[0];
|
|
}
|
|
|
|
#define id_gsub rb_intern("gsub")
|
|
#define f_gsub(x,y,z) rb_funcall((x), id_gsub, 2, (y), (z))
|
|
|
|
/*
|
|
* call-seq:
|
|
* str.to_c -> complex
|
|
*
|
|
* Returns a complex which denotes the string form. The parser
|
|
* ignores leading whitespaces and trailing garbage. Any digit
|
|
* sequences can be separated by an underscore. Returns zero for null
|
|
* or garbage string.
|
|
*
|
|
* For example:
|
|
*
|
|
* '9'.to_c #=> (9+0i)
|
|
* '2.5'.to_c #=> (2.5+0i)
|
|
* '2.5/1'.to_c #=> ((5/2)+0i)
|
|
* '-3/2'.to_c #=> ((-3/2)+0i)
|
|
* '-i'.to_c #=> (0-1i)
|
|
* '45i'.to_c #=> (0+45i)
|
|
* '3-4i'.to_c #=> (3-4i)
|
|
* '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
|
|
* '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
|
|
* '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
|
|
* 'ruby'.to_c #=> (0+0i)
|
|
*/
|
|
static VALUE
|
|
string_to_c(VALUE self)
|
|
{
|
|
VALUE s, a, backref;
|
|
|
|
backref = rb_backref_get();
|
|
rb_match_busy(backref);
|
|
|
|
s = f_gsub(self, underscores_pat, an_underscore);
|
|
a = string_to_c_internal(s);
|
|
|
|
rb_backref_set(backref);
|
|
|
|
if (!NIL_P(RARRAY_PTR(a)[0]))
|
|
return RARRAY_PTR(a)[0];
|
|
return rb_complex_new1(INT2FIX(0));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, backref;
|
|
|
|
rb_scan_args(argc, argv, "11", &a1, &a2);
|
|
|
|
if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
|
|
rb_raise(rb_eTypeError, "can't convert nil into Complex");
|
|
|
|
backref = rb_backref_get();
|
|
rb_match_busy(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
break;
|
|
case T_STRING:
|
|
a1 = string_to_c_strict(a1);
|
|
break;
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
break;
|
|
case T_STRING:
|
|
a2 = string_to_c_strict(a2);
|
|
break;
|
|
}
|
|
|
|
rb_backref_set(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_COMPLEX:
|
|
{
|
|
get_dat1(a1);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
a1 = dat->real;
|
|
}
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_COMPLEX:
|
|
{
|
|
get_dat1(a2);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
a2 = dat->real;
|
|
}
|
|
}
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_COMPLEX:
|
|
if (argc == 1 || (k_exact_zero_p(a2)))
|
|
return a1;
|
|
}
|
|
|
|
if (argc == 1) {
|
|
if (k_numeric_p(a1) && !f_real_p(a1))
|
|
return a1;
|
|
/* should raise exception for consistency */
|
|
if (!k_numeric_p(a1))
|
|
return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
|
|
}
|
|
else {
|
|
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
|
|
(!f_real_p(a1) || !f_real_p(a2)))
|
|
return f_add(a1,
|
|
f_mul(a2,
|
|
f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
|
|
}
|
|
|
|
{
|
|
VALUE argv2[2];
|
|
argv2[0] = a1;
|
|
argv2[1] = a2;
|
|
return nucomp_s_new(argc, argv2, klass);
|
|
}
|
|
}
|
|
|
|
/* --- */
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.real -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
numeric_real(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.imag -> 0
|
|
* num.imaginary -> 0
|
|
*
|
|
* Returns zero.
|
|
*/
|
|
static VALUE
|
|
numeric_imag(VALUE self)
|
|
{
|
|
return INT2FIX(0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.abs2 -> real
|
|
*
|
|
* Returns square of self.
|
|
*/
|
|
static VALUE
|
|
numeric_abs2(VALUE self)
|
|
{
|
|
return f_mul(self, self);
|
|
}
|
|
|
|
#define id_PI rb_intern("PI")
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.arg -> 0 or float
|
|
* num.angle -> 0 or float
|
|
* num.phase -> 0 or float
|
|
*
|
|
* Returns 0 if the value is positive, pi otherwise.
|
|
*/
|
|
static VALUE
|
|
numeric_arg(VALUE self)
|
|
{
|
|
if (f_positive_p(self))
|
|
return INT2FIX(0);
|
|
return rb_const_get(rb_mMath, id_PI);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.rect -> array
|
|
*
|
|
* Returns an array; [num, 0].
|
|
*/
|
|
static VALUE
|
|
numeric_rect(VALUE self)
|
|
{
|
|
return rb_assoc_new(self, INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.polar -> array
|
|
*
|
|
* Returns an array; [num.abs, num.arg].
|
|
*/
|
|
static VALUE
|
|
numeric_polar(VALUE self)
|
|
{
|
|
return rb_assoc_new(f_abs(self), f_arg(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.conj -> self
|
|
* num.conjugate -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
numeric_conj(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.arg -> 0 or float
|
|
* flo.angle -> 0 or float
|
|
* flo.phase -> 0 or float
|
|
*
|
|
* Returns 0 if the value is positive, pi otherwise.
|
|
*/
|
|
static VALUE
|
|
float_arg(VALUE self)
|
|
{
|
|
if (isnan(RFLOAT_VALUE(self)))
|
|
return self;
|
|
if (f_tpositive_p(self))
|
|
return INT2FIX(0);
|
|
return rb_const_get(rb_mMath, id_PI);
|
|
}
|
|
|
|
/*
|
|
* A complex number can be represented as a paired real number with
|
|
* imaginary unit; a+bi. Where a is real part, b is imaginary part
|
|
* and i is imaginary unit. Real a equals complex a+0i
|
|
* mathematically.
|
|
*
|
|
* In ruby, you can create complex object with Complex, Complex::rect,
|
|
* Complex::polar or to_c method.
|
|
*
|
|
* Complex(1) #=> (1+0i)
|
|
* Complex(2, 3) #=> (2+3i)
|
|
* Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
|
|
* 3.to_c #=> (3+0i)
|
|
*
|
|
* You can also create complex object from floating-point numbers or
|
|
* strings.
|
|
*
|
|
* Complex(0.3) #=> (0.3+0i)
|
|
* Complex('0.3-0.5i') #=> (0.3-0.5i)
|
|
* Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
|
|
* Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
|
|
*
|
|
* 0.3.to_c #=> (0.3+0i)
|
|
* '0.3-0.5i'.to_c #=> (0.3-0.5i)
|
|
* '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
|
|
* '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
|
|
*
|
|
* A complex object is either an exact or an inexact number.
|
|
*
|
|
* Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
|
|
* Complex(1, 1) / 2.0 #=> (0.5+0.5i)
|
|
*/
|
|
void
|
|
Init_Complex(void)
|
|
{
|
|
VALUE compat;
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
assert(fprintf(stderr, "assert() is now active\n"));
|
|
|
|
id_abs = rb_intern("abs");
|
|
id_abs2 = rb_intern("abs2");
|
|
id_arg = rb_intern("arg");
|
|
id_cmp = rb_intern("<=>");
|
|
id_conj = rb_intern("conj");
|
|
id_convert = rb_intern("convert");
|
|
id_denominator = rb_intern("denominator");
|
|
id_divmod = rb_intern("divmod");
|
|
id_eqeq_p = rb_intern("==");
|
|
id_expt = rb_intern("**");
|
|
id_fdiv = rb_intern("fdiv");
|
|
id_floor = rb_intern("floor");
|
|
id_idiv = rb_intern("div");
|
|
id_imag = rb_intern("imag");
|
|
id_inspect = rb_intern("inspect");
|
|
id_negate = rb_intern("-@");
|
|
id_numerator = rb_intern("numerator");
|
|
id_quo = rb_intern("quo");
|
|
id_real = rb_intern("real");
|
|
id_real_p = rb_intern("real?");
|
|
id_to_f = rb_intern("to_f");
|
|
id_to_i = rb_intern("to_i");
|
|
id_to_r = rb_intern("to_r");
|
|
id_to_s = rb_intern("to_s");
|
|
id_i_real = rb_intern("@real");
|
|
id_i_imag = rb_intern("@image");
|
|
|
|
rb_cComplex = rb_define_class("Complex", rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
|
|
rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
|
|
|
|
#if 0
|
|
rb_define_private_method(CLASS_OF(rb_cComplex), "new!", nucomp_s_new_bang, -1);
|
|
rb_define_private_method(CLASS_OF(rb_cComplex), "new", nucomp_s_new, -1);
|
|
#else
|
|
rb_undef_method(CLASS_OF(rb_cComplex), "new");
|
|
#endif
|
|
|
|
rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
|
|
|
|
rb_define_global_function("Complex", nucomp_f_complex, -1);
|
|
|
|
rb_undef_method(rb_cComplex, "%");
|
|
rb_undef_method(rb_cComplex, "<");
|
|
rb_undef_method(rb_cComplex, "<=");
|
|
rb_undef_method(rb_cComplex, "<=>");
|
|
rb_undef_method(rb_cComplex, ">");
|
|
rb_undef_method(rb_cComplex, ">=");
|
|
rb_undef_method(rb_cComplex, "between?");
|
|
rb_undef_method(rb_cComplex, "div");
|
|
rb_undef_method(rb_cComplex, "divmod");
|
|
rb_undef_method(rb_cComplex, "floor");
|
|
rb_undef_method(rb_cComplex, "ceil");
|
|
rb_undef_method(rb_cComplex, "modulo");
|
|
rb_undef_method(rb_cComplex, "remainder");
|
|
rb_undef_method(rb_cComplex, "round");
|
|
rb_undef_method(rb_cComplex, "step");
|
|
rb_undef_method(rb_cComplex, "truncate");
|
|
rb_undef_method(rb_cComplex, "i");
|
|
|
|
#if 0 /* NUBY */
|
|
rb_undef_method(rb_cComplex, "//");
|
|
#endif
|
|
|
|
rb_define_method(rb_cComplex, "real", nucomp_real, 0);
|
|
rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0);
|
|
rb_define_method(rb_cComplex, "imag", nucomp_imag, 0);
|
|
|
|
rb_define_method(rb_cComplex, "-@", nucomp_negate, 0);
|
|
rb_define_method(rb_cComplex, "+", nucomp_add, 1);
|
|
rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
|
|
rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
|
|
rb_define_method(rb_cComplex, "/", nucomp_div, 1);
|
|
rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
|
|
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
|
|
rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
|
|
|
|
rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
|
|
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
|
|
|
|
rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
|
|
rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
|
|
rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0);
|
|
rb_define_method(rb_cComplex, "conj", nucomp_conj, 0);
|
|
#if 0
|
|
rb_define_method(rb_cComplex, "~", nucomp_conj, 0); /* gcc */
|
|
#endif
|
|
|
|
rb_define_method(rb_cComplex, "real?", nucomp_false, 0);
|
|
#if 0
|
|
rb_define_method(rb_cComplex, "complex?", nucomp_true, 0);
|
|
rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
|
|
rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
|
|
#endif
|
|
|
|
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
|
|
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
|
|
|
|
rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
|
|
rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
|
|
|
|
rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
|
|
rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
|
|
|
|
rb_define_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
|
|
compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
|
|
rb_define_method(compat, "marshal_load", nucomp_marshal_load, 1);
|
|
rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
|
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
|
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
|
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
|
|
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
|
|
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
|
|
|
|
make_patterns();
|
|
|
|
rb_define_method(rb_cString, "to_c", string_to_c, 0);
|
|
|
|
rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cNumeric, "real", numeric_real, 0);
|
|
rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
|
|
rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
|
|
rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
|
|
rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
|
|
rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
|
|
rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
|
|
|
|
rb_define_method(rb_cFloat, "arg", float_arg, 0);
|
|
rb_define_method(rb_cFloat, "angle", float_arg, 0);
|
|
rb_define_method(rb_cFloat, "phase", float_arg, 0);
|
|
|
|
/*
|
|
* The imaginary unit.
|
|
*/
|
|
rb_define_const(rb_cComplex, "I",
|
|
f_complex_new_bang2(rb_cComplex, ZERO, ONE));
|
|
}
|
|
|
|
/*
|
|
Local variables:
|
|
c-file-style: "ruby"
|
|
End:
|
|
*/
|