1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/eval.c
Jeremy Evans 37a2c660aa Convert keyword argument to required positional hash argument for Class#new, Method#call, UnboundMethod#bind_call
Also add keyword argument separation warnings for Class#new and Method#call.

To allow for keyword argument to required positional hash converstion in
cfuncs, add a vm frame flag indicating the cfunc was called with an empty
keyword hash (which was removed before calling the cfunc).  The cfunc can
check this frame flag and add back an empty hash if it is passing its
arguments to another Ruby method.  Add rb_empty_keyword_given_p function
for checking if called with an empty keyword hash, and
rb_add_empty_keyword for adding back an empty hash to argv.

All of this empty keyword argument support is only for 2.7.  It will be
removed in 3.0 as Ruby 3 will not convert empty keyword arguments to
required positional hash arguments.  Comment all of the relevent code
to make it obvious this is expected to be removed.

Add rb_funcallv_kw as an public C-API function, just like rb_funcallv
but with a keyword flag.  This is used by rb_obj_call_init (internals
of Class#new).  This also required expected call_type enum with
CALL_FCALL_KW, similar to the recent addition of CALL_PUBLIC_KW.

Add rb_vm_call_kw as a internal function, used by call_method_data
(internals of Method#call and UnboundMethod#bind_call). Add tests
for UnboundMethod#bind_call keyword handling.
2019-09-06 19:41:23 -07:00

2099 lines
51 KiB
C

/**********************************************************************
eval.c -
$Author$
created at: Thu Jun 10 14:22:17 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "internal.h"
#include "eval_intern.h"
#include "iseq.h"
#include "gc.h"
#include "ruby/vm.h"
#include "vm_core.h"
#include "mjit.h"
#include "probes.h"
#include "probes_helper.h"
#ifdef HAVE_SYS_PRCTL_H
#include <sys/prctl.h>
#endif
NORETURN(void rb_raise_jump(VALUE, VALUE));
void rb_ec_clear_current_thread_trace_func(const rb_execution_context_t *ec);
static int rb_ec_cleanup(rb_execution_context_t *ec, volatile int ex);
static int rb_ec_exec_node(rb_execution_context_t *ec, void *n);
VALUE rb_eLocalJumpError;
VALUE rb_eSysStackError;
ID ruby_static_id_signo, ruby_static_id_status;
extern ID ruby_static_id_cause;
#define id_cause ruby_static_id_cause
#define exception_error GET_VM()->special_exceptions[ruby_error_reenter]
#include "eval_error.c"
#include "eval_jump.c"
#define CLASS_OR_MODULE_P(obj) \
(!SPECIAL_CONST_P(obj) && \
(BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE))
/*!
* Initializes the VM and builtin libraries.
* @retval 0 if succeeded.
* @retval non-zero an error occurred.
*/
int
ruby_setup(void)
{
enum ruby_tag_type state;
if (GET_VM())
return 0;
ruby_init_stack((void *)&state);
/*
* Disable THP early before mallocs happen because we want this to
* affect as many future pages as possible for CoW-friendliness
*/
#if defined(__linux__) && defined(PR_SET_THP_DISABLE)
prctl(PR_SET_THP_DISABLE, 1, 0, 0, 0);
#endif
Init_BareVM();
Init_heap();
rb_vm_encoded_insn_data_table_init();
Init_vm_objects();
EC_PUSH_TAG(GET_EC());
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_call_inits();
ruby_prog_init();
GET_VM()->running = 1;
}
EC_POP_TAG();
return state;
}
/*!
* Calls ruby_setup() and check error.
*
* Prints errors and calls exit(3) if an error occurred.
*/
void
ruby_init(void)
{
int state = ruby_setup();
if (state) {
if (RTEST(ruby_debug))
error_print(GET_EC());
exit(EXIT_FAILURE);
}
}
/*! Processes command line arguments and compiles the Ruby source to execute.
*
* This function does:
* \li Processes the given command line flags and arguments for ruby(1)
* \li compiles the source code from the given argument, -e or stdin, and
* \li returns the compiled source as an opaque pointer to an internal data structure
*
* @return an opaque pointer to the compiled source or an internal special value.
* @sa ruby_executable_node().
*/
void *
ruby_options(int argc, char **argv)
{
rb_execution_context_t *ec = GET_EC();
enum ruby_tag_type state;
void *volatile iseq = 0;
ruby_init_stack((void *)&iseq);
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
SAVE_ROOT_JMPBUF(GET_THREAD(), iseq = ruby_process_options(argc, argv));
}
else {
rb_ec_clear_current_thread_trace_func(ec);
state = error_handle(ec, state);
iseq = (void *)INT2FIX(state);
}
EC_POP_TAG();
return iseq;
}
static void
rb_ec_teardown(rb_execution_context_t *ec)
{
EC_PUSH_TAG(ec);
if (EC_EXEC_TAG() == TAG_NONE) {
rb_vm_trap_exit(rb_ec_vm_ptr(ec));
}
EC_POP_TAG();
rb_ec_exec_end_proc(ec);
rb_ec_clear_current_thread_trace_func(ec);
}
static void
rb_ec_finalize(rb_execution_context_t *ec)
{
ruby_sig_finalize();
ec->errinfo = Qnil;
rb_objspace_call_finalizer(rb_ec_vm_ptr(ec)->objspace);
}
/** Runs the VM finalization processes.
*
* <code>END{}</code> and procs registered by <code>Kernel.#at_exit</code> are
* executed here. See the Ruby language spec for more details.
*
* @note This function is allowed to raise an exception if an error occurred.
*/
void
ruby_finalize(void)
{
rb_execution_context_t *ec = GET_EC();
rb_ec_teardown(ec);
rb_ec_finalize(ec);
}
/** Destructs the VM.
*
* Runs the VM finalization processes as well as ruby_finalize(), and frees
* resources used by the VM.
*
* @param ex Default value to the return value.
* @return If an error occurred returns a non-zero. If otherwise, returns the
* given ex.
* @note This function does not raise any exception.
*/
int
ruby_cleanup(volatile int ex)
{
return rb_ec_cleanup(GET_EC(), ex);
}
static int
rb_ec_cleanup(rb_execution_context_t *ec, volatile int ex)
{
int state;
volatile VALUE errs[2] = { Qundef, Qundef };
int nerr;
rb_thread_t *th = rb_ec_thread_ptr(ec);
volatile int sysex = EXIT_SUCCESS;
volatile int step = 0;
rb_threadptr_interrupt(th);
rb_threadptr_check_signal(th);
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
SAVE_ROOT_JMPBUF(th, { RUBY_VM_CHECK_INTS(ec); });
step_0: step++;
errs[1] = ec->errinfo;
if (THROW_DATA_P(ec->errinfo)) ec->errinfo = Qnil;
rb_set_safe_level_force(0);
ruby_init_stack(&errs[STACK_UPPER(errs, 0, 1)]);
SAVE_ROOT_JMPBUF(th, rb_ec_teardown(ec));
step_1: step++;
/* protect from Thread#raise */
th->status = THREAD_KILLED;
errs[0] = ec->errinfo;
SAVE_ROOT_JMPBUF(th, rb_thread_terminate_all());
}
else {
switch (step) {
case 0: goto step_0;
case 1: goto step_1;
}
if (ex == 0) ex = state;
}
ec->errinfo = errs[1];
sysex = error_handle(ec, ex);
state = 0;
for (nerr = 0; nerr < numberof(errs); ++nerr) {
VALUE err = ATOMIC_VALUE_EXCHANGE(errs[nerr], Qnil);
if (!RTEST(err)) continue;
/* ec->errinfo contains a NODE while break'ing */
if (THROW_DATA_P(err)) continue;
if (rb_obj_is_kind_of(err, rb_eSystemExit)) {
sysex = sysexit_status(err);
break;
}
else if (rb_obj_is_kind_of(err, rb_eSignal)) {
VALUE sig = rb_ivar_get(err, id_signo);
state = NUM2INT(sig);
break;
}
else if (sysex == EXIT_SUCCESS) {
sysex = EXIT_FAILURE;
}
}
mjit_finish(true); // We still need ISeqs here.
rb_ec_finalize(ec);
/* unlock again if finalizer took mutexes. */
rb_threadptr_unlock_all_locking_mutexes(th);
EC_POP_TAG();
rb_thread_stop_timer_thread();
ruby_vm_destruct(th->vm);
if (state) ruby_default_signal(state);
return sysex;
}
static int
rb_ec_exec_node(rb_execution_context_t *ec, void *n)
{
volatile int state;
rb_iseq_t *iseq = (rb_iseq_t *)n;
if (!n) return 0;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_thread_t *const th = rb_ec_thread_ptr(ec);
SAVE_ROOT_JMPBUF(th, {
rb_iseq_eval_main(iseq);
});
}
EC_POP_TAG();
return state;
}
/*! Calls ruby_cleanup() and exits the process */
void
ruby_stop(int ex)
{
exit(ruby_cleanup(ex));
}
/*! Checks the return value of ruby_options().
* @param n return value of ruby_options().
* @param status pointer to the exit status of this process.
*
* ruby_options() sometimes returns a special value to indicate this process
* should immediately exit. This function checks if the case. Also stores the
* exit status that the caller have to pass to exit(3) into
* <code>*status</code>.
*
* @retval non-zero if the given opaque pointer is actually a compiled source.
* @retval 0 if the given value is such a special value.
*/
int
ruby_executable_node(void *n, int *status)
{
VALUE v = (VALUE)n;
int s;
switch (v) {
case Qtrue: s = EXIT_SUCCESS; break;
case Qfalse: s = EXIT_FAILURE; break;
default:
if (!FIXNUM_P(v)) return TRUE;
s = FIX2INT(v);
}
if (status) *status = s;
return FALSE;
}
/*! Runs the given compiled source and exits this process.
* @retval 0 if successfully run the source
* @retval non-zero if an error occurred.
*/
int
ruby_run_node(void *n)
{
rb_execution_context_t *ec = GET_EC();
int status;
if (!ruby_executable_node(n, &status)) {
rb_ec_cleanup(ec, 0);
return status;
}
ruby_init_stack((void *)&status);
return rb_ec_cleanup(ec, rb_ec_exec_node(ec, n));
}
/*! Runs the given compiled source */
int
ruby_exec_node(void *n)
{
ruby_init_stack((void *)&n);
return rb_ec_exec_node(GET_EC(), n);
}
/*
* call-seq:
* Module.nesting -> array
*
* Returns the list of +Modules+ nested at the point of call.
*
* module M1
* module M2
* $a = Module.nesting
* end
* end
* $a #=> [M1::M2, M1]
* $a[0].name #=> "M1::M2"
*/
static VALUE
rb_mod_nesting(VALUE _)
{
VALUE ary = rb_ary_new();
const rb_cref_t *cref = rb_vm_cref();
while (cref && CREF_NEXT(cref)) {
VALUE klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = CREF_NEXT(cref);
}
return ary;
}
/*
* call-seq:
* Module.constants -> array
* Module.constants(inherited) -> array
*
* In the first form, returns an array of the names of all
* constants accessible from the point of call.
* This list includes the names of all modules and classes
* defined in the global scope.
*
* Module.constants.first(4)
* # => [:ARGF, :ARGV, :ArgumentError, :Array]
*
* Module.constants.include?(:SEEK_SET) # => false
*
* class IO
* Module.constants.include?(:SEEK_SET) # => true
* end
*
* The second form calls the instance method +constants+.
*/
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0 || mod != rb_cModule) {
return rb_mod_constants(argc, argv, mod);
}
while (cref) {
klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
data = rb_mod_const_at(CREF_CLASS(cref), data);
if (!cbase) {
cbase = klass;
}
}
cref = CREF_NEXT(cref);
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
/*!
* Asserts that \a klass is not a frozen class.
* \param[in] klass a \c Module object
* \exception RuntimeError if \a klass is not a class or frozen.
* \ingroup class
*/
void
rb_class_modify_check(VALUE klass)
{
if (SPECIAL_CONST_P(klass)) {
noclass:
Check_Type(klass, T_CLASS);
}
if (OBJ_FROZEN(klass)) {
const char *desc;
if (FL_TEST(klass, FL_SINGLETON)) {
desc = "object";
klass = rb_ivar_get(klass, id__attached__);
if (!SPECIAL_CONST_P(klass)) {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "Module";
break;
case T_CLASS:
desc = "Class";
break;
}
}
}
else {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "module";
break;
case T_CLASS:
desc = "class";
break;
default:
goto noclass;
}
}
rb_frozen_error_raise(klass, "can't modify frozen %s: %"PRIsVALUE, desc, klass);
}
}
NORETURN(static void rb_longjmp(rb_execution_context_t *, int, volatile VALUE, VALUE));
static VALUE get_errinfo(void);
static VALUE get_ec_errinfo(const rb_execution_context_t *ec);
static VALUE
exc_setup_cause(VALUE exc, VALUE cause)
{
#if OPT_SUPPORT_JOKE
if (NIL_P(cause)) {
ID id_true_cause;
CONST_ID(id_true_cause, "true_cause");
cause = rb_attr_get(rb_eFatal, id_true_cause);
if (NIL_P(cause)) {
cause = rb_exc_new_cstr(rb_eFatal, "because using such Ruby");
rb_ivar_set(cause, id_cause, INT2FIX(42)); /* the answer */
OBJ_FREEZE(cause);
rb_ivar_set(rb_eFatal, id_true_cause, cause);
}
}
#endif
if (!NIL_P(cause) && cause != exc) {
rb_ivar_set(exc, id_cause, cause);
if (!rb_ivar_defined(cause, id_cause)) {
rb_ivar_set(cause, id_cause, Qnil);
}
}
return exc;
}
static inline VALUE
exc_setup_message(const rb_execution_context_t *ec, VALUE mesg, VALUE *cause)
{
int nocause = 0;
int nocircular = 0;
if (NIL_P(mesg)) {
mesg = ec->errinfo;
if (INTERNAL_EXCEPTION_P(mesg)) EC_JUMP_TAG(ec, TAG_FATAL);
nocause = 1;
}
if (NIL_P(mesg)) {
mesg = rb_exc_new(rb_eRuntimeError, 0, 0);
nocause = 0;
nocircular = 1;
}
if (*cause == Qundef) {
if (nocause) {
*cause = Qnil;
nocircular = 1;
}
else if (!rb_ivar_defined(mesg, id_cause)) {
*cause = get_ec_errinfo(ec);
}
else {
nocircular = 1;
}
}
else if (!NIL_P(*cause) && !rb_obj_is_kind_of(*cause, rb_eException)) {
rb_raise(rb_eTypeError, "exception object expected");
}
if (!nocircular && !NIL_P(*cause) && *cause != Qundef && *cause != mesg) {
VALUE c = *cause;
while (!NIL_P(c = rb_attr_get(c, id_cause))) {
if (c == mesg) {
rb_raise(rb_eArgError, "circular causes");
}
}
}
return mesg;
}
static void
setup_exception(rb_execution_context_t *ec, int tag, volatile VALUE mesg, VALUE cause)
{
VALUE e;
const char *file = 0;
int line;
file = rb_source_location_cstr(&line);
if ((file && !NIL_P(mesg)) || (cause != Qundef)) {
volatile int state = 0;
EC_PUSH_TAG(ec);
if (EC_EXEC_TAG() == TAG_NONE && !(state = rb_ec_set_raised(ec))) {
VALUE bt = rb_get_backtrace(mesg);
if (!NIL_P(bt) || cause == Qundef) {
if (OBJ_FROZEN(mesg)) {
mesg = rb_obj_dup(mesg);
}
}
if (cause != Qundef && !THROW_DATA_P(cause)) {
exc_setup_cause(mesg, cause);
}
if (NIL_P(bt)) {
VALUE at = rb_ec_backtrace_object(ec);
rb_ivar_set(mesg, idBt_locations, at);
set_backtrace(mesg, at);
}
rb_ec_reset_raised(ec);
}
EC_POP_TAG();
if (state) goto fatal;
}
if (!NIL_P(mesg)) {
ec->errinfo = mesg;
}
if (RTEST(ruby_debug) && !NIL_P(e = ec->errinfo) &&
!rb_obj_is_kind_of(e, rb_eSystemExit)) {
enum ruby_tag_type state;
mesg = e;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
ec->errinfo = Qnil;
e = rb_obj_as_string(mesg);
ec->errinfo = mesg;
if (file && line) {
e = rb_sprintf("Exception `%"PRIsVALUE"' at %s:%d - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, line, e);
}
else if (file) {
e = rb_sprintf("Exception `%"PRIsVALUE"' at %s - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, e);
}
else {
e = rb_sprintf("Exception `%"PRIsVALUE"' - %"PRIsVALUE"\n",
rb_obj_class(mesg), e);
}
warn_print_str(e);
}
EC_POP_TAG();
if (state == TAG_FATAL && ec->errinfo == exception_error) {
ec->errinfo = mesg;
}
else if (state) {
rb_ec_reset_raised(ec);
EC_JUMP_TAG(ec, state);
}
}
if (rb_ec_set_raised(ec)) {
fatal:
ec->errinfo = exception_error;
rb_ec_reset_raised(ec);
EC_JUMP_TAG(ec, TAG_FATAL);
}
if (tag != TAG_FATAL) {
RUBY_DTRACE_HOOK(RAISE, rb_obj_classname(ec->errinfo));
EXEC_EVENT_HOOK(ec, RUBY_EVENT_RAISE, ec->cfp->self, 0, 0, 0, mesg);
}
}
/*! \private */
void
rb_ec_setup_exception(const rb_execution_context_t *ec, VALUE mesg, VALUE cause)
{
if (cause == Qundef) {
cause = get_ec_errinfo(ec);
}
if (cause != mesg) {
rb_ivar_set(mesg, id_cause, cause);
}
}
static void
rb_longjmp(rb_execution_context_t *ec, int tag, volatile VALUE mesg, VALUE cause)
{
mesg = exc_setup_message(ec, mesg, &cause);
setup_exception(ec, tag, mesg, cause);
rb_ec_raised_clear(ec);
EC_JUMP_TAG(ec, tag);
}
static VALUE make_exception(int argc, const VALUE *argv, int isstr);
/*!
* Raises an exception in the current thread.
* \param[in] mesg an Exception class or an \c Exception object.
* \exception always raises an instance of the given exception class or
* the given \c Exception object.
* \ingroup exception
*/
void
rb_exc_raise(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(GET_EC(), TAG_RAISE, mesg, Qundef);
}
/*!
* Raises a fatal error in the current thread.
*
* Same as rb_exc_raise() but raises a fatal error, which Ruby codes
* cannot rescue.
* \ingroup exception
*/
void
rb_exc_fatal(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(GET_EC(), TAG_FATAL, mesg, Qnil);
}
/*!
* Raises an \c Interrupt exception.
* \ingroup exception
*/
void
rb_interrupt(void)
{
rb_exc_raise(rb_exc_new(rb_eInterrupt, 0, 0));
}
enum {raise_opt_cause, raise_max_opt}; /*< \private */
static int
extract_raise_opts(int argc, const VALUE *argv, VALUE *opts)
{
int i;
if (argc > 0) {
VALUE opt = argv[argc-1];
if (RB_TYPE_P(opt, T_HASH)) {
if (!RHASH_EMPTY_P(opt)) {
ID keywords[1];
CONST_ID(keywords[0], "cause");
rb_get_kwargs(opt, keywords, 0, -1-raise_max_opt, opts);
if (RHASH_EMPTY_P(opt)) --argc;
return argc;
}
}
}
for (i = 0; i < raise_max_opt; ++i) {
opts[i] = Qundef;
}
return argc;
}
VALUE
rb_f_raise(int argc, VALUE *argv)
{
VALUE err;
VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];
argc = extract_raise_opts(argc, argv, opts);
if (argc == 0) {
if (*cause != Qundef) {
rb_raise(rb_eArgError, "only cause is given with no arguments");
}
err = get_errinfo();
if (!NIL_P(err)) {
argc = 1;
argv = &err;
}
}
rb_raise_jump(rb_make_exception(argc, argv), *cause);
UNREACHABLE_RETURN(Qnil);
}
/*
* call-seq:
* raise
* raise(string, cause: $!)
* raise(exception [, string [, array]], cause: $!)
* fail
* fail(string, cause: $!)
* fail(exception [, string [, array]], cause: $!)
*
* With no arguments, raises the exception in <code>$!</code> or raises
* a RuntimeError if <code>$!</code> is +nil+. With a single +String+
* argument, raises a +RuntimeError+ with the string as a message. Otherwise,
* the first parameter should be an +Exception+ class (or another
* object that returns an +Exception+ object when sent an +exception+
* message). The optional second parameter sets the message associated with
* the exception (accessible via Exception#message), and the third parameter
* is an array of callback information (accessible via Exception#backtrace).
* The +cause+ of the generated exception (accessible via Exception#cause)
* is automatically set to the "current" exception (<code>$!</code>), if any.
* An alternative value, either an +Exception+ object or +nil+, can be
* specified via the +:cause+ argument.
*
* Exceptions are caught by the +rescue+ clause of
* <code>begin...end</code> blocks.
*
* raise "Failed to create socket"
* raise ArgumentError, "No parameters", caller
*/
static VALUE
f_raise(int c, VALUE *v, VALUE _)
{
return rb_f_raise(c, v);
}
static VALUE
make_exception(int argc, const VALUE *argv, int isstr)
{
VALUE mesg, exc;
int n;
mesg = Qnil;
switch (argc) {
case 0:
break;
case 1:
exc = argv[0];
if (NIL_P(exc))
break;
if (isstr) {
mesg = rb_check_string_type(exc);
if (!NIL_P(mesg)) {
mesg = rb_exc_new3(rb_eRuntimeError, mesg);
break;
}
}
n = 0;
goto exception_call;
case 2:
case 3:
exc = argv[0];
n = 1;
exception_call:
mesg = rb_check_funcall(exc, idException, n, argv+1);
if (mesg == Qundef) {
rb_raise(rb_eTypeError, "exception class/object expected");
}
break;
default:
rb_error_arity(argc, 0, 3);
}
if (argc > 0) {
if (!rb_obj_is_kind_of(mesg, rb_eException))
rb_raise(rb_eTypeError, "exception object expected");
if (argc > 2)
set_backtrace(mesg, argv[2]);
}
return mesg;
}
/*!
* Make an \c Exception object from the list of arguments in a manner
* similar to \c Kernel\#raise.
*
* \param[in] argc the number of arguments
* \param[in] argv a pointer to the array of arguments.
*
* The first form of this function takes a \c String argument. Then
* it returns a \c RuntimeError whose error message is the given value.
*
* The second from of this function takes an \c Exception object. Then
* it just returns the given value.
*
* The last form takes an exception class, an optional error message and
* an optional array of backtrace. Then it passes the optional arguments
* to \c #exception method of the exception class.
*
* \return the exception object, or \c Qnil if \c argc is 0.
* \ingroup exception
*/
VALUE
rb_make_exception(int argc, const VALUE *argv)
{
return make_exception(argc, argv, TRUE);
}
/*! \private
* \todo can be static?
*/
void
rb_raise_jump(VALUE mesg, VALUE cause)
{
rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = ec->cfp;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
VALUE klass = me->owner;
VALUE self = cfp->self;
ID mid = me->called_id;
rb_vm_pop_frame(ec);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, self, me->def->original_id, mid, klass, Qnil);
rb_longjmp(ec, TAG_RAISE, mesg, cause);
}
/*!
* Continues the exception caught by rb_protect() and rb_eval_string_protect().
*
* This function never return to the caller.
* \param[in] the value of \c *state which the protect function has set to the
* their last parameter.
* \ingroup exception
*/
void
rb_jump_tag(int tag)
{
if (UNLIKELY(tag < TAG_RETURN || tag > TAG_FATAL)) {
unknown_longjmp_status(tag);
}
EC_JUMP_TAG(GET_EC(), tag);
}
/*! Determines if the current method is given a block.
* \retval zero if not given
* \retval non-zero if given
* \ingroup defmethod
*/
int
rb_block_given_p(void)
{
if (rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE) {
return FALSE;
}
else {
return TRUE;
}
}
int rb_vm_cframe_keyword_p(const rb_control_frame_t *cfp);
int
rb_keyword_given_p(void)
{
return rb_vm_cframe_keyword_p(GET_EC()->cfp);
}
/* -- Remove In 3.0 -- */
int rb_vm_cframe_empty_keyword_p(const rb_control_frame_t *cfp);
int
rb_empty_keyword_given_p(void)
{
return rb_vm_cframe_empty_keyword_p(GET_EC()->cfp);
}
VALUE *
rb_add_empty_keyword(int argc, const VALUE *argv)
{
VALUE *ptr = ALLOC_N(VALUE,argc+1);
memcpy(ptr, argv, sizeof(VALUE)*(argc));
ptr[argc] = rb_hash_new();
return ptr;
}
VALUE rb_eThreadError;
/*! Declares that the current method needs a block.
*
* Raises a \c LocalJumpError if not given a block.
* \ingroup defmethod
*/
void
rb_need_block(void)
{
if (!rb_block_given_p()) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
}
/*! An equivalent of \c rescue clause.
*
* Equivalent to <code>begin .. rescue err_type .. end</code>
*
* \param[in] b_proc a function which potentially raises an exception.
* \param[in] data1 the argument of \a b_proc
* \param[in] r_proc a function which rescues an exception in \a b_proc.
* \param[in] data2 the first argument of \a r_proc
* \param[in] ... 1 or more exception classes. Must be terminated by \c (VALUE)0.
*
* First it calls the function \a b_proc, with \a data1 as the argument.
* When \a b_proc raises an exception, it calls \a r_proc with \a data2 and
* the exception object if the exception is a kind of one of the given
* exception classes.
*
* \return the return value of \a b_proc if no exception occurs,
* or the return value of \a r_proc if otherwise.
* \sa rb_rescue
* \sa rb_ensure
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_rescue2(VALUE (* b_proc) (VALUE), VALUE data1,
VALUE (* r_proc) (VALUE, VALUE), VALUE data2, ...)
{
va_list ap;
va_start(ap, data2);
VALUE ret = rb_vrescue2(b_proc, data1, r_proc, data2, ap);
va_end(ap);
return ret;
}
/*!
* \copydoc rb_rescue2
* \param[in] args exception classes, terminated by 0.
*/
VALUE
rb_vrescue2(VALUE (* b_proc) (VALUE), VALUE data1,
VALUE (* r_proc) (VALUE, VALUE), VALUE data2,
va_list args)
{
enum ruby_tag_type state;
rb_execution_context_t * volatile ec = GET_EC();
rb_control_frame_t *volatile cfp = ec->cfp;
volatile VALUE result = Qfalse;
volatile VALUE e_info = ec->errinfo;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
retry_entry:
result = (*b_proc) (data1);
}
else if (result) {
/* escape from r_proc */
if (state == TAG_RETRY) {
state = 0;
ec->errinfo = Qnil;
result = Qfalse;
goto retry_entry;
}
}
else {
rb_vm_rewind_cfp(ec, cfp);
if (state == TAG_RAISE) {
int handle = FALSE;
VALUE eclass;
while ((eclass = va_arg(args, VALUE)) != 0) {
if (rb_obj_is_kind_of(ec->errinfo, eclass)) {
handle = TRUE;
break;
}
}
if (handle) {
result = Qnil;
state = 0;
if (r_proc) {
result = (*r_proc) (data2, ec->errinfo);
}
ec->errinfo = e_info;
}
}
}
EC_POP_TAG();
if (state)
EC_JUMP_TAG(ec, state);
return result;
}
/*! An equivalent of \c rescue clause.
*
* Equivalent to <code>begin .. rescue .. end</code>.
*
* It is same as
* \code{cpp}
* rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError, (VALUE)0);
* \endcode
*
* \sa rb_rescue2
* \sa rb_ensure
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_rescue(VALUE (* b_proc)(VALUE), VALUE data1,
VALUE (* r_proc)(VALUE, VALUE), VALUE data2)
{
return rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError,
(VALUE)0);
}
/*! Protects a function call from potential global escapes from the function.
*
* Such global escapes include exceptions, \c Kernel\#throw, \c break in
* an iterator, for example.
* It first calls the function func with arg as the argument.
* If no exception occurred during func, it returns the result of func and
* *state is zero.
* Otherwise, it returns Qnil and sets *state to nonzero.
* If state is NULL, it is not set in both cases.
*
* You have to clear the error info with rb_set_errinfo(Qnil) when
* ignoring the caught exception.
* \ingroup exception
* \sa rb_rescue
* \sa rb_rescue2
* \sa rb_ensure
*/
VALUE
rb_protect(VALUE (* proc) (VALUE), VALUE data, int *pstate)
{
volatile VALUE result = Qnil;
volatile enum ruby_tag_type state;
rb_execution_context_t * volatile ec = GET_EC();
rb_control_frame_t *volatile cfp = ec->cfp;
struct rb_vm_protect_tag protect_tag;
rb_jmpbuf_t org_jmpbuf;
protect_tag.prev = ec->protect_tag;
EC_PUSH_TAG(ec);
ec->protect_tag = &protect_tag;
MEMCPY(&org_jmpbuf, &rb_ec_thread_ptr(ec)->root_jmpbuf, rb_jmpbuf_t, 1);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
SAVE_ROOT_JMPBUF(rb_ec_thread_ptr(ec), result = (*proc) (data));
}
else {
rb_vm_rewind_cfp(ec, cfp);
}
MEMCPY(&rb_ec_thread_ptr(ec)->root_jmpbuf, &org_jmpbuf, rb_jmpbuf_t, 1);
ec->protect_tag = protect_tag.prev;
EC_POP_TAG();
if (pstate != NULL) *pstate = state;
return result;
}
/*!
* An equivalent to \c ensure clause.
*
* Equivalent to <code>begin .. ensure .. end</code>.
*
* Calls the function \a b_proc with \a data1 as the argument,
* then calls \a e_proc with \a data2 when execution terminated.
* \return The return value of \a b_proc if no exception occurred,
* or \c Qnil if otherwise.
* \sa rb_rescue
* \sa rb_rescue2
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_ensure(VALUE (*b_proc)(VALUE), VALUE data1, VALUE (*e_proc)(VALUE), VALUE data2)
{
int state;
volatile VALUE result = Qnil;
VALUE errinfo;
rb_execution_context_t * volatile ec = GET_EC();
rb_ensure_list_t ensure_list;
ensure_list.entry.marker = 0;
ensure_list.entry.e_proc = e_proc;
ensure_list.entry.data2 = data2;
ensure_list.next = ec->ensure_list;
ec->ensure_list = &ensure_list;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
result = (*b_proc) (data1);
}
EC_POP_TAG();
errinfo = ec->errinfo;
if (!NIL_P(errinfo) && !RB_TYPE_P(errinfo, T_OBJECT)) {
ec->errinfo = Qnil;
}
ec->ensure_list=ensure_list.next;
(*ensure_list.entry.e_proc)(ensure_list.entry.data2);
ec->errinfo = errinfo;
if (state)
EC_JUMP_TAG(ec, state);
return result;
}
static ID
frame_func_id(const rb_control_frame_t *cfp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->def->original_id;
}
else {
return 0;
}
}
static ID
frame_called_id(rb_control_frame_t *cfp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->called_id;
}
else {
return 0;
}
}
/*!
* The original name of the current method.
*
* The function returns the original name of the method even if
* an alias of the method is called.
* The function can also return 0 if it is not in a method. This
* case can happen in a toplevel of a source file, for example.
*
* \returns the ID of the name or 0
* \sa rb_frame_callee
* \ingroup defmethod
*/
ID
rb_frame_this_func(void)
{
return frame_func_id(GET_EC()->cfp);
}
/*!
* The name of the current method.
*
* The function returns the alias if an alias of the method is called.
* The function can also return 0 if it is not in a method. This
* case can happen in a toplevel of a source file, for example.
*
* \returns the ID of the name or 0.
* \sa rb_frame_this_func
* \ingroup defmethod
*/
ID
rb_frame_callee(void)
{
return frame_called_id(GET_EC()->cfp);
}
static rb_control_frame_t *
previous_frame(const rb_execution_context_t *ec)
{
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(ec->cfp);
/* check if prev_cfp can be accessible */
if ((void *)(ec->vm_stack + ec->vm_stack_size) == (void *)(prev_cfp)) {
return 0;
}
return prev_cfp;
}
static ID
prev_frame_callee(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (!prev_cfp) return 0;
return frame_called_id(prev_cfp);
}
static ID
prev_frame_func(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (!prev_cfp) return 0;
return frame_func_id(prev_cfp);
}
/*!
* \private
* Returns the ID of the last method in the call stack.
* \sa rb_frame_this_func
* \ingroup defmethod
*/
ID
rb_frame_last_func(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = ec->cfp;
ID mid;
while (!(mid = frame_func_id(cfp)) &&
(cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp),
!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)));
return mid;
}
/*
* call-seq:
* append_features(mod) -> mod
*
* When this module is included in another, Ruby calls
* #append_features in this module, passing it the receiving module
* in _mod_. Ruby's default implementation is to add the constants,
* methods, and module variables of this module to _mod_ if this
* module has not already been added to _mod_ or one of its
* ancestors. See also Module#include.
*/
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
if (!CLASS_OR_MODULE_P(include)) {
Check_Type(include, T_CLASS);
}
rb_include_module(include, module);
return module;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features on each parameter in reverse order.
*/
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
/*
* call-seq:
* prepend_features(mod) -> mod
*
* When this module is prepended in another, Ruby calls
* #prepend_features in this module, passing it the receiving module
* in _mod_. Ruby's default implementation is to overlay the
* constants, methods, and module variables of this module to _mod_
* if this module has not already been added to _mod_ or one of its
* ancestors. See also Module#prepend.
*/
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
if (!CLASS_OR_MODULE_P(prepend)) {
Check_Type(prepend, T_CLASS);
}
rb_prepend_module(prepend, module);
return module;
}
/*
* call-seq:
* prepend(module, ...) -> self
*
* Invokes Module.prepend_features on each parameter in reverse order.
*/
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
static void
ensure_class_or_module(VALUE obj)
{
if (!RB_TYPE_P(obj, T_CLASS) && !RB_TYPE_P(obj, T_MODULE)) {
rb_raise(rb_eTypeError,
"wrong argument type %"PRIsVALUE" (expected Class or Module)",
rb_obj_class(obj));
}
}
static VALUE
hidden_identity_hash_new(void)
{
VALUE hash = rb_ident_hash_new();
RBASIC_CLEAR_CLASS(hash); /* hide from ObjectSpace */
return hash;
}
static VALUE
refinement_superclass(VALUE superclass)
{
if (RB_TYPE_P(superclass, T_MODULE)) {
/* FIXME: Should ancestors of superclass be used here? */
return rb_include_class_new(superclass, rb_cBasicObject);
}
else {
return superclass;
}
}
/*!
* \private
* \todo can be static?
*/
void
rb_using_refinement(rb_cref_t *cref, VALUE klass, VALUE module)
{
VALUE iclass, c, superclass = klass;
ensure_class_or_module(klass);
Check_Type(module, T_MODULE);
if (NIL_P(CREF_REFINEMENTS(cref))) {
CREF_REFINEMENTS_SET(cref, hidden_identity_hash_new());
}
else {
if (CREF_OMOD_SHARED(cref)) {
CREF_REFINEMENTS_SET(cref, rb_hash_dup(CREF_REFINEMENTS(cref)));
CREF_OMOD_SHARED_UNSET(cref);
}
if (!NIL_P(c = rb_hash_lookup(CREF_REFINEMENTS(cref), klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == module) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
}
FL_SET(module, RMODULE_IS_OVERLAID);
superclass = refinement_superclass(superclass);
c = iclass = rb_include_class_new(module, superclass);
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
RCLASS_M_TBL(OBJ_WB_UNPROTECT(c)) =
RCLASS_M_TBL(OBJ_WB_UNPROTECT(module)); /* TODO: check unprotecting */
module = RCLASS_SUPER(module);
while (module && module != klass) {
FL_SET(module, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(module, RCLASS_SUPER(c)));
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
module = RCLASS_SUPER(module);
}
rb_hash_aset(CREF_REFINEMENTS(cref), klass, iclass);
}
static int
using_refinement(VALUE klass, VALUE module, VALUE arg)
{
rb_cref_t *cref = (rb_cref_t *) arg;
rb_using_refinement(cref, klass, module);
return ST_CONTINUE;
}
static void
using_module_recursive(const rb_cref_t *cref, VALUE klass)
{
ID id_refinements;
VALUE super, module, refinements;
super = RCLASS_SUPER(klass);
if (super) {
using_module_recursive(cref, super);
}
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
module = klass;
break;
case T_ICLASS:
module = RBASIC(klass)->klass;
break;
default:
rb_raise(rb_eTypeError, "wrong argument type %s (expected Module)",
rb_obj_classname(klass));
break;
}
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) return;
rb_hash_foreach(refinements, using_refinement, (VALUE) cref);
}
/*!
* \private
* \todo can be static?
*/
void
rb_using_module(const rb_cref_t *cref, VALUE module)
{
Check_Type(module, T_MODULE);
using_module_recursive(cref, module);
rb_clear_method_cache_by_class(rb_cObject);
}
/*! \private */
VALUE
rb_refinement_module_get_refined_class(VALUE module)
{
ID id_refined_class;
CONST_ID(id_refined_class, "__refined_class__");
return rb_attr_get(module, id_refined_class);
}
static void
add_activated_refinement(VALUE activated_refinements,
VALUE klass, VALUE refinement)
{
VALUE iclass, c, superclass = klass;
if (!NIL_P(c = rb_hash_lookup(activated_refinements, klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == refinement) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
FL_SET(refinement, RMODULE_IS_OVERLAID);
superclass = refinement_superclass(superclass);
c = iclass = rb_include_class_new(refinement, superclass);
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
refinement = RCLASS_SUPER(refinement);
while (refinement && refinement != klass) {
FL_SET(refinement, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(refinement, RCLASS_SUPER(c)));
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
refinement = RCLASS_SUPER(refinement);
}
rb_hash_aset(activated_refinements, klass, iclass);
}
/*
* call-seq:
* refine(mod) { block } -> module
*
* Refine <i>mod</i> in the receiver.
*
* Returns a module, where refined methods are defined.
*/
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
}
ensure_class_or_module(klass);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
VALUE superclass = refinement_superclass(klass);
refinement = rb_module_new();
RCLASS_SET_SUPER(refinement, superclass);
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
static void
ignored_block(VALUE module, const char *klass)
{
const char *anon = "";
Check_Type(module, T_MODULE);
if (!RTEST(rb_search_class_path(module))) {
anon = ", maybe for Module.new";
}
rb_warn("%s""using doesn't call the given block""%s.", klass, anon);
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from <i>module</i> into the current class or
* module definition.
*/
static VALUE
mod_using(VALUE self, VALUE module)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (prev_frame_func()) {
rb_raise(rb_eRuntimeError,
"Module#using is not permitted in methods");
}
if (prev_cfp && prev_cfp->self != self) {
rb_raise(rb_eRuntimeError, "Module#using is not called on self");
}
if (rb_block_given_p()) {
ignored_block(module, "Module#");
}
rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
return self;
}
static int
used_modules_i(VALUE _, VALUE mod, VALUE ary)
{
ID id_defined_at;
CONST_ID(id_defined_at, "__defined_at__");
while (FL_TEST(rb_class_of(mod), RMODULE_IS_REFINEMENT)) {
rb_ary_push(ary, rb_attr_get(rb_class_of(mod), id_defined_at));
mod = RCLASS_SUPER(mod);
}
return ST_CONTINUE;
}
/*
* call-seq:
* used_modules -> array
*
* Returns an array of all modules used in the current scope. The ordering
* of modules in the resulting array is not defined.
*
* module A
* refine Object do
* end
* end
*
* module B
* refine Object do
* end
* end
*
* using A
* using B
* p Module.used_modules
*
* <em>produces:</em>
*
* [B, A]
*/
static VALUE
rb_mod_s_used_modules(VALUE _)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE ary = rb_ary_new();
while(cref) {
if(!NIL_P(CREF_REFINEMENTS(cref))) {
rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
}
cref = CREF_NEXT(cref);
}
return rb_funcall(ary, rb_intern("uniq"), 0);
}
/*!
* Calls \c #initialize method of \a obj with the given arguments.
*
* It also forwards the given block to \c #initialize if given.
*
* \param[in] obj the receiver object
* \param[in] argc the number of arguments
* \param[in] argv a pointer to the array of arguments
* \ingroup object
*/
void
rb_obj_call_init(VALUE obj, int argc, const VALUE *argv)
{
PASS_PASSED_BLOCK_HANDLER();
if (rb_empty_keyword_given_p()) {
rb_funcallv_kw(obj, idInitialize, argc+1, rb_add_empty_keyword(argc, argv), 1);
}
else {
rb_funcallv_kw(obj, idInitialize, argc, argv, rb_keyword_given_p());
}
}
/*!
* Extend the object with the module.
*
* Same as \c Module\#extend_object.
* \ingroup class
*/
void
rb_extend_object(VALUE obj, VALUE module)
{
rb_include_module(rb_singleton_class(obj), module);
}
/*
* call-seq:
* extend_object(obj) -> obj
*
* Extends the specified object by adding this module's constants and
* methods (which are added as singleton methods). This is the callback
* method used by Object#extend.
*
* module Picky
* def Picky.extend_object(o)
* if String === o
* puts "Can't add Picky to a String"
* else
* puts "Picky added to #{o.class}"
* super
* end
* end
* end
* (s = Array.new).extend Picky # Call Object.extend
* (s = "quick brown fox").extend Picky
*
* <em>produces:</em>
*
* Picky added to Array
* Can't add Picky to a String
*/
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
/*
* call-seq:
* obj.extend(module, ...) -> obj
*
* Adds to _obj_ the instance methods from each module given as a
* parameter.
*
* module Mod
* def hello
* "Hello from Mod.\n"
* end
* end
*
* class Klass
* def hello
* "Hello from Klass.\n"
* end
* end
*
* k = Klass.new
* k.hello #=> "Hello from Klass.\n"
* k.extend(Mod) #=> #<Klass:0x401b3bc8>
* k.hello #=> "Hello from Mod.\n"
*/
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
ID id_extend_object, id_extended;
CONST_ID(id_extend_object, "extend_object");
CONST_ID(id_extended, "extended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_extend_object, 1, obj);
rb_funcall(argv[argc], id_extended, 1, obj);
}
return obj;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features on each parameter in turn.
* Effectively adds the methods and constants in each module to the
* receiver.
*/
static VALUE
top_include(int argc, VALUE *argv, VALUE self)
{
rb_thread_t *th = GET_THREAD();
if (th->top_wrapper) {
rb_warning("main.include in the wrapped load is effective only in wrapper module");
return rb_mod_include(argc, argv, th->top_wrapper);
}
return rb_mod_include(argc, argv, rb_cObject);
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from <i>module</i> into the scope where
* #using is called.
*/
static VALUE
top_using(VALUE self, VALUE module)
{
const rb_cref_t *cref = rb_vm_cref();
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (CREF_NEXT(cref) || (prev_cfp && rb_vm_frame_method_entry(prev_cfp))) {
rb_raise(rb_eRuntimeError, "main.using is permitted only at toplevel");
}
if (rb_block_given_p()) {
ignored_block(module, "main.");
}
rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
return self;
}
static const VALUE *
errinfo_place(const rb_execution_context_t *ec)
{
const rb_control_frame_t *cfp = ec->cfp;
const rb_control_frame_t *end_cfp = RUBY_VM_END_CONTROL_FRAME(ec);
while (RUBY_VM_VALID_CONTROL_FRAME_P(cfp, end_cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
if (cfp->iseq->body->type == ISEQ_TYPE_RESCUE) {
return &cfp->ep[VM_ENV_INDEX_LAST_LVAR];
}
else if (cfp->iseq->body->type == ISEQ_TYPE_ENSURE &&
!THROW_DATA_P(cfp->ep[VM_ENV_INDEX_LAST_LVAR]) &&
!FIXNUM_P(cfp->ep[VM_ENV_INDEX_LAST_LVAR])) {
return &cfp->ep[VM_ENV_INDEX_LAST_LVAR];
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
static VALUE
get_ec_errinfo(const rb_execution_context_t *ec)
{
const VALUE *ptr = errinfo_place(ec);
if (ptr) {
return *ptr;
}
else {
return ec->errinfo;
}
}
static VALUE
get_errinfo(void)
{
return get_ec_errinfo(GET_EC());
}
static VALUE
errinfo_getter(ID id, VALUE *_)
{
return get_errinfo();
}
/*! The current exception in the current thread.
*
* Same as \c $! in Ruby.
* \return the current exception or \c Qnil
* \ingroup exception
*/
VALUE
rb_errinfo(void)
{
return GET_EC()->errinfo;
}
/*! Sets the current exception (\c $!) to the given value
*
* \param[in] err an \c Exception object or \c Qnil.
* \exception TypeError if \a err is neither an exception nor \c nil.
* \note this function does not raise the exception.
* Use \c rb_raise() when you want to raise.
* \ingroup exception
*/
void
rb_set_errinfo(VALUE err)
{
if (!NIL_P(err) && !rb_obj_is_kind_of(err, rb_eException)) {
rb_raise(rb_eTypeError, "assigning non-exception to $!");
}
GET_EC()->errinfo = err;
}
static VALUE
errat_getter(ID id, VALUE *_)
{
VALUE err = get_errinfo();
if (!NIL_P(err)) {
return rb_get_backtrace(err);
}
else {
return Qnil;
}
}
static void
errat_setter(VALUE val, ID id, VALUE *var)
{
VALUE err = get_errinfo();
if (NIL_P(err)) {
rb_raise(rb_eArgError, "$! not set");
}
set_backtrace(err, val);
}
/*
* call-seq:
* __method__ -> symbol
*
* Returns the name at the definition of the current method as a
* Symbol.
* If called outside of a method, it returns <code>nil</code>.
*
*/
static VALUE
rb_f_method_name(VALUE _)
{
ID fname = prev_frame_func(); /* need *method* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __callee__ -> symbol
*
* Returns the called name of the current method as a Symbol.
* If called outside of a method, it returns <code>nil</code>.
*
*/
static VALUE
rb_f_callee_name(VALUE _)
{
ID fname = prev_frame_callee(); /* need *callee* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __dir__ -> string
*
* Returns the canonicalized absolute path of the directory of the file from
* which this method is called. It means symlinks in the path is resolved.
* If <code>__FILE__</code> is <code>nil</code>, it returns <code>nil</code>.
* The return value equals to <code>File.dirname(File.realpath(__FILE__))</code>.
*
*/
static VALUE
f_current_dirname(VALUE _)
{
VALUE base = rb_current_realfilepath();
if (NIL_P(base)) {
return Qnil;
}
base = rb_file_dirname(base);
return base;
}
/*
* call-seq:
* global_variables -> array
*
* Returns an array of the names of global variables.
*
* global_variables.grep /std/ #=> [:$stdin, :$stdout, :$stderr]
*/
static VALUE
f_global_variables(VALUE _)
{
return rb_f_global_variables();
}
/*
* call-seq:
* trace_var(symbol, cmd ) -> nil
* trace_var(symbol) {|val| block } -> nil
*
* Controls tracing of assignments to global variables. The parameter
* +symbol+ identifies the variable (as either a string name or a
* symbol identifier). _cmd_ (which may be a string or a
* +Proc+ object) or block is executed whenever the variable
* is assigned. The block or +Proc+ object receives the
* variable's new value as a parameter. Also see
* Kernel::untrace_var.
*
* trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
* $_ = "hello"
* $_ = ' there'
*
* <em>produces:</em>
*
* $_ is now 'hello'
* $_ is now ' there'
*/
static VALUE
f_trace_var(int c, const VALUE *a, VALUE _)
{
return rb_f_trace_var(c, a);
}
/*
* call-seq:
* untrace_var(symbol [, cmd] ) -> array or nil
*
* Removes tracing for the specified command on the given global
* variable and returns +nil+. If no command is specified,
* removes all tracing for that variable and returns an array
* containing the commands actually removed.
*/
static VALUE
f_untrace_var(int c, const VALUE *a, VALUE _)
{
return rb_f_untrace_var(c, a);
}
void
Init_eval(void)
{
rb_define_virtual_variable("$@", errat_getter, errat_setter);
rb_define_virtual_variable("$!", errinfo_getter, 0);
rb_define_global_function("raise", f_raise, -1);
rb_define_global_function("fail", f_raise, -1);
rb_define_global_function("global_variables", f_global_variables, 0);
rb_define_global_function("__method__", rb_f_method_name, 0);
rb_define_global_function("__callee__", rb_f_callee_name, 0);
rb_define_global_function("__dir__", f_current_dirname, 0);
rb_define_method(rb_cModule, "include", rb_mod_include, -1);
rb_define_method(rb_cModule, "prepend", rb_mod_prepend, -1);
rb_define_private_method(rb_cModule, "append_features", rb_mod_append_features, 1);
rb_define_private_method(rb_cModule, "extend_object", rb_mod_extend_object, 1);
rb_define_private_method(rb_cModule, "prepend_features", rb_mod_prepend_features, 1);
rb_define_private_method(rb_cModule, "refine", rb_mod_refine, 1);
rb_define_private_method(rb_cModule, "using", mod_using, 1);
rb_define_singleton_method(rb_cModule, "used_modules",
rb_mod_s_used_modules, 0);
rb_undef_method(rb_cClass, "refine");
rb_undef_method(rb_cClass, "module_function");
Init_vm_eval();
Init_eval_method();
rb_define_singleton_method(rb_cModule, "nesting", rb_mod_nesting, 0);
rb_define_singleton_method(rb_cModule, "constants", rb_mod_s_constants, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"include", top_include, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"using", top_using, 1);
rb_define_method(rb_mKernel, "extend", rb_obj_extend, -1);
rb_define_global_function("trace_var", f_trace_var, -1);
rb_define_global_function("untrace_var", f_untrace_var, -1);
rb_vm_register_special_exception(ruby_error_reenter, rb_eFatal, "exception reentered");
rb_vm_register_special_exception(ruby_error_stackfatal, rb_eFatal, "machine stack overflow in critical region");
id_signo = rb_intern_const("signo");
id_status = rb_intern_const("status");
}