1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/lib/complex.rb
matz 34f5c4061c * range.c (range_step): iteration done using "+" if elements are
Numeric.  Otherwise using "succ".

* range.c (range_each): iteration done using "succ".  If the
  elements does not respond to "succ", raise TypeError.  As a
  result, all Enumerable methods, e.g. collect, require elements
  to respond to "succ'.

* range.c (range_member): comparison done using "each", if
  elements are non-Numeric or no-"succ" objects.  Otherwise
  compare using "<=>".

* range.c (Init_Range): remove "size" and "length".


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@2506 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2002-05-30 06:12:29 +00:00

492 lines
8.6 KiB
Ruby

#
# complex.rb -
# $Release Version: 0.5 $
# $Revision: 1.3 $
# $Date: 1998/07/08 10:05:28 $
# by Keiju ISHITSUKA(SHL Japan Inc.)
#
# --
# Usage:
# class Complex < Numeric
#
# Complex(x, y) --> x + yi
# y.im --> 0 + yi
#
# Complex::polar
#
# Complex::+
# Complex::-
# Complex::*
# Complex::/
# Complex::**
# Complex::%
# Complex::divmod -- obsolete
# Complex::abs
# Complex::abs2
# Complex::arg
# Complex::polar
# Complex::conjugate
# Complex::<=>
# Complex::==
# Complex::to_f
# Complex::to_r
# Complex::to_s
#
# Complex::I
#
# Numeric::im
#
# Math.sqrt
# Math.exp
# Math.cos
# Math.sin
# Math.tan
# Math.log
# Math.log10
# Math.atan2
#
#
def Complex(a, b = 0)
if a.kind_of?(Complex) and b == 0
a
elsif b.kind_of?(Complex)
if a.kind_of?(Complex)
Complex(a.real-b.image, a.image + b.real)
else
Complex(a-b.image, b.real)
end
elsif b == 0 and defined? Complex::Unify
a
else
Complex.new(a, b)
end
end
class Complex < Numeric
@RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-'
undef step
def Complex.generic?(other)
other.kind_of?(Integer) or
other.kind_of?(Float) or
(defined?(Rational) and other.kind_of?(Rational))
end
def Complex.polar(r, theta)
Complex(r*Math.cos(theta), r*Math.sin(theta))
end
def initialize(a, b = 0)
raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric
raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric
@real = a
@image = b
end
def + (other)
if other.kind_of?(Complex)
re = @real + other.real
im = @image + other.image
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real + other, @image)
else
x , y = other.coerce(self)
x + y
end
end
def - (other)
if other.kind_of?(Complex)
re = @real - other.real
im = @image - other.image
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real - other, @image)
else
x , y = other.coerce(self)
x - y
end
end
def * (other)
if other.kind_of?(Complex)
re = @real*other.real - @image*other.image
im = @real*other.image + @image*other.real
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real * other, @image * other)
else
x , y = other.coerce(self)
x * y
end
end
def / (other)
if other.kind_of?(Complex)
self*other.conjugate/other.abs2
elsif Complex.generic?(other)
Complex(@real/other, @image/other)
else
x, y = other.coerce(self)
x/y
end
end
def ** (other)
if other == 0
return Complex(1)
end
if other.kind_of?(Complex)
r, theta = polar
ore = other.real
oim = other.image
nr = Math.exp!(ore*Math.log!(r) - oim * theta)
ntheta = theta*ore + oim*Math.log!(r)
Complex.polar(nr, ntheta)
elsif other.kind_of?(Integer)
if other > 0
x = self
z = x
n = other - 1
while n != 0
while (div, mod = n.divmod(2)
mod == 0)
x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image)
n = div
end
z *= x
n -= 1
end
z
else
if defined? Rational
(Rational(1) / self) ** -other
else
self ** Float(other)
end
end
elsif Complex.generic?(other)
r, theta = polar
Complex.polar(r.power!(other), theta * other)
else
x, y = other.coerce(self)
x/y
end
end
def % (other)
if other.kind_of?(Complex)
Complex(@real % other.real, @image % other.image)
elsif Complex.generic?(other)
Complex(@real % other, @image % other)
else
x , y = other.coerce(self)
x % y
end
end
# def divmod(other)
# if other.kind_of?(Complex)
# rdiv, rmod = @real.divmod(other.real)
# idiv, imod = @image.divmod(other.image)
# return Complex(rdiv, idiv), Complex(rmod, rmod)
# elsif Complex.generic?(other)
# Complex(@real.divmod(other), @image.divmod(other))
# else
# x , y = other.coerce(self)
# x.divmod(y)
# end
# end
def abs
Math.sqrt!((@real*@real + @image*@image).to_f)
end
def abs2
@real*@real + @image*@image
end
def arg
Math.atan2(@image.to_f, @real.to_f)
end
def polar
return abs, arg
end
def conjugate
Complex(@real, -@image)
end
def <=> (other)
self.abs <=> other.abs
end
def == (other)
if other.kind_of?(Complex)
@real == other.real and @image == other.image
elsif Complex.generic?(other)
@real == other and @image == 0
else
x , y = other.coerce(self)
x == y
end
end
def coerce(other)
if Complex.generic?(other)
return Complex.new(other), self
else
super
end
end
def denominator
@real.denominator.lcm(@image.denominator)
end
def numerator
cd = denominator
Complex(@real.numerator*(cd/@real.denominator),
@image.numerator*(cd/@image.denominator))
end
def to_s
if @real != 0
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
if @image >= 0
@real.to_s+"+("+@image.to_s+")i"
else
@real.to_s+"-("+(-@image).to_s+")i"
end
else
if @image >= 0
@real.to_s+"+"+@image.to_s+"i"
else
@real.to_s+"-"+(-@image).to_s+"i"
end
end
else
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
"("+@image.to_s+")i"
else
@image.to_s+"i"
end
end
end
def hash
@real.hash ^ @image.hash
end
def inspect
sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
end
I = Complex(0,1)
attr :real
attr :image
end
class Numeric
def im
Complex(0, self)
end
def real
self
end
def image
0
end
def arg
if self >= 0
return 0
else
return Math.atan2(1,1)*4
end
end
def polar
return abs, arg
end
def conjugate
self
end
end
class Fixnum
if not defined? Rational
alias power! **
end
def ** (other)
if self < 0
Complex.new(self) ** other
else
if defined? Rational
if other >= 0
self.power!(other)
else
Rational.new!(self,1)**other
end
else
self.power!(other)
end
end
end
end
class Bignum
if not defined? Rational
alias power! **
end
end
class Float
alias power! **
end
module Math
alias sqrt! sqrt
alias exp! exp
alias cos! cos
alias sin! sin
alias tan! tan
alias log! log
alias atan! atan
alias log10! log10
alias atan2! atan2
def sqrt(z)
if Complex.generic?(z)
if z >= 0
sqrt!(z)
else
Complex(0,sqrt!(-z))
end
else
z**Rational(1,2)
end
end
def exp(z)
if Complex.generic?(z)
exp!(z)
else
Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
end
end
def cosh!(x)
(exp!(x) + exp!(-x))/2.0
end
def sinh!(x)
(exp!(x) - exp!(-x))/2.0
end
def cos(z)
if Complex.generic?(z)
cos!(z)
else
Complex(cos!(z.real)*cosh!(z.image),
-sin!(z.real)*sinh!(z.image))
end
end
def sin(z)
if Complex.generic?(z)
sin!(z)
else
Complex(sin!(z.real)*cosh!(z.image),
cos!(z.real)*sinh!(z.image))
end
end
def tan(z)
if Complex.generic?(z)
tan!(z)
else
sin(z)/cos(z)
end
end
def log(z)
if Complex.generic?(z) and z >= 0
log!(z)
else
r, theta = z.polar
Complex(log!(r.abs), theta)
end
end
def log10(z)
if Complex.generic?(z)
log10!(z)
else
log(z)/log!(10)
end
end
def atan2(x, y)
if Complex.generic?(x) and Complex.generic?(y)
atan2!(x, y)
else
fail "Not yet implemented."
end
end
def atanh!(x)
log((1.0 + x.to_f) / ( 1.0 - x.to_f)) / 2.0
end
def atan(z)
if Complex.generic?(z)
atan2!(z, 1)
elsif z.image == 0
atan2(z.real,1)
else
a = z.real
b = z.image
c = (a*a + b*b - 1.0)
d = (a*a + b*b + 1.0)
Complex(atan2!((c + sqrt(c*c + 4.0*a*a)), 2.0*a),
atanh!((-d + sqrt(d*d - 4.0*b*b))/(2.0*b)))
end
end
module_function :sqrt
module_function :sqrt!
module_function :exp!
module_function :exp
module_function :cosh!
module_function :cos!
module_function :cos
module_function :sinh!
module_function :sin!
module_function :sin
module_function :tan!
module_function :tan
module_function :log!
module_function :log
module_function :log10!
module_function :log
module_function :atan2!
module_function :atan2
# module_function :atan!
module_function :atan
module_function :atanh!
end