1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/gc.c
ko1 e2cabc22be * gc.c (newobj_of): divide fast path and slow path
to avoid register savings for fast path.
  This idea is given by Kazuho Oku <kazuho@natadeco.co>.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52072 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-10-07 11:18:17 +00:00

9346 lines
243 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#define rb_data_object_alloc rb_data_object_alloc
#define rb_data_typed_object_alloc rb_data_typed_object_alloc
#include "internal.h"
#include "ruby/st.h"
#include "ruby/re.h"
#include "ruby/io.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "ruby/debug.h"
#include "eval_intern.h"
#include "vm_core.h"
#include "gc.h"
#include "constant.h"
#include "ruby_atomic.h"
#include "probes.h"
#include "id_table.h"
#include <stdio.h>
#include <stdarg.h>
#include <setjmp.h>
#include <sys/types.h>
#include <assert.h>
#undef rb_data_object_wrap
#ifndef HAVE_MALLOC_USABLE_SIZE
# ifdef _WIN32
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) _msize(a)
# elif defined HAVE_MALLOC_SIZE
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) malloc_size(a)
# endif
#endif
#ifdef HAVE_MALLOC_USABLE_SIZE
# ifdef HAVE_MALLOC_H
# include <malloc.h>
# elif defined(HAVE_MALLOC_NP_H)
# include <malloc_np.h>
# elif defined(HAVE_MALLOC_MALLOC_H)
# include <malloc/malloc.h>
# endif
#endif
#if /* is ASAN enabled? */ \
__has_feature(address_sanitizer) /* Clang */ || \
defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x */
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
__attribute__((no_address_safety_analysis)) \
__attribute__((noinline))
#else
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined(__native_client__) && defined(NACL_NEWLIB)
# include "nacl/resource.h"
# undef HAVE_POSIX_MEMALIGN
# undef HAVE_MEMALIGN
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#elif defined(HAVE_POSIX_MEMALIGN)
#elif defined(HAVE_MEMALIGN)
#include <malloc.h>
#endif
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL
/* trick the compiler into thinking a external signal handler uses this */
volatile VALUE rb_gc_guarded_val;
volatile VALUE *
rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val)
{
rb_gc_guarded_val = val;
return ptr;
}
#endif
#ifndef GC_HEAP_INIT_SLOTS
#define GC_HEAP_INIT_SLOTS 10000
#endif
#ifndef GC_HEAP_FREE_SLOTS
#define GC_HEAP_FREE_SLOTS 4096
#endif
#ifndef GC_HEAP_GROWTH_FACTOR
#define GC_HEAP_GROWTH_FACTOR 1.8
#endif
#ifndef GC_HEAP_GROWTH_MAX_SLOTS
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
#endif
#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR
#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0
#endif
#ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO
#define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.3
#endif
#ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO
#define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.8
#endif
#ifndef GC_MALLOC_LIMIT_MIN
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_MALLOC_LIMIT_MAX
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
#endif
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
#endif
#ifndef GC_OLDMALLOC_LIMIT_MIN
#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR
#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2
#endif
#ifndef GC_OLDMALLOC_LIMIT_MAX
#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
#endif
#ifndef PRINT_MEASURE_LINE
#define PRINT_MEASURE_LINE 0
#endif
#ifndef PRINT_ENTER_EXIT_TICK
#define PRINT_ENTER_EXIT_TICK 0
#endif
#ifndef PRINT_ROOT_TICKS
#define PRINT_ROOT_TICKS 0
#endif
#define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_MEASURE_LINE || PRINT_ROOT_TICKS)
#define TICK_TYPE 1
typedef struct {
size_t heap_init_slots;
size_t heap_free_slots;
double growth_factor;
size_t growth_max_slots;
double oldobject_limit_factor;
size_t malloc_limit_min;
size_t malloc_limit_max;
double malloc_limit_growth_factor;
size_t oldmalloc_limit_min;
size_t oldmalloc_limit_max;
double oldmalloc_limit_growth_factor;
VALUE gc_stress;
} ruby_gc_params_t;
static ruby_gc_params_t gc_params = {
GC_HEAP_INIT_SLOTS,
GC_HEAP_FREE_SLOTS,
GC_HEAP_GROWTH_FACTOR,
GC_HEAP_GROWTH_MAX_SLOTS,
GC_HEAP_OLDOBJECT_LIMIT_FACTOR,
GC_MALLOC_LIMIT_MIN,
GC_MALLOC_LIMIT_MAX,
GC_MALLOC_LIMIT_GROWTH_FACTOR,
GC_OLDMALLOC_LIMIT_MIN,
GC_OLDMALLOC_LIMIT_MAX,
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR,
FALSE,
};
/* GC_DEBUG:
* enable to embed GC debugging information.
*/
#ifndef GC_DEBUG
#define GC_DEBUG 0
#endif
#if USE_RGENGC
/* RGENGC_DEBUG:
* 1: basic information
* 2: remember set operation
* 3: mark
* 4:
* 5: sweep
*/
#ifndef RGENGC_DEBUG
#define RGENGC_DEBUG 0
#endif
/* RGENGC_CHECK_MODE
* 0: disable all assertions
* 1: enable assertions (to debug RGenGC)
* 2: enable internal consistency check at each GC (for debugging)
* 3: enable internal consistency check at each GC steps (for debugging)
* 4: enable livness check
* 5: show all references
*/
#ifndef RGENGC_CHECK_MODE
#define RGENGC_CHECK_MODE 0
#endif
/* RGENGC_OLD_NEWOBJ_CHECK
* 0: disable all assertions
* >0: make a OLD object when new object creation.
*
* Make one OLD object per RGENGC_OLD_NEWOBJ_CHECK WB protected objects creation.
*/
#ifndef RGENGC_OLD_NEWOBJ_CHECK
#define RGENGC_OLD_NEWOBJ_CHECK 0
#endif
/* RGENGC_PROFILE
* 0: disable RGenGC profiling
* 1: enable profiling for basic information
* 2: enable profiling for each types
*/
#ifndef RGENGC_PROFILE
#define RGENGC_PROFILE 0
#endif
/* RGENGC_ESTIMATE_OLDMALLOC
* Enable/disable to estimate increase size of malloc'ed size by old objects.
* If estimation exceeds threshold, then will invoke full GC.
* 0: disable estimation.
* 1: enable estimation.
*/
#ifndef RGENGC_ESTIMATE_OLDMALLOC
#define RGENGC_ESTIMATE_OLDMALLOC 1
#endif
/* RGENGC_FORCE_MAJOR_GC
* Force major/full GC if this macro is not 0.
*/
#ifndef RGENGC_FORCE_MAJOR_GC
#define RGENGC_FORCE_MAJOR_GC 0
#endif
#else /* USE_RGENGC */
#ifdef RGENGC_DEBUG
#undef RGENGC_DEBUG
#endif
#define RGENGC_DEBUG 0
#ifdef RGENGC_CHECK_MODE
#undef RGENGC_CHECK_MODE
#endif
#define RGENGC_CHECK_MODE 0
#define RGENGC_PROFILE 0
#define RGENGC_ESTIMATE_OLDMALLOC 0
#define RGENGC_FORCE_MAJOR_GC 0
#endif /* USE_RGENGC */
#ifndef GC_PROFILE_MORE_DETAIL
#define GC_PROFILE_MORE_DETAIL 0
#endif
#ifndef GC_PROFILE_DETAIL_MEMORY
#define GC_PROFILE_DETAIL_MEMORY 0
#endif
#ifndef GC_ENABLE_INCREMENTAL_MARK
#define GC_ENABLE_INCREMENTAL_MARK USE_RINCGC
#endif
#ifndef GC_ENABLE_LAZY_SWEEP
#define GC_ENABLE_LAZY_SWEEP 1
#endif
#ifndef CALC_EXACT_MALLOC_SIZE
#define CALC_EXACT_MALLOC_SIZE 0
#endif
#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0
#ifndef MALLOC_ALLOCATED_SIZE
#define MALLOC_ALLOCATED_SIZE 0
#endif
#else
#define MALLOC_ALLOCATED_SIZE 0
#endif
#ifndef MALLOC_ALLOCATED_SIZE_CHECK
#define MALLOC_ALLOCATED_SIZE_CHECK 0
#endif
#ifndef GC_DEBUG_STRESS_TO_CLASS
#define GC_DEBUG_STRESS_TO_CLASS 0
#endif
#ifndef RGENGC_OBJ_INFO
#define RGENGC_OBJ_INFO (RGENGC_DEBUG | RGENGC_CHECK_MODE)
#endif
typedef enum {
GPR_FLAG_NONE = 0x000,
/* major reason */
GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
GPR_FLAG_MAJOR_BY_SHADY = 0x004,
GPR_FLAG_MAJOR_BY_FORCE = 0x008,
#if RGENGC_ESTIMATE_OLDMALLOC
GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020,
#endif
GPR_FLAG_MAJOR_MASK = 0x0ff,
/* gc reason */
GPR_FLAG_NEWOBJ = 0x100,
GPR_FLAG_MALLOC = 0x200,
GPR_FLAG_METHOD = 0x400,
GPR_FLAG_CAPI = 0x800,
GPR_FLAG_STRESS = 0x1000,
/* others */
GPR_FLAG_IMMEDIATE_SWEEP = 0x2000,
GPR_FLAG_HAVE_FINALIZE = 0x4000
} gc_profile_record_flag;
typedef struct gc_profile_record {
int flags;
double gc_time;
double gc_invoke_time;
size_t heap_total_objects;
size_t heap_use_size;
size_t heap_total_size;
#if GC_PROFILE_MORE_DETAIL
double gc_mark_time;
double gc_sweep_time;
size_t heap_use_pages;
size_t heap_live_objects;
size_t heap_free_objects;
size_t allocate_increase;
size_t allocate_limit;
double prepare_time;
size_t removing_objects;
size_t empty_objects;
#if GC_PROFILE_DETAIL_MEMORY
long maxrss;
long minflt;
long majflt;
#endif
#endif
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
#endif
#if RGENGC_PROFILE > 0
size_t old_objects;
size_t remembered_normal_objects;
size_t remembered_shady_objects;
#endif
} gc_profile_record;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RTypedData typeddata;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RRational rational;
struct RComplex complex;
union {
rb_cref_t cref;
struct vm_svar svar;
struct vm_throw_data throw_data;
struct vm_ifunc ifunc;
struct MEMO memo;
struct rb_method_entry_struct ment;
const rb_iseq_t iseq;
} imemo;
struct {
struct RBasic basic;
VALUE v1;
VALUE v2;
VALUE v3;
} values;
} as;
#if GC_DEBUG
const char *file;
int line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
typedef uintptr_t bits_t;
enum {
BITS_SIZE = sizeof(bits_t),
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
};
struct heap_page_header {
struct heap_page *page;
};
struct heap_page_body {
struct heap_page_header header;
/* char gap[]; */
/* RVALUE values[]; */
};
struct gc_list {
VALUE *varptr;
struct gc_list *next;
};
#define STACK_CHUNK_SIZE 500
typedef struct stack_chunk {
VALUE data[STACK_CHUNK_SIZE];
struct stack_chunk *next;
} stack_chunk_t;
typedef struct mark_stack {
stack_chunk_t *chunk;
stack_chunk_t *cache;
int index;
int limit;
size_t cache_size;
size_t unused_cache_size;
} mark_stack_t;
typedef struct rb_heap_struct {
RVALUE *freelist;
struct heap_page *free_pages;
struct heap_page *using_page;
struct heap_page *pages;
struct heap_page *sweep_pages;
#if GC_ENABLE_INCREMENTAL_MARK
struct heap_page *pooled_pages;
#endif
size_t page_length; /* total page count in a heap */
size_t total_slots; /* total slot count (page_length * HEAP_OBJ_LIMIT) */
} rb_heap_t;
enum gc_stat {
gc_stat_none,
gc_stat_marking,
gc_stat_sweeping
};
typedef struct rb_objspace {
struct {
size_t limit;
size_t increase;
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
size_t allocations;
#endif
} malloc_params;
struct {
enum gc_stat stat : 2;
unsigned int immediate_sweep : 1;
unsigned int dont_gc : 1;
unsigned int dont_incremental : 1;
unsigned int during_gc : 1;
unsigned int gc_stressful: 1;
#if USE_RGENGC
unsigned int during_minor_gc : 1;
#endif
#if GC_ENABLE_INCREMENTAL_MARK
unsigned int during_incremental_marking : 1;
#endif
} flags;
rb_event_flag_t hook_events;
size_t total_allocated_objects;
rb_heap_t eden_heap;
rb_heap_t tomb_heap; /* heap for zombies and ghosts */
struct {
rb_atomic_t finalizing;
} atomic_flags;
struct mark_func_data_struct {
void *data;
void (*mark_func)(VALUE v, void *data);
} *mark_func_data;
mark_stack_t mark_stack;
size_t marked_slots;
struct {
struct heap_page **sorted;
size_t allocated_pages;
size_t allocatable_pages;
size_t sorted_length;
RVALUE *range[2];
size_t swept_slots;
size_t min_free_slots;
size_t max_free_slots;
/* final */
size_t final_slots;
VALUE deferred_final;
} heap_pages;
st_table *finalizer_table;
struct {
int run;
int latest_gc_info;
gc_profile_record *records;
gc_profile_record *current_record;
size_t next_index;
size_t size;
#if GC_PROFILE_MORE_DETAIL
double prepare_time;
#endif
double invoke_time;
#if USE_RGENGC
size_t minor_gc_count;
size_t major_gc_count;
#if RGENGC_PROFILE > 0
size_t total_generated_normal_object_count;
size_t total_generated_shady_object_count;
size_t total_shade_operation_count;
size_t total_promoted_count;
size_t total_remembered_normal_object_count;
size_t total_remembered_shady_object_count;
#if RGENGC_PROFILE >= 2
size_t generated_normal_object_count_types[RUBY_T_MASK];
size_t generated_shady_object_count_types[RUBY_T_MASK];
size_t shade_operation_count_types[RUBY_T_MASK];
size_t promoted_types[RUBY_T_MASK];
size_t remembered_normal_object_count_types[RUBY_T_MASK];
size_t remembered_shady_object_count_types[RUBY_T_MASK];
#endif
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
/* temporary profiling space */
double gc_sweep_start_time;
size_t total_allocated_objects_at_gc_start;
size_t heap_used_at_gc_start;
/* basic statistics */
size_t count;
size_t total_freed_objects;
size_t total_allocated_pages;
size_t total_freed_pages;
} profile;
struct gc_list *global_list;
VALUE gc_stress_mode;
#if USE_RGENGC
struct {
VALUE parent_object;
int need_major_gc;
size_t last_major_gc;
size_t uncollectible_wb_unprotected_objects;
size_t uncollectible_wb_unprotected_objects_limit;
size_t old_objects;
size_t old_objects_limit;
#if RGENGC_ESTIMATE_OLDMALLOC
size_t oldmalloc_increase;
size_t oldmalloc_increase_limit;
#endif
#if RGENGC_CHECK_MODE >= 2
struct st_table *allrefs_table;
size_t error_count;
#endif
} rgengc;
#if GC_ENABLE_INCREMENTAL_MARK
struct {
size_t pooled_slots;
size_t step_slots;
} rincgc;
#endif
#endif /* USE_RGENGC */
#if GC_DEBUG_STRESS_TO_CLASS
VALUE stress_to_class;
#endif
} rb_objspace_t;
#ifndef HEAP_ALIGN_LOG
/* default tiny heap size: 16KB */
#define HEAP_ALIGN_LOG 14
#endif
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
enum {
HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heap_page_header))/sizeof(struct RVALUE)),
HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH),
HEAP_BITMAP_SIZE = ( BITS_SIZE * HEAP_BITMAP_LIMIT),
HEAP_BITMAP_PLANES = USE_RGENGC ? 3 : 1 /* RGENGC: mark bits, rememberset bits and oldgen bits */
};
struct heap_page {
struct heap_page_body *body;
struct heap_page *prev;
rb_heap_t *heap;
int total_slots;
int free_slots;
int final_slots;
struct {
unsigned int before_sweep : 1;
unsigned int has_remembered_objects : 1;
unsigned int has_uncollectible_shady_objects : 1;
} flags;
struct heap_page *free_next;
RVALUE *start;
RVALUE *freelist;
struct heap_page *next;
#if USE_RGENGC
bits_t wb_unprotected_bits[HEAP_BITMAP_LIMIT];
#endif
/* the following three bitmaps are cleared at the beginning of full GC */
bits_t mark_bits[HEAP_BITMAP_LIMIT];
#if USE_RGENGC
bits_t uncollectible_bits[HEAP_BITMAP_LIMIT];
bits_t marking_bits[HEAP_BITMAP_LIMIT];
#endif
};
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_ALIGN_MASK)))
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
/* Bitmap Operations */
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
/* getting bitmap */
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
#if USE_RGENGC
#define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0])
#define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0])
#define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0])
#endif
/* Aliases */
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
#define rb_objspace (*GET_VM()->objspace)
#else
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT_MIN}};
#endif
#define ruby_initial_gc_stress gc_params.gc_stress
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
#define malloc_limit objspace->malloc_params.limit
#define malloc_increase objspace->malloc_params.increase
#define malloc_allocated_size objspace->malloc_params.allocated_size
#define heap_pages_sorted objspace->heap_pages.sorted
#define heap_allocated_pages objspace->heap_pages.allocated_pages
#define heap_pages_sorted_length objspace->heap_pages.sorted_length
#define heap_pages_lomem objspace->heap_pages.range[0]
#define heap_pages_himem objspace->heap_pages.range[1]
#define heap_pages_swept_slots objspace->heap_pages.swept_slots
#define heap_allocatable_pages objspace->heap_pages.allocatable_pages
#define heap_pages_min_free_slots objspace->heap_pages.min_free_slots
#define heap_pages_max_free_slots objspace->heap_pages.max_free_slots
#define heap_pages_final_slots objspace->heap_pages.final_slots
#define heap_pages_deferred_final objspace->heap_pages.deferred_final
#define heap_eden (&objspace->eden_heap)
#define heap_tomb (&objspace->tomb_heap)
#define dont_gc objspace->flags.dont_gc
#define during_gc objspace->flags.during_gc
#define finalizing objspace->atomic_flags.finalizing
#define finalizer_table objspace->finalizer_table
#define global_list objspace->global_list
#define ruby_gc_stressful objspace->flags.gc_stressful
#define ruby_gc_stress_mode objspace->gc_stress_mode
#if GC_DEBUG_STRESS_TO_CLASS
#define stress_to_class objspace->stress_to_class
#else
#define stress_to_class 0
#endif
#define is_marking(objspace) ((objspace)->flags.stat == gc_stat_marking)
#define is_sweeping(objspace) ((objspace)->flags.stat == gc_stat_sweeping)
#if USE_RGENGC
#define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE)
#else
#define is_full_marking(objspace) TRUE
#endif
#if GC_ENABLE_INCREMENTAL_MARK
#define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE)
#else
#define is_incremental_marking(objspace) FALSE
#endif
#if GC_ENABLE_INCREMENTAL_MARK
#define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE)
#else
#define will_be_incremental_marking(objspace) FALSE
#endif
#define has_sweeping_pages(heap) ((heap)->sweep_pages != 0)
#define is_lazy_sweeping(heap) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(heap))
#if SIZEOF_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
#else
# error not supported
#endif
#define RANY(o) ((RVALUE*)(o))
struct RZombie {
struct RBasic basic;
VALUE next;
void (*dfree)(void *);
void *data;
};
#define RZOMBIE(o) ((struct RZombie *)(o))
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
int ruby_gc_debug_indent = 0;
VALUE rb_mGC;
int ruby_disable_gc = 0;
void rb_iseq_mark(const rb_iseq_t *iseq);
void rb_iseq_free(const rb_iseq_t *iseq);
void rb_gcdebug_print_obj_condition(VALUE obj);
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
static VALUE define_final0(VALUE obj, VALUE block);
static void negative_size_allocation_error(const char *);
static void *aligned_malloc(size_t, size_t);
static void aligned_free(void *);
static void init_mark_stack(mark_stack_t *stack);
static int ready_to_gc(rb_objspace_t *objspace);
static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_mark, int immediate_sweep, int reason);
static int gc_start(rb_objspace_t *objspace, const int full_mark, const int immediate_mark, const unsigned int immediate_sweep, int reason);
static void gc_rest(rb_objspace_t *objspace);
static inline void gc_enter(rb_objspace_t *objspace, const char *event);
static inline void gc_exit(rb_objspace_t *objspace, const char *event);
static void gc_marks(rb_objspace_t *objspace, int full_mark);
static void gc_marks_start(rb_objspace_t *objspace, int full);
static int gc_marks_finish(rb_objspace_t *objspace);
static void gc_marks_rest(rb_objspace_t *objspace);
#if GC_ENABLE_INCREMENTAL_MARK
static void gc_marks_step(rb_objspace_t *objspace, int slots);
static void gc_marks_continue(rb_objspace_t *objspace, rb_heap_t *heap);
#endif
static void gc_sweep(rb_objspace_t *objspace);
static void gc_sweep_start(rb_objspace_t *objspace);
static void gc_sweep_finish(rb_objspace_t *objspace);
static int gc_sweep_step(rb_objspace_t *objspace, rb_heap_t *heap);
static void gc_sweep_rest(rb_objspace_t *objspace);
#if GC_ENABLE_LAZY_SWEEP
static void gc_sweep_continue(rb_objspace_t *objspace, rb_heap_t *heap);
#endif
static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count);
static int gc_mark_stacked_objects_all(rb_objspace_t *);
static void gc_grey(rb_objspace_t *objspace, VALUE ptr);
static inline int gc_mark_set(rb_objspace_t *objspace, VALUE obj);
static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);
static void push_mark_stack(mark_stack_t *, VALUE);
static int pop_mark_stack(mark_stack_t *, VALUE *);
static size_t mark_stack_size(mark_stack_t *stack);
static void shrink_stack_chunk_cache(mark_stack_t *stack);
static size_t obj_memsize_of(VALUE obj, int use_all_types);
static VALUE gc_verify_internal_consistency(VALUE self);
static int gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj);
static int gc_verify_heap_pages(rb_objspace_t *objspace);
static void gc_stress_set(rb_objspace_t *objspace, VALUE flag);
static double getrusage_time(void);
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason);
static inline void gc_prof_timer_start(rb_objspace_t *);
static inline void gc_prof_timer_stop(rb_objspace_t *);
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
static inline void gc_prof_set_heap_info(rb_objspace_t *);
#define gc_prof_record(objspace) (objspace)->profile.current_record
#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record)
#ifdef HAVE_VA_ARGS_MACRO
# define gc_report(level, objspace, fmt, ...) \
if ((level) > RGENGC_DEBUG) {} else gc_report_body(level, objspace, fmt, ##__VA_ARGS__)
#else
# define gc_report if (!(RGENGC_DEBUG)) {} else gc_report_body
#endif
PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4);
static const char *obj_info(VALUE obj);
#define PUSH_MARK_FUNC_DATA(v) do { \
struct mark_func_data_struct *prev_mark_func_data = objspace->mark_func_data; \
objspace->mark_func_data = (v);
#define POP_MARK_FUNC_DATA() objspace->mark_func_data = prev_mark_func_data;} while (0)
/*
* 1 - TSC (H/W Time Stamp Counter)
* 2 - getrusage
*/
#ifndef TICK_TYPE
#define TICK_TYPE 1
#endif
#if USE_TICK_T
#if TICK_TYPE == 1
/* the following code is only for internal tuning. */
/* Source code to use RDTSC is quoted and modified from
* http://www.mcs.anl.gov/~kazutomo/rdtsc.html
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
*/
#if defined(__GNUC__) && defined(__i386__)
typedef unsigned long long tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
unsigned long long int x;
__asm__ __volatile__ ("rdtsc" : "=A" (x));
return x;
}
#elif defined(__GNUC__) && defined(__x86_64__)
typedef unsigned long long tick_t;
#define PRItick "llu"
static __inline__ tick_t
tick(void)
{
unsigned long hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
}
#elif defined(_WIN32) && defined(_MSC_VER)
#include <intrin.h>
typedef unsigned __int64 tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
return __rdtsc();
}
#else /* use clock */
typedef clock_t tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
return clock();
}
#endif /* TSC */
#elif TICK_TYPE == 2
typedef double tick_t;
#define PRItick "4.9f"
static inline tick_t
tick(void)
{
return getrusage_time();
}
#else /* TICK_TYPE */
#error "choose tick type"
#endif /* TICK_TYPE */
#define MEASURE_LINE(expr) do { \
volatile tick_t start_time = tick(); \
volatile tick_t end_time; \
expr; \
end_time = tick(); \
fprintf(stderr, "0\t%"PRItick"\t%s\n", end_time - start_time, #expr); \
} while (0)
#else /* USE_TICK_T */
#define MEASURE_LINE(expr) expr
#endif /* USE_TICK_T */
#define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST (%p)", (void *)(x)), 0) : FL_TEST_RAW((x),(f)) != 0)
#define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0)
#define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0)
#define RVALUE_MARK_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj))
#define RVALUE_PAGE_MARKED(page, obj) MARKED_IN_BITMAP((page)->mark_bits, (obj))
#if USE_RGENGC
#define RVALUE_WB_UNPROTECTED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj))
#define RVALUE_UNCOLLECTIBLE_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj))
#define RVALUE_MARKING_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj))
#define RVALUE_PAGE_WB_UNPROTECTED(apge, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj))
#define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj))
#define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj))
#define RVALUE_OLD_AGE 3
#define RVALUE_AGE_SHIFT 5 /* FL_PROMOTED0 bit */
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj);
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
static inline int
RVALUE_FLAGS_AGE(VALUE flags)
{
return (int)((flags & (FL_PROMOTED0 | FL_PROMOTED1)) >> RVALUE_AGE_SHIFT);
}
#endif /* USE_RGENGC */
#if RGENGC_CHECK_MODE == 0
static inline VALUE
check_rvalue_consistency(const VALUE obj)
{
return obj;
}
#else
static VALUE
check_rvalue_consistency(const VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (SPECIAL_CONST_P(obj)) {
rb_bug("check_rvalue_consistency: %p is a special const.", (void *)obj);
}
else if (!is_pointer_to_heap(objspace, (void *)obj)) {
rb_bug("check_rvalue_consistency: %p is not a Ruby object.", (void *)obj);
}
else {
const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
const int uncollectible_bit = RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
const int mark_bit = RVALUE_MARK_BITMAP(obj) != 0;
const int marking_bit = RVALUE_MARKING_BITMAP(obj) != 0, remembered_bit = marking_bit;
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("check_rvalue_consistency: %s is T_NONE", obj_info(obj));
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("check_rvalue_consistency: %s is T_ZOMBIE", obj_info(obj));
obj_memsize_of((VALUE)obj, FALSE);
/* check generation
*
* OLD == age == 3 && old-bitmap && mark-bit (except incremental marking)
*/
if (age > 0 && wb_unprotected_bit) {
rb_bug("check_rvalue_consistency: %s is not WB protected, but age is %d > 0.", obj_info(obj), age);
}
if (!is_marking(objspace) && uncollectible_bit && !mark_bit) {
rb_bug("check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.", obj_info(obj));
}
if (!is_full_marking(objspace)) {
if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) {
rb_bug("check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.", obj_info(obj), age);
}
if (remembered_bit && age != RVALUE_OLD_AGE) {
rb_bug("check_rvalue_consistency: %s is rememberd, but not old (age: %d).", obj_info(obj), age);
}
}
/*
* check coloring
*
* marking:false marking:true
* marked:false white *invalid*
* marked:true black grey
*/
if (is_incremental_marking(objspace) && marking_bit) {
if (!is_marking(objspace) && !mark_bit) rb_bug("check_rvalue_consistency: %s is marking, but not marked.", obj_info(obj));
}
}
return obj;
}
#endif
static inline int
RVALUE_MARKED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARK_BITMAP(obj) != 0;
}
#if USE_RGENGC
static inline int
RVALUE_WB_UNPROTECTED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
}
static inline int
RVALUE_MARKING(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARKING_BITMAP(obj) != 0;
}
static inline int
RVALUE_REMEMBERED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARKING_BITMAP(obj) != 0;
}
static inline int
RVALUE_UNCOLLECTIBLE(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
}
static inline int
RVALUE_OLD_P_RAW(VALUE obj)
{
const VALUE promoted = FL_PROMOTED0 | FL_PROMOTED1;
return (RBASIC(obj)->flags & promoted) == promoted;
}
static inline int
RVALUE_OLD_P(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_OLD_P_RAW(obj);
}
#if RGENGC_CHECK_MODE || GC_DEBUG
static inline int
RVALUE_AGE(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
}
#endif
static inline void
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
MARK_IN_BITMAP(&page->uncollectible_bits[0], obj);
objspace->rgengc.old_objects++;
#if RGENGC_PROFILE >= 2
objspace->profile.total_promoted_count++;
objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++;
#endif
}
static inline void
RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj)
{
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj);
}
static inline VALUE
RVALUE_FLAGS_AGE_SET(VALUE flags, int age)
{
flags &= ~(FL_PROMOTED0 | FL_PROMOTED1);
flags |= (age << RVALUE_AGE_SHIFT);
return flags;
}
/* set age to age+1 */
static inline void
RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj)
{
VALUE flags = RBASIC(obj)->flags;
int age = RVALUE_FLAGS_AGE(flags);
if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) {
rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", obj_info(obj));
}
age++;
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(flags, age);
if (age == RVALUE_OLD_AGE) {
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
}
check_rvalue_consistency(obj);
}
/* set age to RVALUE_OLD_AGE */
static inline void
RVALUE_AGE_SET_OLD(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) assert(!RVALUE_OLD_P(obj));
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE);
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
check_rvalue_consistency(obj);
}
/* set age to RVALUE_OLD_AGE - 1 */
static inline void
RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) assert(!RVALUE_OLD_P(obj));
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE - 1);
check_rvalue_consistency(obj);
}
static inline void
RVALUE_DEMOTE_RAW(rb_objspace_t *objspace, VALUE obj)
{
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0);
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj);
}
static inline void
RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) assert(RVALUE_OLD_P(obj));
if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(obj)) {
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
}
RVALUE_DEMOTE_RAW(objspace, obj);
if (RVALUE_MARKED(obj)) {
objspace->rgengc.old_objects--;
}
check_rvalue_consistency(obj);
}
static inline void
RVALUE_AGE_RESET_RAW(VALUE obj)
{
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0);
}
static inline void
RVALUE_AGE_RESET(VALUE obj)
{
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) assert(!RVALUE_OLD_P(obj));
RVALUE_AGE_RESET_RAW(obj);
check_rvalue_consistency(obj);
}
static inline int
RVALUE_BLACK_P(VALUE obj)
{
return RVALUE_MARKED(obj) && !RVALUE_MARKING(obj);
}
#if 0
static inline int
RVALUE_GREY_P(VALUE obj)
{
return RVALUE_MARKED(obj) && RVALUE_MARKING(obj);
}
#endif
static inline int
RVALUE_WHITE_P(VALUE obj)
{
return RVALUE_MARKED(obj) == FALSE;
}
#endif /* USE_RGENGC */
/*
--------------------------- ObjectSpace -----------------------------
*/
rb_objspace_t *
rb_objspace_alloc(void)
{
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
rb_objspace_t *objspace = calloc(1, sizeof(rb_objspace_t));
#else
rb_objspace_t *objspace = &rb_objspace;
#endif
malloc_limit = gc_params.malloc_limit_min;
return objspace;
}
static void free_stack_chunks(mark_stack_t *);
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
void
rb_objspace_free(rb_objspace_t *objspace)
{
if (is_lazy_sweeping(heap_eden))
rb_bug("lazy sweeping underway when freeing object space");
if (objspace->profile.records) {
free(objspace->profile.records);
objspace->profile.records = 0;
}
if (global_list) {
struct gc_list *list, *next;
for (list = global_list; list; list = next) {
next = list->next;
xfree(list);
}
}
if (heap_pages_sorted) {
size_t i;
for (i = 0; i < heap_allocated_pages; ++i) {
heap_page_free(objspace, heap_pages_sorted[i]);
}
free(heap_pages_sorted);
heap_allocated_pages = 0;
heap_pages_sorted_length = 0;
heap_pages_lomem = 0;
heap_pages_himem = 0;
objspace->eden_heap.page_length = 0;
objspace->eden_heap.total_slots = 0;
objspace->eden_heap.pages = NULL;
}
free_stack_chunks(&objspace->mark_stack);
#if !(defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE)
if (objspace == &rb_objspace) return;
#endif
free(objspace);
}
static void
heap_pages_expand_sorted(rb_objspace_t *objspace)
{
size_t next_length = heap_allocatable_pages;
next_length += heap_eden->page_length;
next_length += heap_tomb->page_length;
if (next_length > heap_pages_sorted_length) {
struct heap_page **sorted;
size_t size = next_length * sizeof(struct heap_page *);
gc_report(3, objspace, "heap_pages_expand_sorted: next_length: %d, size: %d\n", (int)next_length, (int)size);
if (heap_pages_sorted_length > 0) {
sorted = (struct heap_page **)realloc(heap_pages_sorted, size);
if (sorted) heap_pages_sorted = sorted;
}
else {
sorted = heap_pages_sorted = (struct heap_page **)malloc(size);
}
if (sorted == 0) {
rb_memerror();
}
heap_pages_sorted_length = next_length;
}
}
static inline void
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
p->as.free.flags = 0;
p->as.free.next = page->freelist;
page->freelist = p;
if (RGENGC_CHECK_MODE && !is_pointer_to_heap(objspace, p)) {
rb_bug("heap_page_add_freeobj: %p is not rvalue.", p);
}
gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj);
}
static inline void
heap_add_freepage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
if (page->freelist) {
page->free_next = heap->free_pages;
heap->free_pages = page;
}
}
#if GC_ENABLE_INCREMENTAL_MARK
static inline int
heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
if (page->freelist) {
page->free_next = heap->pooled_pages;
heap->pooled_pages = page;
objspace->rincgc.pooled_slots += page->free_slots;
return TRUE;
}
else {
return FALSE;
}
}
#endif
static void
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
if (page->prev) page->prev->next = page->next;
if (page->next) page->next->prev = page->prev;
if (heap->pages == page) heap->pages = page->next;
page->prev = NULL;
page->next = NULL;
page->heap = NULL;
heap->page_length--;
heap->total_slots -= page->total_slots;
}
static void
heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
{
heap_allocated_pages--;
objspace->profile.total_freed_pages++;
aligned_free(page->body);
free(page);
}
static void
heap_pages_free_unused_pages(rb_objspace_t *objspace)
{
size_t i, j;
if (heap_tomb->pages && heap_pages_swept_slots > heap_pages_max_free_slots) {
for (i = j = 1; j < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
if (page->heap == heap_tomb && page->free_slots == page->total_slots) {
if (heap_pages_swept_slots - page->total_slots > heap_pages_max_free_slots) {
if (0) fprintf(stderr, "heap_pages_free_unused_pages: %d free page %p, heap_pages_swept_slots: %d, heap_pages_max_free_slots: %d\n",
(int)i, page, (int)heap_pages_swept_slots, (int)heap_pages_max_free_slots);
heap_pages_swept_slots -= page->total_slots;
heap_unlink_page(objspace, heap_tomb, page);
heap_page_free(objspace, page);
continue;
}
else if (i == j) {
return; /* no need to check rest pages */
}
}
if (i != j) {
heap_pages_sorted[j] = page;
}
j++;
}
if (RGENGC_CHECK_MODE) assert(j == heap_allocated_pages);
}
}
static struct heap_page *
heap_page_allocate(rb_objspace_t *objspace)
{
RVALUE *start, *end, *p;
struct heap_page *page;
struct heap_page_body *page_body = 0;
size_t hi, lo, mid;
int limit = HEAP_OBJ_LIMIT;
/* assign heap_page body (contains heap_page_header and RVALUEs) */
page_body = (struct heap_page_body *)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
if (page_body == 0) {
rb_memerror();
}
/* assign heap_page entry */
page = (struct heap_page *)calloc(1, sizeof(struct heap_page));
if (page == 0) {
aligned_free(page_body);
rb_memerror();
}
page->body = page_body;
/* setup heap_pages_sorted */
lo = 0;
hi = heap_allocated_pages;
while (lo < hi) {
struct heap_page *mid_page;
mid = (lo + hi) / 2;
mid_page = heap_pages_sorted[mid];
if (mid_page->body < page_body) {
lo = mid + 1;
}
else if (mid_page->body > page_body) {
hi = mid;
}
else {
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
}
}
if (hi < heap_allocated_pages) {
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_allocated_pages - hi);
}
heap_pages_sorted[hi] = page;
heap_allocated_pages++;
objspace->profile.total_allocated_pages++;
if (RGENGC_CHECK_MODE) assert(heap_allocated_pages <= heap_pages_sorted_length);
/* adjust obj_limit (object number available in this page) */
start = (RVALUE*)((VALUE)page_body + sizeof(struct heap_page_header));
if ((VALUE)start % sizeof(RVALUE) != 0) {
int delta = (int)(sizeof(RVALUE) - ((VALUE)start % sizeof(RVALUE)));
start = (RVALUE*)((VALUE)start + delta);
limit = (HEAP_SIZE - (int)((VALUE)start - (VALUE)page_body))/(int)sizeof(RVALUE);
}
end = start + limit;
if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
if (heap_pages_himem < end) heap_pages_himem = end;
page->start = start;
page->total_slots = limit;
page_body->header.page = page;
for (p = start; p != end; p++) {
gc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", p);
heap_page_add_freeobj(objspace, page, (VALUE)p);
}
page->free_slots = limit;
return page;
}
static struct heap_page *
heap_page_resurrect(rb_objspace_t *objspace)
{
struct heap_page *page;
if ((page = heap_tomb->pages) != NULL) {
heap_unlink_page(objspace, heap_tomb, page);
return page;
}
return NULL;
}
static struct heap_page *
heap_page_create(rb_objspace_t *objspace)
{
struct heap_page *page = heap_page_resurrect(objspace);
const char *method = "recycle";
if (page == NULL) {
page = heap_page_allocate(objspace);
method = "allocate";
}
if (0) fprintf(stderr, "heap_page_create: %s - %p, heap_allocated_pages: %d, heap_allocated_pages: %d, tomb->page_length: %d\n",
method, page, (int)heap_pages_sorted_length, (int)heap_allocated_pages, (int)heap_tomb->page_length);
return page;
}
static void
heap_add_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
page->heap = heap;
page->next = heap->pages;
if (heap->pages) heap->pages->prev = page;
heap->pages = page;
heap->page_length++;
heap->total_slots += page->total_slots;
}
static void
heap_assign_page(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = heap_page_create(objspace);
heap_add_page(objspace, heap, page);
heap_add_freepage(objspace, heap, page);
}
static void
heap_add_pages(rb_objspace_t *objspace, rb_heap_t *heap, size_t add)
{
size_t i;
heap_allocatable_pages = add;
heap_pages_expand_sorted(objspace);
for (i = 0; i < add; i++) {
heap_assign_page(objspace, heap);
}
heap_allocatable_pages = 0;
}
static size_t
heap_extend_pages(rb_objspace_t *objspace)
{
size_t used = heap_allocated_pages - heap_tomb->page_length;
size_t next_used_limit = (size_t)(used * gc_params.growth_factor);
if (gc_params.growth_max_slots > 0) {
size_t max_used_limit = (size_t)(used + gc_params.growth_max_slots/HEAP_OBJ_LIMIT);
if (next_used_limit > max_used_limit) next_used_limit = max_used_limit;
}
return next_used_limit - used;
}
static void
heap_set_increment(rb_objspace_t *objspace, size_t additional_pages)
{
size_t used = heap_eden->page_length;
size_t next_used_limit = used + additional_pages;
if (next_used_limit == heap_allocated_pages) next_used_limit++;
heap_allocatable_pages = next_used_limit - used;
heap_pages_expand_sorted(objspace);
gc_report(1, objspace, "heap_set_increment: heap_allocatable_pages is %d\n", (int)heap_allocatable_pages);
}
static int
heap_increment(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (heap_allocatable_pages > 0) {
gc_report(1, objspace, "heap_increment: heap_pages_sorted_length: %d, heap_pages_inc: %d, heap->page_length: %d\n",
(int)heap_pages_sorted_length, (int)heap_allocatable_pages, (int)heap->page_length);
heap_allocatable_pages--;
heap_assign_page(objspace, heap);
return TRUE;
}
return FALSE;
}
static void
heap_prepare(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (RGENGC_CHECK_MODE) assert(heap->free_pages == NULL);
#if GC_ENABLE_LAZY_SWEEP
if (is_lazy_sweeping(heap)) {
gc_sweep_continue(objspace, heap);
}
#endif
#if GC_ENABLE_INCREMENTAL_MARK
else if (is_incremental_marking(objspace)) {
gc_marks_continue(objspace, heap);
}
#endif
if (heap->free_pages == NULL &&
(will_be_incremental_marking(objspace) || heap_increment(objspace, heap) == FALSE) &&
gc_start(objspace, FALSE, FALSE, FALSE, GPR_FLAG_NEWOBJ) == FALSE) {
rb_memerror();
}
}
static RVALUE *
heap_get_freeobj_from_next_freepage(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page;
RVALUE *p;
while (UNLIKELY(heap->free_pages == NULL)) {
heap_prepare(objspace, heap);
}
page = heap->free_pages;
heap->free_pages = page->free_next;
heap->using_page = page;
if (RGENGC_CHECK_MODE) assert(page->free_slots != 0);
p = page->freelist;
page->freelist = NULL;
page->free_slots = 0;
return p;
}
static inline VALUE
heap_get_freeobj_head(rb_objspace_t *objspace, rb_heap_t *heap)
{
RVALUE *p = heap->freelist;
if (LIKELY(p != NULL)) {
heap->freelist = p->as.free.next;
}
return (VALUE)p;
}
static inline VALUE
heap_get_freeobj(rb_objspace_t *objspace, rb_heap_t *heap)
{
RVALUE *p = heap->freelist;
while (1) {
if (LIKELY(p != NULL)) {
heap->freelist = p->as.free.next;
return (VALUE)p;
}
else {
p = heap_get_freeobj_from_next_freepage(objspace, heap);
}
}
}
void
rb_objspace_set_event_hook(const rb_event_flag_t event)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
}
static void
gc_event_hook_body(rb_thread_t *th, rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
{
EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data);
}
#define gc_event_hook_needed_p(objspace, event) ((objspace)->hook_events & (event))
#define gc_event_hook(objspace, event, data) do { \
if (gc_event_hook_needed_p(objspace, event)) { \
gc_event_hook_body(GET_THREAD(), (objspace), (event), (data)); \
} \
} while (0)
static inline VALUE
newobj_of_init(rb_objspace_t *objspace, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, VALUE obj, int hook_needed)
{
if (RGENGC_CHECK_MODE > 0) assert(BUILTIN_TYPE(obj) == T_NONE);
/* OBJSETUP */
RBASIC(obj)->flags = flags & ~FL_WB_PROTECTED;
RBASIC_SET_CLASS_RAW(obj, klass);
RANY(obj)->as.values.v1 = v1;
RANY(obj)->as.values.v2 = v2;
RANY(obj)->as.values.v3 = v3;
#if RGENGC_CHECK_MODE
assert(RVALUE_MARKED(obj) == FALSE);
assert(RVALUE_MARKING(obj) == FALSE);
assert(RVALUE_OLD_P(obj) == FALSE);
assert(RVALUE_WB_UNPROTECTED(obj) == FALSE);
if (flags & FL_PROMOTED1) {
if (RVALUE_AGE(obj) != 2) rb_bug("newobj: %s of age (%d) != 2.", obj_info(obj), RVALUE_AGE(obj));
}
else {
if (RVALUE_AGE(obj) > 0) rb_bug("newobj: %s of age (%d) > 0.", obj_info(obj), RVALUE_AGE(obj));
}
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %s is remembered.", obj_info(obj));
#endif
#if USE_RGENGC
if ((flags & FL_WB_PROTECTED) == 0) {
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
}
#endif
#if RGENGC_PROFILE
if (flags & FL_WB_PROTECTED) {
objspace->profile.total_generated_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.total_generated_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
#if GC_DEBUG
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
assert(!SPECIAL_CONST_P(obj)); /* check alignment */
#endif
objspace->total_allocated_objects++;
if (hook_needed) {
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj);
}
gc_report(5, objspace, "newobj: %s\n", obj_info(obj));
#if RGENGC_OLD_NEWOBJ_CHECK > 0
{
static int newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK;
if (!is_incremental_marking(objspace) &&
flags & FL_WB_PROTECTED && /* do not promote WB unprotected objects */
! RB_TYPE_P(obj, T_ARRAY)) { /* array.c assumes that allocated objects are new */
if (--newobj_cnt == 0) {
newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK;
gc_mark_set(objspace, obj);
RVALUE_AGE_SET_OLD(objspace, obj);
rb_gc_writebarrier_remember(obj);
}
}
}
#endif
check_rvalue_consistency(obj);
return obj;
}
NOINLINE(static VALUE newobj_of_slowpass(rb_objspace_t *objspace, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int hook_needed));
static VALUE
newobj_of_slowpass(rb_objspace_t *objspace, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int hook_needed)
{
VALUE obj;
if (UNLIKELY(during_gc || ruby_gc_stressful)) {
if (during_gc) {
dont_gc = 1;
during_gc = 0;
rb_bug("object allocation during garbage collection phase");
}
if (ruby_gc_stressful) {
if (!garbage_collect(objspace, FALSE, FALSE, FALSE, GPR_FLAG_NEWOBJ)) {
rb_memerror();
}
}
}
obj = heap_get_freeobj(objspace, heap_eden);
return newobj_of_init(objspace, klass, flags, v1, v2, v3, obj, hook_needed);
}
static VALUE
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE obj;
int hook_needed = gc_event_hook_needed_p(objspace, RUBY_INTERNAL_EVENT_NEWOBJ);
#if GC_DEBUG_STRESS_TO_CLASS
if (UNLIKELY(stress_to_class)) {
long i, cnt = RARRAY_LEN(stress_to_class);
const VALUE *ptr = RARRAY_CONST_PTR(stress_to_class);
for (i = 0; i < cnt; ++i) {
if (klass == ptr[i]) rb_memerror();
}
}
#endif
if (LIKELY(!(during_gc || ruby_gc_stressful) && hook_needed == FALSE &&
(obj = heap_get_freeobj_head(objspace, heap_eden)) != Qfalse)) {
return newobj_of_init(objspace, klass, flags, v1, v2, v3, obj, FALSE);
}
else {
return newobj_of_slowpass(objspace, klass, flags, v1, v2, v3, hook_needed);
}
}
VALUE
rb_newobj(void)
{
return newobj_of(0, T_NONE, 0, 0, 0);
}
VALUE
rb_newobj_of(VALUE klass, VALUE flags)
{
return newobj_of(klass, flags, 0, 0, 0);
}
NODE*
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
{
VALUE flags = 0;
NODE *n = (NODE *)newobj_of(0, T_NODE | flags, a0, a1, a2);
nd_set_type(n, type);
return n;
}
#undef rb_imemo_new
VALUE
rb_imemo_new(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0)
{
VALUE flags = T_IMEMO | (type << FL_USHIFT) | FL_WB_PROTECTED;
return newobj_of(v0, flags, v1, v2, v3);
}
#if IMEMO_DEBUG
VALUE
rb_imemo_new_debug(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0, const char *file, int line)
{
VALUE memo = rb_imemo_new(type, v1, v2, v3, v0);
fprintf(stderr, "memo %p (type: %d) @ %s:%d\n", memo, imemo_type(memo), file, line);
return memo;
}
#endif
VALUE
rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap);
}
#undef rb_data_object_alloc
RUBY_ALIAS_FUNCTION(rb_data_object_alloc(VALUE klass, void *datap,
RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree),
rb_data_object_wrap, (klass, datap, dmark, dfree));
VALUE
rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree);
DATA_PTR(obj) = xcalloc(1, size);
return obj;
}
VALUE
rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA | (type->flags & ~T_MASK), (VALUE)type, (VALUE)1, (VALUE)datap);
}
#undef rb_data_typed_object_alloc
RUBY_ALIAS_FUNCTION(rb_data_typed_object_alloc(VALUE klass, void *datap,
const rb_data_type_t *type),
rb_data_typed_object_wrap, (klass, datap, type));
VALUE
rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type)
{
VALUE obj = rb_data_typed_object_wrap(klass, 0, type);
DATA_PTR(obj) = xcalloc(1, size);
return obj;
}
size_t
rb_objspace_data_type_memsize(VALUE obj)
{
if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
}
else {
return 0;
}
}
const char *
rb_objspace_data_type_name(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
}
else {
return 0;
}
}
static inline int
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
{
register RVALUE *p = RANY(ptr);
register struct heap_page *page;
register size_t hi, lo, mid;
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
/* check if p looks like a pointer using bsearch*/
lo = 0;
hi = heap_allocated_pages;
while (lo < hi) {
mid = (lo + hi) / 2;
page = heap_pages_sorted[mid];
if (page->start <= p) {
if (p < page->start + page->total_slots) {
return TRUE;
}
lo = mid + 1;
}
else {
hi = mid;
}
}
return FALSE;
}
static int
free_const_entry_i(st_data_t key, st_data_t value, st_data_t data)
{
rb_const_entry_t *ce = (rb_const_entry_t *)value;
xfree(ce);
return ST_CONTINUE;
}
void
rb_free_const_table(st_table *tbl)
{
st_foreach(tbl, free_const_entry_i, 0);
st_free_table(tbl);
}
static inline void
make_zombie(rb_objspace_t *objspace, VALUE obj, void (*dfree)(void *), void *data)
{
struct RZombie *zombie = RZOMBIE(obj);
zombie->basic.flags = T_ZOMBIE;
zombie->dfree = dfree;
zombie->data = data;
zombie->next = heap_pages_deferred_final;
heap_pages_deferred_final = (VALUE)zombie;
}
static inline void
make_io_zombie(rb_objspace_t *objspace, VALUE obj)
{
rb_io_t *fptr = RANY(obj)->as.file.fptr;
make_zombie(objspace, obj, (void (*)(void*))rb_io_fptr_finalize, fptr);
}
static int
obj_free(rb_objspace_t *objspace, VALUE obj)
{
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
FL_UNSET(obj, FL_EXIVAR);
}
#if USE_RGENGC
if (RVALUE_WB_UNPROTECTED(obj)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
#if RGENGC_CHECK_MODE
#define CHECK(x) if (x(obj) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", obj_info(obj))
CHECK(RVALUE_WB_UNPROTECTED);
CHECK(RVALUE_MARKED);
CHECK(RVALUE_MARKING);
CHECK(RVALUE_UNCOLLECTIBLE);
#undef CHECK
#endif
#endif
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
RANY(obj)->as.object.as.heap.ivptr) {
xfree(RANY(obj)->as.object.as.heap.ivptr);
}
break;
case T_MODULE:
case T_CLASS:
rb_id_table_free(RCLASS_M_TBL(obj));
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_CONST_TBL(obj)) {
rb_free_const_table(RCLASS_CONST_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
st_free_table(RCLASS_IV_INDEX_TBL(obj));
}
if (RCLASS_EXT(obj)->subclasses) {
if (BUILTIN_TYPE(obj) == T_MODULE) {
rb_class_detach_module_subclasses(obj);
}
else {
rb_class_detach_subclasses(obj);
}
RCLASS_EXT(obj)->subclasses = NULL;
}
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
if (RANY(obj)->as.klass.ptr)
xfree(RANY(obj)->as.klass.ptr);
RANY(obj)->as.klass.ptr = NULL;
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
if (RANY(obj)->as.hash.ntbl) {
st_free_table(RANY(obj)->as.hash.ntbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
int free_immediately = FALSE;
void (*dfree)(void *);
void *data = DATA_PTR(obj);
if (RTYPEDDATA_P(obj)) {
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
dfree = RANY(obj)->as.typeddata.type->function.dfree;
if (0 && free_immediately == 0) {
/* to expose non-free-immediate T_DATA */
fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name);
}
}
else {
dfree = RANY(obj)->as.data.dfree;
}
if (dfree) {
if (dfree == RUBY_DEFAULT_FREE) {
xfree(data);
}
else if (free_immediately) {
(*dfree)(data);
}
else {
make_zombie(objspace, obj, dfree, data);
return 1;
}
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.rmatch) {
struct rmatch *rm = RANY(obj)->as.match.rmatch;
onig_region_free(&rm->regs, 0);
if (rm->char_offset)
xfree(rm->char_offset);
xfree(rm);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
make_io_zombie(objspace, obj);
return 1;
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_ICLASS:
/* Basically , T_ICLASS shares table with the module */
if (FL_TEST(obj, RICLASS_IS_ORIGIN)) {
rb_id_table_free(RCLASS_M_TBL(obj));
}
if (RCLASS_CALLABLE_M_TBL(obj) != NULL) {
rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj));
}
if (RCLASS_EXT(obj)->subclasses) {
rb_class_detach_subclasses(obj);
RCLASS_EXT(obj)->subclasses = NULL;
}
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
xfree(RANY(obj)->as.klass.ptr);
RANY(obj)->as.klass.ptr = NULL;
break;
case T_FLOAT:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
xfree(BIGNUM_DIGITS(obj));
}
break;
case T_NODE:
rb_gc_free_node(obj);
break; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RANY(obj)->as.rstruct.as.heap.ptr) {
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr);
}
break;
case T_SYMBOL:
{
rb_gc_free_dsymbol(obj);
}
break;
case T_IMEMO:
{
switch (imemo_type(obj)) {
case imemo_ment:
rb_free_method_entry(&RANY(obj)->as.imemo.ment);
break;
case imemo_iseq:
rb_iseq_free(&RANY(obj)->as.imemo.iseq);
break;
default:
break;
}
}
return 0;
default:
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
}
if (FL_TEST(obj, FL_FINALIZE)) {
make_zombie(objspace, obj, 0, 0);
return 1;
}
else {
return 0;
}
}
void
Init_heap(void)
{
rb_objspace_t *objspace = &rb_objspace;
gc_stress_set(objspace, ruby_initial_gc_stress);
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
#endif
heap_add_pages(objspace, heap_eden, gc_params.heap_init_slots / HEAP_OBJ_LIMIT);
init_mark_stack(&objspace->mark_stack);
#ifdef USE_SIGALTSTACK
{
/* altstack of another threads are allocated in another place */
rb_thread_t *th = GET_THREAD();
void *tmp = th->altstack;
th->altstack = malloc(rb_sigaltstack_size());
free(tmp); /* free previously allocated area */
}
#endif
objspace->profile.invoke_time = getrusage_time();
finalizer_table = st_init_numtable();
}
typedef int each_obj_callback(void *, void *, size_t, void *);
struct each_obj_args {
each_obj_callback *callback;
void *data;
};
static VALUE
objspace_each_objects(VALUE arg)
{
size_t i;
struct heap_page_body *last_body = 0;
struct heap_page *page;
RVALUE *pstart, *pend;
rb_objspace_t *objspace = &rb_objspace;
struct each_obj_args *args = (struct each_obj_args *)arg;
i = 0;
while (i < heap_allocated_pages) {
while (0 < i && last_body < heap_pages_sorted[i-1]->body) i--;
while (i < heap_allocated_pages && heap_pages_sorted[i]->body <= last_body) i++;
if (heap_allocated_pages <= i) break;
page = heap_pages_sorted[i];
last_body = page->body;
pstart = page->start;
pend = pstart + page->total_slots;
if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
break;
}
}
return Qnil;
}
static VALUE
incremental_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->flags.dont_incremental = FALSE;
return Qnil;
}
/*
* rb_objspace_each_objects() is special C API to walk through
* Ruby object space. This C API is too difficult to use it.
* To be frank, you should not use it. Or you need to read the
* source code of this function and understand what this function does.
*
* 'callback' will be called several times (the number of heap page,
* at current implementation) with:
* vstart: a pointer to the first living object of the heap_page.
* vend: a pointer to next to the valid heap_page area.
* stride: a distance to next VALUE.
*
* If callback() returns non-zero, the iteration will be stopped.
*
* This is a sample callback code to iterate liveness objects:
*
* int
* sample_callback(void *vstart, void *vend, int stride, void *data) {
* VALUE v = (VALUE)vstart;
* for (; v != (VALUE)vend; v += stride) {
* if (RBASIC(v)->flags) { // liveness check
* // do something with live object 'v'
* }
* return 0; // continue to iteration
* }
*
* Note: 'vstart' is not a top of heap_page. This point the first
* living object to grasp at least one object to avoid GC issue.
* This means that you can not walk through all Ruby object page
* including freed object page.
*
* Note: On this implementation, 'stride' is same as sizeof(RVALUE).
* However, there are possibilities to pass variable values with
* 'stride' with some reasons. You must use stride instead of
* use some constant value in the iteration.
*/
void
rb_objspace_each_objects(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
rb_objspace_t *objspace = &rb_objspace;
int prev_dont_incremental = objspace->flags.dont_incremental;
gc_rest(objspace);
objspace->flags.dont_incremental = TRUE;
args.callback = callback;
args.data = data;
if (prev_dont_incremental) {
objspace_each_objects((VALUE)&args);
}
else {
rb_ensure(objspace_each_objects, (VALUE)&args, incremental_enable, Qnil);
}
}
void
rb_objspace_each_objects_without_setup(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
args.callback = callback;
args.data = data;
objspace_each_objects((VALUE)&args);
}
struct os_each_struct {
size_t num;
VALUE of;
};
static int
internal_object_p(VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_IMEMO:
case T_ICLASS:
case T_NODE:
case T_ZOMBIE:
break;
default:
if (!p->as.basic.klass) break;
return 0;
}
}
return 1;
}
int
rb_objspace_internal_object_p(VALUE obj)
{
return internal_object_p(obj);
}
static int
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
{
struct os_each_struct *oes = (struct os_each_struct *)data;
RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
for (; p != pend; p++) {
volatile VALUE v = (VALUE)p;
if (!internal_object_p(v)) {
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
rb_yield(v);
oes->num++;
}
}
}
return 0;
}
static VALUE
os_obj_of(VALUE of)
{
struct os_each_struct oes;
oes.num = 0;
oes.of = of;
rb_objspace_each_objects(os_obj_of_i, &oes);
return SIZET2NUM(oes.num);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
* ObjectSpace.each_object([module]) -> an_enumerator
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* If no block is given, an enumerator is returned instead.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
if (argc == 0) {
of = 0;
}
else {
rb_scan_args(argc, argv, "01", &of);
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
return rb_undefine_finalizer(obj);
}
VALUE
rb_undefine_finalizer(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
st_data_t data = obj;
rb_check_frozen(obj);
st_delete(finalizer_table, &data, 0);
FL_UNSET(obj, FL_FINALIZE);
return obj;
}
static void
should_be_callable(VALUE block)
{
if (!rb_obj_respond_to(block, rb_intern("call"), TRUE)) {
rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)",
rb_obj_class(block));
}
}
static void
should_be_finalizable(VALUE obj)
{
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
rb_check_frozen(obj);
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed. The object ID of the <i>obj</i> will be passed
* as an argument to <i>aProc</i>. If <i>aProc</i> is a lambda or
* method, make sure it can be called with a single argument.
*
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block;
rb_scan_args(argc, argv, "11", &obj, &block);
should_be_finalizable(obj);
if (argc == 1) {
block = rb_block_proc();
}
else {
should_be_callable(block);
}
return define_final0(obj, block);
}
static VALUE
define_final0(VALUE obj, VALUE block)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
RBASIC(obj)->flags |= FL_FINALIZE;
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
OBJ_FREEZE(block);
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
/* avoid duplicate block, table is usually small */
{
const VALUE *ptr = RARRAY_CONST_PTR(table);
long len = RARRAY_LEN(table);
long i;
for (i = 0; i < len; i++, ptr++) {
if (rb_funcall(*ptr, idEq, 1, block)) {
return *ptr;
}
}
}
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC_CLEAR_CLASS(table);
st_add_direct(finalizer_table, obj, table);
}
return block;
}
VALUE
rb_define_finalizer(VALUE obj, VALUE block)
{
should_be_finalizable(obj);
should_be_callable(block);
return define_final0(obj, block);
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE arg)
{
VALUE *args = (VALUE *)arg;
return rb_check_funcall(args[0], idCall, 1, args+1);
}
static void
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
{
long i;
VALUE args[2];
const int safe = rb_safe_level();
const VALUE errinfo = rb_errinfo();
args[1] = nonspecial_obj_id(obj);
for (i=0; i<RARRAY_LEN(table); i++) {
const VALUE final = RARRAY_AREF(table, i);
const VALUE cmd = RARRAY_AREF(final, 1);
const int level = OBJ_TAINTED(cmd) ?
RUBY_SAFE_LEVEL_MAX : FIX2INT(RARRAY_AREF(final, 0));
int status = 0;
args[0] = cmd;
rb_set_safe_level_force(level);
rb_protect(run_single_final, (VALUE)args, &status);
rb_set_safe_level_force(safe);
rb_set_errinfo(errinfo);
}
}
static void
run_final(rb_objspace_t *objspace, VALUE zombie)
{
st_data_t key, table;
if (RZOMBIE(zombie)->dfree) {
RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data);
}
key = (st_data_t)zombie;
if (st_delete(finalizer_table, &key, &table)) {
run_finalizer(objspace, zombie, (VALUE)table);
}
}
static void
finalize_list(rb_objspace_t *objspace, VALUE zombie)
{
while (zombie) {
VALUE next_zombie = RZOMBIE(zombie)->next;
struct heap_page *page = GET_HEAP_PAGE(zombie);
run_final(objspace, zombie);
RZOMBIE(zombie)->basic.flags = 0;
heap_pages_final_slots--;
page->final_slots--;
page->free_slots++;
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(zombie), zombie);
heap_pages_swept_slots++;
objspace->profile.total_freed_objects++;
zombie = next_zombie;
}
}
static void
finalize_deferred(rb_objspace_t *objspace)
{
VALUE zombie;
while ((zombie = ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) {
finalize_list(objspace, zombie);
}
}
static void
gc_finalize_deferred(void *dmy)
{
rb_objspace_t *objspace = &rb_objspace;
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
finalize_deferred(objspace);
ATOMIC_SET(finalizing, 0);
}
/* TODO: to keep compatibility, maybe unused. */
void
rb_gc_finalize_deferred(void)
{
gc_finalize_deferred(0);
}
static void
gc_finalize_deferred_register(void)
{
if (rb_postponed_job_register_one(0, gc_finalize_deferred, 0) == 0) {
rb_bug("gc_finalize_deferred_register: can't register finalizer.");
}
}
struct force_finalize_list {
VALUE obj;
VALUE table;
struct force_finalize_list *next;
};
static int
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
{
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
curr->obj = key;
curr->table = val;
curr->next = *prev;
*prev = curr;
return ST_CONTINUE;
}
void
rb_gc_call_finalizer_at_exit(void)
{
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(Qnil);
#endif
rb_objspace_call_finalizer(&rb_objspace);
}
static void
rb_objspace_call_finalizer(rb_objspace_t *objspace)
{
RVALUE *p, *pend;
size_t i;
gc_rest(objspace);
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
/* run finalizers */
finalize_deferred(objspace);
assert(heap_pages_deferred_final == 0);
gc_rest(objspace);
/* prohibit incremental GC */
objspace->flags.dont_incremental = 1;
/* force to run finalizer */
while (finalizer_table->num_entries) {
struct force_finalize_list *list = 0;
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
while (list) {
struct force_finalize_list *curr = list;
st_data_t obj = (st_data_t)curr->obj;
run_finalizer(objspace, curr->obj, curr->table);
st_delete(finalizer_table, &obj, 0);
list = curr->next;
xfree(curr);
}
}
/* prohibit GC because force T_DATA finalizers can break an object graph consistency */
dont_gc = 1;
/* running data/file finalizers are part of garbage collection */
gc_enter(objspace, "rb_objspace_call_finalizer");
/* run data/file object's finalizers */
for (i = 0; i < heap_allocated_pages; i++) {
p = heap_pages_sorted[i]->start; pend = p + heap_pages_sorted[i]->total_slots;
while (p < pend) {
switch (BUILTIN_TYPE(p)) {
case T_DATA:
if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break;
if (rb_obj_is_thread((VALUE)p)) break;
if (rb_obj_is_mutex((VALUE)p)) break;
if (rb_obj_is_fiber((VALUE)p)) break;
p->as.free.flags = 0;
if (RTYPEDDATA_P(p)) {
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
}
if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(p));
}
else if (RANY(p)->as.data.dfree) {
make_zombie(objspace, (VALUE)p, RANY(p)->as.data.dfree, RANY(p)->as.data.data);
}
break;
case T_FILE:
if (RANY(p)->as.file.fptr) {
make_io_zombie(objspace, (VALUE)p);
}
break;
}
p++;
}
}
gc_exit(objspace, "rb_objspace_call_finalizer");
if (heap_pages_deferred_final) {
finalize_list(objspace, heap_pages_deferred_final);
}
st_free_table(finalizer_table);
finalizer_table = 0;
ATOMIC_SET(finalizing, 0);
}
static inline int
is_id_value(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
return TRUE;
}
static inline int
heap_is_swept_object(rb_objspace_t *objspace, rb_heap_t *heap, VALUE ptr)
{
struct heap_page *page = GET_HEAP_PAGE(ptr);
return page->flags.before_sweep ? FALSE : TRUE;
}
static inline int
is_swept_object(rb_objspace_t *objspace, VALUE ptr)
{
if (heap_is_swept_object(objspace, heap_eden, ptr)) {
return TRUE;
}
else {
return FALSE;
}
}
/* garbage objects will be collected soon. */
static inline int
is_garbage_object(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_lazy_sweeping(heap_eden) ||
is_swept_object(objspace, ptr) ||
MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) {
return FALSE;
}
else {
return TRUE;
}
}
static inline int
is_live_object(rb_objspace_t *objspace, VALUE ptr)
{
switch (BUILTIN_TYPE(ptr)) {
case T_NONE:
case T_ZOMBIE:
return FALSE;
}
if (!is_garbage_object(objspace, ptr)) {
return TRUE;
}
else {
return FALSE;
}
}
static inline int
is_markable_object(rb_objspace_t *objspace, VALUE obj)
{
if (rb_special_const_p(obj)) return FALSE; /* special const is not markable */
check_rvalue_consistency(obj);
return TRUE;
}
int
rb_objspace_markable_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return is_markable_object(objspace, obj) && is_live_object(objspace, obj);
}
int
rb_objspace_garbage_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return is_garbage_object(objspace, obj);
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(VALUE obj, VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
rb_objspace_t *objspace = &rb_objspace;
VALUE ptr;
void *p0;
ptr = NUM2PTR(objid);
p0 = (void *)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
if (FLONUM_P(ptr)) return (VALUE)ptr;
ptr = obj_id_to_ref(objid);
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2str(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_id_value(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is not id value", p0);
}
if (!is_live_object(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is recycled object", p0);
}
if (RBASIC(ptr)->klass == 0) {
rb_raise(rb_eRangeError, "%p is internal object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ -> integer
* obj.object_id -> integer
*
* Returns an integer identifier for +obj+.
*
* The same number will be returned on all calls to +object_id+ for a given
* object, and no two active objects will share an id.
*
* Note: that some objects of builtin classes are reused for optimization.
* This is the case for immediate values and frozen string literals.
*
* Immediate values are not passed by reference but are passed by value:
* +nil+, +true+, +false+, Fixnums, Symbols, and some Floats.
*
* Object.new.object_id == Object.new.object_id # => false
* (21 * 2).object_id == (21 * 2).object_id # => true
* "hello".object_id == "hello".object_id # => false
* "hi".freeze.object_id == "hi".freeze.object_id # => true
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (STATIC_SYM_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
#include "regint.h"
static size_t
obj_memsize_of(VALUE obj, int use_all_types)
{
size_t size = 0;
if (SPECIAL_CONST_P(obj)) {
return 0;
}
if (FL_TEST(obj, FL_EXIVAR)) {
size += rb_generic_ivar_memsize(obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RBASIC(obj)->flags & ROBJECT_EMBED) &&
ROBJECT(obj)->as.heap.ivptr) {
size += ROBJECT(obj)->as.heap.numiv * sizeof(VALUE);
}
break;
case T_MODULE:
case T_CLASS:
if (RCLASS_M_TBL(obj)) {
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
}
if (RCLASS_EXT(obj)) {
if (RCLASS_IV_TBL(obj)) {
size += st_memsize(RCLASS_IV_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
size += st_memsize(RCLASS_IV_INDEX_TBL(obj));
}
if (RCLASS(obj)->ptr->iv_tbl) {
size += st_memsize(RCLASS(obj)->ptr->iv_tbl);
}
if (RCLASS(obj)->ptr->const_tbl) {
size += st_memsize(RCLASS(obj)->ptr->const_tbl);
}
size += sizeof(rb_classext_t);
}
break;
case T_ICLASS:
if (FL_TEST(obj, RICLASS_IS_ORIGIN)) {
if (RCLASS_M_TBL(obj)) {
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
}
}
break;
case T_STRING:
size += rb_str_memsize(obj);
break;
case T_ARRAY:
size += rb_ary_memsize(obj);
break;
case T_HASH:
if (RHASH(obj)->ntbl) {
size += st_memsize(RHASH(obj)->ntbl);
}
break;
case T_REGEXP:
if (RREGEXP(obj)->ptr) {
size += onig_memsize(RREGEXP(obj)->ptr);
}
break;
case T_DATA:
if (use_all_types) size += rb_objspace_data_type_memsize(obj);
break;
case T_MATCH:
if (RMATCH(obj)->rmatch) {
struct rmatch *rm = RMATCH(obj)->rmatch;
size += onig_region_memsize(&rm->regs);
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
size += sizeof(struct rmatch);
}
break;
case T_FILE:
if (RFILE(obj)->fptr) {
size += rb_io_memsize(RFILE(obj)->fptr);
}
break;
case T_RATIONAL:
case T_COMPLEX:
case T_IMEMO:
break;
case T_FLOAT:
case T_SYMBOL:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
size += BIGNUM_LEN(obj) * sizeof(BDIGIT);
}
break;
case T_NODE:
if (use_all_types) size += rb_node_memsize(obj);
break;
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RSTRUCT(obj)->as.heap.ptr) {
size += sizeof(VALUE) * RSTRUCT_LEN(obj);
}
break;
case T_ZOMBIE:
break;
default:
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
BUILTIN_TYPE(obj), (void*)obj);
}
return size + sizeof(RVALUE);
}
size_t
rb_obj_memsize_of(VALUE obj)
{
return obj_memsize_of(obj, TRUE);
}
static int
set_zero(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts all objects grouped by type.
*
* It returns a hash, such as:
* {
* :TOTAL=>10000,
* :FREE=>3011,
* :T_OBJECT=>6,
* :T_CLASS=>404,
* # ...
* }
*
* The contents of the returned hash are implementation specific.
* It may be changed in future.
*
* The keys starting with +:T_+ means live objects.
* For example, +:T_ARRAY+ is the number of arrays.
* +:FREE+ means object slots which is not used now.
* +:TOTAL+ means sum of above.
*
* If the optional argument +result_hash+ is given,
* it is overwritten and returned. This is intended to avoid probe effect.
*
* h = {}
* ObjectSpace.count_objects(h)
* puts h
* # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 }
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
size_t counts[T_MASK+1];
size_t freed = 0;
size_t total = 0;
size_t i;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
RVALUE *p, *pend;
p = page->start; pend = p + page->total_slots;
for (;p < pend; p++) {
if (p->as.basic.flags) {
counts[BUILTIN_TYPE(p)]++;
}
else {
freed++;
}
}
total += page->total_slots;
}
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL_RAW(hash), set_zero, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type;
switch (i) {
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
COUNT_TYPE(T_NONE);
COUNT_TYPE(T_OBJECT);
COUNT_TYPE(T_CLASS);
COUNT_TYPE(T_MODULE);
COUNT_TYPE(T_FLOAT);
COUNT_TYPE(T_STRING);
COUNT_TYPE(T_REGEXP);
COUNT_TYPE(T_ARRAY);
COUNT_TYPE(T_HASH);
COUNT_TYPE(T_STRUCT);
COUNT_TYPE(T_BIGNUM);
COUNT_TYPE(T_FILE);
COUNT_TYPE(T_DATA);
COUNT_TYPE(T_MATCH);
COUNT_TYPE(T_COMPLEX);
COUNT_TYPE(T_RATIONAL);
COUNT_TYPE(T_NIL);
COUNT_TYPE(T_TRUE);
COUNT_TYPE(T_FALSE);
COUNT_TYPE(T_SYMBOL);
COUNT_TYPE(T_FIXNUM);
COUNT_TYPE(T_IMEMO);
COUNT_TYPE(T_UNDEF);
COUNT_TYPE(T_NODE);
COUNT_TYPE(T_ICLASS);
COUNT_TYPE(T_ZOMBIE);
#undef COUNT_TYPE
default: type = INT2NUM(i); break;
}
if (counts[i])
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
return hash;
}
/*
------------------------ Garbage Collection ------------------------
*/
/* Sweeping */
static size_t
objspace_available_slots(rb_objspace_t *objspace)
{
return heap_eden->total_slots + heap_tomb->total_slots;
}
static size_t
objspace_live_slots(rb_objspace_t *objspace)
{
return (objspace->total_allocated_objects - objspace->profile.total_freed_objects) - heap_pages_final_slots;
}
static size_t
objspace_free_slots(rb_objspace_t *objspace)
{
return objspace_available_slots(objspace) - objspace_live_slots(objspace) - heap_pages_final_slots;
}
static void
gc_setup_mark_bits(struct heap_page *page)
{
#if USE_RGENGC
/* copy oldgen bitmap to mark bitmap */
memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_BITMAP_SIZE);
#else
/* clear mark bitmap */
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
#endif
}
/* TRUE : has empty slots */
/* FALSE: no empty slots (or move to tomb heap because no live slots) */
static inline void
gc_page_sweep(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page)
{
int i;
int empty_slots = 0, freed_slots = 0, final_slots = 0;
RVALUE *p, *pend,*offset;
bits_t *bits, bitset;
gc_report(2, objspace, "page_sweep: start.\n");
sweep_page->flags.before_sweep = FALSE;
p = sweep_page->start; pend = p + sweep_page->total_slots;
offset = p - NUM_IN_PAGE(p);
bits = sweep_page->mark_bits;
/* create guard : fill 1 out-of-range */
bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1;
bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1);
for (i=0; i < HEAP_BITMAP_LIMIT; i++) {
bitset = ~bits[i];
if (bitset) {
p = offset + i * BITS_BITLENGTH;
do {
if (bitset & 1) {
switch (BUILTIN_TYPE(p)) {
default: { /* majority case */
gc_report(2, objspace, "page_sweep: free %s\n", obj_info((VALUE)p));
#if USE_RGENGC && RGENGC_CHECK_MODE
if (!is_full_marking(objspace)) {
if (RVALUE_OLD_P((VALUE)p)) rb_bug("page_sweep: %s - old while minor GC.", obj_info((VALUE)p));
if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("page_sweep: %s - remembered.", obj_info((VALUE)p));
}
#endif
if (obj_free(objspace, (VALUE)p)) {
final_slots++;
}
else {
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
heap_page_add_freeobj(objspace, sweep_page, (VALUE)p);
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info((VALUE)p));
freed_slots++;
}
break;
}
/* minor cases */
case T_ZOMBIE:
/* already counted */
break;
case T_NONE:
empty_slots++; /* already freed */
break;
}
}
p++;
bitset >>= 1;
} while (bitset);
}
}
gc_setup_mark_bits(sweep_page);
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->removing_objects += final_slots + freed_slots;
record->empty_objects += empty_slots;
}
#endif
if (0) fprintf(stderr, "gc_page_sweep(%d): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n",
(int)rb_gc_count(),
(int)sweep_page->total_slots,
freed_slots, empty_slots, final_slots);
heap_pages_swept_slots += sweep_page->free_slots = freed_slots + empty_slots;
objspace->profile.total_freed_objects += freed_slots;
heap_pages_final_slots += final_slots;
sweep_page->final_slots += final_slots;
if (heap_pages_deferred_final && !finalizing) {
rb_thread_t *th = GET_THREAD();
if (th) {
gc_finalize_deferred_register();
}
}
gc_report(2, objspace, "page_sweep: end.\n");
}
/* allocate additional minimum page to work */
static void
gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (!heap->free_pages && heap_increment(objspace, heap) == FALSE) {
/* there is no free after page_sweep() */
heap_set_increment(objspace, 1);
if (!heap_increment(objspace, heap)) { /* can't allocate additional free objects */
rb_memerror();
}
}
}
static void
gc_stat_transition(rb_objspace_t *objspace, enum gc_stat stat)
{
#if RGENGC_CHECK_MODE
enum gc_stat prev_stat = objspace->flags.stat;
switch (prev_stat) {
case gc_stat_none: assert(stat == gc_stat_marking); break;
case gc_stat_marking: assert(stat == gc_stat_sweeping); break;
case gc_stat_sweeping: assert(stat == gc_stat_none); break;
}
#endif
objspace->flags.stat = stat;
}
static void
gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap)
{
heap->sweep_pages = heap->pages;
heap->free_pages = NULL;
#if GC_ENABLE_INCREMENTAL_MARK
heap->pooled_pages = NULL;
objspace->rincgc.pooled_slots = 0;
#endif
if (heap->using_page) {
RVALUE **p = &heap->using_page->freelist;
while (*p) {
p = &(*p)->as.free.next;
}
*p = heap->freelist;
heap->using_page = NULL;
}
heap->freelist = NULL;
}
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
__attribute__((noinline))
#endif
static void
gc_sweep_start(rb_objspace_t *objspace)
{
rb_heap_t *heap;
size_t total_limit_slot;
gc_stat_transition(objspace, gc_stat_sweeping);
/* sometimes heap_allocatable_pages is not 0 */
heap_pages_swept_slots = heap_allocatable_pages * HEAP_OBJ_LIMIT;
total_limit_slot = objspace_available_slots(objspace);
heap_pages_min_free_slots = (size_t)(total_limit_slot * GC_HEAP_FREE_SLOTS_MIN_RATIO);
if (heap_pages_min_free_slots < gc_params.heap_free_slots) {
heap_pages_min_free_slots = gc_params.heap_free_slots;
}
heap_pages_max_free_slots = (size_t)(total_limit_slot * GC_HEAP_FREE_SLOTS_MAX_RATIO);
if (heap_pages_max_free_slots < gc_params.heap_init_slots) {
heap_pages_max_free_slots = gc_params.heap_init_slots;
}
if (0) fprintf(stderr, "heap_pages_min_free_slots: %d, heap_pages_max_free_slots: %d\n",
(int)heap_pages_min_free_slots, (int)heap_pages_max_free_slots);
heap = heap_eden;
gc_sweep_start_heap(objspace, heap);
}
static void
gc_sweep_finish(rb_objspace_t *objspace)
{
rb_heap_t *heap = heap_eden;
gc_report(1, objspace, "gc_sweep_finish: heap->total_slots: %d, heap->swept_slots: %d, min_free_slots: %d\n",
(int)heap->total_slots, (int)heap_pages_swept_slots, (int)heap_pages_min_free_slots);
gc_prof_set_heap_info(objspace);
heap_pages_free_unused_pages(objspace);
/* if heap_pages has unused pages, then assign them to increment */
if (heap_allocatable_pages < heap_tomb->page_length) {
heap_allocatable_pages = heap_tomb->page_length;
}
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0);
gc_stat_transition(objspace, gc_stat_none);
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(Qnil);
#endif
}
static int
gc_sweep_step(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *sweep_page = heap->sweep_pages, *next;
int unlink_limit = 3;
#if GC_ENABLE_INCREMENTAL_MARK
int need_pool = will_be_incremental_marking(objspace) ? TRUE : FALSE;
gc_report(2, objspace, "gc_sweep_step (need_pool: %d)\n", need_pool);
#else
gc_report(2, objspace, "gc_sweep_step\n");
#endif
if (sweep_page == NULL) return FALSE;
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
while (sweep_page) {
heap->sweep_pages = next = sweep_page->next;
gc_page_sweep(objspace, heap, sweep_page);
if (sweep_page->final_slots + sweep_page->free_slots == sweep_page->total_slots &&
unlink_limit > 0) {
unlink_limit--;
/* there are no living objects -> move this page to tomb heap */
heap_unlink_page(objspace, heap, sweep_page);
heap_add_page(objspace, heap_tomb, sweep_page);
}
else if (sweep_page->free_slots > 0) {
#if GC_ENABLE_INCREMENTAL_MARK
if (need_pool) {
if (heap_add_poolpage(objspace, heap, sweep_page)) {
need_pool = FALSE;
}
}
else {
heap_add_freepage(objspace, heap, sweep_page);
break;
}
#else
heap_add_freepage(objspace, heap, sweep_page);
break;
#endif
}
else {
sweep_page->free_next = NULL;
}
sweep_page = next;
}
if (heap->sweep_pages == NULL) {
gc_sweep_finish(objspace);
}
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
return heap->free_pages != NULL;
}
static void
gc_sweep_rest(rb_objspace_t *objspace)
{
rb_heap_t *heap = heap_eden; /* lazy sweep only for eden */
while (has_sweeping_pages(heap)) {
gc_sweep_step(objspace, heap);
}
}
#if GC_ENABLE_LAZY_SWEEP
static void
gc_sweep_continue(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (RGENGC_CHECK_MODE) assert(dont_gc == FALSE);
gc_enter(objspace, "sweep_continue");
#if USE_RGENGC
if (objspace->rgengc.need_major_gc == GPR_FLAG_NONE && heap_increment(objspace, heap)) {
gc_report(3, objspace, "gc_sweep_continue: success heap_increment().\n");
}
#endif
gc_sweep_step(objspace, heap);
gc_exit(objspace, "sweep_continue");
}
#endif
static void
gc_sweep(rb_objspace_t *objspace)
{
const unsigned int immediate_sweep = objspace->flags.immediate_sweep;
gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep);
if (immediate_sweep) {
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
gc_sweep_start(objspace);
gc_sweep_rest(objspace);
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
}
else {
struct heap_page *page;
gc_sweep_start(objspace);
page = heap_eden->sweep_pages;
while (page) {
page->flags.before_sweep = TRUE;
page = page->next;
}
gc_sweep_step(objspace, heap_eden);
}
gc_heap_prepare_minimum_pages(objspace, heap_eden);
}
/* Marking - Marking stack */
static stack_chunk_t *
stack_chunk_alloc(void)
{
stack_chunk_t *res;
res = malloc(sizeof(stack_chunk_t));
if (!res)
rb_memerror();
return res;
}
static inline int
is_mark_stack_empty(mark_stack_t *stack)
{
return stack->chunk == NULL;
}
static size_t
mark_stack_size(mark_stack_t *stack)
{
size_t size = stack->index;
stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL;
while (chunk) {
size += stack->limit;
chunk = chunk->next;
}
return size;
}
static void
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
{
chunk->next = stack->cache;
stack->cache = chunk;
stack->cache_size++;
}
static void
shrink_stack_chunk_cache(mark_stack_t *stack)
{
stack_chunk_t *chunk;
if (stack->unused_cache_size > (stack->cache_size/2)) {
chunk = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
free(chunk);
}
stack->unused_cache_size = stack->cache_size;
}
static void
push_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *next;
if (RGENGC_CHECK_MODE) assert(stack->index == stack->limit);
if (stack->cache_size > 0) {
next = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
if (stack->unused_cache_size > stack->cache_size)
stack->unused_cache_size = stack->cache_size;
}
else {
next = stack_chunk_alloc();
}
next->next = stack->chunk;
stack->chunk = next;
stack->index = 0;
}
static void
pop_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *prev;
prev = stack->chunk->next;
if (RGENGC_CHECK_MODE) assert(stack->index == 0);
add_stack_chunk_cache(stack, stack->chunk);
stack->chunk = prev;
stack->index = stack->limit;
}
static void
free_stack_chunks(mark_stack_t *stack)
{
stack_chunk_t *chunk = stack->chunk;
stack_chunk_t *next = NULL;
while (chunk != NULL) {
next = chunk->next;
free(chunk);
chunk = next;
}
}
static void
push_mark_stack(mark_stack_t *stack, VALUE data)
{
if (stack->index == stack->limit) {
push_mark_stack_chunk(stack);
}
stack->chunk->data[stack->index++] = data;
}
static int
pop_mark_stack(mark_stack_t *stack, VALUE *data)
{
if (is_mark_stack_empty(stack)) {
return FALSE;
}
if (stack->index == 1) {
*data = stack->chunk->data[--stack->index];
pop_mark_stack_chunk(stack);
}
else {
*data = stack->chunk->data[--stack->index];
}
return TRUE;
}
#if GC_ENABLE_INCREMENTAL_MARK
static int
invalidate_mark_stack_chunk(stack_chunk_t *chunk, int limit, VALUE obj)
{
int i;
for (i=0; i<limit; i++) {
if (chunk->data[i] == obj) {
chunk->data[i] = Qundef;
return TRUE;
}
}
return FALSE;
}
static void
invalidate_mark_stack(mark_stack_t *stack, VALUE obj)
{
stack_chunk_t *chunk = stack->chunk;
int limit = stack->index;
while (chunk) {
if (invalidate_mark_stack_chunk(chunk, limit, obj)) return;
chunk = chunk->next;
limit = stack->limit;
}
rb_bug("invalid_mark_stack: unreachable");
}
#endif
static void
init_mark_stack(mark_stack_t *stack)
{
int i;
MEMZERO(stack, mark_stack_t, 1);
stack->index = stack->limit = STACK_CHUNK_SIZE;
stack->cache_size = 0;
for (i=0; i < 4; i++) {
add_stack_chunk_cache(stack, stack_chunk_alloc());
}
stack->unused_cache_size = stack->cache_size;
}
/* Marking */
#ifdef __ia64
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine.stack_end), th->machine.register_stack_end = rb_ia64_bsp())
#else
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine.stack_end)
#endif
#define STACK_START (th->machine.stack_start)
#define STACK_END (th->machine.stack_end)
#define STACK_LEVEL_MAX (th->machine.stack_maxsize/sizeof(VALUE))
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
: (size_t)(STACK_END - STACK_START + 1))
#endif
#if !STACK_GROW_DIRECTION
int ruby_stack_grow_direction;
int
ruby_get_stack_grow_direction(volatile VALUE *addr)
{
VALUE *end;
SET_MACHINE_STACK_END(&end);
if (end > addr) return ruby_stack_grow_direction = 1;
return ruby_stack_grow_direction = -1;
}
#endif
size_t
ruby_stack_length(VALUE **p)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
static int
stack_check(int water_mark)
{
int ret;
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
#ifdef __ia64
if (!ret) {
ret = (VALUE*)rb_ia64_bsp() - th->machine.register_stack_start >
th->machine.register_stack_maxsize/sizeof(VALUE) - water_mark;
}
#endif
return ret;
}
#endif
#define STACKFRAME_FOR_CALL_CFUNC 512
int
ruby_stack_check(void)
{
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
return 0;
#else
return stack_check(STACKFRAME_FOR_CALL_CFUNC);
#endif
}
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
static void
mark_locations_array(rb_objspace_t *objspace, register const VALUE *x, register long n)
{
VALUE v;
while (n--) {
v = *x;
gc_mark_maybe(objspace, v);
x++;
}
}
static void
gc_mark_locations(rb_objspace_t *objspace, const VALUE *start, const VALUE *end)
{
long n;
if (end <= start) return;
n = end - start;
mark_locations_array(objspace, start, n);
}
void
rb_gc_mark_locations(const VALUE *start, const VALUE *end)
{
gc_mark_locations(&rb_objspace, start, end);
}
void
rb_gc_mark_values(long n, const VALUE *values)
{
rb_objspace_t *objspace = &rb_objspace;
long i;
for (i=0; i<n; i++) {
gc_mark(objspace, values[i]);
}
}
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
static int
mark_entry(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl || tbl->num_entries == 0) return;
st_foreach(tbl, mark_entry, (st_data_t)objspace);
}
static int
mark_key(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, (VALUE)key);
return ST_CONTINUE;
}
static void
mark_set(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_key, (st_data_t)objspace);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(&rb_objspace, tbl);
}
static int
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, (VALUE)key);
gc_mark(objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_hash(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_keyvalue, (st_data_t)objspace);
}
void
rb_mark_hash(st_table *tbl)
{
mark_hash(&rb_objspace, tbl);
}
static void
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
{
const rb_method_definition_t *def = me->def;
gc_mark(objspace, me->owner);
gc_mark(objspace, me->defined_class);
if (def) {
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
if (def->body.iseq.iseqptr) gc_mark(objspace, (VALUE)def->body.iseq.iseqptr);
gc_mark(objspace, (VALUE)def->body.iseq.cref);
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
gc_mark(objspace, def->body.attr.location);
break;
case VM_METHOD_TYPE_BMETHOD:
gc_mark(objspace, def->body.proc);
break;
case VM_METHOD_TYPE_ALIAS:
gc_mark(objspace, (VALUE)def->body.alias.original_me);
return;
case VM_METHOD_TYPE_REFINED:
gc_mark(objspace, (VALUE)def->body.refined.orig_me);
gc_mark(objspace, (VALUE)def->body.refined.owner);
break;
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
break;
}
}
}
static enum rb_id_table_iterator_result
mark_method_entry_i(VALUE me, void *data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, me);
return ID_TABLE_CONTINUE;
}
static void
mark_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
{
if (tbl) {
rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace);
}
}
static int
mark_const_entry_i(st_data_t key, st_data_t value, st_data_t data)
{
const rb_const_entry_t *ce = (const rb_const_entry_t *)value;
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, ce->value);
gc_mark(objspace, ce->file);
return ST_CONTINUE;
}
static void
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_const_entry_i, (st_data_t)objspace);
}
#if STACK_GROW_DIRECTION < 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
#elif STACK_GROW_DIRECTION > 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
#else
#define GET_STACK_BOUNDS(start, end, appendix) \
((STACK_END < STACK_START) ? \
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
#endif
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
{
union {
rb_jmp_buf j;
VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
} save_regs_gc_mark;
VALUE *stack_start, *stack_end;
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark.j);
/* SET_STACK_END must be called in this function because
* the stack frame of this function may contain
* callee save registers and they should be marked. */
SET_STACK_END;
GET_STACK_BOUNDS(stack_start, stack_end, 1);
mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine.register_stack_start, th->machine.register_stack_end);
#endif
#if defined(__mc68000__)
rb_gc_mark_locations((VALUE*)((char*)stack_start + 2),
(VALUE*)((char*)stack_end - 2));
#endif
}
void
rb_gc_mark_machine_stack(rb_thread_t *th)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE *stack_start, *stack_end;
GET_STACK_BOUNDS(stack_start, stack_end, 0);
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine.register_stack_start, th->machine.register_stack_end);
#endif
#if defined(__mc68000__)
rb_gc_mark_locations((VALUE*)((char*)stack_start + 2),
(VALUE*)((char*)stack_end - 2));
#endif
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(&rb_objspace, tbl);
}
static void
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
{
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
if (is_pointer_to_heap(objspace, (void *)obj)) {
int type = BUILTIN_TYPE(obj);
if (type != T_ZOMBIE && type != T_NONE) {
gc_mark_ptr(objspace, obj);
}
}
}
void
rb_gc_mark_maybe(VALUE obj)
{
gc_mark_maybe(&rb_objspace, obj);
}
static inline int
gc_mark_set(rb_objspace_t *objspace, VALUE obj)
{
if (RVALUE_MARKED(obj)) return 0;
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
return 1;
}
#if USE_RGENGC
static int
gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj)
{
struct heap_page *page = GET_HEAP_PAGE(obj);
bits_t *uncollectible_bits = &page->uncollectible_bits[0];
if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) {
page->flags.has_uncollectible_shady_objects = TRUE;
MARK_IN_BITMAP(uncollectible_bits, obj);
objspace->rgengc.uncollectible_wb_unprotected_objects++;
#if RGENGC_PROFILE > 0
objspace->profile.total_remembered_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
#endif
return TRUE;
}
else {
return FALSE;
}
}
#endif
static void
rgengc_check_relation(rb_objspace_t *objspace, VALUE obj)
{
#if USE_RGENGC
const VALUE old_parent = objspace->rgengc.parent_object;
if (old_parent) { /* parent object is old */
if (RVALUE_WB_UNPROTECTED(obj)) {
if (gc_remember_unprotected(objspace, obj)) {
gc_report(2, objspace, "relation: (O->S) %s -> %s\n", obj_info(old_parent), obj_info(obj));
}
}
else {
if (!RVALUE_OLD_P(obj)) {
if (RVALUE_MARKED(obj)) {
/* An object pointed from an OLD object should be OLD. */
gc_report(2, objspace, "relation: (O->unmarked Y) %s -> %s\n", obj_info(old_parent), obj_info(obj));
RVALUE_AGE_SET_OLD(objspace, obj);
if (is_incremental_marking(objspace)) {
if (!RVALUE_MARKING(obj)) {
gc_grey(objspace, obj);
}
}
else {
rgengc_remember(objspace, obj);
}
}
else {
gc_report(2, objspace, "relation: (O->Y) %s -> %s\n", obj_info(old_parent), obj_info(obj));
RVALUE_AGE_SET_CANDIDATE(objspace, obj);
}
}
}
}
if (RGENGC_CHECK_MODE) assert(old_parent == objspace->rgengc.parent_object);
#endif
}
static void
gc_grey(rb_objspace_t *objspace, VALUE obj)
{
#if RGENGC_CHECK_MODE
if (RVALUE_MARKED(obj) == FALSE) rb_bug("gc_grey: %s is not marked.", obj_info(obj));
if (RVALUE_MARKING(obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", obj_info(obj));
#endif
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) {
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
}
#endif
push_mark_stack(&objspace->mark_stack, obj);
}
static void
gc_aging(rb_objspace_t *objspace, VALUE obj)
{
#if USE_RGENGC
struct heap_page *page = GET_HEAP_PAGE(obj);
#if RGENGC_CHECK_MODE
assert(RVALUE_MARKING(obj) == FALSE);
#endif
check_rvalue_consistency(obj);
if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) {
if (!RVALUE_OLD_P(obj)) {
gc_report(3, objspace, "gc_aging: YOUNG: %s\n", obj_info(obj));
RVALUE_AGE_INC(objspace, obj);
}
else if (is_full_marking(objspace)) {
if (RGENGC_CHECK_MODE) assert(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE);
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj);
}
}
check_rvalue_consistency(obj);
#endif /* USE_RGENGC */
objspace->marked_slots++;
}
static void
gc_mark_ptr(rb_objspace_t *objspace, VALUE obj)
{
if (LIKELY(objspace->mark_func_data == NULL)) {
/* check code for Bug #11244 */
if (BUILTIN_TYPE(obj) == T_NONE) {
if (objspace->rgengc.parent_object) {
rb_bug("gc_mark_ptr: obj is %s (parent: %s)", obj_info(obj),
obj_info(objspace->rgengc.parent_object));
}
else {
rb_bug("gc_mark_ptr: obj is %s (parent is not old)", obj_info(obj));
}
}
rgengc_check_relation(objspace, obj);
if (!gc_mark_set(objspace, obj)) return; /* already marked */
gc_aging(objspace, obj);
gc_grey(objspace, obj);
}
else {
objspace->mark_func_data->mark_func(obj, objspace->mark_func_data->data);
}
}
static void
gc_mark(rb_objspace_t *objspace, VALUE obj)
{
if (!is_markable_object(objspace, obj)) return;
gc_mark_ptr(objspace, obj);
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark(&rb_objspace, ptr);
}
/* CAUTION: THIS FUNCTION ENABLE *ONLY BEFORE* SWEEPING.
* This function is only for GC_END_MARK timing.
*/
int
rb_objspace_marked_object_p(VALUE obj)
{
return RVALUE_MARKED(obj) ? TRUE : FALSE;
}
static inline void
gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj)
{
#if USE_RGENGC
if (RVALUE_OLD_P(obj)) {
objspace->rgengc.parent_object = obj;
}
else {
objspace->rgengc.parent_object = Qfalse;
}
#endif
}
static void
gc_mark_children(rb_objspace_t *objspace, VALUE obj)
{
register RVALUE *any = RANY(obj);
gc_mark_set_parent(objspace, obj);
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
obj = rb_gc_mark_node(&any->as.node);
if (obj) gc_mark(objspace, obj);
return; /* no need to mark class. */
case T_IMEMO:
switch (imemo_type(obj)) {
case imemo_none:
rb_bug("unreachable");
return;
case imemo_cref:
gc_mark(objspace, RANY(obj)->as.imemo.cref.klass);
gc_mark(objspace, (VALUE)RANY(obj)->as.imemo.cref.next);
gc_mark(objspace, RANY(obj)->as.imemo.cref.refinements);
return;
case imemo_svar:
gc_mark(objspace, RANY(obj)->as.imemo.svar.cref_or_me);
gc_mark(objspace, RANY(obj)->as.imemo.svar.lastline);
gc_mark(objspace, RANY(obj)->as.imemo.svar.backref);
gc_mark(objspace, RANY(obj)->as.imemo.svar.others);
return;
case imemo_throw_data:
gc_mark(objspace, RANY(obj)->as.imemo.throw_data.throw_obj);
return;
case imemo_ifunc:
gc_mark_maybe(objspace, (VALUE)RANY(obj)->as.imemo.ifunc.data);
return;
case imemo_memo:
gc_mark(objspace, RANY(obj)->as.imemo.memo.v1);
gc_mark(objspace, RANY(obj)->as.imemo.memo.v2);
gc_mark_maybe(objspace, RANY(obj)->as.imemo.memo.u3.value);
return;
case imemo_ment:
mark_method_entry(objspace, &RANY(obj)->as.imemo.ment);
return;
case imemo_iseq:
rb_iseq_mark((rb_iseq_t *)obj);
return;
}
rb_bug("T_IMEMO: unreachable");
}
gc_mark(objspace, any->as.basic.klass);
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
if (!RCLASS_EXT(obj)) break;
mark_tbl(objspace, RCLASS_IV_TBL(obj));
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
gc_mark(objspace, RCLASS_SUPER((VALUE)obj));
break;
case T_ICLASS:
if (FL_TEST(obj, RICLASS_IS_ORIGIN)) {
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
}
if (!RCLASS_EXT(obj)) break;
mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
gc_mark(objspace, RCLASS_SUPER((VALUE)obj));
break;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
gc_mark(objspace, any->as.array.as.heap.aux.shared);
}
else {
long i, len = RARRAY_LEN(obj);
const VALUE *ptr = RARRAY_CONST_PTR(obj);
for (i=0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_HASH:
mark_hash(objspace, any->as.hash.ntbl);
gc_mark(objspace, any->as.hash.ifnone);
break;
case T_STRING:
if (STR_SHARED_P(obj)) {
gc_mark(objspace, any->as.string.as.heap.aux.shared);
}
break;
case T_DATA:
{
void *const ptr = DATA_PTR(obj);
if (ptr) {
RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ?
any->as.typeddata.type->function.dmark :
any->as.data.dmark;
if (mark_func) (*mark_func)(ptr);
}
}
break;
case T_OBJECT:
{
long i, len = ROBJECT_NUMIV(obj);
VALUE *ptr = ROBJECT_IVPTR(obj);
for (i = 0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_FILE:
if (any->as.file.fptr) {
gc_mark(objspace, any->as.file.fptr->pathv);
gc_mark(objspace, any->as.file.fptr->tied_io_for_writing);
gc_mark(objspace, any->as.file.fptr->writeconv_asciicompat);
gc_mark(objspace, any->as.file.fptr->writeconv_pre_ecopts);
gc_mark(objspace, any->as.file.fptr->encs.ecopts);
gc_mark(objspace, any->as.file.fptr->write_lock);
}
break;
case T_REGEXP:
gc_mark(objspace, any->as.regexp.src);
break;
case T_FLOAT:
case T_BIGNUM:
case T_SYMBOL:
break;
case T_MATCH:
gc_mark(objspace, any->as.match.regexp);
if (any->as.match.str) {
gc_mark(objspace, any->as.match.str);
}
break;
case T_RATIONAL:
gc_mark(objspace, any->as.rational.num);
gc_mark(objspace, any->as.rational.den);
break;
case T_COMPLEX:
gc_mark(objspace, any->as.complex.real);
gc_mark(objspace, any->as.complex.imag);
break;
case T_STRUCT:
{
long len = RSTRUCT_LEN(obj);
const VALUE *ptr = RSTRUCT_CONST_PTR(obj);
while (len--) {
gc_mark(objspace, *ptr++);
}
}
break;
default:
#if GC_DEBUG
rb_gcdebug_print_obj_condition((VALUE)obj);
#endif
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), any,
is_pointer_to_heap(objspace, any) ? "corrupted object" : "non object");
}
}
/**
* incremental: 0 -> not incremental (do all)
* incremental: n -> mark at most `n' objects
*/
static inline int
gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count)
{
mark_stack_t *mstack = &objspace->mark_stack;
VALUE obj;
#if GC_ENABLE_INCREMENTAL_MARK
size_t marked_slots_at_the_beggining = objspace->marked_slots;
size_t popped_count = 0;
#endif
while (pop_mark_stack(mstack, &obj)) {
if (obj == Qundef) continue; /* skip */
if (RGENGC_CHECK_MODE && !RVALUE_MARKED(obj)) {
rb_bug("gc_mark_stacked_objects: %s is not marked.", obj_info(obj));
}
gc_mark_children(objspace, obj);
#if GC_ENABLE_INCREMENTAL_MARK
if (incremental) {
if (RGENGC_CHECK_MODE && !RVALUE_MARKING(obj)) {
rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0");
}
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
popped_count++;
if (popped_count + (objspace->marked_slots - marked_slots_at_the_beggining) > count) {
break;
}
}
else {
/* just ignore marking bits */
}
#endif
}
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(Qnil);
if (is_mark_stack_empty(mstack)) {
shrink_stack_chunk_cache(mstack);
return TRUE;
}
else {
return FALSE;
}
}
static int
gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count)
{
return gc_mark_stacked_objects(objspace, TRUE, count);
}
static int
gc_mark_stacked_objects_all(rb_objspace_t *objspace)
{
return gc_mark_stacked_objects(objspace, FALSE, 0);
}
#if PRINT_ROOT_TICKS
#define MAX_TICKS 0x100
static tick_t mark_ticks[MAX_TICKS];
static const char *mark_ticks_categories[MAX_TICKS];
static void
show_mark_ticks(void)
{
int i;
fprintf(stderr, "mark ticks result:\n");
for (i=0; i<MAX_TICKS; i++) {
const char *category = mark_ticks_categories[i];
if (category) {
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]);
}
else {
break;
}
}
}
#endif /* PRITNT_ROOT_TICKS */
static void
gc_mark_roots(rb_objspace_t *objspace, const char **categoryp)
{
struct gc_list *list;
rb_thread_t *th = GET_THREAD();
#if PRINT_ROOT_TICKS
tick_t start_tick = tick();
int tick_count = 0;
const char *prev_category = 0;
if (mark_ticks_categories[0] == 0) {
atexit(show_mark_ticks);
}
#endif
if (categoryp) *categoryp = "xxx";
#if USE_RGENGC
objspace->rgengc.parent_object = Qfalse;
#endif
#if PRINT_ROOT_TICKS
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \
if (prev_category) { \
tick_t t = tick(); \
mark_ticks[tick_count] = t - start_tick; \
mark_ticks_categories[tick_count] = prev_category; \
tick_count++; \
} \
prev_category = category; \
start_tick = tick(); \
} while (0)
#else /* PRITNT_ROOT_TICKS */
#define MARK_CHECKPOINT_PRINT_TICK(category)
#endif
#define MARK_CHECKPOINT(category) do { \
if (categoryp) *categoryp = category; \
MARK_CHECKPOINT_PRINT_TICK(category); \
} while (0)
MARK_CHECKPOINT("vm");
SET_STACK_END;
rb_vm_mark(th->vm);
if (th->vm->self) gc_mark_set(objspace, th->vm->self);
MARK_CHECKPOINT("finalizers");
mark_tbl(objspace, finalizer_table);
MARK_CHECKPOINT("machine_context");
mark_current_machine_context(objspace, th);
MARK_CHECKPOINT("encodings");
rb_gc_mark_encodings();
/* mark protected global variables */
MARK_CHECKPOINT("global_list");
for (list = global_list; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
MARK_CHECKPOINT("end_proc");
rb_mark_end_proc();
MARK_CHECKPOINT("global_tbl");
rb_gc_mark_global_tbl();
if (stress_to_class) rb_gc_mark(stress_to_class);
MARK_CHECKPOINT("finish");
#undef MARK_CHECKPOINT
}
#if RGENGC_CHECK_MODE >= 4
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
struct reflist {
VALUE *list;
int pos;
int size;
};
static struct reflist *
reflist_create(VALUE obj)
{
struct reflist *refs = xmalloc(sizeof(struct reflist));
refs->size = 1;
refs->list = ALLOC_N(VALUE, refs->size);
refs->list[0] = obj;
refs->pos = 1;
return refs;
}
static void
reflist_destruct(struct reflist *refs)
{
xfree(refs->list);
xfree(refs);
}
static void
reflist_add(struct reflist *refs, VALUE obj)
{
if (refs->pos == refs->size) {
refs->size *= 2;
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
}
refs->list[refs->pos++] = obj;
}
static void
reflist_dump(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj)) { /* root */
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
}
else {
fprintf(stderr, "<%s>", obj_info(obj));
}
if (i+1 < refs->pos) fprintf(stderr, ", ");
}
}
static int
reflist_refered_from_machine_context(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
}
return 0;
}
struct allrefs {
rb_objspace_t *objspace;
/* a -> obj1
* b -> obj1
* c -> obj1
* c -> obj2
* d -> obj3
* #=> {obj1 => [a, b, c], obj2 => [c, d]}
*/
struct st_table *references;
const char *category;
VALUE root_obj;
mark_stack_t mark_stack;
};
static int
allrefs_add(struct allrefs *data, VALUE obj)
{
struct reflist *refs;
if (st_lookup(data->references, obj, (st_data_t *)&refs)) {
reflist_add(refs, data->root_obj);
return 0;
}
else {
refs = reflist_create(data->root_obj);
st_insert(data->references, obj, (st_data_t)refs);
return 1;
}
}
static void
allrefs_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (allrefs_add(data, obj)) {
push_mark_stack(&data->mark_stack, obj);
}
}
static void
allrefs_roots_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (strlen(data->category) == 0) rb_bug("!!!");
data->root_obj = MAKE_ROOTSIG(data->category);
if (allrefs_add(data, obj)) {
push_mark_stack(&data->mark_stack, obj);
}
}
static st_table *
objspace_allrefs(rb_objspace_t *objspace)
{
struct allrefs data;
struct mark_func_data_struct mfd;
VALUE obj;
int prev_dont_gc = dont_gc;
dont_gc = TRUE;
data.objspace = objspace;
data.references = st_init_numtable();
init_mark_stack(&data.mark_stack);
mfd.mark_func = allrefs_roots_i;
mfd.data = &data;
/* traverse root objects */
PUSH_MARK_FUNC_DATA(&mfd);
objspace->mark_func_data = &mfd;
gc_mark_roots(objspace, &data.category);
POP_MARK_FUNC_DATA();
/* traverse rest objects reachable from root objects */
while (pop_mark_stack(&data.mark_stack, &obj)) {
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
}
free_stack_chunks(&data.mark_stack);
dont_gc = prev_dont_gc;
return data.references;
}
static int
objspace_allrefs_destruct_i(st_data_t key, st_data_t value, void *ptr)
{
struct reflist *refs = (struct reflist *)value;
reflist_destruct(refs);
return ST_CONTINUE;
}
static void
objspace_allrefs_destruct(struct st_table *refs)
{
st_foreach(refs, objspace_allrefs_destruct_i, 0);
st_free_table(refs);
}
#if RGENGC_CHECK_MODE >= 5
static int
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
{
VALUE obj = (VALUE)k;
struct reflist *refs = (struct reflist *)v;
fprintf(stderr, "[allrefs_dump_i] %s <- ", obj_info(obj));
reflist_dump(refs);
fprintf(stderr, "\n");
return ST_CONTINUE;
}
static void
allrefs_dump(rb_objspace_t *objspace)
{
fprintf(stderr, "[all refs] (size: %d)\n", (int)objspace->rgengc.allrefs_table->num_entries);
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
}
#endif
static int
gc_check_after_marks_i(st_data_t k, st_data_t v, void *ptr)
{
VALUE obj = k;
struct reflist *refs = (struct reflist *)v;
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
/* object should be marked or oldgen */
if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) {
fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", obj_info(obj));
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
reflist_dump(refs);
if (reflist_refered_from_machine_context(refs)) {
fprintf(stderr, " (marked from machine stack).\n");
/* marked from machine context can be false positive */
}
else {
objspace->rgengc.error_count++;
fprintf(stderr, "\n");
}
}
return ST_CONTINUE;
}
static void
gc_marks_check(rb_objspace_t *objspace, int (*checker_func)(ANYARGS), const char *checker_name)
{
size_t saved_malloc_increase = objspace->malloc_params.increase;
#if RGENGC_ESTIMATE_OLDMALLOC
size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase;
#endif
VALUE already_disabled = rb_gc_disable();
objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
if (checker_func) {
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
}
if (objspace->rgengc.error_count > 0) {
#if RGENGC_CHECK_MODE >= 5
allrefs_dump(objspace);
#endif
if (checker_name) rb_bug("%s: GC has problem.", checker_name);
}
objspace_allrefs_destruct(objspace->rgengc.allrefs_table);
objspace->rgengc.allrefs_table = 0;
if (already_disabled == Qfalse) rb_gc_enable();
objspace->malloc_params.increase = saved_malloc_increase;
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase;
#endif
}
#endif /* RGENGC_CHECK_MODE >= 4 */
struct verify_internal_consistency_struct {
rb_objspace_t *objspace;
int err_count;
size_t live_object_count;
size_t zombie_object_count;
#if USE_RGENGC
VALUE parent;
size_t old_object_count;
size_t remembered_shady_count;
#endif
};
#if USE_RGENGC
static void
check_generation_i(const VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
const VALUE parent = data->parent;
if (RGENGC_CHECK_MODE) assert(RVALUE_OLD_P(parent));
if (!RVALUE_OLD_P(child)) {
if (!RVALUE_REMEMBERED(parent) &&
!RVALUE_REMEMBERED(child) &&
!RVALUE_UNCOLLECTIBLE(child)) {
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", obj_info(parent), obj_info(child));
data->err_count++;
}
}
}
static void
check_color_i(const VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
const VALUE parent = data->parent;
if (!RVALUE_WB_UNPROTECTED(parent) && RVALUE_WHITE_P(child)) {
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n",
obj_info(parent), obj_info(child));
data->err_count++;
}
}
#endif
static void
check_children_i(const VALUE child, void *ptr)
{
check_rvalue_consistency(child);
}
static int
verify_internal_consistency_i(void *page_start, void *page_end, size_t stride, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
VALUE obj;
rb_objspace_t *objspace = data->objspace;
for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) {
if (is_live_object(objspace, obj)) {
/* count objects */
data->live_object_count++;
rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data);
#if USE_RGENGC
/* check health of children */
data->parent = obj;
if (RVALUE_OLD_P(obj)) data->old_object_count++;
if (RVALUE_WB_UNPROTECTED(obj) && RVALUE_UNCOLLECTIBLE(obj)) data->remembered_shady_count++;
if (!is_marking(objspace) && RVALUE_OLD_P(obj)) {
/* reachable objects from an oldgen object should be old or (young with remember) */
data->parent = obj;
rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data);
}
if (is_incremental_marking(objspace)) {
if (RVALUE_BLACK_P(obj)) {
/* reachable objects from black objects should be black or grey objects */
data->parent = obj;
rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data);
}
}
#endif
}
else {
if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
if (RGENGC_CHECK_MODE) assert(RBASIC(obj)->flags == T_ZOMBIE);
data->zombie_object_count++;
}
}
}
return 0;
}
static int
gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
#if USE_RGENGC
int i;
unsigned int has_remembered_shady = FALSE;
unsigned int has_remembered_old = FALSE;
int rememberd_old_objects = 0;
for (i=0; i<page->total_slots; i++) {
VALUE obj = (VALUE)&page->start[i];
if (RVALUE_PAGE_UNCOLLECTIBLE(page, obj) && RVALUE_PAGE_WB_UNPROTECTED(page, obj)) has_remembered_shady = TRUE;
if (RVALUE_PAGE_MARKING(page, obj)) {
has_remembered_old = TRUE;
rememberd_old_objects++;
}
}
if (!is_incremental_marking(objspace) &&
page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) {
for (i=0; i<page->total_slots; i++) {
VALUE obj = (VALUE)&page->start[i];
if (RVALUE_PAGE_MARKING(page, obj)) {
fprintf(stderr, "marking -> %s\n", obj_info(obj));
}
}
rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s",
page, rememberd_old_objects, obj ? obj_info(obj) : "");
}
if (page->flags.has_uncollectible_shady_objects == FALSE && has_remembered_shady == TRUE) {
rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s",
page, obj ? obj_info(obj) : "");
}
return rememberd_old_objects;
#else
return 0;
#endif
}
static int
gc_verify_heap_pages(rb_objspace_t *objspace)
{
int rememberd_old_objects = 0;
struct heap_page *page = heap_eden->pages;
while (page) {
if (page->flags.has_remembered_objects == FALSE)
rememberd_old_objects += gc_verify_heap_page(objspace, page, Qfalse);
page = page->next;
}
return rememberd_old_objects;
}
/*
* call-seq:
* GC.verify_internal_consistency -> nil
*
* Verify internal consistency.
*
* This method is implementation specific.
* Now this method checks generational consistency
* if RGenGC is supported.
*/
static VALUE
gc_verify_internal_consistency(VALUE dummy)
{
rb_objspace_t *objspace = &rb_objspace;
struct verify_internal_consistency_struct data = {0};
struct each_obj_args eo_args;
data.objspace = objspace;
gc_report(5, objspace, "gc_verify_internal_consistency: start\n");
/* check relations */
eo_args.callback = verify_internal_consistency_i;
eo_args.data = (void *)&data;
objspace_each_objects((VALUE)&eo_args);
if (data.err_count != 0) {
#if RGENGC_CHECK_MODE >= 5
objspace->rgengc.error_count = data.err_count;
gc_marks_check(objspace, NULL, NULL);
allrefs_dump(objspace);
#endif
rb_bug("gc_verify_internal_consistency: found internal inconsistency.");
}
/* check heap_page status */
gc_verify_heap_pages(objspace);
/* check counters */
if (!is_lazy_sweeping(heap_eden) && !finalizing) {
if (objspace_live_slots(objspace) != data.live_object_count) {
fprintf(stderr, "heap_pages_final_slots: %d, objspace->profile.total_freed_objects: %d\n",
(int)heap_pages_final_slots, (int)objspace->profile.total_freed_objects);
rb_bug("inconsistent live slot nubmer: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace_live_slots(objspace), data.live_object_count);
}
}
#if USE_RGENGC
if (!is_marking(objspace)) {
if (objspace->rgengc.old_objects != data.old_object_count) {
rb_bug("inconsistent old slot nubmer: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace->rgengc.old_objects, data.old_object_count);
}
if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) {
rb_bug("inconsistent old slot nubmer: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count);
}
}
#endif
if (!finalizing) {
size_t list_count = 0;
{
VALUE z = heap_pages_deferred_final;
while (z) {
list_count++;
z = RZOMBIE(z)->next;
}
}
if (heap_pages_final_slots != data.zombie_object_count ||
heap_pages_final_slots != list_count) {
rb_bug("inconsistent finalizing object count:\n"
" expect %"PRIuSIZE"\n"
" but %"PRIuSIZE" zombies\n"
" heap_pages_deferred_final list has %"PRIuSIZE" items.",
heap_pages_final_slots,
data.zombie_object_count,
list_count);
}
}
gc_report(5, objspace, "gc_verify_internal_consistency: OK\n");
return Qnil;
}
void
rb_gc_verify_internal_consistency(void)
{
gc_verify_internal_consistency(Qnil);
}
/* marks */
static void
gc_marks_start(rb_objspace_t *objspace, int full_mark)
{
/* start marking */
gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor");
gc_stat_transition(objspace, gc_stat_marking);
#if USE_RGENGC
if (full_mark) {
#if GC_ENABLE_INCREMENTAL_MARK
objspace->rincgc.step_slots = (objspace->marked_slots * 2) / ((objspace->rincgc.pooled_slots / HEAP_OBJ_LIMIT) + 1);
if (0) fprintf(stderr, "objspace->marked_slots: %d, objspace->rincgc.pooled_page_num: %d, objspace->rincgc.step_slots: %d, \n",
(int)objspace->marked_slots, (int)objspace->rincgc.pooled_slots, (int)objspace->rincgc.step_slots);
#endif
objspace->flags.during_minor_gc = FALSE;
objspace->profile.major_gc_count++;
objspace->rgengc.uncollectible_wb_unprotected_objects = 0;
objspace->rgengc.old_objects = 0;
objspace->rgengc.last_major_gc = objspace->profile.count;
objspace->marked_slots = 0;
rgengc_mark_and_rememberset_clear(objspace, heap_eden);
}
else {
objspace->flags.during_minor_gc = TRUE;
objspace->marked_slots =
objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */
objspace->profile.minor_gc_count++;
rgengc_rememberset_mark(objspace, heap_eden);
}
#endif
gc_mark_roots(objspace, NULL);
gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %d\n", full_mark ? "full" : "minor", (int)mark_stack_size(&objspace->mark_stack));
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_marks_wb_unprotected_objects(rb_objspace_t *objspace)
{
struct heap_page *page = heap_eden->pages;
while (page) {
bits_t *mark_bits = page->mark_bits;
bits_t *wbun_bits = page->wb_unprotected_bits;
RVALUE *p = page->start;
RVALUE *offset = p - NUM_IN_PAGE(p);
size_t j;
for (j=0; j<HEAP_BITMAP_LIMIT; j++) {
bits_t bits = mark_bits[j] & wbun_bits[j];
if (bits) {
p = offset + j * BITS_BITLENGTH;
do {
if (bits & 1) {
gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", obj_info((VALUE)p));
if (RGENGC_CHECK_MODE > 0) {
assert(RVALUE_WB_UNPROTECTED((VALUE)p));
assert(RVALUE_MARKED((VALUE)p));
}
gc_mark_children(objspace, (VALUE)p);
}
p++;
bits >>= 1;
} while (bits);
}
}
page = page->next;
}
gc_mark_stacked_objects_all(objspace);
}
static struct heap_page *
heap_move_pooled_pages_to_free_pages(rb_heap_t *heap)
{
struct heap_page *page = heap->pooled_pages;
if (page) {
heap->pooled_pages = page->free_next;
page->free_next = heap->free_pages;
heap->free_pages = page;
}
return page;
}
#endif
static int
gc_marks_finish(rb_objspace_t *objspace)
{
#if GC_ENABLE_INCREMENTAL_MARK
/* finish incremental GC */
if (is_incremental_marking(objspace)) {
if (heap_eden->pooled_pages) {
heap_move_pooled_pages_to_free_pages(heap_eden);
gc_report(1, objspace, "gc_marks_finish: pooled pages are exists. retry.\n");
return FALSE; /* continue marking phase */
}
if (RGENGC_CHECK_MODE && is_mark_stack_empty(&objspace->mark_stack) == 0) {
rb_bug("gc_marks_finish: mark stack is not empty (%d).", (int)mark_stack_size(&objspace->mark_stack));
}
gc_mark_roots(objspace, 0);
if (is_mark_stack_empty(&objspace->mark_stack) == FALSE) {
gc_report(1, objspace, "gc_marks_finish: not empty (%d). retry.\n", (int)mark_stack_size(&objspace->mark_stack));
return FALSE;
}
#if RGENGC_CHECK_MODE >= 2
if (gc_verify_heap_pages(objspace) != 0) {
rb_bug("gc_marks_finish (incremental): there are remembered old objects.");
}
#endif
objspace->flags.during_incremental_marking = FALSE;
/* check children of all marked wb-unprotected objects */
gc_marks_wb_unprotected_objects(objspace);
}
#endif /* GC_ENABLE_INCREMENTAL_MARK */
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(Qnil);
#endif
#if USE_RGENGC
if (is_full_marking(objspace)) {
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
const double r = gc_params.oldobject_limit_factor;
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r);
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r);
}
#endif
#if RGENGC_CHECK_MODE >= 4
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
#endif
{ /* decide full GC is needed or not */
rb_heap_t *heap = heap_eden;
size_t sweep_slots =
(heap_allocatable_pages * HEAP_OBJ_LIMIT) + /* allocatable slots in empty pages */
(heap->total_slots - objspace->marked_slots); /* will be sweep slots */
#if RGENGC_CHECK_MODE
assert(heap->total_slots >= objspace->marked_slots);
#endif
if (sweep_slots < heap_pages_min_free_slots) {
#if USE_RGENGC
if (!is_full_marking(objspace) && objspace->profile.count - objspace->rgengc.last_major_gc > 3 /* magic number */) {
gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n");
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE;
}
else {
gc_report(1, objspace, "gc_marks_finish: heap_set_increment!!\n");
heap_set_increment(objspace, heap_extend_pages(objspace));
heap_increment(objspace, heap);
}
#else
gc_report(1, objspace, "gc_marks_finish: heap_set_increment!!\n");
heap_set_increment(objspace, heap_extend_pages(objspace));
heap_increment(objspace, heap);
#endif
}
#if USE_RGENGC
if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_SHADY;
}
if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDGEN;
}
if (RGENGC_FORCE_MAJOR_GC) {
objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_FORCE;
}
gc_report(1, objspace, "gc_marks_finish (marks %d objects, old %d objects, total %d slots, sweep %d slots, increment: %d, next GC: %s)\n",
(int)objspace->marked_slots, (int)objspace->rgengc.old_objects, (int)heap->total_slots, (int)sweep_slots, (int)heap_allocatable_pages,
objspace->rgengc.need_major_gc ? "major" : "minor");
#endif
}
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0);
return TRUE;
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_marks_step(rb_objspace_t *objspace, int slots)
{
if (RGENGC_CHECK_MODE) assert(is_marking(objspace));
if (gc_mark_stacked_objects_incremental(objspace, slots)) {
if (gc_marks_finish(objspace)) {
/* finish */
gc_sweep(objspace);
}
}
if (0) fprintf(stderr, "objspace->marked_slots: %d\n", (int)objspace->marked_slots);
}
#endif
static void
gc_marks_rest(rb_objspace_t *objspace)
{
gc_report(1, objspace, "gc_marks_rest\n");
#if GC_ENABLE_INCREMENTAL_MARK
heap_eden->pooled_pages = NULL;
#endif
if (is_incremental_marking(objspace)) {
do {
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE);
} while (gc_marks_finish(objspace) == FALSE);
}
else {
gc_mark_stacked_objects_all(objspace);
gc_marks_finish(objspace);
}
/* move to sweep */
gc_sweep(objspace);
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_marks_continue(rb_objspace_t *objspace, rb_heap_t *heap)
{
int slots = 0;
const char *from;
if (RGENGC_CHECK_MODE) assert(dont_gc == FALSE);
gc_enter(objspace, "marks_continue");
PUSH_MARK_FUNC_DATA(NULL);
{
if (heap->pooled_pages) {
while (heap->pooled_pages && slots < HEAP_OBJ_LIMIT) {
struct heap_page *page = heap_move_pooled_pages_to_free_pages(heap);
slots += page->free_slots;
}
from = "pooled-pages";
}
else if (heap_increment(objspace, heap)) {
slots = heap->free_pages->free_slots;
from = "incremented-pages";
}
if (slots > 0) {
gc_report(2, objspace, "gc_marks_continue: provide %d slots from %s.\n", slots, from);
gc_marks_step(objspace, (int)objspace->rincgc.step_slots);
}
else {
gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %d).\n", (int)mark_stack_size(&objspace->mark_stack));
gc_marks_rest(objspace);
}
}
POP_MARK_FUNC_DATA();
gc_exit(objspace, "marks_continue");
}
#endif
static void
gc_marks(rb_objspace_t *objspace, int full_mark)
{
gc_prof_mark_timer_start(objspace);
PUSH_MARK_FUNC_DATA(NULL);
{
/* setup marking */
#if USE_RGENGC
gc_marks_start(objspace, full_mark);
if (!is_incremental_marking(objspace)) {
gc_marks_rest(objspace);
}
#if RGENGC_PROFILE > 0
if (gc_prof_record(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->old_objects = objspace->rgengc.old_objects;
}
#endif
#else /* USE_RGENGC */
gc_marks_start(objspace, TRUE);
gc_marks_rest(objspace);
#endif
}
POP_MARK_FUNC_DATA();
gc_prof_mark_timer_stop(objspace);
}
/* RGENGC */
static void
gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
{
if (level <= RGENGC_DEBUG) {
char buf[1024];
FILE *out = stderr;
va_list args;
const char *status = " ";
#if USE_RGENGC
if (during_gc) {
status = is_full_marking(objspace) ? "+" : "-";
}
else {
if (is_lazy_sweeping(heap_eden)) {
status = "S";
}
if (is_incremental_marking(objspace)) {
status = "M";
}
}
#endif
va_start(args, fmt);
vsnprintf(buf, 1024, fmt, args);
va_end(args);
fprintf(out, "%s|", status);
fputs(buf, out);
}
}
#if USE_RGENGC
/* bit operations */
static int
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj)
{
return RVALUE_REMEMBERED(obj);
}
static int
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
{
struct heap_page *page = GET_HEAP_PAGE(obj);
bits_t *bits = &page->marking_bits[0];
if (RGENGC_CHECK_MODE) assert(!is_incremental_marking(objspace));
if (MARKED_IN_BITMAP(bits, obj)) {
return FALSE;
}
else {
page->flags.has_remembered_objects = TRUE;
MARK_IN_BITMAP(bits, obj);
return TRUE;
}
}
/* wb, etc */
/* return FALSE if already remembered */
static int
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
{
gc_report(6, objspace, "rgengc_remember: %s %s\n", obj_info(obj),
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now");
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) {
if (RVALUE_WB_UNPROTECTED(obj)) rb_bug("rgengc_remember: %s is not wb protected.", obj_info(obj));
}
#if RGENGC_PROFILE > 0
if (!rgengc_remembered(objspace, obj)) {
if (RVALUE_WB_UNPROTECTED(obj) == 0) {
objspace->profile.total_remembered_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
}
#endif /* RGENGC_PROFILE > 0 */
return rgengc_remembersetbits_set(objspace, obj);
}
static int
rgengc_remembered(rb_objspace_t *objspace, VALUE obj)
{
int result = rgengc_remembersetbits_get(objspace, obj);
check_rvalue_consistency(obj);
gc_report(6, objspace, "rgengc_remembered: %s\n", obj_info(obj));
return result;
}
#ifndef PROFILE_REMEMBERSET_MARK
#define PROFILE_REMEMBERSET_MARK 0
#endif
static void
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
{
size_t j;
struct heap_page *page = heap->pages;
#if PROFILE_REMEMBERSET_MARK
int has_old = 0, has_shady = 0, has_both = 0, skip = 0;
#endif
gc_report(1, objspace, "rgengc_rememberset_mark: start\n");
while (page) {
if (page->flags.has_remembered_objects | page->flags.has_uncollectible_shady_objects) {
RVALUE *p = page->start;
RVALUE *offset = p - NUM_IN_PAGE(p);
bits_t bitset, bits[HEAP_BITMAP_LIMIT];
bits_t *marking_bits = page->marking_bits;
bits_t *uncollectible_bits = page->uncollectible_bits;
bits_t *wb_unprotected_bits = page->wb_unprotected_bits;
#if PROFILE_REMEMBERSET_MARK
if (page->flags.has_remembered_objects && page->flags.has_uncollectible_shady_objects) has_both++;
else if (page->flags.has_remembered_objects) has_old++;
else if (page->flags.has_uncollectible_shady_objects) has_shady++;
#endif
for (j=0; j<HEAP_BITMAP_LIMIT; j++) {
bits[j] = marking_bits[j] | (uncollectible_bits[j] & wb_unprotected_bits[j]);
marking_bits[j] = 0;
}
page->flags.has_remembered_objects = FALSE;
for (j=0; j < HEAP_BITMAP_LIMIT; j++) {
bitset = bits[j];
if (bitset) {
p = offset + j * BITS_BITLENGTH;
do {
if (bitset & 1) {
VALUE obj = (VALUE)p;
gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", obj_info(obj));
if (RGENGC_CHECK_MODE) {
assert(RVALUE_UNCOLLECTIBLE(obj));
assert(RVALUE_OLD_P(obj) || RVALUE_WB_UNPROTECTED(obj));
}
gc_mark_children(objspace, obj);
}
p++;
bitset >>= 1;
} while (bitset);
}
}
}
#if PROFILE_REMEMBERSET_MARK
else {
skip++;
}
#endif
page = page->next;
}
#if PROFILE_REMEMBERSET_MARK
fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip);
#endif
gc_report(1, objspace, "rgengc_rememberset_mark: finished\n");
}
static void
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = heap->pages;
while (page) {
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
memset(&page->marking_bits[0], 0, HEAP_BITMAP_SIZE);
memset(&page->uncollectible_bits[0], 0, HEAP_BITMAP_SIZE);
page->flags.has_uncollectible_shady_objects = FALSE;
page->flags.has_remembered_objects = FALSE;
page = page->next;
}
}
/* RGENGC: APIs */
NOINLINE(static void gc_writebarrier_generational(rb_objspace_t *objspace, VALUE a, VALUE b));
static void
gc_writebarrier_generational(rb_objspace_t *objspace, VALUE a, VALUE b)
{
if (RGENGC_CHECK_MODE) {
if (!RVALUE_OLD_P(a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", obj_info(a));
if ( RVALUE_OLD_P(b)) rb_bug("gc_writebarrier_generational: %s is an old object.", obj_info(b));
if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", obj_info(a), obj_info(b));
}
#if 1
/* mark `a' and remember (default behaviour) */
if (!rgengc_remembered(objspace, a)) {
rgengc_remember(objspace, a);
gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", obj_info(a), obj_info(b));
}
#else
/* mark `b' and remember */
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(b), b);
if (RVALUE_WB_UNPROTECTED(b)) {
gc_remember_unprotected(objspace, b);
}
else {
RVALUE_AGE_SET_OLD(objspace, b);
rgengc_remember(objspace, b);
}
gc_report(1, objspace, "gc_writebarrier_generational: %s -> %s (remembered)\n", obj_info(a), obj_info(b));
#endif
check_rvalue_consistency(a);
check_rvalue_consistency(b);
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent)
{
gc_mark_set_parent(objspace, parent);
rgengc_check_relation(objspace, obj);
if (gc_mark_set(objspace, obj) == FALSE) return;
gc_aging(objspace, obj);
gc_grey(objspace, obj);
}
NOINLINE(static void gc_writebarrier_incremental(rb_objspace_t *objspace, VALUE a, VALUE b));
static void
gc_writebarrier_incremental(rb_objspace_t *objspace, VALUE a, VALUE b)
{
gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %s -> %s\n", obj_info(a), obj_info(b));
if (RVALUE_BLACK_P(a)) {
if (RVALUE_WHITE_P(b)) {
if (!RVALUE_WB_UNPROTECTED(a)) {
gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %s -> %s\n", obj_info(a), obj_info(b));
gc_mark_from(objspace, b, a);
}
}
else if (RVALUE_OLD_P(a) && !RVALUE_OLD_P(b)) {
if (!RVALUE_WB_UNPROTECTED(b)) {
gc_report(1, objspace, "gc_writebarrier_incremental: [GN] %s -> %s\n", obj_info(a), obj_info(b));
RVALUE_AGE_SET_OLD(objspace, b);
if (RVALUE_BLACK_P(b)) {
gc_grey(objspace, b);
}
}
else {
gc_report(1, objspace, "gc_writebarrier_incremental: [LL] %s -> %s\n", obj_info(a), obj_info(b));
gc_remember_unprotected(objspace, b);
}
}
}
}
#else
#define gc_writebarrier_incremental(objspace, a, b)
#endif
void
rb_gc_writebarrier(VALUE a, VALUE b)
{
rb_objspace_t *objspace = &rb_objspace;
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const");
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const");
if (LIKELY(!is_incremental_marking(objspace))) {
if (!RVALUE_OLD_P(a) || RVALUE_OLD_P(b)) {
return;
}
else {
gc_writebarrier_generational(objspace, a, b);
}
}
else { /* slow path */
gc_writebarrier_incremental(objspace, a, b);
}
}
void
rb_gc_writebarrier_unprotect(VALUE obj)
{
if (RVALUE_WB_UNPROTECTED(obj)) {
return;
}
else {
rb_objspace_t *objspace = &rb_objspace;
gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", obj_info(obj),
rgengc_remembered(objspace, obj) ? " (already remembered)" : "");
if (RVALUE_OLD_P(obj)) {
gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", obj_info(obj));
RVALUE_DEMOTE(objspace, obj);
gc_mark_set(objspace, obj);
gc_remember_unprotected(objspace, obj);
#if RGENGC_PROFILE
objspace->profile.total_shade_operation_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
#endif /* RGENGC_PROFILE >= 2 */
#endif /* RGENGC_PROFILE */
}
else {
RVALUE_AGE_RESET(obj);
}
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
}
}
/*
* remember `obj' if needed.
*/
void
rb_gc_writebarrier_remember(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", obj_info(obj));
if (is_incremental_marking(objspace)) {
if (RVALUE_BLACK_P(obj)) {
gc_grey(objspace, obj);
}
}
else {
if (RVALUE_OLD_P(obj)) {
rgengc_remember(objspace, obj);
}
}
}
static st_table *rgengc_unprotect_logging_table;
static int
rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val, st_data_t arg)
{
fprintf(stderr, "%s\t%d\n", (char *)key, (int)val);
return ST_CONTINUE;
}
static void
rgengc_unprotect_logging_exit_func(void)
{
st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0);
}
void
rb_gc_unprotect_logging(void *objptr, const char *filename, int line)
{
VALUE obj = (VALUE)objptr;
if (rgengc_unprotect_logging_table == 0) {
rgengc_unprotect_logging_table = st_init_strtable();
atexit(rgengc_unprotect_logging_exit_func);
}
if (RVALUE_WB_UNPROTECTED(obj) == 0) {
char buff[0x100];
st_data_t cnt = 1;
char *ptr = buff;
snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_info(obj), filename, line);
if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) {
cnt++;
}
else {
ptr = (char *)malloc(strlen(buff) + 1);
strcpy(ptr, buff);
}
st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt);
}
}
#endif /* USE_RGENGC */
void
rb_copy_wb_protected_attribute(VALUE dest, VALUE obj)
{
#if USE_RGENGC
rb_objspace_t *objspace = &rb_objspace;
if (RVALUE_WB_UNPROTECTED(obj) && !RVALUE_WB_UNPROTECTED(dest)) {
if (!RVALUE_OLD_P(dest)) {
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest);
RVALUE_AGE_RESET_RAW(dest);
}
else {
RVALUE_DEMOTE(objspace, dest);
}
}
check_rvalue_consistency(dest);
#endif
}
/* RGENGC analysis information */
VALUE
rb_obj_rgengc_writebarrier_protected_p(VALUE obj)
{
#if USE_RGENGC
return RVALUE_WB_UNPROTECTED(obj) ? Qfalse : Qtrue;
#else
return Qfalse;
#endif
}
VALUE
rb_obj_rgengc_promoted_p(VALUE obj)
{
return OBJ_PROMOTED(obj) ? Qtrue : Qfalse;
}
size_t
rb_obj_gc_flags(VALUE obj, ID* flags, size_t max)
{
size_t n = 0;
static ID ID_marked;
#if USE_RGENGC
static ID ID_wb_protected, ID_old, ID_marking, ID_uncollectible;
#endif
if (!ID_marked) {
#define I(s) ID_##s = rb_intern(#s);
I(marked);
#if USE_RGENGC
I(wb_protected);
I(old);
I(marking);
I(uncollectible);
#endif
#undef I
}
#if USE_RGENGC
if (RVALUE_WB_UNPROTECTED(obj) == 0 && n<max) flags[n++] = ID_wb_protected;
if (RVALUE_OLD_P(obj) && n<max) flags[n++] = ID_old;
if (RVALUE_UNCOLLECTIBLE(obj) && n<max) flags[n++] = ID_uncollectible;
if (MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj) && n<max) flags[n++] = ID_marking;
#endif
if (MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) && n<max) flags[n++] = ID_marked;
return n;
}
/* GC */
void
rb_gc_force_recycle(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
#if USE_RGENGC
int is_old = RVALUE_OLD_P(obj);
gc_report(2, objspace, "rb_gc_force_recycle: %s\n", obj_info(obj));
if (is_old) {
if (RVALUE_MARKED(obj)) {
objspace->rgengc.old_objects--;
}
}
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj);
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) {
if (MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj)) {
invalidate_mark_stack(&objspace->mark_stack, obj);
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
}
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
}
else {
#endif
if (is_old || !GET_HEAP_PAGE(obj)->flags.before_sweep) {
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
}
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
#if GC_ENABLE_INCREMENTAL_MARK
}
#endif
#endif
objspace->profile.total_freed_objects++;
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(obj), obj);
/* Disable counting swept_slots because there are no meaning.
* if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) {
* objspace->heap.swept_slots++;
* }
*/
}
#ifndef MARK_OBJECT_ARY_BUCKET_SIZE
#define MARK_OBJECT_ARY_BUCKET_SIZE 1024
#endif
void
rb_gc_register_mark_object(VALUE obj)
{
VALUE ary_ary = GET_THREAD()->vm->mark_object_ary;
VALUE ary = rb_ary_last(0, 0, ary_ary);
if (ary == Qnil || RARRAY_LEN(ary) >= MARK_OBJECT_ARY_BUCKET_SIZE) {
ary = rb_ary_tmp_new(MARK_OBJECT_ARY_BUCKET_SIZE);
rb_ary_push(ary_ary, ary);
}
rb_ary_push(ary, obj);
}
void
rb_gc_register_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_list;
tmp->varptr = addr;
global_list = tmp;
}
void
rb_gc_unregister_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp = global_list;
if (tmp->varptr == addr) {
global_list = tmp->next;
xfree(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
xfree(t);
break;
}
tmp = tmp->next;
}
}
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
#define GC_NOTIFY 0
enum {
gc_stress_no_major,
gc_stress_no_immediate_sweep,
gc_stress_full_mark_after_malloc,
gc_stress_max
};
#define gc_stress_full_mark_after_malloc_p() \
(FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<<gc_stress_full_mark_after_malloc)))
static void
heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (!heap->freelist && !heap->free_pages) {
if (!heap_increment(objspace, heap)) {
heap_set_increment(objspace, 1);
heap_increment(objspace, heap);
}
}
}
static int
ready_to_gc(rb_objspace_t *objspace)
{
if (dont_gc || during_gc || ruby_disable_gc) {
heap_ready_to_gc(objspace, heap_eden);
return FALSE;
}
else {
return TRUE;
}
}
static void
gc_reset_malloc_info(rb_objspace_t *objspace)
{
gc_prof_set_malloc_info(objspace);
{
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
size_t old_limit = malloc_limit;
if (inc > malloc_limit) {
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
if (gc_params.malloc_limit_max > 0 && /* ignore max-check if 0 */
malloc_limit > gc_params.malloc_limit_max) {
malloc_limit = gc_params.malloc_limit_max;
}
}
else {
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
if (malloc_limit < gc_params.malloc_limit_min) {
malloc_limit = gc_params.malloc_limit_min;
}
}
if (0) {
if (old_limit != malloc_limit) {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
rb_gc_count(), old_limit, malloc_limit);
}
else {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
rb_gc_count(), malloc_limit);
}
}
}
/* reset oldmalloc info */
#if RGENGC_ESTIMATE_OLDMALLOC
if (!is_full_marking(objspace)) {
if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDMALLOC;;
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor);
if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max;
}
}
if (0) fprintf(stderr, "%d\t%d\t%u\t%u\t%d\n",
(int)rb_gc_count(),
(int)objspace->rgengc.need_major_gc,
(unsigned int)objspace->rgengc.oldmalloc_increase,
(unsigned int)objspace->rgengc.oldmalloc_increase_limit,
(unsigned int)gc_params.oldmalloc_limit_max);
}
else {
/* major GC */
objspace->rgengc.oldmalloc_increase = 0;
if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) {
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1));
if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
}
}
#endif
}
static int
garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_mark, int immediate_sweep, int reason)
{
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time();
#endif
gc_rest(objspace);
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
#endif
return gc_start(objspace, full_mark, immediate_mark, immediate_sweep, reason);
}
static int
gc_start(rb_objspace_t *objspace, const int full_mark, const int immediate_mark, const unsigned int immediate_sweep, int reason)
{
int do_full_mark = full_mark;
objspace->flags.immediate_sweep = immediate_sweep;
if (!heap_allocated_pages) return FALSE; /* heap is not ready */
if (!ready_to_gc(objspace)) return TRUE; /* GC is not allowed */
if (RGENGC_CHECK_MODE) {
assert(objspace->flags.stat == gc_stat_none);
assert(!is_lazy_sweeping(heap_eden));
assert(!is_incremental_marking(objspace));
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(Qnil);
#endif
}
gc_enter(objspace, "gc_start");
if (ruby_gc_stressful) {
int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0;
if ((flag & (1<<gc_stress_no_major)) == 0) {
do_full_mark = TRUE;
}
objspace->flags.immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep));
}
else {
#if USE_RGENGC
if (objspace->rgengc.need_major_gc) {
reason |= objspace->rgengc.need_major_gc;
do_full_mark = TRUE;
}
else if (RGENGC_FORCE_MAJOR_GC) {
reason = GPR_FLAG_MAJOR_BY_FORCE;
do_full_mark = TRUE;
}
objspace->rgengc.need_major_gc = GPR_FLAG_NONE;
#endif
}
if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) {
reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */
}
#if GC_ENABLE_INCREMENTAL_MARK
if (!GC_ENABLE_INCREMENTAL_MARK || objspace->flags.dont_incremental || immediate_mark) {
objspace->flags.during_incremental_marking = FALSE;
}
else {
objspace->flags.during_incremental_marking = do_full_mark;
}
#endif
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) {
objspace->flags.immediate_sweep = TRUE;
}
if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
gc_report(1, objspace, "gc_start(%d, %d, %d, reason: %d) => %d, %d, %d\n",
full_mark, immediate_mark, immediate_sweep, reason,
do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep);
objspace->profile.count++;
objspace->profile.latest_gc_info = reason;
objspace->profile.total_allocated_objects_at_gc_start = objspace->total_allocated_objects;
objspace->profile.heap_used_at_gc_start = heap_allocated_pages;
gc_prof_setup_new_record(objspace, reason);
gc_reset_malloc_info(objspace);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
if (RGENGC_CHECK_MODE) assert(during_gc);
gc_prof_timer_start(objspace);
{
gc_marks(objspace, do_full_mark);
}
gc_prof_timer_stop(objspace);
gc_exit(objspace, "gc_start");
return TRUE;
}
static void
gc_rest(rb_objspace_t *objspace)
{
int marking = is_incremental_marking(objspace);
int sweeping = is_lazy_sweeping(heap_eden);
if (marking || sweeping) {
gc_enter(objspace, "gc_rest");
if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(Qnil);
if (is_incremental_marking(objspace)) {
PUSH_MARK_FUNC_DATA(NULL);
gc_marks_rest(objspace);
POP_MARK_FUNC_DATA();
}
if (is_lazy_sweeping(heap_eden)) {
gc_sweep_rest(objspace);
}
gc_exit(objspace, "gc_rest");
}
}
struct objspace_and_reason {
rb_objspace_t *objspace;
int reason;
int full_mark;
int immediate_mark;
int immediate_sweep;
};
static void
gc_current_status_fill(rb_objspace_t *objspace, char *buff)
{
int i = 0;
if (is_marking(objspace)) {
buff[i++] = 'M';
#if USE_RGENGC
if (is_full_marking(objspace)) buff[i++] = 'F';
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) buff[i++] = 'I';
#endif
#endif
}
else if (is_sweeping(objspace)) {
buff[i++] = 'S';
if (is_lazy_sweeping(heap_eden)) buff[i++] = 'L';
}
else {
buff[i++] = 'N';
}
buff[i] = '\0';
}
static const char *
gc_current_status(rb_objspace_t *objspace)
{
static char buff[0x10];
gc_current_status_fill(objspace, buff);
return buff;
}
#if PRINT_ENTER_EXIT_TICK
static tick_t last_exit_tick;
static tick_t enter_tick;
static int enter_count = 0;
static char last_gc_status[0x10];
static inline void
gc_record(rb_objspace_t *objspace, int direction, const char *event)
{
if (direction == 0) { /* enter */
enter_count++;
enter_tick = tick();
gc_current_status_fill(objspace, last_gc_status);
}
else { /* exit */
tick_t exit_tick = tick();
char current_gc_status[0x10];
gc_current_status_fill(objspace, current_gc_status);
#if 1
/* [last mutator time] [gc time] [event] */
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
enter_tick - last_exit_tick,
exit_tick - enter_tick,
event,
last_gc_status, current_gc_status,
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
last_exit_tick = exit_tick;
#else
/* [enter_tick] [gc time] [event] */
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
enter_tick,
exit_tick - enter_tick,
event,
last_gc_status, current_gc_status,
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
#endif
}
}
#else /* PRINT_ENTER_EXIT_TICK */
static inline void
gc_record(rb_objspace_t *objspace, int direction, const char *event)
{
/* null */
}
#endif /* PRINT_ENTER_EXIT_TICK */
static inline void
gc_enter(rb_objspace_t *objspace, const char *event)
{
if (RGENGC_CHECK_MODE) assert(during_gc == 0);
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(Qnil);
during_gc = TRUE;
gc_report(1, objspace, "gc_entr: %s [%s]\n", event, gc_current_status(objspace));
gc_record(objspace, 0, event);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_ENTER, 0); /* TODO: which parameter should be passed? */
}
static inline void
gc_exit(rb_objspace_t *objspace, const char *event)
{
if (RGENGC_CHECK_MODE) assert(during_gc != 0);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_EXIT, 0); /* TODO: which parameter should be passsed? */
gc_record(objspace, 1, event);
gc_report(1, objspace, "gc_exit: %s [%s]\n", event, gc_current_status(objspace));
during_gc = FALSE;
}
static void *
gc_with_gvl(void *ptr)
{
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_mark, oar->immediate_sweep, oar->reason);
}
static int
garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_mark, int immediate_sweep, int reason)
{
if (dont_gc) return TRUE;
if (ruby_thread_has_gvl_p()) {
return garbage_collect(objspace, full_mark, immediate_mark, immediate_sweep, reason);
}
else {
if (ruby_native_thread_p()) {
struct objspace_and_reason oar;
oar.objspace = objspace;
oar.reason = reason;
oar.full_mark = full_mark;
oar.immediate_mark = immediate_mark;
oar.immediate_sweep = immediate_sweep;
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
int
rb_garbage_collect(void)
{
return garbage_collect(&rb_objspace, TRUE, TRUE, TRUE, GPR_FLAG_CAPI);
}
#undef Init_stack
void
Init_stack(volatile VALUE *addr)
{
ruby_init_stack(addr);
}
/*
* call-seq:
* GC.start -> nil
* GC.garbage_collect -> nil
* GC.start(full_mark: true, immediate_sweep: true) -> nil
* GC.garbage_collect(full_mark: true, immediate_sweep: true) -> nil
*
* Initiates garbage collection, unless manually disabled.
*
* This method is defined with keyword arguments that default to true:
*
* def GC.start(full_mark: true, immediate_sweep: true); end
*
* Use full_mark: false to perform a minor GC.
* Use immediate_sweep: false to defer sweeping (use lazy sweep).
*
* Note: These keyword arguments are implementation and version dependent. They
* are not guaranteed to be future-compatible, and may be ignored if the
* underlying implementation does not support them.
*/
static VALUE
gc_start_internal(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
int full_mark = TRUE, immediate_mark = TRUE, immediate_sweep = TRUE;
VALUE opt = Qnil;
static ID keyword_ids[3];
rb_scan_args(argc, argv, "0:", &opt);
if (!NIL_P(opt)) {
VALUE kwvals[3];
if (!keyword_ids[0]) {
keyword_ids[0] = rb_intern("full_mark");
keyword_ids[1] = rb_intern("immediate_mark");
keyword_ids[2] = rb_intern("immediate_sweep");
}
rb_get_kwargs(opt, keyword_ids, 0, 3, kwvals);
if (kwvals[0] != Qundef) full_mark = RTEST(kwvals[0]);
if (kwvals[1] != Qundef) immediate_mark = RTEST(kwvals[1]);
if (kwvals[2] != Qundef) immediate_sweep = RTEST(kwvals[2]);
}
garbage_collect(objspace, full_mark, immediate_mark, immediate_sweep, GPR_FLAG_METHOD);
if (!finalizing) finalize_deferred(objspace);
return Qnil;
}
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
void
rb_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
garbage_collect(objspace, TRUE, TRUE, TRUE, GPR_FLAG_CAPI);
if (!finalizing) finalize_deferred(objspace);
}
int
rb_during_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
return during_gc;
}
#if RGENGC_PROFILE >= 2
static const char *type_name(int type, VALUE obj);
static void
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
{
VALUE result = rb_hash_new();
int i;
for (i=0; i<T_MASK; i++) {
const char *type = type_name(i, 0);
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
}
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
}
#endif
size_t
rb_gc_count(void)
{
return rb_objspace.profile.count;
}
/*
* call-seq:
* GC.count -> Integer
*
* The number of times GC occurred.
*
* It returns the number of times GC occurred since the process started.
*
*/
static VALUE
gc_count(VALUE self)
{
return SIZET2NUM(rb_gc_count());
}
static VALUE
gc_info_decode(rb_objspace_t *objspace, const VALUE hash_or_key, const int orig_flags)
{
static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer, sym_state;
static VALUE sym_nofree, sym_oldgen, sym_shady, sym_force, sym_stress;
#if RGENGC_ESTIMATE_OLDMALLOC
static VALUE sym_oldmalloc;
#endif
static VALUE sym_newobj, sym_malloc, sym_method, sym_capi;
static VALUE sym_none, sym_marking, sym_sweeping;
VALUE hash = Qnil, key = Qnil;
VALUE major_by;
VALUE flags = orig_flags ? orig_flags : objspace->profile.latest_gc_info;
if (SYMBOL_P(hash_or_key)) {
key = hash_or_key;
}
else if (RB_TYPE_P(hash_or_key, T_HASH)) {
hash = hash_or_key;
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
if (sym_major_by == Qnil) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(major_by);
S(gc_by);
S(immediate_sweep);
S(have_finalizer);
S(state);
S(stress);
S(nofree);
S(oldgen);
S(shady);
S(force);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc);
#endif
S(newobj);
S(malloc);
S(method);
S(capi);
S(none);
S(marking);
S(sweeping);
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return (attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, (attr));
major_by =
(flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
(flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
(flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
(flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
#if RGENGC_ESTIMATE_OLDMALLOC
(flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
#endif
Qnil;
SET(major_by, major_by);
SET(gc_by,
(flags & GPR_FLAG_NEWOBJ) ? sym_newobj :
(flags & GPR_FLAG_MALLOC) ? sym_malloc :
(flags & GPR_FLAG_METHOD) ? sym_method :
(flags & GPR_FLAG_CAPI) ? sym_capi :
(flags & GPR_FLAG_STRESS) ? sym_stress :
Qnil
);
SET(have_finalizer, (flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
SET(immediate_sweep, (flags & GPR_FLAG_IMMEDIATE_SWEEP) ? Qtrue : Qfalse);
if (orig_flags == 0) {
SET(state, objspace->flags.stat == gc_stat_none ? sym_none :
objspace->flags.stat == gc_stat_marking ? sym_marking : sym_sweeping);
}
#undef SET
if (!NIL_P(key)) {/* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
VALUE
rb_gc_latest_gc_info(VALUE key)
{
rb_objspace_t *objspace = &rb_objspace;
return gc_info_decode(objspace, key, 0);
}
/*
* call-seq:
* GC.latest_gc_info -> {:gc_by=>:newobj}
* GC.latest_gc_info(hash) -> hash
* GC.latest_gc_info(:major_by) -> :malloc
*
* Returns information about the most recent garbage collection.
*/
static VALUE
gc_latest_gc_info(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE arg = Qnil;
if (rb_scan_args(argc, argv, "01", &arg) == 1) {
if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
}
if (arg == Qnil) {
arg = rb_hash_new();
}
return gc_info_decode(objspace, arg, 0);
}
enum gc_stat_sym {
gc_stat_sym_count,
gc_stat_sym_heap_allocated_pages,
gc_stat_sym_heap_sorted_length,
gc_stat_sym_heap_allocatable_pages,
gc_stat_sym_heap_available_slots,
gc_stat_sym_heap_live_slots,
gc_stat_sym_heap_free_slots,
gc_stat_sym_heap_final_slots,
gc_stat_sym_heap_marked_slots,
gc_stat_sym_heap_swept_slots,
gc_stat_sym_heap_eden_pages,
gc_stat_sym_heap_tomb_pages,
gc_stat_sym_total_allocated_pages,
gc_stat_sym_total_freed_pages,
gc_stat_sym_total_allocated_objects,
gc_stat_sym_total_freed_objects,
gc_stat_sym_malloc_increase_bytes,
gc_stat_sym_malloc_increase_bytes_limit,
#if USE_RGENGC
gc_stat_sym_minor_gc_count,
gc_stat_sym_major_gc_count,
gc_stat_sym_remembered_wb_unprotected_objects,
gc_stat_sym_remembered_wb_unprotected_objects_limit,
gc_stat_sym_old_objects,
gc_stat_sym_old_objects_limit,
#if RGENGC_ESTIMATE_OLDMALLOC
gc_stat_sym_oldmalloc_increase_bytes,
gc_stat_sym_oldmalloc_increase_bytes_limit,
#endif
#if RGENGC_PROFILE
gc_stat_sym_total_generated_normal_object_count,
gc_stat_sym_total_generated_shady_object_count,
gc_stat_sym_total_shade_operation_count,
gc_stat_sym_total_promoted_count,
gc_stat_sym_total_remembered_normal_object_count,
gc_stat_sym_total_remembered_shady_object_count,
#endif
#endif
gc_stat_sym_last
};
enum gc_stat_compat_sym {
gc_stat_compat_sym_gc_stat_heap_used,
gc_stat_compat_sym_heap_eden_page_length,
gc_stat_compat_sym_heap_tomb_page_length,
gc_stat_compat_sym_heap_increment,
gc_stat_compat_sym_heap_length,
gc_stat_compat_sym_heap_live_slot,
gc_stat_compat_sym_heap_free_slot,
gc_stat_compat_sym_heap_final_slot,
gc_stat_compat_sym_heap_swept_slot,
#if USE_RGENGC
gc_stat_compat_sym_remembered_shady_object,
gc_stat_compat_sym_remembered_shady_object_limit,
gc_stat_compat_sym_old_object,
gc_stat_compat_sym_old_object_limit,
#endif
gc_stat_compat_sym_total_allocated_object,
gc_stat_compat_sym_total_freed_object,
gc_stat_compat_sym_malloc_increase,
gc_stat_compat_sym_malloc_limit,
#if RGENGC_ESTIMATE_OLDMALLOC
gc_stat_compat_sym_oldmalloc_increase,
gc_stat_compat_sym_oldmalloc_limit,
#endif
gc_stat_compat_sym_last
};
static VALUE gc_stat_symbols[gc_stat_sym_last];
static VALUE gc_stat_compat_symbols[gc_stat_compat_sym_last];
static VALUE gc_stat_compat_table;
static void
setup_gc_stat_symbols(void)
{
if (gc_stat_symbols[0] == 0) {
#define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s))
S(count);
S(heap_allocated_pages);
S(heap_sorted_length);
S(heap_allocatable_pages);
S(heap_available_slots);
S(heap_live_slots);
S(heap_free_slots);
S(heap_final_slots);
S(heap_marked_slots);
S(heap_swept_slots);
S(heap_eden_pages);
S(heap_tomb_pages);
S(total_allocated_pages);
S(total_freed_pages);
S(total_allocated_objects);
S(total_freed_objects);
S(malloc_increase_bytes);
S(malloc_increase_bytes_limit);
#if USE_RGENGC
S(minor_gc_count);
S(major_gc_count);
S(remembered_wb_unprotected_objects);
S(remembered_wb_unprotected_objects_limit);
S(old_objects);
S(old_objects_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc_increase_bytes);
S(oldmalloc_increase_bytes_limit);
#endif
#if RGENGC_PROFILE
S(total_generated_normal_object_count);
S(total_generated_shady_object_count);
S(total_shade_operation_count);
S(total_promoted_count);
S(total_remembered_normal_object_count);
S(total_remembered_shady_object_count);
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
#undef S
#define S(s) gc_stat_compat_symbols[gc_stat_compat_sym_##s] = ID2SYM(rb_intern_const(#s))
S(gc_stat_heap_used);
S(heap_eden_page_length);
S(heap_tomb_page_length);
S(heap_increment);
S(heap_length);
S(heap_live_slot);
S(heap_free_slot);
S(heap_final_slot);
S(heap_swept_slot);
#if USE_RGEGC
S(remembered_shady_object);
S(remembered_shady_object_limit);
S(old_object);
S(old_object_limit);
#endif
S(total_allocated_object);
S(total_freed_object);
S(malloc_increase);
S(malloc_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc_increase);
S(oldmalloc_limit);
#endif
#undef S
{
VALUE table = gc_stat_compat_table = rb_hash_new();
rb_obj_hide(table);
rb_gc_register_mark_object(table);
/* compatibility layer for Ruby 2.1 */
#define OLD_SYM(s) gc_stat_compat_symbols[gc_stat_compat_sym_##s]
#define NEW_SYM(s) gc_stat_symbols[gc_stat_sym_##s]
rb_hash_aset(table, OLD_SYM(gc_stat_heap_used), NEW_SYM(heap_allocated_pages));
rb_hash_aset(table, OLD_SYM(heap_eden_page_length), NEW_SYM(heap_eden_pages));
rb_hash_aset(table, OLD_SYM(heap_tomb_page_length), NEW_SYM(heap_tomb_pages));
rb_hash_aset(table, OLD_SYM(heap_increment), NEW_SYM(heap_allocatable_pages));
rb_hash_aset(table, OLD_SYM(heap_length), NEW_SYM(heap_sorted_length));
rb_hash_aset(table, OLD_SYM(heap_live_slot), NEW_SYM(heap_live_slots));
rb_hash_aset(table, OLD_SYM(heap_free_slot), NEW_SYM(heap_free_slots));
rb_hash_aset(table, OLD_SYM(heap_final_slot), NEW_SYM(heap_final_slots));
rb_hash_aset(table, OLD_SYM(heap_swept_slot), NEW_SYM(heap_swept_slots));
#if USE_RGEGC
rb_hash_aset(table, OLD_SYM(remembered_shady_object), NEW_SYM(remembered_wb_unprotected_objects));
rb_hash_aset(table, OLD_SYM(remembered_shady_object_limit), NEW_SYM(remembered_wb_unprotected_objects_limit));
rb_hash_aset(table, OLD_SYM(old_object), NEW_SYM(old_objects));
rb_hash_aset(table, OLD_SYM(old_object_limit), NEW_SYM(old_objects_limit));
#endif
rb_hash_aset(table, OLD_SYM(total_allocated_object), NEW_SYM(total_allocated_objects));
rb_hash_aset(table, OLD_SYM(total_freed_object), NEW_SYM(total_freed_objects));
rb_hash_aset(table, OLD_SYM(malloc_increase), NEW_SYM(malloc_increase_bytes));
rb_hash_aset(table, OLD_SYM(malloc_limit), NEW_SYM(malloc_increase_bytes_limit));
#if RGENGC_ESTIMATE_OLDMALLOC
rb_hash_aset(table, OLD_SYM(oldmalloc_increase), NEW_SYM(oldmalloc_increase_bytes));
rb_hash_aset(table, OLD_SYM(oldmalloc_limit), NEW_SYM(oldmalloc_increase_bytes_limit));
#endif
#undef OLD_SYM
#undef NEW_SYM
rb_obj_freeze(table);
}
}
}
static VALUE
compat_key(VALUE key)
{
VALUE new_key = rb_hash_lookup(gc_stat_compat_table, key);
if (!NIL_P(new_key)) {
static int warned = 0;
if (warned == 0) {
rb_warn("GC.stat keys were changed from Ruby 2.1. "
"In this case, you refer to obsolete `%"PRIsVALUE"' (new key is `%"PRIsVALUE"'). "
"Please check <https://bugs.ruby-lang.org/issues/9924> for more information.",
key, new_key);
warned = 1;
}
}
return new_key;
}
static VALUE
default_proc_for_compat_func(VALUE hash, VALUE dmy, int argc, VALUE *argv)
{
VALUE key, new_key;
Check_Type(hash, T_HASH);
rb_check_arity(argc, 2, 2);
key = argv[1];
if ((new_key = compat_key(key)) != Qnil) {
return rb_hash_lookup(hash, new_key);
}
return Qnil;
}
size_t
gc_stat_internal(VALUE hash_or_sym)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE hash = Qnil, key = Qnil;
setup_gc_stat_symbols();
if (RB_TYPE_P(hash_or_sym, T_HASH)) {
hash = hash_or_sym;
if (NIL_P(RHASH_IFNONE(hash))) {
static VALUE default_proc_for_compat = 0;
if (default_proc_for_compat == 0) { /* TODO: it should be */
default_proc_for_compat = rb_proc_new(default_proc_for_compat_func, Qnil);
rb_gc_register_mark_object(default_proc_for_compat);
}
rb_hash_set_default_proc(hash, default_proc_for_compat);
}
}
else if (SYMBOL_P(hash_or_sym)) {
key = hash_or_sym;
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol argument");
}
#define SET(name, attr) \
if (key == gc_stat_symbols[gc_stat_sym_##name]) \
return attr; \
else if (hash != Qnil) \
rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr));
again:
SET(count, objspace->profile.count);
/* implementation dependent counters */
SET(heap_allocated_pages, heap_allocated_pages);
SET(heap_sorted_length, heap_pages_sorted_length);
SET(heap_allocatable_pages, heap_allocatable_pages);
SET(heap_available_slots, objspace_available_slots(objspace));
SET(heap_live_slots, objspace_live_slots(objspace));
SET(heap_free_slots, objspace_free_slots(objspace));
SET(heap_final_slots, heap_pages_final_slots);
SET(heap_marked_slots, objspace->marked_slots);
SET(heap_swept_slots, heap_pages_swept_slots);
SET(heap_eden_pages, heap_eden->page_length);
SET(heap_tomb_pages, heap_tomb->page_length);
SET(total_allocated_pages, objspace->profile.total_allocated_pages);
SET(total_freed_pages, objspace->profile.total_freed_pages);
SET(total_allocated_objects, objspace->total_allocated_objects);
SET(total_freed_objects, objspace->profile.total_freed_objects);
SET(malloc_increase_bytes, malloc_increase);
SET(malloc_increase_bytes_limit, malloc_limit);
#if USE_RGENGC
SET(minor_gc_count, objspace->profile.minor_gc_count);
SET(major_gc_count, objspace->profile.major_gc_count);
SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects);
SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit);
SET(old_objects, objspace->rgengc.old_objects);
SET(old_objects_limit, objspace->rgengc.old_objects_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase);
SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit);
#endif
#if RGENGC_PROFILE
SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count);
SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count);
SET(total_shade_operation_count, objspace->profile.total_shade_operation_count);
SET(total_promoted_count, objspace->profile.total_promoted_count);
SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count);
SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count);
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
VALUE new_key;
if ((new_key = compat_key(key)) != Qnil) {
key = new_key;
goto again;
}
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2
if (hash != Qnil) {
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types);
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
}
#endif
return 0;
}
/*
* call-seq:
* GC.stat -> Hash
* GC.stat(hash) -> hash
* GC.stat(:key) -> Numeric
*
* Returns a Hash containing information about the GC.
*
* The hash includes information about internal statistics about GC such as:
*
* {
* :count=>0,
* :heap_allocated_pages=>24,
* :heap_sorted_length=>24,
* :heap_allocatable_pages=>0,
* :heap_available_slots=>9783,
* :heap_live_slots=>7713,
* :heap_free_slots=>2070,
* :heap_final_slots=>0,
* :heap_marked_slots=>0,
* :heap_swept_slots=>0,
* :heap_eden_pages=>24,
* :heap_tomb_pages=>0,
* :total_allocated_pages=>24,
* :total_freed_pages=>0,
* :total_allocated_objects=>7796,
* :total_freed_objects=>83,
* :malloc_increase_bytes=>2389312,
* :malloc_increase_bytes_limit=>16777216,
* :minor_gc_count=>0,
* :major_gc_count=>0,
* :remembered_wb_unprotected_objects=>0,
* :remembered_wb_unprotected_objects_limit=>0,
* :old_objects=>0,
* :old_objects_limit=>0,
* :oldmalloc_increase_bytes=>2389760,
* :oldmalloc_increase_bytes_limit=>16777216
* }
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
gc_stat(int argc, VALUE *argv, VALUE self)
{
VALUE arg = Qnil;
if (rb_scan_args(argc, argv, "01", &arg) == 1) {
if (SYMBOL_P(arg)) {
size_t value = gc_stat_internal(arg);
return SIZET2NUM(value);
}
else if (!RB_TYPE_P(arg, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
}
if (arg == Qnil) {
arg = rb_hash_new();
}
gc_stat_internal(arg);
return arg;
}
size_t
rb_gc_stat(VALUE key)
{
if (SYMBOL_P(key)) {
size_t value = gc_stat_internal(key);
return value;
}
else {
gc_stat_internal(key);
return 0;
}
}
/*
* call-seq:
* GC.stress -> fixnum, true or false
*
* Returns current status of GC stress mode.
*/
static VALUE
gc_stress_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return ruby_gc_stress_mode;
}
static void
gc_stress_set(rb_objspace_t *objspace, VALUE flag)
{
objspace->flags.gc_stressful = RTEST(flag);
objspace->gc_stress_mode = flag;
}
/*
* call-seq:
* GC.stress = flag -> flag
*
* Updates the GC stress mode.
*
* When stress mode is enabled, the GC is invoked at every GC opportunity:
* all memory and object allocations.
*
* Enabling stress mode will degrade performance, it is only for debugging.
*
* flag can be true, false, or a fixnum bit-ORed following flags.
* 0x01:: no major GC
* 0x02:: no immediate sweep
* 0x04:: full mark after malloc/calloc/realloc
*/
static VALUE
gc_stress_set_m(VALUE self, VALUE flag)
{
rb_objspace_t *objspace = &rb_objspace;
gc_stress_set(objspace, flag);
return flag;
}
/*
* call-seq:
* GC.enable -> true or false
*
* Enables garbage collection, returning +true+ if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = FALSE;
return old ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.disable -> true or false
*
* Disables garbage collection, returning +true+ if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
gc_rest(objspace);
dont_gc = TRUE;
return old ? Qtrue : Qfalse;
}
static int
get_envparam_size(const char *name, size_t *default_value, size_t lower_bound)
{
char *ptr = getenv(name);
ssize_t val;
if (ptr != NULL && *ptr) {
size_t unit = 0;
char *end;
#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG
val = strtoll(ptr, &end, 0);
#else
val = strtol(ptr, &end, 0);
#endif
switch (*end) {
case 'k': case 'K':
unit = 1024;
++end;
break;
case 'm': case 'M':
unit = 1024*1024;
++end;
break;
case 'g': case 'G':
unit = 1024*1024*1024;
++end;
break;
}
while (*end && isspace((unsigned char)*end)) end++;
if (*end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (unit > 0) {
if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr);
return 0;
}
val *= unit;
}
if (val > 0 && (size_t)val > lower_bound) {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIdSIZE")\n", name, val, *default_value);
}
*default_value = (size_t)val;
return 1;
}
else {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIdSIZE") is ignored because it must be greater than %"PRIdSIZE".\n",
name, val, *default_value, lower_bound);
}
return 0;
}
}
return 0;
}
static int
get_envparam_double(const char *name, double *default_value, double lower_bound)
{
char *ptr = getenv(name);
double val;
if (ptr != NULL && *ptr) {
char *end;
val = strtod(ptr, &end);
if (!*ptr || *end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (val > lower_bound) {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value);
*default_value = val;
return 1;
}
else {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n", name, val, *default_value, lower_bound);
}
}
return 0;
}
static void
gc_set_initial_pages(void)
{
size_t min_pages;
rb_objspace_t *objspace = &rb_objspace;
min_pages = gc_params.heap_init_slots / HEAP_OBJ_LIMIT;
if (min_pages > heap_eden->page_length) {
heap_add_pages(objspace, heap_eden, min_pages - heap_eden->page_length);
}
}
/*
* GC tuning environment variables
*
* * RUBY_GC_HEAP_INIT_SLOTS
* - Initial allocation slots.
* * RUBY_GC_HEAP_FREE_SLOTS
* - Prepare at least this amount of slots after GC.
* - Allocate slots if there are not enough slots.
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
* - Allocate slots by this factor.
* - (next slots number) = (current slots number) * (this factor)
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
* - Allocation rate is limited to this number of slots.
* * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1)
* - Do full GC when the number of old objects is more than R * N
* where R is this factor and
* N is the number of old objects just after last full GC.
*
* * obsolete
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
*
* * RUBY_GC_MALLOC_LIMIT
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*
* * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*/
void
ruby_gc_set_params(int safe_level)
{
if (safe_level > 0) return;
/* RUBY_GC_HEAP_FREE_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) {
/* ok */
}
else if (get_envparam_size("RUBY_FREE_MIN", &gc_params.heap_free_slots, 0)) {
rb_warn("RUBY_FREE_MIN is obsolete. Use RUBY_GC_HEAP_FREE_SLOTS instead.");
}
/* RUBY_GC_HEAP_INIT_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) {
gc_set_initial_pages();
}
else if (get_envparam_size("RUBY_HEAP_MIN_SLOTS", &gc_params.heap_init_slots, 0)) {
rb_warn("RUBY_HEAP_MIN_SLOTS is obsolete. Use RUBY_GC_HEAP_INIT_SLOTS instead.");
gc_set_initial_pages();
}
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0);
get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0);
get_envparam_size ("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0);
get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0);
#if RGENGC_ESTIMATE_OLDMALLOC
if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) {
rb_objspace_t *objspace = &rb_objspace;
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0);
get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0);
#endif
}
void
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
{
rb_objspace_t *objspace = &rb_objspace;
if (is_markable_object(objspace, obj)) {
struct mark_func_data_struct mfd;
mfd.mark_func = func;
mfd.data = data;
PUSH_MARK_FUNC_DATA(&mfd);
gc_mark_children(objspace, obj);
POP_MARK_FUNC_DATA();
}
}
struct root_objects_data {
const char *category;
void (*func)(const char *category, VALUE, void *);
void *data;
};
static void
root_objects_from(VALUE obj, void *ptr)
{
const struct root_objects_data *data = (struct root_objects_data *)ptr;
(*data->func)(data->category, obj, data->data);
}
void
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
{
rb_objspace_t *objspace = &rb_objspace;
struct root_objects_data data;
struct mark_func_data_struct mfd;
data.func = func;
data.data = passing_data;
mfd.mark_func = root_objects_from;
mfd.data = &data;
PUSH_MARK_FUNC_DATA(&mfd);
gc_mark_roots(objspace, &data.category);
POP_MARK_FUNC_DATA();
}
/*
------------------------ Extended allocator ------------------------
*/
static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size);
static void *
negative_size_allocation_error_with_gvl(void *ptr)
{
rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
return 0; /* should not be reached */
}
static void
negative_size_allocation_error(const char *msg)
{
if (ruby_thread_has_gvl_p()) {
rb_raise(rb_eNoMemError, "%s", msg);
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
}
else {
fprintf(stderr, "[FATAL] %s\n", msg);
exit(EXIT_FAILURE);
}
}
}
static void *
ruby_memerror_body(void *dummy)
{
rb_memerror();
return 0;
}
static void
ruby_memerror(void)
{
if (ruby_thread_has_gvl_p()) {
rb_memerror();
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(ruby_memerror_body, 0);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
void
rb_memerror(void)
{
rb_thread_t *th = GET_THREAD();
rb_objspace_t *objspace = &rb_objspace;
if (during_gc) gc_exit(objspace, "rb_memerror");
if (!nomem_error ||
rb_thread_raised_p(th, RAISED_NOMEMORY)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
rb_thread_raised_clear(th);
GET_THREAD()->errinfo = nomem_error;
JUMP_TAG(TAG_RAISE);
}
rb_thread_raised_set(th, RAISED_NOMEMORY);
rb_exc_raise(nomem_error);
}
static void *
aligned_malloc(size_t alignment, size_t size)
{
void *res;
#if defined __MINGW32__
res = __mingw_aligned_malloc(size, alignment);
#elif defined _WIN32 && !defined __CYGWIN__
void *_aligned_malloc(size_t, size_t);
res = _aligned_malloc(size, alignment);
#elif defined(HAVE_POSIX_MEMALIGN)
if (posix_memalign(&res, alignment, size) == 0) {
return res;
}
else {
return NULL;
}
#elif defined(HAVE_MEMALIGN)
res = memalign(alignment, size);
#else
char* aligned;
res = malloc(alignment + size + sizeof(void*));
aligned = (char*)res + alignment + sizeof(void*);
aligned -= ((VALUE)aligned & (alignment - 1));
((void**)aligned)[-1] = res;
res = (void*)aligned;
#endif
#if defined(_DEBUG) || GC_DEBUG
/* alignment must be a power of 2 */
assert(((alignment - 1) & alignment) == 0);
assert(alignment % sizeof(void*) == 0);
#endif
return res;
}
static void
aligned_free(void *ptr)
{
#if defined __MINGW32__
__mingw_aligned_free(ptr);
#elif defined _WIN32 && !defined __CYGWIN__
_aligned_free(ptr);
#elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
free(ptr);
#else
free(((void**)ptr)[-1]);
#endif
}
static inline size_t
objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint)
{
#ifdef HAVE_MALLOC_USABLE_SIZE
return malloc_usable_size(ptr);
#else
return hint;
#endif
}
enum memop_type {
MEMOP_TYPE_MALLOC = 1,
MEMOP_TYPE_FREE = 2,
MEMOP_TYPE_REALLOC = 3
};
static inline void
atomic_sub_nounderflow(size_t *var, size_t sub)
{
if (sub == 0) return;
while (1) {
size_t val = *var;
if (val < sub) sub = val;
if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break;
}
}
static void
objspace_malloc_gc_stress(rb_objspace_t *objspace)
{
if (ruby_gc_stressful && ruby_native_thread_p()) {
garbage_collect_with_gvl(objspace, gc_stress_full_mark_after_malloc_p(), TRUE, TRUE, GPR_FLAG_STRESS | GPR_FLAG_MALLOC);
}
}
static void
objspace_malloc_increase(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
{
if (new_size > old_size) {
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
#if RGENGC_ESTIMATE_OLDMALLOC
ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size);
#endif
}
else {
atomic_sub_nounderflow(&malloc_increase, old_size - new_size);
#if RGENGC_ESTIMATE_OLDMALLOC
atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size);
#endif
}
if (type == MEMOP_TYPE_MALLOC) {
retry:
if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc) {
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(heap_eden)) {
gc_rest(objspace); /* gc_rest can reduce malloc_increase */
goto retry;
}
garbage_collect_with_gvl(objspace, FALSE, FALSE, FALSE, GPR_FLAG_MALLOC);
}
}
#if MALLOC_ALLOCATED_SIZE
if (new_size >= old_size) {
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size);
}
else {
size_t dec_size = old_size - new_size;
size_t allocated_size = objspace->malloc_params.allocated_size;
#if MALLOC_ALLOCATED_SIZE_CHECK
if (allocated_size < dec_size) {
rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size.");
}
#endif
atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size);
}
if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %d, old_size: %d\n",
mem,
type == MEMOP_TYPE_MALLOC ? "malloc" :
type == MEMOP_TYPE_FREE ? "free " :
type == MEMOP_TYPE_REALLOC ? "realloc": "error",
(int)new_size, (int)old_size);
switch (type) {
case MEMOP_TYPE_MALLOC:
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
break;
case MEMOP_TYPE_FREE:
{
size_t allocations = objspace->malloc_params.allocations;
if (allocations > 0) {
atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1);
}
#if MALLOC_ALLOCATED_SIZE_CHECK
else {
if (RGENGC_CHECK_MODE) assert(objspace->malloc_params.allocations > 0);
}
#endif
}
break;
case MEMOP_TYPE_REALLOC: /* ignore */ break;
}
#endif
}
static inline size_t
objspace_malloc_prepare(rb_objspace_t *objspace, size_t size)
{
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative allocation size (or too big)");
}
if (size == 0) size = 1;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
return size;
}
static inline void *
objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
{
#if CALC_EXACT_MALLOC_SIZE
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
#define TRY_WITH_GC(alloc) do { \
objspace_malloc_gc_stress(objspace); \
if (!(alloc) && \
(!garbage_collect_with_gvl(objspace, TRUE, TRUE, TRUE, GPR_FLAG_MALLOC) || /* full/immediate mark && immediate sweep */ \
!(alloc))) { \
ruby_memerror(); \
} \
} while (0)
static void *
objspace_xmalloc(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = malloc(size));
size = objspace_malloc_size(objspace, mem, size);
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC);
return objspace_malloc_fixup(objspace, mem, size);
}
static void *
objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size)
{
void *mem;
if ((ssize_t)new_size < 0) {
negative_size_allocation_error("negative re-allocation size");
}
if (!ptr) return objspace_xmalloc(objspace, new_size);
/*
* The behavior of realloc(ptr, 0) is implementation defined.
* Therefore we don't use realloc(ptr, 0) for portability reason.
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
*/
if (new_size == 0) {
objspace_xfree(objspace, ptr, old_size);
return 0;
}
#if CALC_EXACT_MALLOC_SIZE
new_size += sizeof(size_t);
ptr = (size_t *)ptr - 1;
old_size = ((size_t *)ptr)[0];
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
TRY_WITH_GC(mem = realloc(ptr, new_size));
new_size = objspace_malloc_size(objspace, mem, new_size);
#if CALC_EXACT_MALLOC_SIZE
((size_t *)mem)[0] = new_size;
mem = (size_t *)mem + 1;
#endif
objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC);
return mem;
}
static void
objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size)
{
#if CALC_EXACT_MALLOC_SIZE
ptr = ((size_t *)ptr) - 1;
old_size = ((size_t*)ptr)[0];
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
free(ptr);
objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE);
}
void *
ruby_xmalloc(size_t size)
{
return objspace_xmalloc(&rb_objspace, size);
}
void
ruby_malloc_size_overflow(size_t count, size_t elsize)
{
rb_raise(rb_eArgError,
"malloc: possible integer overflow (%"PRIdSIZE"*%"PRIdSIZE")",
count, elsize);
}
#define xmalloc2_size ruby_xmalloc2_size
void *
ruby_xmalloc2(size_t n, size_t size)
{
return objspace_xmalloc(&rb_objspace, xmalloc2_size(n, size));
}
static void *
objspace_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
{
void *mem;
size_t size;
size = xmalloc2_size(count, elsize);
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = calloc(1, size));
size = objspace_malloc_size(objspace, mem, size);
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC);
return objspace_malloc_fixup(objspace, mem, size);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
return objspace_xcalloc(&rb_objspace, n, size);
}
#ifdef ruby_sized_xrealloc
#undef ruby_sized_xrealloc
#endif
void *
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
{
return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size);
}
void *
ruby_xrealloc(void *ptr, size_t new_size)
{
return ruby_sized_xrealloc(ptr, new_size, 0);
}
#ifdef ruby_sized_xrealloc2
#undef ruby_sized_xrealloc2
#endif
void *
ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "realloc: possible integer overflow");
}
return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size);
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t size)
{
return ruby_sized_xrealloc2(ptr, n, size, 0);
}
#ifdef ruby_sized_xfree
#undef ruby_sized_xfree
#endif
void
ruby_sized_xfree(void *x, size_t size)
{
if (x) {
objspace_xfree(&rb_objspace, x, size);
}
}
void
ruby_xfree(void *x)
{
ruby_sized_xfree(x, 0);
}
/* Mimic ruby_xmalloc, but need not rb_objspace.
* should return pointer suitable for ruby_xfree
*/
void *
ruby_mimmalloc(size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
mem = malloc(size);
#if CALC_EXACT_MALLOC_SIZE
/* set 0 for consistency of allocated_size/allocations */
((size_t *)mem)[0] = 0;
mem = (size_t *)mem + 1;
#endif
return mem;
}
void
ruby_mimfree(void *ptr)
{
size_t *mem = (size_t *)ptr;
#if CALC_EXACT_MALLOC_SIZE
mem = mem - 1;
#endif
free(mem);
}
void *
rb_alloc_tmp_buffer(volatile VALUE *store, long len)
{
NODE *s;
long cnt;
void *ptr;
if (len < 0 || (cnt = (long)roomof(len, sizeof(VALUE))) < 0) {
rb_raise(rb_eArgError, "negative buffer size (or size too big)");
}
s = rb_node_newnode(NODE_ALLOCA, 0, 0, 0);
ptr = ruby_xmalloc(cnt * sizeof(VALUE));
s->u1.value = (VALUE)ptr;
s->u3.cnt = cnt;
*store = (VALUE)s;
return ptr;
}
void
rb_free_tmp_buffer(volatile VALUE *store)
{
VALUE s = ATOMIC_VALUE_EXCHANGE(*store, 0);
if (s) {
void *ptr = ATOMIC_PTR_EXCHANGE(RNODE(s)->u1.node, 0);
RNODE(s)->u3.cnt = 0;
ruby_xfree(ptr);
}
}
#if MALLOC_ALLOCATED_SIZE
/*
* call-seq:
* GC.malloc_allocated_size -> Integer
*
* Returns the size of memory allocated by malloc().
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocated_size(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
}
/*
* call-seq:
* GC.malloc_allocations -> Integer
*
* Returns the number of malloc() allocations.
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocations(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocations);
}
#endif
/*
------------------------------ WeakMap ------------------------------
*/
struct weakmap {
st_table *obj2wmap; /* obj -> [ref,...] */
st_table *wmap2obj; /* ref -> obj */
VALUE final;
};
#define WMAP_DELETE_DEAD_OBJECT_IN_MARK 0
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
static int
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (!is_live_object(objspace, obj)) return ST_DELETE;
return ST_CONTINUE;
}
#endif
static void
wmap_mark(void *ptr)
{
struct weakmap *w = ptr;
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
#endif
rb_gc_mark(w->final);
}
static int
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE));
return ST_CONTINUE;
}
static void
wmap_free(void *ptr)
{
struct weakmap *w = ptr;
st_foreach(w->obj2wmap, wmap_free_map, 0);
st_free_table(w->obj2wmap);
st_free_table(w->wmap2obj);
}
static int
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
*(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE);
return ST_CONTINUE;
}
static size_t
wmap_memsize(const void *ptr)
{
size_t size;
const struct weakmap *w = ptr;
if (!w) return 0;
size = sizeof(*w);
size += st_memsize(w->obj2wmap);
size += st_memsize(w->wmap2obj);
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
return size;
}
static const rb_data_type_t weakmap_type = {
"weakmap",
{
wmap_mark,
wmap_free,
wmap_memsize,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
wmap_allocate(VALUE klass)
{
struct weakmap *w;
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
w->obj2wmap = st_init_numtable();
w->wmap2obj = st_init_numtable();
w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
return obj;
}
static int
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
VALUE wmap, *ptr, size, i, j;
if (!existing) return ST_STOP;
wmap = (VALUE)arg, ptr = (VALUE *)*value;
for (i = j = 1, size = ptr[0]; i <= size; ++i) {
if (ptr[i] != wmap) {
ptr[j++] = ptr[i];
}
}
if (j == 1) {
ruby_sized_xfree(ptr, i * sizeof(VALUE));
return ST_DELETE;
}
if (j < i) {
ptr = ruby_sized_xrealloc2(ptr, j + 1, sizeof(VALUE), i);
ptr[0] = j;
*value = (st_data_t)ptr;
}
return ST_CONTINUE;
}
static VALUE
wmap_finalize(VALUE self, VALUE objid)
{
st_data_t orig, wmap, data;
VALUE obj, *rids, i, size;
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
/* Get reference from object id. */
obj = obj_id_to_ref(objid);
/* obj is original referenced object and/or weak reference. */
orig = (st_data_t)obj;
if (st_delete(w->obj2wmap, &orig, &data)) {
rids = (VALUE *)data;
size = *rids++;
for (i = 0; i < size; ++i) {
wmap = (st_data_t)rids[i];
st_delete(w->wmap2obj, &wmap, NULL);
}
ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE));
}
wmap = (st_data_t)obj;
if (st_delete(w->wmap2obj, &wmap, &orig)) {
wmap = (st_data_t)obj;
st_update(w->obj2wmap, orig, wmap_final_func, wmap);
}
return self;
}
struct wmap_iter_arg {
rb_objspace_t *objspace;
VALUE value;
};
static int
wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE str = (VALUE)arg;
VALUE k = (VALUE)key, v = (VALUE)val;
if (RSTRING_PTR(str)[0] == '#') {
rb_str_cat2(str, ", ");
}
else {
rb_str_cat2(str, ": ");
RSTRING_PTR(str)[0] = '#';
}
k = SPECIAL_CONST_P(k) ? rb_inspect(k) : rb_any_to_s(k);
rb_str_append(str, k);
rb_str_cat2(str, " => ");
v = SPECIAL_CONST_P(v) ? rb_inspect(v) : rb_any_to_s(v);
rb_str_append(str, v);
OBJ_INFECT(str, k);
OBJ_INFECT(str, v);
return ST_CONTINUE;
}
static VALUE
wmap_inspect(VALUE self)
{
VALUE str;
VALUE c = rb_class_name(CLASS_OF(self));
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self);
if (w->wmap2obj) {
st_foreach(w->wmap2obj, wmap_inspect_i, str);
}
RSTRING_PTR(str)[0] = '#';
rb_str_cat2(str, ">");
return str;
}
static int
wmap_each_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield_values(2, (VALUE)key, obj);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield((VALUE)key);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_key(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield(obj);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_value(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace);
return self;
}
static int
wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_ary_push(ary, (VALUE)key);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_keys(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args);
return args.value;
}
static int
wmap_values_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_ary_push(ary, obj);
}
return ST_CONTINUE;
}
/* Iterates over values and objects in a weakly referenced object */
static VALUE
wmap_values(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args);
return args.value;
}
static int
wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
VALUE size, *ptr, *optr;
if (existing) {
size = (ptr = optr = (VALUE *)*val)[0];
++size;
ptr = ruby_sized_xrealloc2(ptr, size + 1, sizeof(VALUE), size);
}
else {
optr = 0;
size = 1;
ptr = ruby_xmalloc2(2, sizeof(VALUE));
}
ptr[0] = size;
ptr[size] = (VALUE)arg;
if (ptr == optr) return ST_STOP;
*val = (st_data_t)ptr;
return ST_CONTINUE;
}
/* Creates a weak reference from the given key to the given value */
static VALUE
wmap_aset(VALUE self, VALUE wmap, VALUE orig)
{
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
should_be_finalizable(orig);
should_be_finalizable(wmap);
define_final0(orig, w->final);
define_final0(wmap, w->final);
st_update(w->obj2wmap, (st_data_t)orig, wmap_aset_update, wmap);
st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
return nonspecial_obj_id(orig);
}
/* Retrieves a weakly referenced object with the given key */
static VALUE
wmap_aref(VALUE self, VALUE wmap)
{
st_data_t data;
VALUE obj;
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
obj = (VALUE)data;
if (!is_id_value(objspace, obj)) return Qnil;
if (!is_live_object(objspace, obj)) return Qnil;
return obj;
}
/* Returns +true+ if +key+ is registered */
static VALUE
wmap_has_key(VALUE self, VALUE key)
{
return NIL_P(wmap_aref(self, key)) ? Qfalse : Qtrue;
}
static VALUE
wmap_size(VALUE self)
{
struct weakmap *w;
st_index_t n;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
n = w->wmap2obj->num_entries;
#if SIZEOF_ST_INDEX_T <= SIZEOF_LONG
return ULONG2NUM(n);
#else
return ULL2NUM(n);
#endif
}
/*
------------------------------ GC profiler ------------------------------
*/
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
/* return sec in user time */
static double
getrusage_time(void)
{
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
{
static int try_clock_gettime = 1;
struct timespec ts;
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
else {
try_clock_gettime = 0;
}
}
#endif
#ifdef RUSAGE_SELF
{
struct rusage usage;
struct timeval time;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
time = usage.ru_utime;
return time.tv_sec + time.tv_usec * 1e-6;
}
}
#endif
#ifdef _WIN32
{
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER ui;
LONG_LONG q;
double t;
if (GetProcessTimes(GetCurrentProcess(),
&creation_time, &exit_time, &kernel_time, &user_time) != 0) {
memcpy(&ui, &user_time, sizeof(FILETIME));
q = ui.QuadPart / 10L;
t = (DWORD)(q % 1000000L) * 1e-6;
q /= 1000000L;
#ifdef __GNUC__
t += q;
#else
t += (double)(DWORD)(q >> 16) * (1 << 16);
t += (DWORD)q & ~(~0 << 16);
#endif
return t;
}
}
#endif
return 0.0;
}
static inline void
gc_prof_setup_new_record(rb_objspace_t *objspace, int reason)
{
if (objspace->profile.run) {
size_t index = objspace->profile.next_index;
gc_profile_record *record;
/* create new record */
objspace->profile.next_index++;
if (!objspace->profile.records) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
objspace->profile.records = malloc(sizeof(gc_profile_record) * objspace->profile.size);
}
if (index >= objspace->profile.size) {
objspace->profile.size += 1000;
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
}
if (!objspace->profile.records) {
rb_bug("gc_profile malloc or realloc miss");
}
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
MEMZERO(record, gc_profile_record, 1);
/* setup before-GC parameter */
record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0);
#if MALLOC_ALLOCATED_SIZE
record->allocated_size = malloc_allocated_size;
#endif
#if GC_PROFILE_DETAIL_MEMORY
#ifdef RUSAGE_SELF
{
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
record->maxrss = usage.ru_maxrss;
record->minflt = usage.ru_minflt;
record->majflt = usage.ru_majflt;
}
}
#endif
#endif
}
}
static inline void
gc_prof_timer_start(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
#if GC_PROFILE_MORE_DETAIL
record->prepare_time = objspace->profile.prepare_time;
#endif
record->gc_time = 0;
record->gc_invoke_time = getrusage_time();
}
}
static double
elapsed_time_from(double time)
{
double now = getrusage_time();
if (now > time) {
return now - time;
}
else {
return 0;
}
}
static inline void
gc_prof_timer_stop(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_time = elapsed_time_from(record->gc_invoke_time);
record->gc_invoke_time -= objspace->profile.invoke_time;
}
}
static inline void
gc_prof_mark_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_MARK_BEGIN();
}
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
}
#endif
}
static inline void
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
RUBY_DTRACE_GC_MARK_END();
}
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
}
#endif
}
static inline void
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_BEGIN();
}
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
objspace->profile.gc_sweep_start_time = getrusage_time();
}
}
}
static inline void
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_END();
}
if (gc_prof_enabled(objspace)) {
double sweep_time;
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
/* need to accumulate GC time for lazy sweep after gc() */
record->gc_time += sweep_time;
}
else if (GC_PROFILE_MORE_DETAIL) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
}
#if GC_PROFILE_MORE_DETAIL
record->gc_sweep_time += sweep_time;
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
#endif
if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE;
}
}
static inline void
gc_prof_set_malloc_info(rb_objspace_t *objspace)
{
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->allocate_increase = malloc_increase;
record->allocate_limit = malloc_limit;
}
#endif
}
static inline void
gc_prof_set_heap_info(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
size_t live = objspace->profile.total_allocated_objects_at_gc_start - objspace->profile.total_freed_objects;
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_OBJ_LIMIT;
#if GC_PROFILE_MORE_DETAIL
record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
record->heap_live_objects = live;
record->heap_free_objects = total - live;
#endif
record->heap_total_objects = total;
record->heap_use_size = live * sizeof(RVALUE);
record->heap_total_size = total * sizeof(RVALUE);
}
}
/*
* call-seq:
* GC::Profiler.clear -> nil
*
* Clears the GC profiler data.
*
*/
static VALUE
gc_profile_clear(void)
{
rb_objspace_t *objspace = &rb_objspace;
if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
if (!objspace->profile.records) {
rb_memerror();
}
}
MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size);
objspace->profile.next_index = 0;
objspace->profile.current_record = 0;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.raw_data -> [Hash, ...]
*
* Returns an Array of individual raw profile data Hashes ordered
* from earliest to latest by +:GC_INVOKE_TIME+.
*
* For example:
*
* [
* {
* :GC_TIME=>1.3000000000000858e-05,
* :GC_INVOKE_TIME=>0.010634999999999999,
* :HEAP_USE_SIZE=>289640,
* :HEAP_TOTAL_SIZE=>588960,
* :HEAP_TOTAL_OBJECTS=>14724,
* :GC_IS_MARKED=>false
* },
* # ...
* ]
*
* The keys mean:
*
* +:GC_TIME+::
* Time elapsed in seconds for this GC run
* +:GC_INVOKE_TIME+::
* Time elapsed in seconds from startup to when the GC was invoked
* +:HEAP_USE_SIZE+::
* Total bytes of heap used
* +:HEAP_TOTAL_SIZE+::
* Total size of heap in bytes
* +:HEAP_TOTAL_OBJECTS+::
* Total number of objects
* +:GC_IS_MARKED+::
* Returns +true+ if the GC is in mark phase
*
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
* to the following hash keys:
*
* +:GC_MARK_TIME+::
* +:GC_SWEEP_TIME+::
* +:ALLOCATE_INCREASE+::
* +:ALLOCATE_LIMIT+::
* +:HEAP_USE_PAGES+::
* +:HEAP_LIVE_OBJECTS+::
* +:HEAP_FREE_OBJECTS+::
* +:HAVE_FINALIZE+::
*
*/
static VALUE
gc_profile_record_get(void)
{
VALUE prof;
VALUE gc_profile = rb_ary_new();
size_t i;
rb_objspace_t *objspace = (&rb_objspace);
if (!objspace->profile.run) {
return Qnil;
}
for (i =0; i < objspace->profile.next_index; i++) {
gc_profile_record *record = &objspace->profile.records[i];
prof = rb_hash_new();
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(0, rb_hash_new(), record->flags));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
#if GC_PROFILE_MORE_DETAIL
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
#endif
#if RGENGC_PROFILE > 0
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
#endif
rb_ary_push(gc_profile, prof);
}
return gc_profile;
}
#if GC_PROFILE_MORE_DETAIL
#define MAJOR_REASON_MAX 0x10
static char *
gc_profile_dump_major_reason(int flags, char *buff)
{
int reason = flags & GPR_FLAG_MAJOR_MASK;
int i = 0;
if (reason == GPR_FLAG_NONE) {
buff[0] = '-';
buff[1] = 0;
}
else {
#define C(x, s) \
if (reason & GPR_FLAG_MAJOR_BY_##x) { \
buff[i++] = #x[0]; \
if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \
buff[i] = 0; \
}
C(NOFREE, N);
C(OLDGEN, O);
C(SHADY, S);
C(RESCAN, R);
C(STRESS, T);
#if RGENGC_ESTIMATE_OLDMALLOC
C(OLDMALLOC, M);
#endif
#undef C
}
return buff;
}
#endif
static void
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
{
rb_objspace_t *objspace = &rb_objspace;
size_t count = objspace->profile.next_index;
#ifdef MAJOR_REASON_MAX
char reason_str[MAJOR_REASON_MAX];
#endif
if (objspace->profile.run && count /* > 1 */) {
size_t i;
const gc_profile_record *record;
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
i+1, record->gc_invoke_time, record->heap_use_size,
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
}
#if GC_PROFILE_MORE_DETAIL
append(out, rb_str_new_cstr("\n\n" \
"More detail.\n" \
"Prepare Time = Previously GC's rest sweep time\n"
"Index Flags Allocate Inc. Allocate Limit"
#if CALC_EXACT_MALLOC_SIZE
" Allocated Size"
#endif
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
#if RGENGC_PROFILE
" OldgenObj RemNormObj RemShadObj"
#endif
#if GC_PROFILE_DETAIL_MEMORY
" MaxRSS(KB) MinorFLT MajorFLT"
#endif
"\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIdSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
#if CALC_EXACT_MALLOC_SIZE
" %15"PRIuSIZE
#endif
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#if RGENGC_PROFILE
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#endif
#if GC_PROFILE_DETAIL_MEMORY
"%11ld %8ld %8ld"
#endif
"\n",
i+1,
gc_profile_dump_major_reason(record->flags, reason_str),
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
record->allocate_increase, record->allocate_limit,
#if CALC_EXACT_MALLOC_SIZE
record->allocated_size,
#endif
record->heap_use_pages,
record->gc_mark_time*1000,
record->gc_sweep_time*1000,
record->prepare_time*1000,
record->heap_live_objects,
record->heap_free_objects,
record->removing_objects,
record->empty_objects
#if RGENGC_PROFILE
,
record->old_objects,
record->remembered_normal_objects,
record->remembered_shady_objects
#endif
#if GC_PROFILE_DETAIL_MEMORY
,
record->maxrss / 1024,
record->minflt,
record->majflt
#endif
));
}
#endif
}
}
/*
* call-seq:
* GC::Profiler.result -> String
*
* Returns a profile data report such as:
*
* GC 1 invokes.
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
* 1 0.012 159240 212940 10647 0.00000000000001530000
*/
static VALUE
gc_profile_result(void)
{
VALUE str = rb_str_buf_new(0);
gc_profile_dump_on(str, rb_str_buf_append);
return str;
}
/*
* call-seq:
* GC::Profiler.report
* GC::Profiler.report(io)
*
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
*
*/
static VALUE
gc_profile_report(int argc, VALUE *argv, VALUE self)
{
VALUE out;
if (argc == 0) {
out = rb_stdout;
}
else {
rb_scan_args(argc, argv, "01", &out);
}
gc_profile_dump_on(out, rb_io_write);
return Qnil;
}
/*
* call-seq:
* GC::Profiler.total_time -> float
*
* The total time used for garbage collection in seconds
*/
static VALUE
gc_profile_total_time(VALUE self)
{
double time = 0;
rb_objspace_t *objspace = &rb_objspace;
if (objspace->profile.run && objspace->profile.next_index > 0) {
size_t i;
size_t count = objspace->profile.next_index;
for (i = 0; i < count; i++) {
time += objspace->profile.records[i].gc_time;
}
}
return DBL2NUM(time);
}
/*
* call-seq:
* GC::Profiler.enabled? -> true or false
*
* The current status of GC profile mode.
*/
static VALUE
gc_profile_enable_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return objspace->profile.run ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC::Profiler.enable -> nil
*
* Starts the GC profiler.
*
*/
static VALUE
gc_profile_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = TRUE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.disable -> nil
*
* Stops the GC profiler.
*
*/
static VALUE
gc_profile_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = FALSE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
------------------------------ DEBUG ------------------------------
*/
static const char *
type_name(int type, VALUE obj)
{
switch (type) {
#define TYPE_NAME(t) case (t): return #t;
TYPE_NAME(T_NONE);
TYPE_NAME(T_OBJECT);
TYPE_NAME(T_CLASS);
TYPE_NAME(T_MODULE);
TYPE_NAME(T_FLOAT);
TYPE_NAME(T_STRING);
TYPE_NAME(T_REGEXP);
TYPE_NAME(T_ARRAY);
TYPE_NAME(T_HASH);
TYPE_NAME(T_STRUCT);
TYPE_NAME(T_BIGNUM);
TYPE_NAME(T_FILE);
TYPE_NAME(T_MATCH);
TYPE_NAME(T_COMPLEX);
TYPE_NAME(T_RATIONAL);
TYPE_NAME(T_NIL);
TYPE_NAME(T_TRUE);
TYPE_NAME(T_FALSE);
TYPE_NAME(T_SYMBOL);
TYPE_NAME(T_FIXNUM);
TYPE_NAME(T_UNDEF);
TYPE_NAME(T_IMEMO);
TYPE_NAME(T_NODE);
TYPE_NAME(T_ICLASS);
TYPE_NAME(T_ZOMBIE);
case T_DATA:
if (obj && rb_objspace_data_type_name(obj)) {
return rb_objspace_data_type_name(obj);
}
return "T_DATA";
#undef TYPE_NAME
}
return "unknown";
}
static const char *
obj_type_name(VALUE obj)
{
return type_name(TYPE(obj), obj);
}
static const char *
method_type_name(rb_method_type_t type)
{
switch (type) {
case VM_METHOD_TYPE_ISEQ: return "iseq";
case VM_METHOD_TYPE_ATTRSET: return "attrest";
case VM_METHOD_TYPE_IVAR: return "ivar";
case VM_METHOD_TYPE_BMETHOD: return "bmethod";
case VM_METHOD_TYPE_ALIAS: return "alias";
case VM_METHOD_TYPE_REFINED: return "refined";
case VM_METHOD_TYPE_CFUNC: return "cfunc";
case VM_METHOD_TYPE_ZSUPER: return "zsuper";
case VM_METHOD_TYPE_MISSING: return "missing";
case VM_METHOD_TYPE_OPTIMIZED: return "optimized";
case VM_METHOD_TYPE_UNDEF: return "undef";
case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented";
}
rb_bug("method_type_name: unreachable (type: %d)", type);
}
/* from array.c */
# define ARY_SHARED_P(ary) \
(assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
FL_TEST((ary),ELTS_SHARED)!=0)
# define ARY_EMBED_P(ary) \
(assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
FL_TEST((ary), RARRAY_EMBED_FLAG)!=0)
const char *
rb_raw_obj_info(char *buff, const int buff_size, VALUE obj)
{
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
const int type = BUILTIN_TYPE(obj);
#define TF(c) ((c) != 0 ? "true" : "false")
#define C(c, s) ((c) != 0 ? (s) : " ")
snprintf(buff, buff_size, "%p [%d%s%s%s%s] %s",
(void *)obj, age,
C(RVALUE_UNCOLLECTIBLE_BITMAP(obj), "L"),
C(RVALUE_MARK_BITMAP(obj), "M"),
C(RVALUE_MARKING_BITMAP(obj), "R"),
C(RVALUE_WB_UNPROTECTED_BITMAP(obj), "U"),
obj_type_name(obj));
if (internal_object_p(obj)) {
/* ignore */
}
else if (RBASIC(obj)->klass == 0) {
snprintf(buff, buff_size, "%s (temporary internal)", buff);
}
else {
VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass);
if (!NIL_P(class_path)) {
snprintf(buff, buff_size, "%s (%s)", buff, RSTRING_PTR(class_path));
}
}
#if GC_DEBUG
snprintf(buff, buff_size, "%s @%s:%d", buff, RANY(obj)->file, RANY(obj)->line);
#endif
switch (type) {
case T_NODE:
snprintf(buff, buff_size, "%s (%s)", buff,
ruby_node_name(nd_type(obj)));
break;
case T_ARRAY:
snprintf(buff, buff_size, "%s [%s%s] len: %d", buff,
C(ARY_EMBED_P(obj), "E"),
C(ARY_SHARED_P(obj), "S"),
(int)RARRAY_LEN(obj));
break;
case T_STRING: {
snprintf(buff, buff_size, "%s %s", buff, RSTRING_PTR(obj));
break;
}
case T_CLASS: {
VALUE class_path = rb_class_path_cached(obj);
if (!NIL_P(class_path)) {
snprintf(buff, buff_size, "%s %s", buff, RSTRING_PTR(class_path));
}
break;
}
case T_DATA: {
const char * const type_name = rb_objspace_data_type_name(obj);
if (type_name) {
snprintf(buff, buff_size, "%s %s", buff, type_name);
}
break;
}
case T_IMEMO: {
const char *imemo_name;
switch (imemo_type(obj)) {
#define IMEMO_NAME(x) case imemo_##x: imemo_name = #x; break;
IMEMO_NAME(none);
IMEMO_NAME(cref);
IMEMO_NAME(svar);
IMEMO_NAME(throw_data);
IMEMO_NAME(ifunc);
IMEMO_NAME(memo);
IMEMO_NAME(ment);
IMEMO_NAME(iseq);
default: rb_bug("unknown IMEMO");
#undef IMEMO_NAME
}
snprintf(buff, buff_size, "%s %s", buff, imemo_name);
switch (imemo_type(obj)) {
case imemo_ment: {
const rb_method_entry_t *me = &RANY(obj)->as.imemo.ment;
snprintf(buff, buff_size, "%s (called_id: %s, type: %s, alias: %d, class: %s)", buff,
rb_id2name(me->called_id), method_type_name(me->def->type), me->def->alias_count, obj_info(me->defined_class));
break;
}
case imemo_iseq: {
const rb_iseq_t *iseq = (const rb_iseq_t *)obj;
if (iseq->body->location.label) {
snprintf(buff, buff_size, "%s %s@%s:%d", buff,
RSTRING_PTR(iseq->body->location.label),
RSTRING_PTR(iseq->body->location.path),
FIX2INT(iseq->body->location.first_lineno));
}
break;
}
default:
break;
}
}
default:
break;
}
#undef TF
#undef C
return buff;
}
#if RGENGC_OBJ_INFO
#define OBJ_INFO_BUFFERS_NUM 10
#define OBJ_INFO_BUFFERS_SIZE 0x100
static int obj_info_buffers_index = 0;
static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE];
static const char *
obj_info(VALUE obj)
{
const int index = obj_info_buffers_index++;
char *const buff = &obj_info_buffers[index][0];
if (obj_info_buffers_index >= OBJ_INFO_BUFFERS_NUM) {
obj_info_buffers_index = 0;
}
return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj);
}
#else
static const char *
obj_info(VALUE obj)
{
return obj_type_name(obj);
}
#endif
const char *
rb_obj_info(VALUE obj)
{
if (!rb_special_const_p(obj)) {
return obj_info(obj);
}
else {
return obj_type_name(obj);
}
}
void
rb_obj_info_dump(VALUE obj)
{
char buff[0x100];
fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj));
}
#if GC_DEBUG
void
rb_gcdebug_print_obj_condition(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
fprintf(stderr, "created at: %s:%d\n", RANY(obj)->file, RANY(obj)->line);
if (is_pointer_to_heap(objspace, (void *)obj)) {
fprintf(stderr, "pointer to heap?: true\n");
}
else {
fprintf(stderr, "pointer to heap?: false\n");
return;
}
fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false");
#if USE_RGENGC
fprintf(stderr, "age? : %d\n", RVALUE_AGE(obj));
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false");
fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_UNPROTECTED(obj) ? "false" : "true");
fprintf(stderr, "remembered? : %s\n", RVALUE_REMEMBERED(obj) ? "true" : "false");
#endif
if (is_lazy_sweeping(heap_eden)) {
fprintf(stderr, "lazy sweeping?: true\n");
fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet");
}
else {
fprintf(stderr, "lazy sweeping?: false\n");
}
}
static VALUE
gcdebug_sentinel(VALUE obj, VALUE name)
{
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
return Qnil;
}
void
rb_gcdebug_sentinel(VALUE obj, const char *name)
{
rb_define_finalizer(obj, rb_proc_new(gcdebug_sentinel, (VALUE)name));
}
#endif /* GC_DEBUG */
#if GC_DEBUG_STRESS_TO_CLASS
static VALUE
rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
if (!stress_to_class) {
stress_to_class = rb_ary_tmp_new(argc);
}
rb_ary_cat(stress_to_class, argv, argc);
return self;
}
static VALUE
rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
int i;
if (stress_to_class) {
for (i = 0; i < argc; ++i) {
rb_ary_delete_same(stress_to_class, argv[i]);
}
if (RARRAY_LEN(stress_to_class) == 0) {
stress_to_class = 0;
}
}
return Qnil;
}
#endif
/*
* Document-module: ObjectSpace
*
* The ObjectSpace module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* ObjectSpace also provides support for object finalizers, procs that will be
* called when a specific object is about to be destroyed by garbage
* collection.
*
* require 'objspace'
*
* a = "A"
* b = "B"
*
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
*
* _produces:_
*
* Finalizer two on 537763470
* Finalizer one on 537763480
*/
/*
* Document-class: ObjectSpace::WeakMap
*
* An ObjectSpace::WeakMap object holds references to
* any objects, but those objects can get garbage collected.
*
* This class is mostly used internally by WeakRef, please use
* +lib/weakref.rb+ for the public interface.
*/
/* Document-class: GC::Profiler
*
* The GC profiler provides access to information on GC runs including time,
* length and object space size.
*
* Example:
*
* GC::Profiler.enable
*
* require 'rdoc/rdoc'
*
* GC::Profiler.report
*
* GC::Profiler.disable
*
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
*/
/*
* The GC module provides an interface to Ruby's mark and
* sweep garbage collection mechanism.
*
* Some of the underlying methods are also available via the ObjectSpace
* module.
*
* You may obtain information about the operation of the GC through
* GC::Profiler.
*/
void
Init_GC(void)
{
#undef rb_intern
VALUE rb_mObjSpace;
VALUE rb_mProfiler;
VALUE gc_constants;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", gc_start_internal, -1);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set_m, 1);
rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
rb_define_singleton_method(rb_mGC, "latest_gc_info", gc_latest_gc_info, -1);
rb_define_method(rb_mGC, "garbage_collect", gc_start_internal, -1);
gc_constants = rb_hash_new();
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE)));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_OBJ_LIMIT")), SIZET2NUM(HEAP_OBJ_LIMIT));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_SIZE")), SIZET2NUM(HEAP_BITMAP_SIZE));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_PLANES")), SIZET2NUM(HEAP_BITMAP_PLANES));
OBJ_FREEZE(gc_constants);
rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants);
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
rb_mObjSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObjSpace, "garbage_collect", gc_start_internal, -1);
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1);
rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory");
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
{
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject);
rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0);
rb_define_method(rb_cWeakMap, "each", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0);
rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0);
rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0);
rb_define_method(rb_cWeakMap, "values", wmap_values, 0);
rb_define_method(rb_cWeakMap, "size", wmap_size, 0);
rb_define_method(rb_cWeakMap, "length", wmap_size, 0);
rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
rb_include_module(rb_cWeakMap, rb_mEnumerable);
}
/* internal methods */
rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency, 0);
#if MALLOC_ALLOCATED_SIZE
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
#endif
#if GC_DEBUG_STRESS_TO_CLASS
rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1);
rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1);
#endif
/* ::GC::OPTS, which shows GC build options */
{
VALUE opts;
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
#define OPT(o) if (o) rb_ary_push(opts, rb_fstring_lit(#o))
OPT(GC_DEBUG);
OPT(USE_RGENGC);
OPT(RGENGC_DEBUG);
OPT(RGENGC_CHECK_MODE);
OPT(RGENGC_PROFILE);
OPT(RGENGC_ESTIMATE_OLDMALLOC);
OPT(GC_PROFILE_MORE_DETAIL);
OPT(GC_ENABLE_LAZY_SWEEP);
OPT(CALC_EXACT_MALLOC_SIZE);
OPT(MALLOC_ALLOCATED_SIZE);
OPT(MALLOC_ALLOCATED_SIZE_CHECK);
OPT(GC_PROFILE_DETAIL_MEMORY);
#undef OPT
OBJ_FREEZE(opts);
}
}