mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
0f35b58a2f
* ruby.c (set_arg0): long strings for $0 dumped core. * ruby.c (set_arg0): use setprogtitle() if it's available. * io.c (rb_io_popen): accept integer flags as mode. * file.c (rb_find_file_ext): extension table can be supplied from outside. renamed. * eval.c (rb_f_require): replace rb_find_file_noext by rb_find_file_ext. * eval.c (rb_provided): should also check feature without extension. * numeric.c (flo_to_s): do not rely on decimal point to be '.' git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1722 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
4531 lines
117 KiB
C
4531 lines
117 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Library General Public License as
|
||
published by the Free Software Foundation; either version 2 of the
|
||
License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Library General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Library General Public
|
||
License along with the GNU C Library; see the file LGPL. If not,
|
||
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
/* Multi-byte extension added May, 1993 by t^2 (Takahiro Tanimoto)
|
||
Last change: May 21, 1993 by t^2 */
|
||
/* removed gapped buffer support, multiple syntax support by matz <matz@nts.co.jp> */
|
||
/* Perl5 extension added by matz <matz@caelum.co.jp> */
|
||
/* UTF-8 extension added Jan 16 1999 by Yoshida Masato <yoshidam@tau.bekkoame.ne.jp> */
|
||
|
||
#include "config.h"
|
||
|
||
#ifdef HAVE_STRING_H
|
||
# include <string.h>
|
||
#else
|
||
# include <strings.h>
|
||
#endif
|
||
|
||
/* We write fatal error messages on standard error. */
|
||
#include <stdio.h>
|
||
|
||
/* isalpha(3) etc. are used for the character classes. */
|
||
#include <ctype.h>
|
||
#include <sys/types.h>
|
||
|
||
#ifndef PARAMS
|
||
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
|
||
# define PARAMS(args) args
|
||
# else
|
||
# define PARAMS(args) ()
|
||
# endif /* GCC. */
|
||
#endif /* Not PARAMS. */
|
||
|
||
#if defined(STDC_HEADERS)
|
||
# include <stddef.h>
|
||
#else
|
||
/* We need this for `regex.h', and perhaps for the Emacs include files. */
|
||
# include <sys/types.h>
|
||
#endif
|
||
|
||
#if !defined(__STDC__) && !defined(_MSC_VER)
|
||
# define volatile
|
||
#endif
|
||
|
||
#ifdef HAVE_PROTOTYPES
|
||
# define _(args) args
|
||
#else
|
||
# define _(args) ()
|
||
#endif
|
||
|
||
#ifdef RUBY_PLATFORM
|
||
#include "defines.h"
|
||
|
||
# define RUBY
|
||
extern int rb_prohibit_interrupt;
|
||
extern int rb_trap_pending;
|
||
void rb_trap_exec _((void));
|
||
|
||
# define CHECK_INTS if (!rb_prohibit_interrupt) {\
|
||
if (rb_trap_pending) rb_trap_exec();\
|
||
}
|
||
|
||
#define xmalloc ruby_xmalloc
|
||
#define xcalloc ruby_xcalloc
|
||
#define xrealloc ruby_xrealloc
|
||
#define xfree ruby_xfree
|
||
|
||
void *xmalloc _((size_t));
|
||
void *xcalloc _((size_t,size_t));
|
||
void *xrealloc _((void*,size_t));
|
||
void xfree _((void*));
|
||
#endif
|
||
|
||
/* Make alloca work the best possible way. */
|
||
#ifdef __GNUC__
|
||
# ifndef atarist
|
||
# ifndef alloca
|
||
# define alloca __builtin_alloca
|
||
# endif
|
||
# endif /* atarist */
|
||
#else
|
||
# if defined(HAVE_ALLOCA_H)
|
||
# include <alloca.h>
|
||
# elif !defined(alloca)
|
||
char *alloca();
|
||
# endif
|
||
#endif /* __GNUC__ */
|
||
|
||
#ifdef _AIX
|
||
#pragma alloca
|
||
#endif
|
||
|
||
#ifdef HAVE_STRING_H
|
||
# include <string.h>
|
||
#else
|
||
# include <strings.h>
|
||
#endif
|
||
|
||
#ifdef C_ALLOCA
|
||
#define FREE_VARIABLES() alloca(0)
|
||
#else
|
||
#define FREE_VARIABLES()
|
||
#endif
|
||
|
||
#define FREE_AND_RETURN_VOID(stackb) do { \
|
||
FREE_VARIABLES(); \
|
||
if (stackb != stacka) xfree(stackb); \
|
||
return; \
|
||
} while(0)
|
||
|
||
#define FREE_AND_RETURN(stackb,val) do { \
|
||
FREE_VARIABLES(); \
|
||
if (stackb != stacka) xfree(stackb); \
|
||
return(val); \
|
||
} while(0)
|
||
|
||
#define DOUBLE_STACK(type) do { \
|
||
type *stackx; \
|
||
unsigned int xlen = stacke - stackb; \
|
||
if (stackb == stacka) { \
|
||
stackx = (type*)xmalloc(2 * xlen * sizeof(type)); \
|
||
memcpy(stackx, stackb, xlen * sizeof (type)); \
|
||
} \
|
||
else { \
|
||
stackx = (type*)xrealloc(stackb, 2 * xlen * sizeof(type)); \
|
||
} \
|
||
/* Rearrange the pointers. */ \
|
||
stackp = stackx + (stackp - stackb); \
|
||
stackb = stackx; \
|
||
stacke = stackb + 2 * xlen; \
|
||
} while (0)
|
||
|
||
#define RE_TALLOC(n,t) ((t*)alloca((n)*sizeof(t)))
|
||
#define TMALLOC(n,t) ((t*)xmalloc((n)*sizeof(t)))
|
||
#define TREALLOC(s,n,t) (s=((t*)xrealloc(s,(n)*sizeof(t))))
|
||
|
||
#define EXPAND_FAIL_STACK() DOUBLE_STACK(unsigned char*)
|
||
#define ENSURE_FAIL_STACK(n) \
|
||
do { \
|
||
if (stacke - stackp <= (n)) { \
|
||
/* if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \
|
||
{ \
|
||
FREE_AND_RETURN(stackb,(-2)); \
|
||
}*/ \
|
||
\
|
||
/* Roughly double the size of the stack. */ \
|
||
EXPAND_FAIL_STACK(); \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Get the interface, including the syntax bits. */
|
||
#include "regex.h"
|
||
|
||
/* Subroutines for re_compile_pattern. */
|
||
static void store_jump _((char*, int, char*));
|
||
static void insert_jump _((int, char*, char*, char*));
|
||
static void store_jump_n _((char*, int, char*, unsigned));
|
||
static void insert_jump_n _((int, char*, char*, char*, unsigned));
|
||
static void insert_op _((int, char*, char*));
|
||
static void insert_op_2 _((int, char*, char*, int, int));
|
||
static int memcmp_translate _((unsigned char*, unsigned char*, int));
|
||
|
||
/* Define the syntax stuff, so we can do the \<, \>, etc. */
|
||
|
||
/* This must be nonzero for the wordchar and notwordchar pattern
|
||
commands in re_match. */
|
||
#define Sword 1
|
||
#define Sword2 2
|
||
|
||
#define SYNTAX(c) re_syntax_table[c]
|
||
|
||
static char re_syntax_table[256];
|
||
static void init_syntax_once _((void));
|
||
static const unsigned char *translate = 0;
|
||
static void init_regs _((struct re_registers*, unsigned int));
|
||
static void bm_init_skip _((int *, unsigned char*, int, const unsigned char*));
|
||
static int current_mbctype = MBCTYPE_ASCII;
|
||
|
||
#undef P
|
||
|
||
#ifdef RUBY
|
||
#include "util.h"
|
||
#endif
|
||
|
||
static void
|
||
init_syntax_once()
|
||
{
|
||
register int c;
|
||
static int done = 0;
|
||
|
||
if (done)
|
||
return;
|
||
|
||
memset(re_syntax_table, 0, sizeof re_syntax_table);
|
||
|
||
for (c=0; c<=0x7f; c++)
|
||
if (isalnum(c))
|
||
re_syntax_table[c] = Sword;
|
||
re_syntax_table['_'] = Sword;
|
||
|
||
for (c=0x80; c<=0xff; c++)
|
||
if (isalnum(c))
|
||
re_syntax_table[c] = Sword2;
|
||
done = 1;
|
||
}
|
||
|
||
void
|
||
re_set_casetable(table)
|
||
const char *table;
|
||
{
|
||
translate = (const unsigned char*)table;
|
||
}
|
||
|
||
/* Jim Meyering writes:
|
||
|
||
"... Some ctype macros are valid only for character codes that
|
||
isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
||
using /bin/cc or gcc but without giving an ansi option). So, all
|
||
ctype uses should be through macros like ISPRINT... If
|
||
STDC_HEADERS is defined, then autoconf has verified that the ctype
|
||
macros don't need to be guarded with references to isascii. ...
|
||
Defining isascii to 1 should let any compiler worth its salt
|
||
eliminate the && through constant folding."
|
||
Solaris defines some of these symbols so we must undefine them first. */
|
||
|
||
#undef ISASCII
|
||
#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
|
||
# define ISASCII(c) 1
|
||
#else
|
||
# define ISASCII(c) isascii(c)
|
||
#endif
|
||
|
||
#ifdef isblank
|
||
# define ISBLANK(c) (ISASCII(c) && isblank(c))
|
||
#else
|
||
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
||
#endif
|
||
#ifdef isgraph
|
||
# define ISGRAPH(c) (ISASCII(c) && isgraph(c))
|
||
#else
|
||
# define ISGRAPH(c) (ISASCII(c) && isprint(c) && !isspace(c))
|
||
#endif
|
||
|
||
#undef ISPRINT
|
||
#define ISPRINT(c) (ISASCII(c) && isprint(c))
|
||
#define ISDIGIT(c) (ISASCII(c) && isdigit(c))
|
||
#define ISALNUM(c) (ISASCII(c) && isalnum(c))
|
||
#define ISALPHA(c) (ISASCII(c) && isalpha(c))
|
||
#define ISCNTRL(c) (ISASCII(c) && iscntrl(c))
|
||
#define ISLOWER(c) (ISASCII(c) && islower(c))
|
||
#define ISPUNCT(c) (ISASCII(c) && ispunct(c))
|
||
#define ISSPACE(c) (ISASCII(c) && isspace(c))
|
||
#define ISUPPER(c) (ISASCII(c) && isupper(c))
|
||
#define ISXDIGIT(c) (ISASCII(c) && isxdigit(c))
|
||
|
||
#ifndef NULL
|
||
# define NULL (void *)0
|
||
#endif
|
||
|
||
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
||
since ours (we hope) works properly with all combinations of
|
||
machines, compilers, `char' and `unsigned char' argument types.
|
||
(Per Bothner suggested the basic approach.) */
|
||
#undef SIGN_EXTEND_CHAR
|
||
#if __STDC__
|
||
# define SIGN_EXTEND_CHAR(c) ((signed char)(c))
|
||
#else /* not __STDC__ */
|
||
/* As in Harbison and Steele. */
|
||
# define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128)
|
||
#endif
|
||
|
||
/* These are the command codes that appear in compiled regular
|
||
expressions, one per byte. Some command codes are followed by
|
||
argument bytes. A command code can specify any interpretation
|
||
whatsoever for its arguments. Zero-bytes may appear in the compiled
|
||
regular expression.
|
||
|
||
The value of `exactn' is needed in search.c (search_buffer) in emacs.
|
||
So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
|
||
`exactn' we use here must also be 1. */
|
||
|
||
enum regexpcode
|
||
{
|
||
unused=0,
|
||
exactn=1, /* Followed by one byte giving n, then by n literal bytes. */
|
||
begline, /* Fail unless at beginning of line. */
|
||
endline, /* Fail unless at end of line. */
|
||
begbuf, /* Succeeds if at beginning of buffer (if emacs) or at beginning
|
||
of string to be matched (if not). */
|
||
endbuf, /* Analogously, for end of buffer/string. */
|
||
endbuf2, /* End of buffer/string, or newline just before it. */
|
||
begpos, /* Matches where last scan//gsub left off. */
|
||
jump, /* Followed by two bytes giving relative address to jump to. */
|
||
jump_past_alt,/* Same as jump, but marks the end of an alternative. */
|
||
on_failure_jump, /* Followed by two bytes giving relative address of
|
||
place to resume at in case of failure. */
|
||
finalize_jump, /* Throw away latest failure point and then jump to
|
||
address. */
|
||
maybe_finalize_jump, /* Like jump but finalize if safe to do so.
|
||
This is used to jump back to the beginning
|
||
of a repeat. If the command that follows
|
||
this jump is clearly incompatible with the
|
||
one at the beginning of the repeat, such that
|
||
we can be sure that there is no use backtracking
|
||
out of repetitions already completed,
|
||
then we finalize. */
|
||
dummy_failure_jump, /* Jump, and push a dummy failure point. This
|
||
failure point will be thrown away if an attempt
|
||
is made to use it for a failure. A + construct
|
||
makes this before the first repeat. Also
|
||
use it as an intermediary kind of jump when
|
||
compiling an or construct. */
|
||
push_dummy_failure, /* Push a dummy failure point and continue. Used at the end of
|
||
alternatives. */
|
||
succeed_n, /* Used like on_failure_jump except has to succeed n times;
|
||
then gets turned into an on_failure_jump. The relative
|
||
address following it is useless until then. The
|
||
address is followed by two bytes containing n. */
|
||
jump_n, /* Similar to jump, but jump n times only; also the relative
|
||
address following is in turn followed by yet two more bytes
|
||
containing n. */
|
||
try_next, /* Jump to next pattern for the first time,
|
||
leaving this pattern on the failure stack. */
|
||
finalize_push, /* Finalize stack and push the beginning of the pattern
|
||
on the stack to retry (used for non-greedy match) */
|
||
finalize_push_n, /* Similar to finalize_push, buf finalize n time only */
|
||
set_number_at, /* Set the following relative location to the
|
||
subsequent number. */
|
||
anychar, /* Matches any (more or less) one character excluding newlines. */
|
||
anychar_repeat, /* Matches sequence of characters excluding newlines. */
|
||
charset, /* Matches any one char belonging to specified set.
|
||
First following byte is number of bitmap bytes.
|
||
Then come bytes for a bitmap saying which chars are in.
|
||
Bits in each byte are ordered low-bit-first.
|
||
A character is in the set if its bit is 1.
|
||
A character too large to have a bit in the map
|
||
is automatically not in the set. */
|
||
charset_not, /* Same parameters as charset, but match any character
|
||
that is not one of those specified. */
|
||
start_memory, /* Start remembering the text that is matched, for
|
||
storing in a memory register. Followed by one
|
||
byte containing the register number. Register numbers
|
||
must be in the range 0 through RE_NREGS. */
|
||
stop_memory, /* Stop remembering the text that is matched
|
||
and store it in a memory register. Followed by
|
||
one byte containing the register number. Register
|
||
numbers must be in the range 0 through RE_NREGS. */
|
||
start_paren, /* Place holder at the start of (?:..). */
|
||
stop_paren, /* Place holder at the end of (?:..). */
|
||
casefold_on, /* Turn on casefold flag. */
|
||
casefold_off, /* Turn off casefold flag. */
|
||
option_set, /* Turn on multi line match (match with newlines). */
|
||
start_nowidth, /* Save string point to the stack. */
|
||
stop_nowidth, /* Restore string place at the point start_nowidth. */
|
||
pop_and_fail, /* Fail after popping nowidth entry from stack. */
|
||
stop_backtrack, /* Restore backtrack stack at the point start_nowidth. */
|
||
duplicate, /* Match a duplicate of something remembered.
|
||
Followed by one byte containing the index of the memory
|
||
register. */
|
||
fail, /* always fails. */
|
||
wordchar, /* Matches any word-constituent character. */
|
||
notwordchar, /* Matches any char that is not a word-constituent. */
|
||
wordbeg, /* Succeeds if at word beginning. */
|
||
wordend, /* Succeeds if at word end. */
|
||
wordbound, /* Succeeds if at a word boundary. */
|
||
notwordbound,/* Succeeds if not at a word boundary. */
|
||
};
|
||
|
||
|
||
/* Number of failure points to allocate space for initially,
|
||
when matching. If this number is exceeded, more space is allocated,
|
||
so it is not a hard limit. */
|
||
|
||
#ifndef NFAILURES
|
||
#define NFAILURES 160
|
||
#endif
|
||
|
||
/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
||
#define STORE_NUMBER(destination, number) \
|
||
do { (destination)[0] = (number) & 0377; \
|
||
(destination)[1] = (number) >> 8; } while (0)
|
||
|
||
/* Same as STORE_NUMBER, except increment the destination pointer to
|
||
the byte after where the number is stored. Watch out that values for
|
||
DESTINATION such as p + 1 won't work, whereas p will. */
|
||
#define STORE_NUMBER_AND_INCR(destination, number) \
|
||
do { STORE_NUMBER(destination, number); \
|
||
(destination) += 2; } while (0)
|
||
|
||
|
||
/* Put into DESTINATION a number stored in two contingous bytes starting
|
||
at SOURCE. */
|
||
#define EXTRACT_NUMBER(destination, source) \
|
||
do { (destination) = *(source) & 0377; \
|
||
(destination) += SIGN_EXTEND_CHAR(*(char*)((source) + 1)) << 8; } while (0)
|
||
|
||
/* Same as EXTRACT_NUMBER, except increment the pointer for source to
|
||
point to second byte of SOURCE. Note that SOURCE has to be a value
|
||
such as p, not, e.g., p + 1. */
|
||
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
||
do { EXTRACT_NUMBER(destination, source); \
|
||
(source) += 2; } while (0)
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit-mask comprised of the various bits
|
||
defined in regex.h. */
|
||
|
||
long
|
||
re_set_syntax(syntax)
|
||
long syntax;
|
||
{
|
||
/* obsolete */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Macros for re_compile_pattern, which is found below these definitions. */
|
||
|
||
#define TRANSLATE_P() ((options&RE_OPTION_IGNORECASE) && translate)
|
||
#define MAY_TRANSLATE() ((bufp->options&(RE_OPTION_IGNORECASE|RE_MAY_IGNORECASE)) && translate)
|
||
/* Fetch the next character in the uncompiled pattern---translating it
|
||
if necessary. Also cast from a signed character in the constant
|
||
string passed to us by the user to an unsigned char that we can use
|
||
as an array index (in, e.g., `translate'). */
|
||
#define PATFETCH(c) \
|
||
do {if (p == pend) goto end_of_pattern; \
|
||
c = (unsigned char) *p++; \
|
||
if (TRANSLATE_P()) c = (unsigned char)translate[c]; \
|
||
} while (0)
|
||
|
||
/* Fetch the next character in the uncompiled pattern, with no
|
||
translation. */
|
||
#define PATFETCH_RAW(c) \
|
||
do {if (p == pend) goto end_of_pattern; \
|
||
c = (unsigned char)*p++; \
|
||
} while (0)
|
||
|
||
/* Go backwards one character in the pattern. */
|
||
#define PATUNFETCH p--
|
||
|
||
#define MBC2WC(c, p) \
|
||
do { \
|
||
if (current_mbctype == MBCTYPE_UTF8) { \
|
||
int n = mbclen(c) - 1; \
|
||
c &= (1<<(BYTEWIDTH-2-n)) - 1; \
|
||
while (n--) { \
|
||
c = c << 6 | *p++ & ((1<<6)-1); \
|
||
} \
|
||
} \
|
||
else { \
|
||
c <<= 8; \
|
||
c |= (unsigned char)*(p)++; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define PATFETCH_MBC(c) \
|
||
do { \
|
||
if (p + mbclen(c) - 1 >= pend) goto end_of_pattern; \
|
||
MBC2WC(c, p); \
|
||
} while(0)
|
||
|
||
#define WC2MBC1ST(c) \
|
||
((c<0x100)?(c):((current_mbctype != MBCTYPE_UTF8)?(((c)>>8)&0xff):utf8_firstbyte(c)))
|
||
|
||
static unsigned int
|
||
utf8_firstbyte(c)
|
||
unsigned long c;
|
||
{
|
||
if (c < 0x80) return c;
|
||
if (c <= 0x7ff) return ((c>>6)&0xff)|0xc0;
|
||
if (c <= 0xffff) return ((c>>12)&0xff)|0xe0;
|
||
if (c <= 0x1fffff) return ((c>>18)&0xff)|0xf0;
|
||
if (c <= 0x3ffffff) return ((c>>24)&0xff)|0xf8;
|
||
if (c <= 0x7fffffff) return ((c>>30)&0xff)|0xfc;
|
||
#if SIZEOF_INT > 4
|
||
if (c <= 0xfffffffff) return 0xfe;
|
||
#else
|
||
return 0xfe;
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
print_mbc(c)
|
||
unsigned int c;
|
||
{
|
||
if (current_mbctype == MBCTYPE_UTF8) {
|
||
if (c < 0x80)
|
||
printf("%c", c);
|
||
else if (c <= 0x7ff)
|
||
printf("%c%c", utf8_firstbyte(c), c&0x3f);
|
||
else if (c <= 0xffff)
|
||
printf("%c%c%c", utf8_firstbyte(c), (c>>6)&0x3f, c&0x3f);
|
||
else if (c <= 0x1fffff)
|
||
printf("%c%c%c%c", utf8_firstbyte(c), (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
|
||
else if (c <= 0x3ffffff)
|
||
printf("%c%c%c%c%c", utf8_firstbyte(c), (c>>18)&0x3f, (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
|
||
else if (c <= 0x7fffffff)
|
||
printf("%c%c%c%c%c%c", utf8_firstbyte(c), (c>>24)&0x3f, (c>>18)&0x3f, (c>>12)&0x3f, (c>>6)&0x3f, c&0x3f);
|
||
}
|
||
else if (c < 0xff) {
|
||
printf("\\%o", c);
|
||
}
|
||
else {
|
||
printf("%c%c", c>>BYTEWIDTH, c&0xff);
|
||
}
|
||
}
|
||
|
||
/* If the buffer isn't allocated when it comes in, use this. */
|
||
#define INIT_BUF_SIZE 28
|
||
|
||
/* Make sure we have at least N more bytes of space in buffer. */
|
||
#define GET_BUFFER_SPACE(n) \
|
||
do { \
|
||
while (b - bufp->buffer + (n) >= bufp->allocated) \
|
||
EXTEND_BUFFER; \
|
||
} while (0)
|
||
|
||
/* Make sure we have one more byte of buffer space and then add CH to it. */
|
||
#define BUFPUSH(ch) \
|
||
do { \
|
||
GET_BUFFER_SPACE(1); \
|
||
*b++ = (char)(ch); \
|
||
} while (0)
|
||
|
||
/* Extend the buffer by twice its current size via reallociation and
|
||
reset the pointers that pointed into the old allocation to point to
|
||
the correct places in the new allocation. If extending the buffer
|
||
results in it being larger than 1 << 16, then flag memory exhausted. */
|
||
#define EXTEND_BUFFER \
|
||
do { char *old_buffer = bufp->buffer; \
|
||
if (bufp->allocated == (1L<<16)) goto too_big; \
|
||
bufp->allocated *= 2; \
|
||
if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \
|
||
bufp->buffer = (char*)xrealloc(bufp->buffer, bufp->allocated); \
|
||
if (bufp->buffer == 0) \
|
||
goto memory_exhausted; \
|
||
b = (b - old_buffer) + bufp->buffer; \
|
||
if (fixup_alt_jump) \
|
||
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \
|
||
if (laststart) \
|
||
laststart = (laststart - old_buffer) + bufp->buffer; \
|
||
begalt = (begalt - old_buffer) + bufp->buffer; \
|
||
if (pending_exact) \
|
||
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
||
} while (0)
|
||
|
||
|
||
/* Set the bit for character C in a character set list. */
|
||
#define SET_LIST_BIT(c) \
|
||
(b[(unsigned char)(c) / BYTEWIDTH] \
|
||
|= 1 << ((unsigned char)(c) % BYTEWIDTH))
|
||
|
||
/* Get the next unsigned number in the uncompiled pattern. */
|
||
#define GET_UNSIGNED_NUMBER(num) \
|
||
do { if (p != pend) { \
|
||
PATFETCH(c); \
|
||
while (ISDIGIT(c)) { \
|
||
if (num < 0) \
|
||
num = 0; \
|
||
num = num * 10 + c - '0'; \
|
||
if (p == pend) \
|
||
break; \
|
||
PATFETCH(c); \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
|
||
#define STREQ(s1, s2) ((strcmp(s1, s2) == 0))
|
||
|
||
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
||
|
||
#define IS_CHAR_CLASS(string) \
|
||
(STREQ(string, "alpha") || STREQ(string, "upper") \
|
||
|| STREQ(string, "lower") || STREQ(string, "digit") \
|
||
|| STREQ(string, "alnum") || STREQ(string, "xdigit") \
|
||
|| STREQ(string, "space") || STREQ(string, "print") \
|
||
|| STREQ(string, "punct") || STREQ(string, "graph") \
|
||
|| STREQ(string, "cntrl") || STREQ(string, "blank"))
|
||
|
||
#define STORE_MBC(p, c) \
|
||
do { \
|
||
(p)[0] = (unsigned char)(((c) >>24) & 0xff); \
|
||
(p)[1] = (unsigned char)(((c) >>16) & 0xff); \
|
||
(p)[2] = (unsigned char)(((c) >> 8) & 0xff); \
|
||
(p)[3] = (unsigned char)(((c) >> 0) & 0xff); \
|
||
} while (0)
|
||
|
||
#define STORE_MBC_AND_INCR(p, c) \
|
||
do { \
|
||
*(p)++ = (unsigned char)(((c) >>24) & 0xff); \
|
||
*(p)++ = (unsigned char)(((c) >>16) & 0xff); \
|
||
*(p)++ = (unsigned char)(((c) >> 8) & 0xff); \
|
||
*(p)++ = (unsigned char)(((c) >> 0) & 0xff); \
|
||
} while (0)
|
||
|
||
#define EXTRACT_MBC(p) \
|
||
((unsigned int)((unsigned char)(p)[0] << 24 | \
|
||
(unsigned char)(p)[1] << 16 | \
|
||
(unsigned char)(p)[2] << 8 | \
|
||
(unsigned char)(p)[3]))
|
||
|
||
#define EXTRACT_MBC_AND_INCR(p) \
|
||
((unsigned int)((p) += 4, \
|
||
(unsigned char)(p)[-4] << 24 | \
|
||
(unsigned char)(p)[-3] << 16 | \
|
||
(unsigned char)(p)[-2] << 8 | \
|
||
(unsigned char)(p)[-1]))
|
||
|
||
#define EXTRACT_UNSIGNED(p) \
|
||
((unsigned char)(p)[0] | (unsigned char)(p)[1] << 8)
|
||
#define EXTRACT_UNSIGNED_AND_INCR(p) \
|
||
((p) += 2, (unsigned char)(p)[-2] | (unsigned char)(p)[-1] << 8)
|
||
|
||
/* Handle (mb)?charset(_not)?.
|
||
|
||
Structure of mbcharset(_not)? in compiled pattern.
|
||
|
||
struct {
|
||
unsinged char id; mbcharset(_not)?
|
||
unsigned char sbc_size;
|
||
unsigned char sbc_map[sbc_size]; same as charset(_not)? up to here.
|
||
unsigned short mbc_size; number of intervals.
|
||
struct {
|
||
unsigned long beg; beginning of interval.
|
||
unsigned long end; end of interval.
|
||
} intervals[mbc_size];
|
||
}; */
|
||
|
||
static void
|
||
set_list_bits(c1, c2, b)
|
||
unsigned long c1, c2;
|
||
unsigned char *b;
|
||
{
|
||
unsigned char sbc_size = b[-1];
|
||
unsigned short mbc_size = EXTRACT_UNSIGNED(&b[sbc_size]);
|
||
unsigned short beg, end, upb;
|
||
|
||
if (c1 > c2)
|
||
return;
|
||
b = &b[sbc_size + 2];
|
||
|
||
for (beg = 0, upb = mbc_size; beg < upb; ) {
|
||
unsigned short mid = (unsigned short)(beg + upb) >> 1;
|
||
|
||
if ((int)c1 - 1 > (int)EXTRACT_MBC(&b[mid*8+4]))
|
||
beg = mid + 1;
|
||
else
|
||
upb = mid;
|
||
}
|
||
|
||
for (end = beg, upb = mbc_size; end < upb; ) {
|
||
unsigned short mid = (unsigned short)(end + upb) >> 1;
|
||
|
||
if ((int)c2 >= (int)EXTRACT_MBC(&b[mid*8]) - 1)
|
||
end = mid + 1;
|
||
else
|
||
upb = mid;
|
||
}
|
||
|
||
if (beg != end) {
|
||
if (c1 > EXTRACT_MBC(&b[beg*8]))
|
||
c1 = EXTRACT_MBC(&b[beg*8]);
|
||
if (c2 < EXTRACT_MBC(&b[(end - 1)*8+4]))
|
||
c2 = EXTRACT_MBC(&b[(end - 1)*8+4]);
|
||
}
|
||
if (end < mbc_size && end != beg + 1)
|
||
/* NOTE: memcpy() would not work here. */
|
||
memmove(&b[(beg + 1)*8], &b[end*8], (mbc_size - end)*8);
|
||
STORE_MBC(&b[beg*8 + 0], c1);
|
||
STORE_MBC(&b[beg*8 + 4], c2);
|
||
mbc_size += beg - end + 1;
|
||
STORE_NUMBER(&b[-2], mbc_size);
|
||
}
|
||
|
||
static int
|
||
is_in_list(c, b)
|
||
unsigned long c;
|
||
const unsigned char *b;
|
||
{
|
||
unsigned short size;
|
||
unsigned short i, j;
|
||
|
||
size = *b++;
|
||
if ((int)c / BYTEWIDTH < (int)size && b[c / BYTEWIDTH] & 1 << c % BYTEWIDTH) {
|
||
return 1;
|
||
}
|
||
b += size + 2;
|
||
size = EXTRACT_UNSIGNED(&b[-2]);
|
||
if (size == 0) return 0;
|
||
|
||
for (i = 0, j = size; i < j; ) {
|
||
unsigned short k = (unsigned short)(i + j) >> 1;
|
||
|
||
if (c > EXTRACT_MBC(&b[k*8+4]))
|
||
i = k + 1;
|
||
else
|
||
j = k;
|
||
}
|
||
if (i < size && EXTRACT_MBC(&b[i*8]) <= c
|
||
&& ((unsigned char)c != '\n' && (unsigned char)c != '\0'))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
print_partial_compiled_pattern(start, end)
|
||
unsigned char *start;
|
||
unsigned char *end;
|
||
{
|
||
int mcnt, mcnt2;
|
||
unsigned char *p = start;
|
||
unsigned char *pend = end;
|
||
|
||
if (start == NULL) {
|
||
printf("(null)\n");
|
||
return;
|
||
}
|
||
|
||
/* Loop over pattern commands. */
|
||
while (p < pend) {
|
||
switch ((enum regexpcode)*p++) {
|
||
case unused:
|
||
printf("/unused");
|
||
break;
|
||
|
||
case exactn:
|
||
mcnt = *p++;
|
||
printf("/exactn/%d", mcnt);
|
||
do {
|
||
putchar('/');
|
||
printf("%c", *p++);
|
||
}
|
||
while (--mcnt);
|
||
break;
|
||
|
||
case start_memory:
|
||
mcnt = *p++;
|
||
printf("/start_memory/%d/%d", mcnt, *p++);
|
||
break;
|
||
|
||
case stop_memory:
|
||
mcnt = *p++;
|
||
printf("/stop_memory/%d/%d", mcnt, *p++);
|
||
break;
|
||
|
||
case start_paren:
|
||
printf("/start_paren");
|
||
break;
|
||
|
||
case stop_paren:
|
||
printf("/stop_paren");
|
||
break;
|
||
|
||
case casefold_on:
|
||
printf("/casefold_on");
|
||
break;
|
||
|
||
case casefold_off:
|
||
printf("/casefold_off");
|
||
break;
|
||
|
||
case option_set:
|
||
printf("/option_set/%d", *p++);
|
||
break;
|
||
|
||
case start_nowidth:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/start_nowidth//%d", mcnt);
|
||
break;
|
||
|
||
case stop_nowidth:
|
||
printf("/stop_nowidth//");
|
||
p += 2;
|
||
break;
|
||
|
||
case pop_and_fail:
|
||
printf("/pop_and_fail");
|
||
break;
|
||
|
||
case stop_backtrack:
|
||
printf("/stop_backtrack//");
|
||
p += 2;
|
||
break;
|
||
|
||
case duplicate:
|
||
printf("/duplicate/%d", *p++);
|
||
break;
|
||
|
||
case anychar:
|
||
printf("/anychar");
|
||
break;
|
||
|
||
case anychar_repeat:
|
||
printf("/anychar_repeat");
|
||
break;
|
||
|
||
case charset:
|
||
case charset_not:
|
||
{
|
||
register int c;
|
||
|
||
printf("/charset%s",
|
||
(enum regexpcode)*(p - 1) == charset_not ? "_not" : "");
|
||
|
||
mcnt = *p++;
|
||
printf("/%d", mcnt);
|
||
for (c = 0; c < mcnt; c++) {
|
||
unsigned bit;
|
||
unsigned char map_byte = p[c];
|
||
|
||
putchar ('/');
|
||
|
||
for (bit = 0; bit < BYTEWIDTH; bit++)
|
||
if (map_byte & (1 << bit))
|
||
printf("%c", c * BYTEWIDTH + bit);
|
||
}
|
||
p += mcnt;
|
||
mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
|
||
printf("/");
|
||
while (mcnt--) {
|
||
print_mbc(EXTRACT_MBC_AND_INCR(p));
|
||
printf("-");
|
||
print_mbc(EXTRACT_MBC_AND_INCR(p));
|
||
}
|
||
break;
|
||
}
|
||
|
||
case begline:
|
||
printf("/begline");
|
||
break;
|
||
|
||
case endline:
|
||
printf("/endline");
|
||
break;
|
||
|
||
case on_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/on_failure_jump//%d", mcnt);
|
||
break;
|
||
|
||
case dummy_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/dummy_failure_jump//%d", mcnt);
|
||
break;
|
||
|
||
case push_dummy_failure:
|
||
printf("/push_dummy_failure");
|
||
break;
|
||
|
||
case finalize_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/finalize_jump//%d", mcnt);
|
||
break;
|
||
|
||
case maybe_finalize_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/maybe_finalize_jump//%d", mcnt);
|
||
break;
|
||
|
||
case jump_past_alt:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/jump_past_alt//%d", mcnt);
|
||
break;
|
||
|
||
case jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/jump//%d", mcnt);
|
||
break;
|
||
|
||
case succeed_n:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
EXTRACT_NUMBER_AND_INCR(mcnt2, p);
|
||
printf("/succeed_n//%d//%d", mcnt, mcnt2);
|
||
break;
|
||
|
||
case jump_n:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
EXTRACT_NUMBER_AND_INCR(mcnt2, p);
|
||
printf("/jump_n//%d//%d", mcnt, mcnt2);
|
||
break;
|
||
|
||
case set_number_at:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
EXTRACT_NUMBER_AND_INCR(mcnt2, p);
|
||
printf("/set_number_at//%d//%d", mcnt, mcnt2);
|
||
break;
|
||
|
||
case try_next:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/try_next//%d", mcnt);
|
||
break;
|
||
|
||
case finalize_push:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
printf("/finalize_push//%d", mcnt);
|
||
break;
|
||
|
||
case finalize_push_n:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
EXTRACT_NUMBER_AND_INCR(mcnt2, p);
|
||
printf("/finalize_push_n//%d//%d", mcnt, mcnt2);
|
||
break;
|
||
|
||
case wordbound:
|
||
printf("/wordbound");
|
||
break;
|
||
|
||
case notwordbound:
|
||
printf("/notwordbound");
|
||
break;
|
||
|
||
case wordbeg:
|
||
printf("/wordbeg");
|
||
break;
|
||
|
||
case wordend:
|
||
printf("/wordend");
|
||
|
||
case wordchar:
|
||
printf("/wordchar");
|
||
break;
|
||
|
||
case notwordchar:
|
||
printf("/notwordchar");
|
||
break;
|
||
|
||
case begbuf:
|
||
printf("/begbuf");
|
||
break;
|
||
|
||
case endbuf:
|
||
printf("/endbuf");
|
||
break;
|
||
|
||
case endbuf2:
|
||
printf("/endbuf2");
|
||
break;
|
||
|
||
case begpos:
|
||
printf("/begpos");
|
||
break;
|
||
|
||
default:
|
||
printf("?%d", *(p-1));
|
||
}
|
||
}
|
||
printf("/\n");
|
||
}
|
||
|
||
|
||
static void
|
||
print_compiled_pattern(bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
unsigned char *buffer = (unsigned char*)bufp->buffer;
|
||
|
||
print_partial_compiled_pattern(buffer, buffer + bufp->used);
|
||
}
|
||
|
||
static char*
|
||
calculate_must_string(start, end)
|
||
char *start;
|
||
char *end;
|
||
{
|
||
int mcnt;
|
||
int max = 0;
|
||
char *p = start;
|
||
char *pend = end;
|
||
char *must = 0;
|
||
|
||
if (start == NULL) return 0;
|
||
|
||
/* Loop over pattern commands. */
|
||
while (p < pend) {
|
||
switch ((enum regexpcode)*p++) {
|
||
case unused:
|
||
break;
|
||
|
||
case exactn:
|
||
mcnt = *p;
|
||
if (mcnt > max) {
|
||
must = p;
|
||
max = mcnt;
|
||
}
|
||
p += mcnt+1;
|
||
break;
|
||
|
||
case start_memory:
|
||
case stop_memory:
|
||
p += 2;
|
||
break;
|
||
|
||
case duplicate:
|
||
p++;
|
||
break;
|
||
|
||
case casefold_on:
|
||
case casefold_off:
|
||
return 0; /* should not check must_string */
|
||
|
||
case pop_and_fail:
|
||
case anychar:
|
||
case anychar_repeat:
|
||
case begline:
|
||
case endline:
|
||
case wordbound:
|
||
case notwordbound:
|
||
case wordbeg:
|
||
case wordend:
|
||
case wordchar:
|
||
case notwordchar:
|
||
case begbuf:
|
||
case endbuf:
|
||
case endbuf2:
|
||
case begpos:
|
||
case push_dummy_failure:
|
||
case start_paren:
|
||
case stop_paren:
|
||
case option_set:
|
||
break;
|
||
|
||
case charset:
|
||
case charset_not:
|
||
mcnt = *p++;
|
||
p += mcnt;
|
||
mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
|
||
while (mcnt--) {
|
||
p += 4;
|
||
}
|
||
break;
|
||
|
||
case on_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (mcnt > 0) p += mcnt;
|
||
if ((enum regexpcode)p[-3] == jump) {
|
||
p -= 2;
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (mcnt > 0) p += mcnt;
|
||
}
|
||
break;
|
||
|
||
case dummy_failure_jump:
|
||
case succeed_n:
|
||
case try_next:
|
||
case jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (mcnt > 0) p += mcnt;
|
||
break;
|
||
|
||
case start_nowidth:
|
||
case stop_nowidth:
|
||
case stop_backtrack:
|
||
case finalize_jump:
|
||
case maybe_finalize_jump:
|
||
case finalize_push:
|
||
p += 2;
|
||
break;
|
||
|
||
case jump_n:
|
||
case set_number_at:
|
||
case finalize_push_n:
|
||
p += 4;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
return must;
|
||
}
|
||
|
||
static unsigned int
|
||
read_backslash(c)
|
||
int c;
|
||
{
|
||
switch (c) {
|
||
case 'n':
|
||
return '\n';
|
||
|
||
case 't':
|
||
return '\t';
|
||
|
||
case 'r':
|
||
return '\r';
|
||
|
||
case 'f':
|
||
return '\f';
|
||
|
||
case 'v':
|
||
return '\v';
|
||
|
||
case 'a':
|
||
return '\007';
|
||
|
||
case 'b':
|
||
return '\010';
|
||
|
||
case 'e':
|
||
return '\033';
|
||
}
|
||
return c;
|
||
}
|
||
|
||
static unsigned int
|
||
read_special(p, pend, pp)
|
||
const char *p, *pend, **pp;
|
||
{
|
||
int c;
|
||
|
||
PATFETCH_RAW(c);
|
||
switch (c) {
|
||
case 'M':
|
||
PATFETCH_RAW(c);
|
||
if (c != '-') return -1;
|
||
PATFETCH_RAW(c);
|
||
*pp = p;
|
||
if (c == '\\') {
|
||
return read_special(p, pend, pp) | 0x80;
|
||
}
|
||
else if (c == -1) return ~0;
|
||
else {
|
||
return ((c & 0xff) | 0x80);
|
||
}
|
||
|
||
case 'C':
|
||
PATFETCH_RAW(c);
|
||
if (c != '-') return ~0;
|
||
case 'c':
|
||
PATFETCH_RAW(c);
|
||
*pp = p;
|
||
if (c == '\\') {
|
||
c = read_special(p, pend, pp);
|
||
}
|
||
else if (c == '?') return 0177;
|
||
else if (c == -1) return ~0;
|
||
return c & 0x9f;
|
||
default:
|
||
return read_backslash(c);
|
||
}
|
||
|
||
end_of_pattern:
|
||
return ~0;
|
||
}
|
||
|
||
/* re_compile_pattern takes a regular-expression string
|
||
and converts it into a buffer full of byte commands for matching.
|
||
|
||
PATTERN is the address of the pattern string
|
||
SIZE is the length of it.
|
||
BUFP is a struct re_pattern_buffer * which points to the info
|
||
on where to store the byte commands.
|
||
This structure contains a char * which points to the
|
||
actual space, which should have been obtained with malloc.
|
||
re_compile_pattern may use realloc to grow the buffer space.
|
||
|
||
The number of bytes of commands can be found out by looking in
|
||
the `struct re_pattern_buffer' that bufp pointed to, after
|
||
re_compile_pattern returns. */
|
||
|
||
char *
|
||
re_compile_pattern(pattern, size, bufp)
|
||
const char *pattern;
|
||
int size;
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
register char *b = bufp->buffer;
|
||
register const char *p = pattern;
|
||
const char *nextp;
|
||
const char *pend = pattern + size;
|
||
register unsigned int c, c1;
|
||
const char *p0;
|
||
int numlen;
|
||
#define ERROR_MSG_MAX_SIZE 200
|
||
static char error_msg[ERROR_MSG_MAX_SIZE+1];
|
||
|
||
/* Address of the count-byte of the most recently inserted `exactn'
|
||
command. This makes it possible to tell whether a new exact-match
|
||
character can be added to that command or requires a new `exactn'
|
||
command. */
|
||
|
||
char *pending_exact = 0;
|
||
|
||
/* Address of the place where a forward-jump should go to the end of
|
||
the containing expression. Each alternative of an `or', except the
|
||
last, ends with a forward-jump of this sort. */
|
||
|
||
char *fixup_alt_jump = 0;
|
||
|
||
/* Address of start of the most recently finished expression.
|
||
This tells postfix * where to find the start of its operand. */
|
||
|
||
char *laststart = 0;
|
||
|
||
/* In processing a repeat, 1 means zero matches is allowed. */
|
||
|
||
char zero_times_ok;
|
||
|
||
/* In processing a repeat, 1 means many matches is allowed. */
|
||
|
||
char many_times_ok;
|
||
|
||
/* In processing a repeat, 1 means non-greedy matches. */
|
||
|
||
char greedy;
|
||
|
||
/* Address of beginning of regexp, or inside of last (. */
|
||
|
||
char *begalt = b;
|
||
|
||
/* Place in the uncompiled pattern (i.e., the {) to
|
||
which to go back if the interval is invalid. */
|
||
const char *beg_interval;
|
||
|
||
/* In processing an interval, at least this many matches must be made. */
|
||
int lower_bound;
|
||
|
||
/* In processing an interval, at most this many matches can be made. */
|
||
int upper_bound;
|
||
|
||
/* Stack of information saved by ( and restored by ).
|
||
Five stack elements are pushed by each (:
|
||
First, the value of b.
|
||
Second, the value of fixup_alt_jump.
|
||
Third, the value of begalt.
|
||
Fourth, the value of regnum.
|
||
Fifth, the type of the paren. */
|
||
|
||
int stacka[40];
|
||
int *stackb = stacka;
|
||
int *stackp = stackb;
|
||
int *stacke = stackb + 40;
|
||
int *stackt;
|
||
|
||
/* Counts ('s as they are encountered. Remembered for the matching ),
|
||
where it becomes the register number to put in the stop_memory
|
||
command. */
|
||
|
||
int regnum = 1;
|
||
|
||
int range = 0;
|
||
int had_mbchar = 0;
|
||
int had_num_literal = 0;
|
||
int had_char_class = 0;
|
||
|
||
int options = bufp->options;
|
||
|
||
bufp->fastmap_accurate = 0;
|
||
bufp->must = 0;
|
||
bufp->must_skip = 0;
|
||
bufp->stclass = 0;
|
||
|
||
/* Initialize the syntax table. */
|
||
init_syntax_once();
|
||
|
||
if (bufp->allocated == 0) {
|
||
bufp->allocated = INIT_BUF_SIZE;
|
||
if (bufp->buffer)
|
||
/* EXTEND_BUFFER loses when bufp->allocated is 0. */
|
||
bufp->buffer = (char*)xrealloc(bufp->buffer, INIT_BUF_SIZE);
|
||
else
|
||
/* Caller did not allocate a buffer. Do it for them. */
|
||
bufp->buffer = (char*)xmalloc(INIT_BUF_SIZE);
|
||
if (!bufp->buffer) goto memory_exhausted;
|
||
begalt = b = bufp->buffer;
|
||
}
|
||
|
||
while (p != pend) {
|
||
PATFETCH(c);
|
||
|
||
switch (c) {
|
||
case '$':
|
||
if (bufp->options & RE_OPTION_SINGLELINE) {
|
||
BUFPUSH(endbuf);
|
||
}
|
||
else {
|
||
p0 = p;
|
||
/* When testing what follows the $,
|
||
look past the \-constructs that don't consume anything. */
|
||
|
||
while (p0 != pend) {
|
||
if (*p0 == '\\' && p0 + 1 != pend
|
||
&& (p0[1] == 'b' || p0[1] == 'B'))
|
||
p0 += 2;
|
||
else
|
||
break;
|
||
}
|
||
BUFPUSH(endline);
|
||
}
|
||
break;
|
||
|
||
case '^':
|
||
if (bufp->options & RE_OPTION_SINGLELINE)
|
||
BUFPUSH(begbuf);
|
||
else
|
||
BUFPUSH(begline);
|
||
break;
|
||
|
||
case '+':
|
||
case '?':
|
||
case '*':
|
||
/* If there is no previous pattern, char not special. */
|
||
if (!laststart) {
|
||
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
|
||
"invalid regular expression; there's no previous pattern, to which '%c' would define cardinality at %d",
|
||
c, p-pattern);
|
||
FREE_AND_RETURN(stackb, error_msg);
|
||
}
|
||
/* If there is a sequence of repetition chars,
|
||
collapse it down to just one. */
|
||
zero_times_ok = c != '+';
|
||
many_times_ok = c != '?';
|
||
greedy = 1;
|
||
if (p != pend) {
|
||
PATFETCH(c);
|
||
switch (c) {
|
||
case '?':
|
||
greedy = 0;
|
||
break;
|
||
case '*':
|
||
case '+':
|
||
goto nested_meta;
|
||
default:
|
||
PATUNFETCH;
|
||
break;
|
||
}
|
||
}
|
||
|
||
repeat:
|
||
/* Star, etc. applied to an empty pattern is equivalent
|
||
to an empty pattern. */
|
||
if (!laststart)
|
||
break;
|
||
|
||
if (greedy && many_times_ok && *laststart == anychar && b - laststart <= 2) {
|
||
if (b[-1] == stop_paren)
|
||
b--;
|
||
if (zero_times_ok)
|
||
*laststart = anychar_repeat;
|
||
else {
|
||
BUFPUSH(anychar_repeat);
|
||
}
|
||
break;
|
||
}
|
||
/* Now we know whether or not zero matches is allowed
|
||
and also whether or not two or more matches is allowed. */
|
||
if (many_times_ok) {
|
||
/* If more than one repetition is allowed, put in at the
|
||
end a backward relative jump from b to before the next
|
||
jump we're going to put in below (which jumps from
|
||
laststart to after this jump). */
|
||
GET_BUFFER_SPACE(3);
|
||
store_jump(b,greedy?maybe_finalize_jump:finalize_push,laststart-3);
|
||
b += 3; /* Because store_jump put stuff here. */
|
||
}
|
||
|
||
/* On failure, jump from laststart to next pattern, which will be the
|
||
end of the buffer after this jump is inserted. */
|
||
GET_BUFFER_SPACE(3);
|
||
insert_jump(on_failure_jump, laststart, b + 3, b);
|
||
b += 3;
|
||
|
||
if (zero_times_ok) {
|
||
if (greedy == 0) {
|
||
GET_BUFFER_SPACE(3);
|
||
insert_jump(try_next, laststart, b + 3, b);
|
||
b += 3;
|
||
}
|
||
}
|
||
else {
|
||
/* At least one repetition is required, so insert a
|
||
`dummy_failure_jump' before the initial
|
||
`on_failure_jump' instruction of the loop. This
|
||
effects a skip over that instruction the first time
|
||
we hit that loop. */
|
||
GET_BUFFER_SPACE(3);
|
||
insert_jump(dummy_failure_jump, laststart, laststart + 6, b);
|
||
b += 3;
|
||
}
|
||
break;
|
||
|
||
case '.':
|
||
laststart = b;
|
||
BUFPUSH(anychar);
|
||
break;
|
||
|
||
case '[':
|
||
if (p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; '[' can't be the last character ie. can't start range at the end of pattern");
|
||
while ((b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH)
|
||
> bufp->allocated)
|
||
EXTEND_BUFFER;
|
||
|
||
laststart = b;
|
||
if (*p == '^') {
|
||
BUFPUSH(charset_not);
|
||
p++;
|
||
}
|
||
else
|
||
BUFPUSH(charset);
|
||
p0 = p;
|
||
|
||
BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
|
||
/* Clear the whole map */
|
||
memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
|
||
|
||
had_mbchar = 0;
|
||
had_num_literal = 0;
|
||
had_char_class = 0;
|
||
|
||
/* Read in characters and ranges, setting map bits. */
|
||
for (;;) {
|
||
int size;
|
||
unsigned last = (unsigned)-1;
|
||
|
||
if ((size = EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH]))
|
||
|| current_mbctype) {
|
||
/* Ensure the space is enough to hold another interval
|
||
of multi-byte chars in charset(_not)?. */
|
||
size = (1 << BYTEWIDTH) / BYTEWIDTH + 2 + size*8 + 8;
|
||
while (b + size + 1 > bufp->buffer + bufp->allocated)
|
||
EXTEND_BUFFER;
|
||
}
|
||
range_retry:
|
||
if (range && had_char_class) {
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; can't use character class as an end value of range");
|
||
}
|
||
PATFETCH(c);
|
||
|
||
if (c == ']') {
|
||
if (p == p0 + 1) {
|
||
if (p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; empty character class");
|
||
}
|
||
else
|
||
/* Stop if this isn't merely a ] inside a bracket
|
||
expression, but rather the end of a bracket
|
||
expression. */
|
||
break;
|
||
}
|
||
/* Look ahead to see if it's a range when the last thing
|
||
was a character class. */
|
||
if (had_char_class && c == '-' && *p != ']')
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; can't use character class as a start value of range");
|
||
if (ismbchar(c)) {
|
||
PATFETCH_MBC(c);
|
||
had_mbchar++;
|
||
}
|
||
had_char_class = 0;
|
||
|
||
/* \ escapes characters when inside [...]. */
|
||
if (c == '\\') {
|
||
PATFETCH_RAW(c);
|
||
switch (c) {
|
||
case 'w':
|
||
for (c = 0; c < (1 << BYTEWIDTH); c++) {
|
||
if (SYNTAX(c) == Sword ||
|
||
(!current_mbctype && SYNTAX(c) == Sword2))
|
||
SET_LIST_BIT(c);
|
||
}
|
||
if (current_mbctype) {
|
||
set_list_bits(0x80, 0xffffffff, b);
|
||
}
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 'W':
|
||
for (c = 0; c < (1 << BYTEWIDTH); c++) {
|
||
if (SYNTAX(c) != Sword &&
|
||
(current_mbctype && !re_mbctab[c] ||
|
||
!current_mbctype && SYNTAX(c) != Sword2))
|
||
SET_LIST_BIT(c);
|
||
}
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 's':
|
||
for (c = 0; c < 256; c++)
|
||
if (ISSPACE(c))
|
||
SET_LIST_BIT(c);
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 'S':
|
||
for (c = 0; c < 256; c++)
|
||
if (!ISSPACE(c))
|
||
SET_LIST_BIT(c);
|
||
if (current_mbctype)
|
||
set_list_bits(0x80, 0xffffffff, b);
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 'd':
|
||
for (c = '0'; c <= '9'; c++)
|
||
SET_LIST_BIT(c);
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 'D':
|
||
for (c = 0; c < 256; c++)
|
||
if (!ISDIGIT(c))
|
||
SET_LIST_BIT(c);
|
||
if (current_mbctype)
|
||
set_list_bits(0x80, 0xffffffff, b);
|
||
had_char_class = 1;
|
||
last = -1;
|
||
continue;
|
||
|
||
case 'x':
|
||
c = scan_hex(p, 2, &numlen);
|
||
p += numlen;
|
||
had_num_literal = 1;
|
||
break;
|
||
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9':
|
||
PATUNFETCH;
|
||
c = scan_oct(p, 3, &numlen);
|
||
p += numlen;
|
||
had_num_literal = 1;
|
||
break;
|
||
|
||
case 'M':
|
||
case 'C':
|
||
case 'c':
|
||
p0 = --p;
|
||
c = read_special(p, pend, &p0);
|
||
if (c > 255) goto invalid_escape;
|
||
p = p0;
|
||
had_num_literal = 1;
|
||
break;
|
||
|
||
default:
|
||
c = read_backslash(c);
|
||
if (ismbchar(c)) {
|
||
PATFETCH_MBC(c);
|
||
had_mbchar++;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Get a range. */
|
||
if (range) {
|
||
if (last > c)
|
||
goto invalid_pattern;
|
||
|
||
range = 0;
|
||
if (had_mbchar == 0) {
|
||
for (;last<=c;last++)
|
||
SET_LIST_BIT(last);
|
||
}
|
||
else if (had_mbchar == 2) {
|
||
set_list_bits(last, c, b);
|
||
}
|
||
else {
|
||
/* restriction: range between sbc and mbc */
|
||
goto invalid_pattern;
|
||
}
|
||
}
|
||
else if (p[0] == '-' && p[1] != ']') {
|
||
last = c;
|
||
PATFETCH(c1);
|
||
range = 1;
|
||
goto range_retry;
|
||
}
|
||
else if (c == '[' && *p == ':') {
|
||
/* Leave room for the null. */
|
||
char str[CHAR_CLASS_MAX_LENGTH + 1];
|
||
|
||
PATFETCH_RAW(c);
|
||
c1 = 0;
|
||
|
||
/* If pattern is `[[:'. */
|
||
if (p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; re can't end '[[:'");
|
||
|
||
for (;;) {
|
||
PATFETCH (c);
|
||
if (c == ':' || c == ']' || p == pend
|
||
|| c1 == CHAR_CLASS_MAX_LENGTH)
|
||
break;
|
||
str[c1++] = c;
|
||
}
|
||
str[c1] = '\0';
|
||
|
||
/* If isn't a word bracketed by `[:' and:`]':
|
||
undo the ending character, the letters, and leave
|
||
the leading `:' and `[' (but set bits for them). */
|
||
if (c == ':' && *p == ']') {
|
||
int ch;
|
||
char is_alnum = STREQ(str, "alnum");
|
||
char is_alpha = STREQ(str, "alpha");
|
||
char is_blank = STREQ(str, "blank");
|
||
char is_cntrl = STREQ(str, "cntrl");
|
||
char is_digit = STREQ(str, "digit");
|
||
char is_graph = STREQ(str, "graph");
|
||
char is_lower = STREQ(str, "lower");
|
||
char is_print = STREQ(str, "print");
|
||
char is_punct = STREQ(str, "punct");
|
||
char is_space = STREQ(str, "space");
|
||
char is_upper = STREQ(str, "upper");
|
||
char is_xdigit = STREQ(str, "xdigit");
|
||
|
||
if (!IS_CHAR_CLASS(str)){
|
||
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
|
||
"invalid regular expression; [:%s:] is not a character class", str);
|
||
FREE_AND_RETURN(stackb, error_msg);
|
||
}
|
||
|
||
/* Throw away the ] at the end of the character class. */
|
||
PATFETCH(c);
|
||
|
||
if (p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; range doesn't have ending ']' after a character class");
|
||
|
||
for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
|
||
if ( (is_alnum && ISALNUM(ch))
|
||
|| (is_alpha && ISALPHA(ch))
|
||
|| (is_blank && ISBLANK(ch))
|
||
|| (is_cntrl && ISCNTRL(ch))
|
||
|| (is_digit && ISDIGIT(ch))
|
||
|| (is_graph && ISGRAPH(ch))
|
||
|| (is_lower && ISLOWER(ch))
|
||
|| (is_print && ISPRINT(ch))
|
||
|| (is_punct && ISPUNCT(ch))
|
||
|| (is_space && ISSPACE(ch))
|
||
|| (is_upper && ISUPPER(ch))
|
||
|| (is_xdigit && ISXDIGIT(ch)))
|
||
SET_LIST_BIT(ch);
|
||
}
|
||
had_char_class = 1;
|
||
}
|
||
else {
|
||
c1++;
|
||
while (c1--)
|
||
PATUNFETCH;
|
||
SET_LIST_BIT(TRANSLATE_P()?translate['[']:'[');
|
||
SET_LIST_BIT(TRANSLATE_P()?translate[':']:':');
|
||
had_char_class = 0;
|
||
last = ':';
|
||
}
|
||
}
|
||
else if (had_mbchar == 0 && (!current_mbctype || !had_num_literal)) {
|
||
SET_LIST_BIT(c);
|
||
had_num_literal = 0;
|
||
}
|
||
else
|
||
set_list_bits(c, c, b);
|
||
had_mbchar = 0;
|
||
}
|
||
|
||
/* Discard any character set/class bitmap bytes that are all
|
||
0 at the end of the map. Decrement the map-length byte too. */
|
||
while ((int)b[-1] > 0 && b[b[-1] - 1] == 0)
|
||
b[-1]--;
|
||
if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
|
||
memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
|
||
2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
|
||
b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[b[-1]])*8;
|
||
break;
|
||
|
||
case '(':
|
||
{
|
||
int old_options = options;
|
||
int push_option = 0;
|
||
int casefold = 0;
|
||
|
||
PATFETCH(c);
|
||
if (c == '?') {
|
||
int negative = 0;
|
||
|
||
PATFETCH_RAW(c);
|
||
switch (c) {
|
||
case 'x': case 'p': case 'm': case 'i': case '-':
|
||
for (;;) {
|
||
switch (c) {
|
||
case '-':
|
||
negative = 1;
|
||
break;
|
||
|
||
case ':':
|
||
case ')':
|
||
break;
|
||
|
||
case 'x':
|
||
if (negative)
|
||
options &= ~RE_OPTION_EXTENDED;
|
||
else
|
||
options |= RE_OPTION_EXTENDED;
|
||
break;
|
||
|
||
case 'p':
|
||
if (negative) {
|
||
if ((options&RE_OPTION_POSIXLINE) == RE_OPTION_POSIXLINE) {
|
||
options &= ~RE_OPTION_POSIXLINE;
|
||
}
|
||
}
|
||
else if ((options&RE_OPTION_POSIXLINE) != RE_OPTION_POSIXLINE) {
|
||
options |= RE_OPTION_POSIXLINE;
|
||
}
|
||
push_option = 1;
|
||
break;
|
||
|
||
case 'm':
|
||
if (negative) {
|
||
if (options&RE_OPTION_MULTILINE) {
|
||
options &= ~RE_OPTION_MULTILINE;
|
||
}
|
||
}
|
||
else if (!(options&RE_OPTION_MULTILINE)) {
|
||
options |= RE_OPTION_MULTILINE;
|
||
}
|
||
push_option = 1;
|
||
break;
|
||
|
||
case 'i':
|
||
if (negative) {
|
||
if (options&RE_OPTION_IGNORECASE) {
|
||
options &= ~RE_OPTION_IGNORECASE;
|
||
}
|
||
}
|
||
else if (!(options&RE_OPTION_IGNORECASE)) {
|
||
options |= RE_OPTION_IGNORECASE;
|
||
}
|
||
casefold = 1;
|
||
break;
|
||
|
||
default:
|
||
FREE_AND_RETURN(stackb, "undefined (?...) inline option");
|
||
}
|
||
if (c == ')') {
|
||
c = '#'; /* read whole in-line options */
|
||
break;
|
||
}
|
||
if (c == ':') break;
|
||
PATFETCH_RAW(c);
|
||
}
|
||
break;
|
||
|
||
case '#':
|
||
for (;;) {
|
||
PATFETCH(c);
|
||
if (c == ')') break;
|
||
}
|
||
c = '#';
|
||
break;
|
||
|
||
case ':':
|
||
case '=':
|
||
case '!':
|
||
case '>':
|
||
break;
|
||
|
||
default:
|
||
FREE_AND_RETURN(stackb, "undefined (?...) sequence");
|
||
}
|
||
}
|
||
else {
|
||
PATUNFETCH;
|
||
c = '(';
|
||
}
|
||
if (c == '#') {
|
||
if (push_option) {
|
||
BUFPUSH(option_set);
|
||
BUFPUSH(options);
|
||
}
|
||
if (casefold) {
|
||
if (options & RE_OPTION_IGNORECASE)
|
||
BUFPUSH(casefold_on);
|
||
else
|
||
BUFPUSH(casefold_off);
|
||
}
|
||
break;
|
||
}
|
||
if (stackp+8 >= stacke) {
|
||
DOUBLE_STACK(int);
|
||
}
|
||
|
||
/* Laststart should point to the start_memory that we are about
|
||
to push (unless the pattern has RE_NREGS or more ('s). */
|
||
/* obsolete: now RE_NREGS is just a default register size. */
|
||
*stackp++ = b - bufp->buffer;
|
||
*stackp++ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
||
*stackp++ = begalt - bufp->buffer;
|
||
switch (c) {
|
||
case '(':
|
||
BUFPUSH(start_memory);
|
||
BUFPUSH(regnum);
|
||
*stackp++ = regnum++;
|
||
*stackp++ = b - bufp->buffer;
|
||
BUFPUSH(0);
|
||
/* too many ()'s to fit in a byte. (max 254) */
|
||
if (regnum >= RE_REG_MAX) goto too_big;
|
||
break;
|
||
|
||
case '=':
|
||
case '!':
|
||
case '>':
|
||
BUFPUSH(start_nowidth);
|
||
*stackp++ = b - bufp->buffer;
|
||
BUFPUSH(0); /* temporary value */
|
||
BUFPUSH(0);
|
||
if (c != '!') break;
|
||
|
||
BUFPUSH(on_failure_jump);
|
||
*stackp++ = b - bufp->buffer;
|
||
BUFPUSH(0); /* temporary value */
|
||
BUFPUSH(0);
|
||
break;
|
||
|
||
case ':':
|
||
BUFPUSH(start_paren);
|
||
pending_exact = 0;
|
||
default:
|
||
break;
|
||
}
|
||
if (push_option) {
|
||
BUFPUSH(option_set);
|
||
BUFPUSH(options);
|
||
}
|
||
if (casefold) {
|
||
if (options & RE_OPTION_IGNORECASE)
|
||
BUFPUSH(casefold_on);
|
||
else
|
||
BUFPUSH(casefold_off);
|
||
}
|
||
*stackp++ = c;
|
||
*stackp++ = old_options;
|
||
fixup_alt_jump = 0;
|
||
laststart = 0;
|
||
begalt = b;
|
||
}
|
||
break;
|
||
|
||
case ')':
|
||
if (stackp == stackb)
|
||
FREE_AND_RETURN(stackb, "unmatched )");
|
||
|
||
pending_exact = 0;
|
||
if (fixup_alt_jump) {
|
||
/* Push a dummy failure point at the end of the
|
||
alternative for a possible future
|
||
`finalize_jump' to pop. See comments at
|
||
`push_dummy_failure' in `re_match'. */
|
||
BUFPUSH(push_dummy_failure);
|
||
|
||
/* We allocated space for this jump when we assigned
|
||
to `fixup_alt_jump', in the `handle_alt' case below. */
|
||
store_jump(fixup_alt_jump, jump, b);
|
||
}
|
||
if (options != stackp[-1]) {
|
||
if ((options ^ stackp[-1]) & RE_OPTION_IGNORECASE) {
|
||
BUFPUSH((options&RE_OPTION_IGNORECASE)?casefold_off:casefold_on);
|
||
}
|
||
if ((options ^ stackp[-1]) != RE_OPTION_IGNORECASE) {
|
||
BUFPUSH(option_set);
|
||
BUFPUSH(stackp[-1]);
|
||
}
|
||
}
|
||
p0 = b;
|
||
options = *--stackp;
|
||
switch (c = *--stackp) {
|
||
case '(':
|
||
{
|
||
char *loc = bufp->buffer + *--stackp;
|
||
*loc = regnum - stackp[-1];
|
||
BUFPUSH(stop_memory);
|
||
BUFPUSH(stackp[-1]);
|
||
BUFPUSH(regnum - stackp[-1]);
|
||
stackp--;
|
||
}
|
||
break;
|
||
|
||
case '!':
|
||
BUFPUSH(pop_and_fail);
|
||
/* back patch */
|
||
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
|
||
stackp--;
|
||
/* fall through */
|
||
case '=':
|
||
BUFPUSH(stop_nowidth);
|
||
/* tell stack-pos place to start_nowidth */
|
||
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
|
||
BUFPUSH(0); /* space to hold stack pos */
|
||
BUFPUSH(0);
|
||
stackp--;
|
||
break;
|
||
|
||
case '>':
|
||
BUFPUSH(stop_backtrack);
|
||
/* tell stack-pos place to start_nowidth */
|
||
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
|
||
BUFPUSH(0); /* space to hold stack pos */
|
||
BUFPUSH(0);
|
||
stackp--;
|
||
break;
|
||
|
||
case ':':
|
||
BUFPUSH(stop_paren);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
begalt = *--stackp + bufp->buffer;
|
||
stackp--;
|
||
fixup_alt_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
|
||
laststart = *--stackp + bufp->buffer;
|
||
if (c == '!' || c == '=') laststart = b;
|
||
break;
|
||
|
||
case '|':
|
||
/* Insert before the previous alternative a jump which
|
||
jumps to this alternative if the former fails. */
|
||
GET_BUFFER_SPACE(3);
|
||
insert_jump(on_failure_jump, begalt, b + 6, b);
|
||
pending_exact = 0;
|
||
b += 3;
|
||
/* The alternative before this one has a jump after it
|
||
which gets executed if it gets matched. Adjust that
|
||
jump so it will jump to this alternative's analogous
|
||
jump (put in below, which in turn will jump to the next
|
||
(if any) alternative's such jump, etc.). The last such
|
||
jump jumps to the correct final destination. A picture:
|
||
_____ _____
|
||
| | | |
|
||
| v | v
|
||
a | b | c
|
||
|
||
If we are at `b', then fixup_alt_jump right now points to a
|
||
three-byte space after `a'. We'll put in the jump, set
|
||
fixup_alt_jump to right after `b', and leave behind three
|
||
bytes which we'll fill in when we get to after `c'. */
|
||
|
||
if (fixup_alt_jump)
|
||
store_jump(fixup_alt_jump, jump_past_alt, b);
|
||
|
||
/* Mark and leave space for a jump after this alternative,
|
||
to be filled in later either by next alternative or
|
||
when know we're at the end of a series of alternatives. */
|
||
fixup_alt_jump = b;
|
||
GET_BUFFER_SPACE(3);
|
||
b += 3;
|
||
|
||
laststart = 0;
|
||
begalt = b;
|
||
break;
|
||
|
||
case '{':
|
||
/* If there is no previous pattern, this is an invalid pattern. */
|
||
if (!laststart) {
|
||
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
|
||
"invalid regular expression; there's no previous pattern, to which '{' would define cardinality at %d",
|
||
p-pattern);
|
||
FREE_AND_RETURN(stackb, error_msg);
|
||
}
|
||
if( p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; '{' can't be last character" );
|
||
|
||
beg_interval = p - 1;
|
||
|
||
lower_bound = -1; /* So can see if are set. */
|
||
upper_bound = -1;
|
||
GET_UNSIGNED_NUMBER(lower_bound);
|
||
if (c == ',') {
|
||
GET_UNSIGNED_NUMBER(upper_bound);
|
||
}
|
||
else
|
||
/* Interval such as `{1}' => match exactly once. */
|
||
upper_bound = lower_bound;
|
||
|
||
if (lower_bound < 0 || c != '}')
|
||
goto unfetch_interval;
|
||
|
||
if (lower_bound >= RE_DUP_MAX || upper_bound >= RE_DUP_MAX)
|
||
FREE_AND_RETURN(stackb, "too big quantifier in {,}");
|
||
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
||
if (lower_bound > upper_bound)
|
||
FREE_AND_RETURN(stackb, "can't do {n,m} with n > m");
|
||
|
||
beg_interval = 0;
|
||
pending_exact = 0;
|
||
|
||
greedy = 1;
|
||
if (p != pend) {
|
||
PATFETCH(c);
|
||
if (c == '?') greedy = 0;
|
||
else PATUNFETCH;
|
||
}
|
||
|
||
if (lower_bound == 0) {
|
||
zero_times_ok = 1;
|
||
if (upper_bound == RE_DUP_MAX) {
|
||
many_times_ok = 1;
|
||
goto repeat;
|
||
}
|
||
if (upper_bound == 1) {
|
||
many_times_ok = 0;
|
||
goto repeat;
|
||
}
|
||
}
|
||
if (lower_bound == 1) {
|
||
if (upper_bound == 1) {
|
||
/* No need to repeat */
|
||
break;
|
||
}
|
||
if (upper_bound == RE_DUP_MAX) {
|
||
many_times_ok = 1;
|
||
zero_times_ok = 0;
|
||
goto repeat;
|
||
}
|
||
}
|
||
|
||
/* If upper_bound is zero, don't want to succeed at all;
|
||
jump from laststart to b + 3, which will be the end of
|
||
the buffer after this jump is inserted. */
|
||
|
||
if (upper_bound == 0) {
|
||
GET_BUFFER_SPACE(3);
|
||
insert_jump(jump, laststart, b + 3, b);
|
||
b += 3;
|
||
break;
|
||
}
|
||
|
||
/* If lower_bound == upper_bound, repeat count can be removed */
|
||
if (lower_bound == upper_bound) {
|
||
int mcnt;
|
||
int skip_stop_paren = 0;
|
||
|
||
if (b[-1] == stop_paren) {
|
||
skip_stop_paren = 1;
|
||
b--;
|
||
}
|
||
|
||
if (*laststart == exactn && laststart[1]+2 == b - laststart
|
||
&& laststart[1]*lower_bound < 256) {
|
||
mcnt = laststart[1];
|
||
GET_BUFFER_SPACE((lower_bound-1)*mcnt);
|
||
laststart[1] = lower_bound*mcnt;
|
||
while (--lower_bound) {
|
||
memcpy(b, laststart+2, mcnt);
|
||
b += mcnt;
|
||
}
|
||
if (skip_stop_paren) BUFPUSH(stop_paren);
|
||
break;
|
||
}
|
||
|
||
if (lower_bound < 5 && b - laststart < 10) {
|
||
/* 5 and 10 are the magic numbers */
|
||
|
||
mcnt = b - laststart;
|
||
GET_BUFFER_SPACE((lower_bound-1)*mcnt);
|
||
while (--lower_bound) {
|
||
memcpy(b, laststart, mcnt);
|
||
b += mcnt;
|
||
}
|
||
if (skip_stop_paren) BUFPUSH(stop_paren);
|
||
break;
|
||
}
|
||
if (skip_stop_paren) b++; /* push back stop_paren */
|
||
}
|
||
|
||
/* Otherwise, we have a nontrivial interval. When
|
||
we're all done, the pattern will look like:
|
||
set_number_at <jump count> <upper bound>
|
||
set_number_at <succeed_n count> <lower bound>
|
||
succeed_n <after jump addr> <succed_n count>
|
||
<body of loop>
|
||
jump_n <succeed_n addr> <jump count>
|
||
(The upper bound and `jump_n' are omitted if
|
||
`upper_bound' is 1, though.) */
|
||
{ /* If the upper bound is > 1, we need to insert
|
||
more at the end of the loop. */
|
||
unsigned nbytes = upper_bound == 1 ? 10 : 20;
|
||
|
||
GET_BUFFER_SPACE(nbytes);
|
||
/* Initialize lower bound of the `succeed_n', even
|
||
though it will be set during matching by its
|
||
attendant `set_number_at' (inserted next),
|
||
because `re_compile_fastmap' needs to know.
|
||
Jump to the `jump_n' we might insert below. */
|
||
insert_jump_n(succeed_n, laststart, b + (nbytes/2),
|
||
b, lower_bound);
|
||
b += 5; /* Just increment for the succeed_n here. */
|
||
|
||
/* Code to initialize the lower bound. Insert
|
||
before the `succeed_n'. The `5' is the last two
|
||
bytes of this `set_number_at', plus 3 bytes of
|
||
the following `succeed_n'. */
|
||
insert_op_2(set_number_at, laststart, b, 5, lower_bound);
|
||
b += 5;
|
||
|
||
if (upper_bound > 1) {
|
||
/* More than one repetition is allowed, so
|
||
append a backward jump to the `succeed_n'
|
||
that starts this interval.
|
||
|
||
When we've reached this during matching,
|
||
we'll have matched the interval once, so
|
||
jump back only `upper_bound - 1' times. */
|
||
GET_BUFFER_SPACE(5);
|
||
store_jump_n(b, greedy?jump_n:finalize_push_n, laststart + 5,
|
||
upper_bound - 1);
|
||
b += 5;
|
||
|
||
/* The location we want to set is the second
|
||
parameter of the `jump_n'; that is `b-2' as
|
||
an absolute address. `laststart' will be
|
||
the `set_number_at' we're about to insert;
|
||
`laststart+3' the number to set, the source
|
||
for the relative address. But we are
|
||
inserting into the middle of the pattern --
|
||
so everything is getting moved up by 5.
|
||
Conclusion: (b - 2) - (laststart + 3) + 5,
|
||
i.e., b - laststart.
|
||
|
||
We insert this at the beginning of the loop
|
||
so that if we fail during matching, we'll
|
||
reinitialize the bounds. */
|
||
insert_op_2(set_number_at, laststart, b, b - laststart,
|
||
upper_bound - 1);
|
||
b += 5;
|
||
}
|
||
}
|
||
break;
|
||
|
||
unfetch_interval:
|
||
/* If an invalid interval, match the characters as literals. */
|
||
p = beg_interval;
|
||
beg_interval = 0;
|
||
|
||
/* normal_char and normal_backslash need `c'. */
|
||
PATFETCH(c);
|
||
goto normal_char;
|
||
|
||
case '\\':
|
||
if (p == pend)
|
||
FREE_AND_RETURN(stackb, "invalid regular expression; '\\' can't be last character");
|
||
/* Do not translate the character after the \, so that we can
|
||
distinguish, e.g., \B from \b, even if we normally would
|
||
translate, e.g., B to b. */
|
||
PATFETCH_RAW(c);
|
||
switch (c) {
|
||
case 's':
|
||
case 'S':
|
||
case 'd':
|
||
case 'D':
|
||
while (b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH
|
||
> bufp->allocated)
|
||
EXTEND_BUFFER;
|
||
|
||
laststart = b;
|
||
if (c == 's' || c == 'd') {
|
||
BUFPUSH(charset);
|
||
}
|
||
else {
|
||
BUFPUSH(charset_not);
|
||
}
|
||
|
||
BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
|
||
memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
|
||
if (c == 's' || c == 'S') {
|
||
SET_LIST_BIT(' ');
|
||
SET_LIST_BIT('\t');
|
||
SET_LIST_BIT('\n');
|
||
SET_LIST_BIT('\r');
|
||
SET_LIST_BIT('\f');
|
||
}
|
||
else {
|
||
char cc;
|
||
|
||
for (cc = '0'; cc <= '9'; cc++) {
|
||
SET_LIST_BIT(cc);
|
||
}
|
||
}
|
||
|
||
while ((int)b[-1] > 0 && b[b[-1] - 1] == 0)
|
||
b[-1]--;
|
||
if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
|
||
memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
|
||
2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
|
||
b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[b[-1]])*8;
|
||
break;
|
||
|
||
case 'w':
|
||
laststart = b;
|
||
BUFPUSH(wordchar);
|
||
break;
|
||
|
||
case 'W':
|
||
laststart = b;
|
||
BUFPUSH(notwordchar);
|
||
break;
|
||
|
||
#ifndef RUBY
|
||
case '<':
|
||
BUFPUSH(wordbeg);
|
||
break;
|
||
|
||
case '>':
|
||
BUFPUSH(wordend);
|
||
break;
|
||
#endif
|
||
|
||
case 'b':
|
||
BUFPUSH(wordbound);
|
||
break;
|
||
|
||
case 'B':
|
||
BUFPUSH(notwordbound);
|
||
break;
|
||
|
||
case 'A':
|
||
BUFPUSH(begbuf);
|
||
break;
|
||
|
||
case 'Z':
|
||
if ((bufp->options & RE_OPTION_SINGLELINE) == 0) {
|
||
BUFPUSH(endbuf2);
|
||
break;
|
||
}
|
||
/* fall through */
|
||
case 'z':
|
||
BUFPUSH(endbuf);
|
||
break;
|
||
|
||
case 'G':
|
||
BUFPUSH(begpos);
|
||
break;
|
||
|
||
/* hex */
|
||
case 'x':
|
||
had_mbchar = 0;
|
||
c = scan_hex(p, 2, &numlen);
|
||
p += numlen;
|
||
had_num_literal = 1;
|
||
goto numeric_char;
|
||
|
||
/* octal */
|
||
case '0':
|
||
had_mbchar = 0;
|
||
c = scan_oct(p, 3, &numlen);
|
||
p += numlen;
|
||
had_num_literal = 1;
|
||
goto numeric_char;
|
||
|
||
/* back-ref or octal */
|
||
case '1': case '2': case '3':
|
||
case '4': case '5': case '6':
|
||
case '7': case '8': case '9':
|
||
PATUNFETCH;
|
||
p0 = p;
|
||
|
||
had_mbchar = 0;
|
||
c1 = 0;
|
||
GET_UNSIGNED_NUMBER(c1);
|
||
if (!ISDIGIT(c)) PATUNFETCH;
|
||
|
||
if (9 < c1 && c1 >= regnum) {
|
||
/* need to get octal */
|
||
c = scan_oct(p0, 3, &numlen) & 0xff;
|
||
p = p0 + numlen;
|
||
c1 = 0;
|
||
had_num_literal = 1;
|
||
goto numeric_char;
|
||
}
|
||
|
||
laststart = b;
|
||
BUFPUSH(duplicate);
|
||
BUFPUSH(c1);
|
||
break;
|
||
|
||
case 'M':
|
||
case 'C':
|
||
case 'c':
|
||
p0 = --p;
|
||
c = read_special(p, pend, &p0);
|
||
if (c > 255) goto invalid_escape;
|
||
p = p0;
|
||
had_num_literal = 1;
|
||
goto numeric_char;
|
||
|
||
default:
|
||
c = read_backslash(c);
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
case '#':
|
||
if (options & RE_OPTION_EXTENDED) {
|
||
while (p != pend) {
|
||
PATFETCH(c);
|
||
if (c == '\n') break;
|
||
}
|
||
break;
|
||
}
|
||
goto normal_char;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\f':
|
||
case '\r':
|
||
case '\n':
|
||
if (options & RE_OPTION_EXTENDED)
|
||
break;
|
||
|
||
default:
|
||
normal_char: /* Expects the character in `c'. */
|
||
had_mbchar = 0;
|
||
if (ismbchar(c)) {
|
||
had_mbchar = 1;
|
||
c1 = p - pattern;
|
||
}
|
||
numeric_char:
|
||
nextp = p + mbclen(c) - 1;
|
||
if (!pending_exact || pending_exact + *pending_exact + 1 != b
|
||
|| *pending_exact >= (c1 ? 0176 : 0177)
|
||
|| *nextp == '+' || *nextp == '?'
|
||
|| *nextp == '*' || *nextp == '^'
|
||
|| *nextp == '{') {
|
||
laststart = b;
|
||
BUFPUSH(exactn);
|
||
pending_exact = b;
|
||
BUFPUSH(0);
|
||
}
|
||
if (had_num_literal || c == 0xff) {
|
||
BUFPUSH(0xff);
|
||
(*pending_exact)++;
|
||
had_num_literal = 0;
|
||
}
|
||
BUFPUSH(c);
|
||
(*pending_exact)++;
|
||
if (had_mbchar) {
|
||
int len = mbclen(c) - 1;
|
||
while (len--) {
|
||
PATFETCH_RAW(c);
|
||
BUFPUSH(c);
|
||
(*pending_exact)++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (fixup_alt_jump)
|
||
store_jump(fixup_alt_jump, jump, b);
|
||
|
||
if (stackp != stackb)
|
||
FREE_AND_RETURN(stackb, "unmatched (");
|
||
|
||
/* set optimize flags */
|
||
laststart = bufp->buffer;
|
||
if (laststart != b) {
|
||
if (*laststart == start_memory) laststart += 3;
|
||
if (*laststart == dummy_failure_jump) laststart += 3;
|
||
else if (*laststart == try_next) laststart += 3;
|
||
if (*laststart == anychar_repeat) {
|
||
bufp->options |= RE_OPTIMIZE_ANCHOR;
|
||
}
|
||
else if (*laststart == on_failure_jump) {
|
||
int mcnt;
|
||
|
||
laststart++;
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, laststart);
|
||
if (*laststart == charset || *laststart == charset_not) {
|
||
p0 = laststart;
|
||
mcnt = *++p0;
|
||
p0 += mcnt+1;
|
||
mcnt = EXTRACT_UNSIGNED_AND_INCR(p0);
|
||
p0 += 8*mcnt;
|
||
if (*p0 == maybe_finalize_jump) {
|
||
bufp->stclass = laststart;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bufp->used = b - bufp->buffer;
|
||
bufp->re_nsub = regnum;
|
||
laststart = bufp->buffer;
|
||
if (laststart != b) {
|
||
if (*laststart == start_memory) laststart += 3;
|
||
if (*laststart == exactn) {
|
||
bufp->options |= RE_OPTIMIZE_EXACTN;
|
||
bufp->must = laststart+1;
|
||
}
|
||
}
|
||
if (!bufp->must) {
|
||
bufp->must = calculate_must_string(bufp->buffer, b);
|
||
}
|
||
if (current_mbctype == MBCTYPE_SJIS) bufp->options |= RE_OPTIMIZE_NO_BM;
|
||
else if (bufp->must) {
|
||
int i;
|
||
int len = (unsigned char)bufp->must[0];
|
||
|
||
for (i=1; i<len; i++) {
|
||
if ((unsigned char)bufp->must[i] == 0xff ||
|
||
(current_mbctype && ismbchar(bufp->must[i]))) {
|
||
bufp->options |= RE_OPTIMIZE_NO_BM;
|
||
break;
|
||
}
|
||
}
|
||
if (!(bufp->options & RE_OPTIMIZE_NO_BM)) {
|
||
bufp->must_skip = (int *) xmalloc((1 << BYTEWIDTH)*sizeof(int));
|
||
bm_init_skip(bufp->must_skip, (unsigned char*)bufp->must+1,
|
||
(unsigned char)bufp->must[0],
|
||
(unsigned char*)(MAY_TRANSLATE()?translate:0));
|
||
}
|
||
}
|
||
|
||
bufp->regstart = TMALLOC(regnum, unsigned char*);
|
||
bufp->regend = TMALLOC(regnum, unsigned char*);
|
||
bufp->old_regstart = TMALLOC(regnum, unsigned char*);
|
||
bufp->old_regend = TMALLOC(regnum, unsigned char*);
|
||
bufp->reg_info = TMALLOC(regnum, register_info_type);
|
||
bufp->best_regstart = TMALLOC(regnum, unsigned char*);
|
||
bufp->best_regend = TMALLOC(regnum, unsigned char*);
|
||
FREE_AND_RETURN(stackb, 0);
|
||
|
||
invalid_pattern:
|
||
FREE_AND_RETURN(stackb, "invalid regular expression");
|
||
|
||
end_of_pattern:
|
||
FREE_AND_RETURN(stackb, "premature end of regular expression");
|
||
|
||
too_big:
|
||
FREE_AND_RETURN(stackb, "regular expression too big");
|
||
|
||
memory_exhausted:
|
||
FREE_AND_RETURN(stackb, "memory exhausted");
|
||
|
||
nested_meta:
|
||
FREE_AND_RETURN(stackb, "nested *?+ in regexp");
|
||
|
||
invalid_escape:
|
||
FREE_AND_RETURN(stackb, "Invalid escape character syntax");
|
||
}
|
||
|
||
void
|
||
re_free_pattern(bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
xfree(bufp->buffer);
|
||
xfree(bufp->fastmap);
|
||
if (bufp->must_skip) xfree(bufp->must_skip);
|
||
|
||
xfree(bufp->regstart);
|
||
xfree(bufp->regend);
|
||
xfree(bufp->old_regstart);
|
||
xfree(bufp->old_regend);
|
||
xfree(bufp->best_regstart);
|
||
xfree(bufp->best_regend);
|
||
xfree(bufp->reg_info);
|
||
xfree(bufp);
|
||
}
|
||
|
||
/* Store a jump of the form <OPCODE> <relative address>.
|
||
Store in the location FROM a jump operation to jump to relative
|
||
address FROM - TO. OPCODE is the opcode to store. */
|
||
|
||
static void
|
||
store_jump(from, opcode, to)
|
||
char *from, *to;
|
||
int opcode;
|
||
{
|
||
from[0] = (char)opcode;
|
||
STORE_NUMBER(from + 1, to - (from + 3));
|
||
}
|
||
|
||
|
||
/* Open up space before char FROM, and insert there a jump to TO.
|
||
CURRENT_END gives the end of the storage not in use, so we know
|
||
how much data to copy up. OP is the opcode of the jump to insert.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_jump(op, from, to, current_end)
|
||
int op;
|
||
char *from, *to, *current_end;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 3; /* ...to here. */
|
||
|
||
while (pfrom != from)
|
||
*--pto = *--pfrom;
|
||
store_jump(from, op, to);
|
||
}
|
||
|
||
|
||
/* Store a jump of the form <opcode> <relative address> <n> .
|
||
|
||
Store in the location FROM a jump operation to jump to relative
|
||
address FROM - TO. OPCODE is the opcode to store, N is a number the
|
||
jump uses, say, to decide how many times to jump.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
store_jump_n(from, opcode, to, n)
|
||
char *from, *to;
|
||
int opcode;
|
||
unsigned n;
|
||
{
|
||
from[0] = (char)opcode;
|
||
STORE_NUMBER(from + 1, to - (from + 3));
|
||
STORE_NUMBER(from + 3, n);
|
||
}
|
||
|
||
|
||
/* Similar to insert_jump, but handles a jump which needs an extra
|
||
number to handle minimum and maximum cases. Open up space at
|
||
location FROM, and insert there a jump to TO. CURRENT_END gives the
|
||
end of the storage in use, so we know how much data to copy up. OP is
|
||
the opcode of the jump to insert.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_jump_n(op, from, to, current_end, n)
|
||
int op;
|
||
char *from, *to, *current_end;
|
||
unsigned n;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 5; /* ...to here. */
|
||
|
||
while (pfrom != from)
|
||
*--pto = *--pfrom;
|
||
store_jump_n(from, op, to, n);
|
||
}
|
||
|
||
|
||
/* Open up space at location THERE, and insert operation OP.
|
||
CURRENT_END gives the end of the storage in use, so
|
||
we know how much data to copy up.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_op(op, there, current_end)
|
||
int op;
|
||
char *there, *current_end;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 1; /* ...to here. */
|
||
|
||
while (pfrom != there)
|
||
*--pto = *--pfrom;
|
||
|
||
there[0] = (char)op;
|
||
}
|
||
|
||
|
||
/* Open up space at location THERE, and insert operation OP followed by
|
||
NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
|
||
we know how much data to copy up.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_op_2(op, there, current_end, num_1, num_2)
|
||
int op;
|
||
char *there, *current_end;
|
||
int num_1, num_2;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 5; /* ...to here. */
|
||
|
||
while (pfrom != there)
|
||
*--pto = *--pfrom;
|
||
|
||
there[0] = (char)op;
|
||
STORE_NUMBER(there + 1, num_1);
|
||
STORE_NUMBER(there + 3, num_2);
|
||
}
|
||
|
||
|
||
#define trans_eq(c1, c2, translate) (translate?(translate[c1]==translate[c2]):((c1)==(c2)))
|
||
static int
|
||
slow_match(little, lend, big, bend, translate)
|
||
unsigned char *little, *lend;
|
||
unsigned char *big, *bend;
|
||
unsigned char *translate;
|
||
{
|
||
int c;
|
||
|
||
while (little < lend && big < bend) {
|
||
c = *little++;
|
||
if (c == 0xff)
|
||
c = *little++;
|
||
if (!trans_eq(*big++, c, translate)) break;
|
||
}
|
||
if (little == lend) return 1;
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
slow_search(little, llen, big, blen, translate)
|
||
unsigned char *little;
|
||
int llen;
|
||
unsigned char *big;
|
||
int blen;
|
||
char *translate;
|
||
{
|
||
unsigned char *bsave = big;
|
||
unsigned char *bend = big + blen;
|
||
register int c;
|
||
int fescape = 0;
|
||
|
||
c = *little;
|
||
if (c == 0xff) {
|
||
c = little[1];
|
||
fescape = 1;
|
||
}
|
||
else if (translate && !ismbchar(c)) {
|
||
c = translate[c];
|
||
}
|
||
|
||
while (big < bend) {
|
||
/* look for first character */
|
||
if (fescape) {
|
||
while (big < bend) {
|
||
if (*big == c) break;
|
||
big++;
|
||
}
|
||
}
|
||
else if (translate && !ismbchar(c)) {
|
||
while (big < bend) {
|
||
if (ismbchar(*big)) big+=mbclen(*big)-1;
|
||
else if (translate[*big] == c) break;
|
||
big++;
|
||
}
|
||
}
|
||
else {
|
||
while (big < bend) {
|
||
if (*big == c) break;
|
||
if (ismbchar(*big)) big+=mbclen(*big)-1;
|
||
big++;
|
||
}
|
||
}
|
||
|
||
if (slow_match(little, little+llen, big, bend, translate))
|
||
return big - bsave;
|
||
|
||
big+=mbclen(*big);
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
static void
|
||
bm_init_skip(skip, pat, m, translate)
|
||
int *skip;
|
||
unsigned char *pat;
|
||
int m;
|
||
const unsigned char *translate;
|
||
{
|
||
int j, c;
|
||
|
||
for (c=0; c<256; c++) {
|
||
skip[c] = m;
|
||
}
|
||
if (translate) {
|
||
for (j=0; j<m-1; j++) {
|
||
skip[translate[pat[j]]] = m-1-j;
|
||
}
|
||
}
|
||
else {
|
||
for (j=0; j<m-1; j++) {
|
||
skip[pat[j]] = m-1-j;
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
bm_search(little, llen, big, blen, skip, translate)
|
||
unsigned char *little;
|
||
int llen;
|
||
unsigned char *big;
|
||
int blen;
|
||
int *skip;
|
||
unsigned char *translate;
|
||
{
|
||
int i, j, k;
|
||
|
||
i = llen-1;
|
||
if (translate) {
|
||
while (i < blen) {
|
||
k = i;
|
||
j = llen-1;
|
||
while (j >= 0 && translate[big[k]] == translate[little[j]]) {
|
||
k--;
|
||
j--;
|
||
}
|
||
if (j < 0) return k+1;
|
||
|
||
i += skip[translate[big[i]]];
|
||
}
|
||
return -1;
|
||
}
|
||
while (i < blen) {
|
||
k = i;
|
||
j = llen-1;
|
||
while (j >= 0 && big[k] == little[j]) {
|
||
k--;
|
||
j--;
|
||
}
|
||
if (j < 0) return k+1;
|
||
|
||
i += skip[big[i]];
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Given a pattern, compute a fastmap from it. The fastmap records
|
||
which of the (1 << BYTEWIDTH) possible characters can start a string
|
||
that matches the pattern. This fastmap is used by re_search to skip
|
||
quickly over totally implausible text.
|
||
|
||
The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
||
area as bufp->fastmap.
|
||
The other components of bufp describe the pattern to be used. */
|
||
void
|
||
re_compile_fastmap(bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
unsigned char *pattern = (unsigned char*)bufp->buffer;
|
||
int size = bufp->used;
|
||
register char *fastmap = bufp->fastmap;
|
||
register unsigned char *p = pattern;
|
||
register unsigned char *pend = pattern + size;
|
||
register int j, k;
|
||
unsigned is_a_succeed_n;
|
||
|
||
|
||
unsigned char *stacka[NFAILURES];
|
||
unsigned char **stackb = stacka;
|
||
unsigned char **stackp = stackb;
|
||
unsigned char **stacke = stackb + NFAILURES;
|
||
int options = bufp->options;
|
||
|
||
memset(fastmap, 0, (1 << BYTEWIDTH));
|
||
bufp->fastmap_accurate = 1;
|
||
bufp->can_be_null = 0;
|
||
|
||
while (p) {
|
||
is_a_succeed_n = 0;
|
||
if (p == pend) {
|
||
bufp->can_be_null = 1;
|
||
break;
|
||
}
|
||
#ifdef SWITCH_ENUM_BUG
|
||
switch ((int)((enum regexpcode)*p++))
|
||
#else
|
||
switch ((enum regexpcode)*p++)
|
||
#endif
|
||
{
|
||
case exactn:
|
||
if (p[1] == 0xff) {
|
||
if (TRANSLATE_P())
|
||
fastmap[translate[p[2]]] = 2;
|
||
else
|
||
fastmap[p[2]] = 2;
|
||
bufp->options |= RE_OPTIMIZE_BMATCH;
|
||
}
|
||
else if (TRANSLATE_P())
|
||
fastmap[translate[p[1]]] = 1;
|
||
else
|
||
fastmap[p[1]] = 1;
|
||
break;
|
||
|
||
case begline:
|
||
case begbuf:
|
||
case endbuf:
|
||
case endbuf2:
|
||
case wordbound:
|
||
case notwordbound:
|
||
case wordbeg:
|
||
case wordend:
|
||
case pop_and_fail:
|
||
case push_dummy_failure:
|
||
case start_paren:
|
||
case stop_paren:
|
||
continue;
|
||
|
||
case casefold_on:
|
||
bufp->options |= RE_MAY_IGNORECASE;
|
||
case casefold_off:
|
||
options ^= RE_OPTION_IGNORECASE;
|
||
continue;
|
||
|
||
case option_set:
|
||
options = *p++;
|
||
continue;
|
||
|
||
case endline:
|
||
if (TRANSLATE_P())
|
||
fastmap[translate['\n']] = 1;
|
||
else
|
||
fastmap['\n'] = 1;
|
||
if ((options & RE_OPTION_SINGLELINE) == 0 && bufp->can_be_null == 0)
|
||
bufp->can_be_null = 2;
|
||
break;
|
||
|
||
case jump_n:
|
||
case finalize_jump:
|
||
case maybe_finalize_jump:
|
||
case jump:
|
||
case jump_past_alt:
|
||
case dummy_failure_jump:
|
||
case finalize_push:
|
||
case finalize_push_n:
|
||
EXTRACT_NUMBER_AND_INCR(j, p);
|
||
p += j;
|
||
if (j > 0)
|
||
continue;
|
||
/* Jump backward reached implies we just went through
|
||
the body of a loop and matched nothing.
|
||
Opcode jumped to should be an on_failure_jump.
|
||
Just treat it like an ordinary jump.
|
||
For a * loop, it has pushed its failure point already;
|
||
If so, discard that as redundant. */
|
||
|
||
if ((enum regexpcode)*p != on_failure_jump
|
||
&& (enum regexpcode)*p != try_next
|
||
&& (enum regexpcode)*p != succeed_n)
|
||
continue;
|
||
p++;
|
||
EXTRACT_NUMBER_AND_INCR(j, p);
|
||
p += j;
|
||
if (stackp != stackb && *stackp == p)
|
||
stackp--; /* pop */
|
||
continue;
|
||
|
||
case try_next:
|
||
case start_nowidth:
|
||
case stop_nowidth:
|
||
case stop_backtrack:
|
||
p += 2;
|
||
continue;
|
||
|
||
case succeed_n:
|
||
is_a_succeed_n = 1;
|
||
/* Get to the number of times to succeed. */
|
||
EXTRACT_NUMBER(k, p + 2);
|
||
/* Increment p past the n for when k != 0. */
|
||
if (k != 0) {
|
||
p += 4;
|
||
continue;
|
||
}
|
||
/* fall through */
|
||
|
||
case on_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR(j, p);
|
||
if (p + j < pend) {
|
||
if (stackp == stacke) {
|
||
EXPAND_FAIL_STACK();
|
||
}
|
||
*++stackp = p + j; /* push */
|
||
}
|
||
else {
|
||
bufp->can_be_null = 1;
|
||
}
|
||
if (is_a_succeed_n)
|
||
EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
|
||
continue;
|
||
|
||
case set_number_at:
|
||
p += 4;
|
||
continue;
|
||
|
||
case start_memory:
|
||
case stop_memory:
|
||
p += 2;
|
||
continue;
|
||
|
||
case duplicate:
|
||
bufp->can_be_null = 1;
|
||
if (*p >= bufp->re_nsub) break;
|
||
fastmap['\n'] = 1;
|
||
case anychar_repeat:
|
||
case anychar:
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++) {
|
||
if (j != '\n' || (options & RE_OPTION_MULTILINE))
|
||
fastmap[j] = 1;
|
||
}
|
||
if (bufp->can_be_null) {
|
||
FREE_AND_RETURN_VOID(stackb);
|
||
}
|
||
/* Don't return; check the alternative paths
|
||
so we can set can_be_null if appropriate. */
|
||
if ((enum regexpcode)p[-1] == anychar_repeat) {
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case wordchar:
|
||
for (j = 0; j < 0x80; j++) {
|
||
if (SYNTAX(j) == Sword)
|
||
fastmap[j] = 1;
|
||
}
|
||
switch (current_mbctype) {
|
||
case MBCTYPE_ASCII:
|
||
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
|
||
if (SYNTAX(j) == Sword2)
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
case MBCTYPE_EUC:
|
||
case MBCTYPE_SJIS:
|
||
case MBCTYPE_UTF8:
|
||
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
|
||
if (re_mbctab[j])
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case notwordchar:
|
||
for (j = 0; j < 0x80; j++)
|
||
if (SYNTAX(j) != Sword)
|
||
fastmap[j] = 1;
|
||
switch (current_mbctype) {
|
||
case MBCTYPE_ASCII:
|
||
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
|
||
if (SYNTAX(j) != Sword2)
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
case MBCTYPE_EUC:
|
||
case MBCTYPE_SJIS:
|
||
case MBCTYPE_UTF8:
|
||
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
|
||
if (!re_mbctab[j])
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case charset:
|
||
/* NOTE: Charset for single-byte chars never contain
|
||
multi-byte char. See set_list_bits(). */
|
||
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
||
if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) {
|
||
int tmp = TRANSLATE_P()?translate[j]:j;
|
||
fastmap[tmp] = 1;
|
||
}
|
||
{
|
||
unsigned short size;
|
||
unsigned long c, beg, end;
|
||
|
||
p += p[-1] + 2;
|
||
size = EXTRACT_UNSIGNED(&p[-2]);
|
||
for (j = 0; j < (int)size; j++) {
|
||
c = EXTRACT_MBC(&p[j*8]);
|
||
beg = WC2MBC1ST(c);
|
||
c = EXTRACT_MBC(&p[j*8+4]);
|
||
end = WC2MBC1ST(c);
|
||
/* set bits for 1st bytes of multi-byte chars. */
|
||
while (beg <= end) {
|
||
/* NOTE: Charset for multi-byte chars might contain
|
||
single-byte chars. We must reject them. */
|
||
if (c < 0x100) {
|
||
fastmap[beg] = 2;
|
||
bufp->options |= RE_OPTIMIZE_BMATCH;
|
||
}
|
||
else if (ismbchar(beg))
|
||
fastmap[beg] = 1;
|
||
beg++;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case charset_not:
|
||
/* S: set of all single-byte chars.
|
||
M: set of all first bytes that can start multi-byte chars.
|
||
s: any set of single-byte chars.
|
||
m: any set of first bytes that can start multi-byte chars.
|
||
|
||
We assume S+M = U.
|
||
___ _ _
|
||
s+m = (S*s+M*m). */
|
||
/* Chars beyond end of map must be allowed */
|
||
/* NOTE: Charset_not for single-byte chars might contain
|
||
multi-byte chars. See set_list_bits(). */
|
||
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
||
if (!ismbchar(j))
|
||
fastmap[j] = 1;
|
||
|
||
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
||
if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) {
|
||
if (!ismbchar(j))
|
||
fastmap[j] = 1;
|
||
}
|
||
{
|
||
unsigned short size;
|
||
unsigned long c, beg;
|
||
int num_literal = 0;
|
||
|
||
p += p[-1] + 2;
|
||
size = EXTRACT_UNSIGNED(&p[-2]);
|
||
if (size == 0) {
|
||
for (j = 0x80; j < (1 << BYTEWIDTH); j++)
|
||
if (ismbchar(j))
|
||
fastmap[j] = 1;
|
||
break;
|
||
}
|
||
for (j = 0,c = 0;j < (int)size; j++) {
|
||
unsigned int cc = EXTRACT_MBC(&p[j*8]);
|
||
beg = WC2MBC1ST(cc);
|
||
while (c <= beg) {
|
||
if (ismbchar(c))
|
||
fastmap[c] = 1;
|
||
c++;
|
||
}
|
||
|
||
cc = EXTRACT_MBC(&p[j*8+4]);
|
||
if (cc < 0xff) {
|
||
num_literal = 1;
|
||
while (c <= cc) {
|
||
if (ismbchar(c))
|
||
fastmap[c] = 1;
|
||
c++;
|
||
}
|
||
}
|
||
c = WC2MBC1ST(cc);
|
||
}
|
||
|
||
for (j = c; j < (1 << BYTEWIDTH); j++) {
|
||
if (num_literal)
|
||
fastmap[j] = 1;
|
||
if (ismbchar(j))
|
||
fastmap[j] = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case begpos:
|
||
case unused: /* pacify gcc -Wall */
|
||
break;
|
||
}
|
||
|
||
/* Get here means we have successfully found the possible starting
|
||
characters of one path of the pattern. We need not follow this
|
||
path any farther. Instead, look at the next alternative
|
||
remembered in the stack. */
|
||
if (stackp != stackb)
|
||
p = *stackp--; /* pop */
|
||
else
|
||
break;
|
||
}
|
||
FREE_AND_RETURN_VOID(stackb);
|
||
}
|
||
|
||
/* adjust startpos value to the position between characters. */
|
||
int
|
||
re_adjust_startpos(bufp, string, size, startpos, range)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string;
|
||
int size, startpos, range;
|
||
{
|
||
/* Update the fastmap now if not correct already. */
|
||
if (!bufp->fastmap_accurate) {
|
||
re_compile_fastmap(bufp);
|
||
}
|
||
|
||
/* Adjust startpos for mbc string */
|
||
if (current_mbctype && startpos>0 && !(bufp->options&RE_OPTIMIZE_BMATCH)) {
|
||
int i = 0;
|
||
|
||
if (range > 0) {
|
||
while (i<size) {
|
||
i += mbclen(string[i]);
|
||
if (startpos <= i) {
|
||
startpos = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
int w;
|
||
|
||
while (i<size) {
|
||
w = mbclen(string[i]);
|
||
if (startpos < i + w) {
|
||
startpos = i;
|
||
break;
|
||
}
|
||
i += w;
|
||
}
|
||
}
|
||
}
|
||
return startpos;
|
||
}
|
||
|
||
|
||
/* Using the compiled pattern in BUFP->buffer, first tries to match
|
||
STRING, starting first at index STARTPOS, then at STARTPOS + 1, and
|
||
so on. RANGE is the number of places to try before giving up. If
|
||
RANGE is negative, it searches backwards, i.e., the starting
|
||
positions tried are STARTPOS, STARTPOS - 1, etc. STRING is of SIZE.
|
||
In REGS, return the indices of STRING that matched the entire
|
||
BUFP->buffer and its contained subexpressions.
|
||
|
||
The value returned is the position in the strings at which the match
|
||
was found, or -1 if no match was found, or -2 if error (such as
|
||
failure stack overflow). */
|
||
|
||
int
|
||
re_search(bufp, string, size, startpos, range, regs)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string;
|
||
int size, startpos, range;
|
||
struct re_registers *regs;
|
||
{
|
||
register char *fastmap = bufp->fastmap;
|
||
int val, anchor = 0;
|
||
|
||
/* Check for out-of-range starting position. */
|
||
if (startpos < 0 || startpos > size)
|
||
return -1;
|
||
|
||
/* Update the fastmap now if not correct already. */
|
||
if (fastmap && !bufp->fastmap_accurate) {
|
||
re_compile_fastmap(bufp);
|
||
}
|
||
|
||
|
||
/* If the search isn't to be a backwards one, don't waste time in a
|
||
search for a pattern that must be anchored. */
|
||
if (bufp->used > 0) {
|
||
switch ((enum regexpcode)bufp->buffer[0]) {
|
||
case begbuf:
|
||
begbuf_match:
|
||
if (range > 0) {
|
||
if (startpos > 0) return -1;
|
||
else {
|
||
val = re_match(bufp, string, size, 0, regs);
|
||
if (val >= 0) return 0;
|
||
return val;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case begline:
|
||
anchor = 1;
|
||
break;
|
||
|
||
case begpos:
|
||
val = re_match(bufp, string, size, startpos, regs);
|
||
if (val >= 0) return startpos;
|
||
return val;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
if (bufp->options & RE_OPTIMIZE_ANCHOR) {
|
||
if (bufp->options&RE_OPTION_SINGLELINE) {
|
||
goto begbuf_match;
|
||
}
|
||
anchor = 1;
|
||
}
|
||
|
||
if (bufp->must) {
|
||
int len = ((unsigned char*)bufp->must)[0];
|
||
int pos, pbeg, pend;
|
||
|
||
pbeg = startpos;
|
||
pend = startpos + range;
|
||
if (pbeg > pend) { /* swap pbeg,pend */
|
||
pos = pend; pend = pbeg; pbeg = pos;
|
||
}
|
||
pend = size;
|
||
if (bufp->options & RE_OPTIMIZE_NO_BM) {
|
||
pos = slow_search(bufp->must+1, len,
|
||
string+pbeg, pend-pbeg,
|
||
MAY_TRANSLATE()?translate:0);
|
||
}
|
||
else {
|
||
pos = bm_search(bufp->must+1, len,
|
||
string+pbeg, pend-pbeg,
|
||
bufp->must_skip,
|
||
MAY_TRANSLATE()?translate:0);
|
||
}
|
||
if (pos == -1) return -1;
|
||
if (range > 0 && (bufp->options & RE_OPTIMIZE_EXACTN)) {
|
||
startpos += pos;
|
||
range -= pos;
|
||
if (range < 0) return -1;
|
||
}
|
||
}
|
||
|
||
for (;;) {
|
||
/* If a fastmap is supplied, skip quickly over characters that
|
||
cannot possibly be the start of a match. Note, however, that
|
||
if the pattern can possibly match the null string, we must
|
||
test it at each starting point so that we take the first null
|
||
string we get. */
|
||
|
||
if (fastmap && startpos < size
|
||
&& bufp->can_be_null != 1 && !(anchor && startpos == 0)) {
|
||
if (range > 0) { /* Searching forwards. */
|
||
register unsigned char *p, c;
|
||
int irange = range;
|
||
|
||
p = (unsigned char*)string+startpos;
|
||
|
||
while (range > 0) {
|
||
c = *p++;
|
||
if (ismbchar(c)) {
|
||
int len;
|
||
|
||
if (fastmap[c])
|
||
break;
|
||
len = mbclen(c) - 1;
|
||
while (len--) {
|
||
c = *p++;
|
||
range--;
|
||
if (fastmap[c] == 2)
|
||
goto startpos_adjust;
|
||
}
|
||
}
|
||
else {
|
||
if (fastmap[MAY_TRANSLATE() ? translate[c] : c])
|
||
break;
|
||
}
|
||
range--;
|
||
}
|
||
startpos_adjust:
|
||
startpos += irange - range;
|
||
}
|
||
else { /* Searching backwards. */
|
||
register unsigned char c;
|
||
|
||
c = string[startpos];
|
||
c &= 0xff;
|
||
if (MAY_TRANSLATE() ? !fastmap[translate[c]] : !fastmap[c])
|
||
goto advance;
|
||
}
|
||
}
|
||
|
||
if (startpos > size) return -1;
|
||
if ((anchor || !bufp->can_be_null) && range > 0 && size > 0 && startpos == size)
|
||
return -1;
|
||
val = re_match(bufp, string, size, startpos, regs);
|
||
if (val >= 0) return startpos;
|
||
if (val == -2) return -2;
|
||
|
||
#ifndef NO_ALLOCA
|
||
#ifdef C_ALLOCA
|
||
alloca(0);
|
||
#endif /* C_ALLOCA */
|
||
#endif /* NO_ALLOCA */
|
||
|
||
if (range > 0) {
|
||
if (anchor && startpos < size &&
|
||
(startpos < 1 || string[startpos-1] != '\n')) {
|
||
while (range > 0 && string[startpos] != '\n') {
|
||
range--;
|
||
startpos++;
|
||
}
|
||
}
|
||
else if (fastmap && (bufp->stclass)) {
|
||
register unsigned char *p;
|
||
unsigned long c;
|
||
int irange = range;
|
||
|
||
p = (unsigned char*)string+startpos;
|
||
while (range > 0) {
|
||
c = *p++;
|
||
if (ismbchar(c) && fastmap[c] != 2) {
|
||
MBC2WC(c, p);
|
||
}
|
||
else if (MAY_TRANSLATE())
|
||
c = translate[c];
|
||
if (*bufp->stclass == charset) {
|
||
if (!is_in_list(c, bufp->stclass+1)) break;
|
||
}
|
||
else {
|
||
if (is_in_list(c, bufp->stclass+1)) break;
|
||
}
|
||
range--;
|
||
if (c > 256) range--;
|
||
}
|
||
startpos += irange - range;
|
||
}
|
||
}
|
||
|
||
advance:
|
||
if (!range)
|
||
break;
|
||
else if (range > 0) {
|
||
const char *d = string + startpos;
|
||
|
||
if (ismbchar(*d)) {
|
||
int len = mbclen(*d) - 1;
|
||
range-=len, startpos+=len;
|
||
if (!range)
|
||
break;
|
||
}
|
||
range--, startpos++;
|
||
}
|
||
else {
|
||
range++, startpos--;
|
||
{
|
||
const char *s, *d, *p;
|
||
|
||
s = string; d = string + startpos;
|
||
for (p = d; p-- > s && ismbchar(*p); )
|
||
/* --p >= s would not work on 80[12]?86.
|
||
(when the offset of s equals 0 other than huge model.) */
|
||
;
|
||
if (!((d - p) & 1)) {
|
||
if (!range)
|
||
break;
|
||
range++, startpos--;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* The following are used for re_match, defined below: */
|
||
|
||
/* Accessing macros used in re_match: */
|
||
|
||
#define IS_ACTIVE(R) ((R).bits.is_active)
|
||
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
||
|
||
|
||
/* Macros used by re_match: */
|
||
|
||
/* I.e., regstart, regend, and reg_info. */
|
||
#define NUM_REG_ITEMS 3
|
||
|
||
/* I.e., ptr and count. */
|
||
#define NUM_COUNT_ITEMS 2
|
||
|
||
/* Individual items aside from the registers. */
|
||
#define NUM_NONREG_ITEMS 4
|
||
|
||
/* We push at most this many things on the stack whenever we
|
||
fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
|
||
arguments to the PUSH_FAILURE_POINT macro. */
|
||
#define MAX_NUM_FAILURE_ITEMS (num_regs * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
||
|
||
/* We push this many things on the stack whenever we fail. */
|
||
#define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + NUM_NONREG_ITEMS + 1)
|
||
|
||
/* This pushes counter information for succeed_n and jump_n */
|
||
#define PUSH_FAILURE_COUNT(ptr) \
|
||
do { \
|
||
int c; \
|
||
EXTRACT_NUMBER(c, ptr); \
|
||
ENSURE_FAIL_STACK(NUM_COUNT_ITEMS); \
|
||
*stackp++ = (unsigned char*)(long)c; \
|
||
*stackp++ = (ptr); \
|
||
num_failure_counts++; \
|
||
} while (0)
|
||
|
||
/* This pushes most of the information about the current state we will want
|
||
if we ever fail back to it. */
|
||
|
||
#define PUSH_FAILURE_POINT(pattern_place, string_place) \
|
||
do { \
|
||
long last_used_reg, this_reg; \
|
||
\
|
||
/* Find out how many registers are active or have been matched. \
|
||
(Aside from register zero, which is only set at the end.) */ \
|
||
for (last_used_reg = num_regs-1; last_used_reg > 0; last_used_reg--)\
|
||
if (!REG_UNSET(regstart[last_used_reg])) \
|
||
break; \
|
||
\
|
||
ENSURE_FAIL_STACK(NUM_FAILURE_ITEMS); \
|
||
*stackp++ = (unsigned char*)(long)num_failure_counts; \
|
||
num_failure_counts = 0; \
|
||
\
|
||
/* Now push the info for each of those registers. */ \
|
||
for (this_reg = 1; this_reg <= last_used_reg; this_reg++) { \
|
||
*stackp++ = regstart[this_reg]; \
|
||
*stackp++ = regend[this_reg]; \
|
||
*stackp++ = reg_info[this_reg].word; \
|
||
} \
|
||
\
|
||
/* Push how many registers we saved. */ \
|
||
*stackp++ = (unsigned char*)last_used_reg; \
|
||
\
|
||
*stackp++ = pattern_place; \
|
||
*stackp++ = string_place; \
|
||
*stackp++ = (unsigned char*)options; /* current option status */ \
|
||
*stackp++ = (unsigned char*)0; /* non-greedy flag */ \
|
||
} while(0)
|
||
|
||
#define NON_GREEDY ((unsigned char*)1)
|
||
|
||
#define POP_FAILURE_COUNT() \
|
||
do { \
|
||
unsigned char *ptr = *--stackp; \
|
||
int count = (long)*--stackp; \
|
||
STORE_NUMBER(ptr, count); \
|
||
} while (0)
|
||
|
||
/* This pops what PUSH_FAILURE_POINT pushes. */
|
||
|
||
#define POP_FAILURE_POINT() \
|
||
do { \
|
||
long temp; \
|
||
stackp -= NUM_NONREG_ITEMS; /* Remove failure points (and flag). */ \
|
||
temp = (long)*--stackp; /* How many regs pushed. */ \
|
||
temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \
|
||
stackp -= temp; /* Remove the register info. */ \
|
||
temp = (long)*--stackp; /* How many counters pushed. */ \
|
||
while (temp--) { \
|
||
POP_FAILURE_COUNT(); /* Remove the counter info. */ \
|
||
} \
|
||
num_failure_counts = 0; /* Reset num_failure_counts. */ \
|
||
} while(0)
|
||
|
||
/* Registers are set to a sentinel when they haven't yet matched. */
|
||
#define REG_UNSET_VALUE ((unsigned char*)-1)
|
||
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
||
|
||
#define PREFETCH if (d == dend) goto fail
|
||
|
||
/* Call this when have matched something; it sets `matched' flags for the
|
||
registers corresponding to the subexpressions of which we currently
|
||
are inside. */
|
||
#define SET_REGS_MATCHED \
|
||
do { unsigned this_reg; \
|
||
for (this_reg = 0; this_reg < num_regs; this_reg++) { \
|
||
if (IS_ACTIVE(reg_info[this_reg])) \
|
||
MATCHED_SOMETHING(reg_info[this_reg]) = 1; \
|
||
else \
|
||
MATCHED_SOMETHING(reg_info[this_reg]) = 0; \
|
||
} \
|
||
} while(0)
|
||
|
||
#define AT_STRINGS_BEG(d) ((d) == string)
|
||
#define AT_STRINGS_END(d) ((d) == dend)
|
||
|
||
#define IS_A_LETTER(d) (SYNTAX(*(d)) == Sword || \
|
||
(current_mbctype ? \
|
||
(re_mbctab[*(d)] && ((d)+mbclen(*(d)))<=dend): \
|
||
SYNTAX(*(d)) == Sword2))
|
||
|
||
#define PREV_IS_A_LETTER(d) ((current_mbctype == MBCTYPE_SJIS)? \
|
||
IS_A_LETTER((d)-(!AT_STRINGS_BEG((d)-1)&& \
|
||
ismbchar((d)[-2])?2:1)): \
|
||
((current_mbctype && ((d)[-1] >= 0x80)) || \
|
||
IS_A_LETTER((d)-1)))
|
||
|
||
static void
|
||
init_regs(regs, num_regs)
|
||
struct re_registers *regs;
|
||
unsigned int num_regs;
|
||
{
|
||
int i;
|
||
|
||
regs->num_regs = num_regs;
|
||
if (num_regs < RE_NREGS)
|
||
num_regs = RE_NREGS;
|
||
|
||
if (regs->allocated == 0) {
|
||
regs->beg = TMALLOC(num_regs, int);
|
||
regs->end = TMALLOC(num_regs, int);
|
||
regs->allocated = num_regs;
|
||
}
|
||
else if (regs->allocated < num_regs) {
|
||
TREALLOC(regs->beg, num_regs, int);
|
||
TREALLOC(regs->end, num_regs, int);
|
||
regs->allocated = num_regs;
|
||
}
|
||
for (i=0; i<num_regs; i++) {
|
||
regs->beg[i] = regs->end[i] = -1;
|
||
}
|
||
}
|
||
|
||
/* Match the pattern described by BUFP against STRING, which is of
|
||
SIZE. Start the match at index POS in STRING. In REGS, return the
|
||
indices of STRING that matched the entire BUFP->buffer and its
|
||
contained subexpressions.
|
||
|
||
If bufp->fastmap is nonzero, then it had better be up to date.
|
||
|
||
The reason that the data to match are specified as two components
|
||
which are to be regarded as concatenated is so this function can be
|
||
used directly on the contents of an Emacs buffer.
|
||
|
||
-1 is returned if there is no match. -2 is returned if there is an
|
||
error (such as match stack overflow). Otherwise the value is the
|
||
length of the substring which was matched. */
|
||
|
||
int
|
||
re_match(bufp, string_arg, size, pos, regs)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string_arg;
|
||
int size, pos;
|
||
struct re_registers *regs;
|
||
{
|
||
register unsigned char *p = (unsigned char*)bufp->buffer;
|
||
unsigned char *p1;
|
||
|
||
/* Pointer to beyond end of buffer. */
|
||
register unsigned char *pend = p + bufp->used;
|
||
|
||
unsigned num_regs = bufp->re_nsub;
|
||
|
||
unsigned char *string = (unsigned char*)string_arg;
|
||
|
||
register unsigned char *d, *dend;
|
||
register int mcnt; /* Multipurpose. */
|
||
int options = bufp->options;
|
||
|
||
/* Failure point stack. Each place that can handle a failure further
|
||
down the line pushes a failure point on this stack. It consists of
|
||
restart, regend, and reg_info for all registers corresponding to the
|
||
subexpressions we're currently inside, plus the number of such
|
||
registers, and, finally, two char *'s. The first char * is where to
|
||
resume scanning the pattern; the second one is where to resume
|
||
scanning the strings. If the latter is zero, the failure point is a
|
||
``dummy''; if a failure happens and the failure point is a dummy, it
|
||
gets discarded and the next next one is tried. */
|
||
|
||
unsigned char **stacka;
|
||
unsigned char **stackb;
|
||
unsigned char **stackp;
|
||
unsigned char **stacke;
|
||
|
||
/* Information on the contents of registers. These are pointers into
|
||
the input strings; they record just what was matched (on this
|
||
attempt) by a subexpression part of the pattern, that is, the
|
||
regnum-th regstart pointer points to where in the pattern we began
|
||
matching and the regnum-th regend points to right after where we
|
||
stopped matching the regnum-th subexpression. (The zeroth register
|
||
keeps track of what the whole pattern matches.) */
|
||
|
||
unsigned char **regstart = bufp->regstart;
|
||
unsigned char **regend = bufp->regend;
|
||
|
||
/* If a group that's operated upon by a repetition operator fails to
|
||
match anything, then the register for its start will need to be
|
||
restored because it will have been set to wherever in the string we
|
||
are when we last see its open-group operator. Similarly for a
|
||
register's end. */
|
||
unsigned char **old_regstart = bufp->old_regstart;
|
||
unsigned char **old_regend = bufp->old_regend;
|
||
|
||
/* The is_active field of reg_info helps us keep track of which (possibly
|
||
nested) subexpressions we are currently in. The matched_something
|
||
field of reg_info[reg_num] helps us tell whether or not we have
|
||
matched any of the pattern so far this time through the reg_num-th
|
||
subexpression. These two fields get reset each time through any
|
||
loop their register is in. */
|
||
|
||
register_info_type *reg_info = bufp->reg_info;
|
||
|
||
/* The following record the register info as found in the above
|
||
variables when we find a match better than any we've seen before.
|
||
This happens as we backtrack through the failure points, which in
|
||
turn happens only if we have not yet matched the entire string. */
|
||
|
||
unsigned best_regs_set = 0;
|
||
unsigned char **best_regstart = bufp->best_regstart;
|
||
unsigned char **best_regend = bufp->best_regend;
|
||
|
||
int num_failure_counts = 0;
|
||
|
||
if (regs) {
|
||
init_regs(regs, num_regs);
|
||
}
|
||
|
||
/* Initialize the stack. */
|
||
stacka = RE_TALLOC(MAX_NUM_FAILURE_ITEMS * NFAILURES, unsigned char*);
|
||
stackb = stacka;
|
||
stackp = stackb;
|
||
stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];
|
||
|
||
#ifdef DEBUG_REGEX
|
||
fprintf(stderr, "Entering re_match(%s)\n", string_arg);
|
||
#endif
|
||
|
||
/* Initialize subexpression text positions to -1 to mark ones that no
|
||
( or ( and ) or ) has been seen for. Also set all registers to
|
||
inactive and mark them as not having matched anything or ever
|
||
failed. */
|
||
for (mcnt = 0; mcnt < num_regs; mcnt++) {
|
||
regstart[mcnt] = regend[mcnt]
|
||
= old_regstart[mcnt] = old_regend[mcnt]
|
||
= best_regstart[mcnt] = best_regend[mcnt] = REG_UNSET_VALUE;
|
||
#ifdef __CHECKER__
|
||
reg_info[mcnt].word = 0;
|
||
#endif
|
||
IS_ACTIVE (reg_info[mcnt]) = 0;
|
||
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
||
}
|
||
|
||
/* Set up pointers to ends of strings.
|
||
Don't allow the second string to be empty unless both are empty. */
|
||
|
||
|
||
/* `p' scans through the pattern as `d' scans through the data. `dend'
|
||
is the end of the input string that `d' points within. `d' is
|
||
advanced into the following input string whenever necessary, but
|
||
this happens before fetching; therefore, at the beginning of the
|
||
loop, `d' can be pointing at the end of a string, but it cannot
|
||
equal string2. */
|
||
|
||
d = string + pos, dend = string + size;
|
||
|
||
/* This loops over pattern commands. It exits by returning from the
|
||
function if match is complete, or it drops through if match fails
|
||
at this starting point in the input data. */
|
||
|
||
for (;;) {
|
||
#ifdef DEBUG_REGEX
|
||
fprintf(stderr,
|
||
"regex loop(%d): matching 0x%02d\n",
|
||
p - (unsigned char*)bufp->buffer,
|
||
*p);
|
||
#endif
|
||
/* End of pattern means we might have succeeded. */
|
||
if (p == pend) {
|
||
/* If not end of string, try backtracking. Otherwise done. */
|
||
if ((bufp->options & RE_OPTION_LONGEST) && d != dend) {
|
||
if (best_regs_set) /* non-greedy, no need to backtrack */
|
||
goto restore_best_regs;
|
||
while (stackp != stackb && stackp[-1] == NON_GREEDY) {
|
||
if (best_regs_set) /* non-greedy, no need to backtrack */
|
||
goto restore_best_regs;
|
||
POP_FAILURE_POINT();
|
||
}
|
||
if (stackp != stackb) {
|
||
/* More failure points to try. */
|
||
|
||
/* If exceeds best match so far, save it. */
|
||
if (! best_regs_set || (d > best_regend[0])) {
|
||
best_regs_set = 1;
|
||
best_regend[0] = d; /* Never use regstart[0]. */
|
||
|
||
for (mcnt = 1; mcnt < num_regs; mcnt++) {
|
||
best_regstart[mcnt] = regstart[mcnt];
|
||
best_regend[mcnt] = regend[mcnt];
|
||
}
|
||
}
|
||
goto fail;
|
||
}
|
||
/* If no failure points, don't restore garbage. */
|
||
else if (best_regs_set) {
|
||
restore_best_regs:
|
||
/* Restore best match. */
|
||
d = best_regend[0];
|
||
|
||
for (mcnt = 0; mcnt < num_regs; mcnt++) {
|
||
regstart[mcnt] = best_regstart[mcnt];
|
||
regend[mcnt] = best_regend[mcnt];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If caller wants register contents data back, convert it
|
||
to indices. */
|
||
if (regs) {
|
||
regs->beg[0] = pos;
|
||
regs->end[0] = d - string;
|
||
for (mcnt = 1; mcnt < num_regs; mcnt++) {
|
||
if (REG_UNSET(regend[mcnt])) {
|
||
regs->beg[mcnt] = -1;
|
||
regs->end[mcnt] = -1;
|
||
continue;
|
||
}
|
||
regs->beg[mcnt] = regstart[mcnt] - string;
|
||
regs->end[mcnt] = regend[mcnt] - string;
|
||
}
|
||
}
|
||
FREE_AND_RETURN(stackb, (d - pos - string));
|
||
}
|
||
|
||
/* Otherwise match next pattern command. */
|
||
#ifdef SWITCH_ENUM_BUG
|
||
switch ((int)((enum regexpcode)*p++))
|
||
#else
|
||
switch ((enum regexpcode)*p++)
|
||
#endif
|
||
{
|
||
/* ( [or `(', as appropriate] is represented by start_memory,
|
||
) by stop_memory. Both of those commands are followed by
|
||
a register number in the next byte. The text matched
|
||
within the ( and ) is recorded under that number. */
|
||
case start_memory:
|
||
old_regstart[*p] = regstart[*p];
|
||
regstart[*p] = d;
|
||
IS_ACTIVE(reg_info[*p]) = 1;
|
||
MATCHED_SOMETHING(reg_info[*p]) = 0;
|
||
p += 2;
|
||
continue;
|
||
|
||
case stop_memory:
|
||
old_regend[*p] = regend[*p];
|
||
regend[*p] = d;
|
||
IS_ACTIVE(reg_info[*p]) = 0;
|
||
p += 2;
|
||
continue;
|
||
|
||
case start_paren:
|
||
case stop_paren:
|
||
break;
|
||
|
||
/* \<digit> has been turned into a `duplicate' command which is
|
||
followed by the numeric value of <digit> as the register number. */
|
||
case duplicate:
|
||
{
|
||
int regno = *p++; /* Get which register to match against */
|
||
register unsigned char *d2, *dend2;
|
||
|
||
/* Check if there's corresponding group */
|
||
if (regno >= num_regs) goto fail;
|
||
/* Check if corresponding group is still open */
|
||
if (IS_ACTIVE(reg_info[regno])) goto fail;
|
||
|
||
/* Where in input to try to start matching. */
|
||
d2 = regstart[regno];
|
||
if (REG_UNSET(d2)) goto fail;
|
||
|
||
/* Where to stop matching; if both the place to start and
|
||
the place to stop matching are in the same string, then
|
||
set to the place to stop, otherwise, for now have to use
|
||
the end of the first string. */
|
||
|
||
dend2 = regend[regno];
|
||
if (REG_UNSET(dend2)) goto fail;
|
||
for (;;) {
|
||
/* At end of register contents => success */
|
||
if (d2 == dend2) break;
|
||
|
||
/* If necessary, advance to next segment in data. */
|
||
PREFETCH;
|
||
|
||
/* How many characters left in this segment to match. */
|
||
mcnt = dend - d;
|
||
|
||
/* Want how many consecutive characters we can match in
|
||
one shot, so, if necessary, adjust the count. */
|
||
if (mcnt > dend2 - d2)
|
||
mcnt = dend2 - d2;
|
||
|
||
/* Compare that many; failure if mismatch, else move
|
||
past them. */
|
||
if ((options & RE_OPTION_IGNORECASE)
|
||
? memcmp_translate(d, d2, mcnt)
|
||
: memcmp((char*)d, (char*)d2, mcnt))
|
||
goto fail;
|
||
d += mcnt, d2 += mcnt;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case start_nowidth:
|
||
PUSH_FAILURE_POINT(0, d);
|
||
if (stackp - stackb > RE_DUP_MAX) {
|
||
FREE_AND_RETURN(stackb,(-2));
|
||
}
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
STORE_NUMBER(p+mcnt, stackp - stackb);
|
||
continue;
|
||
|
||
case stop_nowidth:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
stackp = stackb + mcnt;
|
||
d = stackp[-3];
|
||
POP_FAILURE_POINT();
|
||
continue;
|
||
|
||
case stop_backtrack:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
stackp = stackb + mcnt;
|
||
POP_FAILURE_POINT();
|
||
continue;
|
||
|
||
case pop_and_fail:
|
||
EXTRACT_NUMBER(mcnt, p+1);
|
||
stackp = stackb + mcnt;
|
||
POP_FAILURE_POINT();
|
||
goto fail;
|
||
|
||
case anychar:
|
||
PREFETCH;
|
||
if (ismbchar(*d)) {
|
||
if (d + mbclen(*d) > dend)
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
d += mbclen(*d);
|
||
break;
|
||
}
|
||
if (!(options&RE_OPTION_MULTILINE)
|
||
&& (TRANSLATE_P() ? translate[*d] : *d) == '\n')
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
d++;
|
||
break;
|
||
|
||
case anychar_repeat:
|
||
for (;;) {
|
||
PUSH_FAILURE_POINT(p, d);
|
||
PREFETCH;
|
||
if (ismbchar(*d)) {
|
||
if (d + mbclen(*d) > dend)
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
d += mbclen(*d);
|
||
continue;
|
||
}
|
||
if (!(options&RE_OPTION_MULTILINE) &&
|
||
(TRANSLATE_P() ? translate[*d] : *d) == '\n')
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
d++;
|
||
}
|
||
break;
|
||
|
||
case charset:
|
||
case charset_not:
|
||
{
|
||
int not; /* Nonzero for charset_not. */
|
||
int part = 0; /* true if matched part of mbc */
|
||
unsigned char *dsave = d + 1;
|
||
int cc, c;
|
||
|
||
PREFETCH;
|
||
cc = c = (unsigned char)*d++;
|
||
if (ismbchar(c)) {
|
||
if (d + mbclen(c) - 1 <= dend) {
|
||
MBC2WC(c, d);
|
||
}
|
||
}
|
||
else if (TRANSLATE_P())
|
||
cc = c = (unsigned char)translate[c];
|
||
|
||
not = is_in_list(c, p);
|
||
if (!not && cc != c) {
|
||
part = not = is_in_list(cc, p);
|
||
}
|
||
if (*(p - 1) == (unsigned char)charset_not) {
|
||
not = !not;
|
||
}
|
||
if (!not) goto fail;
|
||
|
||
p += 1 + *p + 2 + EXTRACT_UNSIGNED(&p[1 + *p])*8;
|
||
SET_REGS_MATCHED;
|
||
|
||
if (part) d = dsave;
|
||
break;
|
||
}
|
||
|
||
case begline:
|
||
if (size == 0 || AT_STRINGS_BEG(d))
|
||
break;
|
||
if (d[-1] == '\n' && !AT_STRINGS_END(d))
|
||
break;
|
||
goto fail;
|
||
|
||
case endline:
|
||
if (AT_STRINGS_END(d)) {
|
||
if (size == 0 || d[-1] != '\n')
|
||
break;
|
||
}
|
||
else if (*d == '\n')
|
||
break;
|
||
goto fail;
|
||
|
||
/* Match at the very beginning of the string. */
|
||
case begbuf:
|
||
if (AT_STRINGS_BEG(d))
|
||
break;
|
||
goto fail;
|
||
|
||
/* Match at the very end of the data. */
|
||
case endbuf:
|
||
if (AT_STRINGS_END(d))
|
||
break;
|
||
goto fail;
|
||
|
||
/* Match at the very end of the data. */
|
||
case endbuf2:
|
||
if (AT_STRINGS_END(d)) {
|
||
if (size == 0 || d[-1] != '\n')
|
||
break;
|
||
}
|
||
/* .. or newline just before the end of the data. */
|
||
if (*d == '\n' && AT_STRINGS_END(d+1))
|
||
break;
|
||
goto fail;
|
||
|
||
/* `or' constructs are handled by starting each alternative with
|
||
an on_failure_jump that points to the start of the next
|
||
alternative. Each alternative except the last ends with a
|
||
jump to the joining point. (Actually, each jump except for
|
||
the last one really jumps to the following jump, because
|
||
tensioning the jumps is a hassle.) */
|
||
|
||
/* The start of a stupid repeat has an on_failure_jump that points
|
||
past the end of the repeat text. This makes a failure point so
|
||
that on failure to match a repetition, matching restarts past
|
||
as many repetitions have been found with no way to fail and
|
||
look for another one. */
|
||
|
||
/* A smart repeat is similar but loops back to the on_failure_jump
|
||
so that each repetition makes another failure point. */
|
||
|
||
/* Match at the starting position. */
|
||
case begpos:
|
||
if (d - string == pos)
|
||
break;
|
||
goto fail;
|
||
|
||
case on_failure_jump:
|
||
on_failure:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
PUSH_FAILURE_POINT(p + mcnt, d);
|
||
continue;
|
||
|
||
/* The end of a smart repeat has a maybe_finalize_jump back.
|
||
Change it either to a finalize_jump or an ordinary jump. */
|
||
case maybe_finalize_jump:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
p1 = p;
|
||
|
||
/* Compare the beginning of the repeat with what in the
|
||
pattern follows its end. If we can establish that there
|
||
is nothing that they would both match, i.e., that we
|
||
would have to backtrack because of (as in, e.g., `a*a')
|
||
then we can change to finalize_jump, because we'll
|
||
never have to backtrack.
|
||
|
||
This is not true in the case of alternatives: in
|
||
`(a|ab)*' we do need to backtrack to the `ab' alternative
|
||
(e.g., if the string was `ab'). But instead of trying to
|
||
detect that here, the alternative has put on a dummy
|
||
failure point which is what we will end up popping. */
|
||
|
||
/* Skip over open/close-group commands. */
|
||
while (p1 + 2 < pend) {
|
||
if ((enum regexpcode)*p1 == stop_memory ||
|
||
(enum regexpcode)*p1 == start_memory)
|
||
p1 += 3; /* Skip over args, too. */
|
||
else if (/*(enum regexpcode)*p1 == start_paren ||*/
|
||
(enum regexpcode)*p1 == stop_paren)
|
||
p1 += 1;
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (p1 == pend)
|
||
p[-3] = (unsigned char)finalize_jump;
|
||
else if (*p1 == (unsigned char)exactn ||
|
||
*p1 == (unsigned char)endline) {
|
||
register int c = *p1 == (unsigned char)endline ? '\n' : p1[2];
|
||
register unsigned char *p2 = p + mcnt;
|
||
/* p2[0] ... p2[2] are an on_failure_jump.
|
||
Examine what follows that. */
|
||
if (p2[3] == (unsigned char)exactn && p2[5] != c)
|
||
p[-3] = (unsigned char)finalize_jump;
|
||
else if (p2[3] == (unsigned char)charset ||
|
||
p2[3] == (unsigned char)charset_not) {
|
||
int not;
|
||
if (ismbchar(c)) {
|
||
unsigned char *pp = p1+3;
|
||
MBC2WC(c, pp);
|
||
}
|
||
/* `is_in_list()' is TRUE if c would match */
|
||
/* That means it is not safe to finalize. */
|
||
not = is_in_list(c, p2 + 4);
|
||
if (p2[3] == (unsigned char)charset_not)
|
||
not = !not;
|
||
if (!not)
|
||
p[-3] = (unsigned char)finalize_jump;
|
||
}
|
||
}
|
||
p -= 2; /* Point at relative address again. */
|
||
if (p[-1] != (unsigned char)finalize_jump) {
|
||
p[-1] = (unsigned char)jump;
|
||
goto nofinalize;
|
||
}
|
||
/* Note fall through. */
|
||
|
||
/* The end of a stupid repeat has a finalize_jump back to the
|
||
start, where another failure point will be made which will
|
||
point to after all the repetitions found so far. */
|
||
|
||
/* Take off failure points put on by matching on_failure_jump
|
||
because didn't fail. Also remove the register information
|
||
put on by the on_failure_jump. */
|
||
case finalize_jump:
|
||
if (stackp > stackb && stackp[-3] == d) {
|
||
p = stackp[-4];
|
||
POP_FAILURE_POINT();
|
||
continue;
|
||
}
|
||
POP_FAILURE_POINT();
|
||
/* Note fall through. */
|
||
|
||
/* We need this opcode so we can detect where alternatives end
|
||
in `group_match_null_string_p' et al. */
|
||
case jump_past_alt:
|
||
/* fall through */
|
||
|
||
/* Jump without taking off any failure points. */
|
||
case jump:
|
||
nofinalize:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (mcnt < 0 && stackp > stackb && stackp[-3] == d) /* avoid infinite loop */
|
||
goto fail;
|
||
p += mcnt;
|
||
continue;
|
||
|
||
case dummy_failure_jump:
|
||
/* Normally, the on_failure_jump pushes a failure point, which
|
||
then gets popped at finalize_jump. We will end up at
|
||
finalize_jump, also, and with a pattern of, say, `a+', we
|
||
are skipping over the on_failure_jump, so we have to push
|
||
something meaningless for finalize_jump to pop. */
|
||
PUSH_FAILURE_POINT(0, 0);
|
||
goto nofinalize;
|
||
|
||
/* At the end of an alternative, we need to push a dummy failure
|
||
point in case we are followed by a `finalize_jump', because
|
||
we don't want the failure point for the alternative to be
|
||
popped. For example, matching `(a|ab)*' against `aab'
|
||
requires that we match the `ab' alternative. */
|
||
case push_dummy_failure:
|
||
/* See comments just above at `dummy_failure_jump' about the
|
||
two zeroes. */
|
||
p1 = p;
|
||
/* Skip over open/close-group commands. */
|
||
while (p1 + 2 < pend) {
|
||
if ((enum regexpcode)*p1 == stop_memory ||
|
||
(enum regexpcode)*p1 == start_memory)
|
||
p1 += 3; /* Skip over args, too. */
|
||
else if (/*(enum regexpcode)*p1 == start_paren ||*/
|
||
(enum regexpcode)*p1 == stop_paren)
|
||
p1 += 1;
|
||
else
|
||
break;
|
||
}
|
||
if ((enum regexpcode)*p1 == jump)
|
||
p[-1] = unused;
|
||
else
|
||
PUSH_FAILURE_POINT(0, 0);
|
||
break;
|
||
|
||
/* Have to succeed matching what follows at least n times. Then
|
||
just handle like an on_failure_jump. */
|
||
case succeed_n:
|
||
EXTRACT_NUMBER(mcnt, p + 2);
|
||
/* Originally, this is how many times we HAVE to succeed. */
|
||
if (mcnt != 0) {
|
||
mcnt--;
|
||
p += 2;
|
||
PUSH_FAILURE_COUNT(p);
|
||
STORE_NUMBER_AND_INCR(p, mcnt);
|
||
PUSH_FAILURE_POINT(0, 0);
|
||
}
|
||
else {
|
||
goto on_failure;
|
||
}
|
||
continue;
|
||
|
||
case jump_n:
|
||
EXTRACT_NUMBER(mcnt, p + 2);
|
||
/* Originally, this is how many times we CAN jump. */
|
||
if (mcnt) {
|
||
mcnt--;
|
||
PUSH_FAILURE_COUNT(p + 2);
|
||
STORE_NUMBER(p + 2, mcnt);
|
||
goto nofinalize; /* Do the jump without taking off
|
||
any failure points. */
|
||
}
|
||
/* If don't have to jump any more, skip over the rest of command. */
|
||
else
|
||
p += 4;
|
||
continue;
|
||
|
||
case set_number_at:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
p1 = p + mcnt;
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
STORE_NUMBER(p1, mcnt);
|
||
continue;
|
||
|
||
case try_next:
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (p + mcnt < pend) {
|
||
PUSH_FAILURE_POINT(p, d);
|
||
stackp[-1] = NON_GREEDY;
|
||
}
|
||
p += mcnt;
|
||
continue;
|
||
|
||
case finalize_push:
|
||
POP_FAILURE_POINT();
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
if (mcnt < 0 && stackp > stackb && stackp[-3] == d) /* avoid infinite loop */
|
||
goto fail;
|
||
PUSH_FAILURE_POINT(p + mcnt, d);
|
||
stackp[-1] = NON_GREEDY;
|
||
continue;
|
||
|
||
case finalize_push_n:
|
||
EXTRACT_NUMBER(mcnt, p + 2);
|
||
/* Originally, this is how many times we CAN jump. */
|
||
if (mcnt) {
|
||
int pos, i;
|
||
|
||
mcnt--;
|
||
STORE_NUMBER(p + 2, mcnt);
|
||
EXTRACT_NUMBER(pos, p);
|
||
EXTRACT_NUMBER(i, p+pos+5);
|
||
if (i > 0) goto nofinalize;
|
||
POP_FAILURE_POINT();
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p);
|
||
PUSH_FAILURE_POINT(p + mcnt, d);
|
||
stackp[-1] = NON_GREEDY;
|
||
p += 2; /* skip n */
|
||
}
|
||
/* If don't have to push any more, skip over the rest of command. */
|
||
else
|
||
p += 4;
|
||
continue;
|
||
|
||
/* Ignore these. Used to ignore the n of succeed_n's which
|
||
currently have n == 0. */
|
||
case unused:
|
||
continue;
|
||
|
||
case casefold_on:
|
||
options |= RE_OPTION_IGNORECASE;
|
||
continue;
|
||
|
||
case casefold_off:
|
||
options &= ~RE_OPTION_IGNORECASE;
|
||
continue;
|
||
|
||
case option_set:
|
||
options = *p++;
|
||
continue;
|
||
|
||
case wordbound:
|
||
if (AT_STRINGS_BEG(d)) {
|
||
if (IS_A_LETTER(d)) break;
|
||
else goto fail;
|
||
}
|
||
if (AT_STRINGS_END(d)) {
|
||
if (PREV_IS_A_LETTER(d)) break;
|
||
else goto fail;
|
||
}
|
||
if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
|
||
break;
|
||
goto fail;
|
||
|
||
case notwordbound:
|
||
if (AT_STRINGS_BEG(d)) {
|
||
if (IS_A_LETTER(d)) goto fail;
|
||
else break;
|
||
}
|
||
if (AT_STRINGS_END(d)) {
|
||
if (PREV_IS_A_LETTER(d)) goto fail;
|
||
else break;
|
||
}
|
||
if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
|
||
goto fail;
|
||
break;
|
||
|
||
case wordbeg:
|
||
if (IS_A_LETTER(d) && (AT_STRINGS_BEG(d) || !PREV_IS_A_LETTER(d)))
|
||
break;
|
||
goto fail;
|
||
|
||
case wordend:
|
||
if (!AT_STRINGS_BEG(d) && PREV_IS_A_LETTER(d)
|
||
&& (!IS_A_LETTER(d) || AT_STRINGS_END(d)))
|
||
break;
|
||
goto fail;
|
||
|
||
case wordchar:
|
||
PREFETCH;
|
||
if (!IS_A_LETTER(d))
|
||
goto fail;
|
||
if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
|
||
d += mbclen(*d) - 1;
|
||
d++;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
case notwordchar:
|
||
PREFETCH;
|
||
if (IS_A_LETTER(d))
|
||
goto fail;
|
||
if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
|
||
d += mbclen(*d) - 1;
|
||
d++;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
case exactn:
|
||
/* Match the next few pattern characters exactly.
|
||
mcnt is how many characters to match. */
|
||
mcnt = *p++;
|
||
/* This is written out as an if-else so we don't waste time
|
||
testing `translate' inside the loop. */
|
||
if (TRANSLATE_P()) {
|
||
do {
|
||
unsigned char c;
|
||
|
||
PREFETCH;
|
||
if (*p == 0xff) {
|
||
p++;
|
||
if (!--mcnt
|
||
|| AT_STRINGS_END(d)
|
||
|| (unsigned char)*d++ != (unsigned char)*p++)
|
||
goto fail;
|
||
continue;
|
||
}
|
||
c = *d++;
|
||
if (ismbchar(c)) {
|
||
int n;
|
||
|
||
if (c != (unsigned char)*p++)
|
||
goto fail;
|
||
for (n = mbclen(c) - 1; n > 0; n--)
|
||
if (!--mcnt /* redundant check if pattern was
|
||
compiled properly. */
|
||
|| AT_STRINGS_END(d)
|
||
|| (unsigned char)*d++ != (unsigned char)*p++)
|
||
goto fail;
|
||
continue;
|
||
}
|
||
/* compiled code translation needed for ruby */
|
||
if ((unsigned char)translate[c] != (unsigned char)translate[*p++])
|
||
goto fail;
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
else {
|
||
do {
|
||
PREFETCH;
|
||
if (*p == 0xff) {p++; mcnt--;}
|
||
if (*d++ != *p++) goto fail;
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
}
|
||
#ifdef RUBY
|
||
CHECK_INTS;
|
||
#endif
|
||
continue; /* Successfully executed one pattern command; keep going. */
|
||
|
||
/* Jump here if any matching operation fails. */
|
||
fail:
|
||
if (stackp != stackb) {
|
||
/* A restart point is known. Restart there and pop it. */
|
||
short last_used_reg, this_reg;
|
||
|
||
/* If this failure point is from a dummy_failure_point, just
|
||
skip it. */
|
||
if (stackp[-4] == 0 || (best_regs_set && stackp[-1] == NON_GREEDY)) {
|
||
POP_FAILURE_POINT();
|
||
goto fail;
|
||
}
|
||
stackp--; /* discard greedy flag */
|
||
options = (int)*--stackp;
|
||
d = *--stackp;
|
||
p = *--stackp;
|
||
/* Restore register info. */
|
||
last_used_reg = (long)*--stackp;
|
||
|
||
/* Make the ones that weren't saved -1 or 0 again. */
|
||
for (this_reg = num_regs - 1; this_reg > last_used_reg; this_reg--) {
|
||
regend[this_reg] = REG_UNSET_VALUE;
|
||
regstart[this_reg] = REG_UNSET_VALUE;
|
||
IS_ACTIVE(reg_info[this_reg]) = 0;
|
||
MATCHED_SOMETHING(reg_info[this_reg]) = 0;
|
||
}
|
||
|
||
/* And restore the rest from the stack. */
|
||
for ( ; this_reg > 0; this_reg--) {
|
||
reg_info[this_reg].word = *--stackp;
|
||
regend[this_reg] = *--stackp;
|
||
regstart[this_reg] = *--stackp;
|
||
}
|
||
mcnt = (long)*--stackp;
|
||
while (mcnt--) {
|
||
POP_FAILURE_COUNT();
|
||
}
|
||
if (p < pend) {
|
||
int is_a_jump_n = 0;
|
||
int failed_paren = 0;
|
||
|
||
p1 = p;
|
||
/* If failed to a backwards jump that's part of a repetition
|
||
loop, need to pop this failure point and use the next one. */
|
||
switch ((enum regexpcode)*p1) {
|
||
case jump_n:
|
||
case finalize_push_n:
|
||
is_a_jump_n = 1;
|
||
case maybe_finalize_jump:
|
||
case finalize_jump:
|
||
case finalize_push:
|
||
case jump:
|
||
p1++;
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
|
||
|
||
if (mcnt >= 0) break; /* should be backward jump */
|
||
p1 += mcnt;
|
||
|
||
if (( is_a_jump_n && (enum regexpcode)*p1 == succeed_n) ||
|
||
(!is_a_jump_n && (enum regexpcode)*p1 == on_failure_jump)) {
|
||
if (failed_paren) {
|
||
p1++;
|
||
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
|
||
PUSH_FAILURE_POINT(p1 + mcnt, d);
|
||
}
|
||
goto fail;
|
||
}
|
||
break;
|
||
default:
|
||
/* do nothing */;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
break; /* Matching at this starting point really fails. */
|
||
}
|
||
|
||
if (best_regs_set)
|
||
goto restore_best_regs;
|
||
|
||
FREE_AND_RETURN(stackb,(-1)); /* Failure to match. */
|
||
}
|
||
|
||
|
||
static int
|
||
memcmp_translate(s1, s2, len)
|
||
unsigned char *s1, *s2;
|
||
register int len;
|
||
{
|
||
register unsigned char *p1 = s1, *p2 = s2, c;
|
||
while (len) {
|
||
c = *p1++;
|
||
if (ismbchar(c)) {
|
||
int n;
|
||
|
||
if (c != *p2++) return 1;
|
||
for (n = mbclen(c) - 1; n > 0; n--)
|
||
if (!--len || *p1++ != *p2++)
|
||
return 1;
|
||
}
|
||
else
|
||
if (translate[c] != translate[*p2++])
|
||
return 1;
|
||
len--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
re_copy_registers(regs1, regs2)
|
||
struct re_registers *regs1, *regs2;
|
||
{
|
||
int i;
|
||
|
||
if (regs1 == regs2) return;
|
||
if (regs1->allocated == 0) {
|
||
regs1->beg = TMALLOC(regs2->num_regs, int);
|
||
regs1->end = TMALLOC(regs2->num_regs, int);
|
||
regs1->allocated = regs2->num_regs;
|
||
}
|
||
else if (regs1->allocated < regs2->num_regs) {
|
||
TREALLOC(regs1->beg, regs2->num_regs, int);
|
||
TREALLOC(regs1->end, regs2->num_regs, int);
|
||
regs1->allocated = regs2->num_regs;
|
||
}
|
||
for (i=0; i<regs2->num_regs; i++) {
|
||
regs1->beg[i] = regs2->beg[i];
|
||
regs1->end[i] = regs2->end[i];
|
||
}
|
||
regs1->num_regs = regs2->num_regs;
|
||
}
|
||
|
||
void
|
||
re_free_registers(regs)
|
||
struct re_registers *regs;
|
||
{
|
||
if (regs->allocated == 0) return;
|
||
if (regs->beg) xfree(regs->beg);
|
||
if (regs->end) xfree(regs->end);
|
||
}
|
||
|
||
/* Functions for multi-byte support.
|
||
Created for grep multi-byte extension Jul., 1993 by t^2 (Takahiro Tanimoto)
|
||
Last change: Jul. 9, 1993 by t^2 */
|
||
static const unsigned char mbctab_ascii[] = {
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
};
|
||
|
||
static const unsigned char mbctab_euc[] = { /* 0xA1-0xFE */
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
|
||
};
|
||
|
||
static const unsigned char mbctab_sjis[] = { /* 0x80-0x9f,0xE0-0xFF */
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
||
};
|
||
|
||
static const unsigned char mbctab_utf8[] = {
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 0, 0
|
||
};
|
||
|
||
const unsigned char *re_mbctab = mbctab_ascii;
|
||
|
||
void
|
||
re_mbcinit(mbctype)
|
||
int mbctype;
|
||
{
|
||
switch (mbctype) {
|
||
case MBCTYPE_ASCII:
|
||
re_mbctab = mbctab_ascii;
|
||
current_mbctype = MBCTYPE_ASCII;
|
||
break;
|
||
case MBCTYPE_EUC:
|
||
re_mbctab = mbctab_euc;
|
||
current_mbctype = MBCTYPE_EUC;
|
||
break;
|
||
case MBCTYPE_SJIS:
|
||
re_mbctab = mbctab_sjis;
|
||
current_mbctype = MBCTYPE_SJIS;
|
||
break;
|
||
case MBCTYPE_UTF8:
|
||
re_mbctab = mbctab_utf8;
|
||
current_mbctype = MBCTYPE_UTF8;
|
||
break;
|
||
}
|
||
}
|