mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 f4166e2dd7
			
		
	
	
		f4166e2dd7
		
	
	
	
	
		
			
			* file.c, io.c, util.c: prefer rb_syserr_fail with saved errno over setting errno then call rb_sys_fail, not to be clobbered potentially and to reduce thread local errno accesses. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@53264 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			3959 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3959 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   util.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Mar 10 17:22:34 JST 1995
 | |
| 
 | |
|   Copyright (C) 1993-2008 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <stdio.h>
 | |
| #include <errno.h>
 | |
| #include <math.h>
 | |
| #include <float.h>
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #include "missing/file.h"
 | |
| #endif
 | |
| 
 | |
| #include "ruby/util.h"
 | |
| 
 | |
| const char ruby_hexdigits[] = "0123456789abcdef0123456789ABCDEF";
 | |
| #define hexdigit ruby_hexdigits
 | |
| 
 | |
| unsigned long
 | |
| ruby_scan_oct(const char *start, size_t len, size_t *retlen)
 | |
| {
 | |
|     register const char *s = start;
 | |
|     register unsigned long retval = 0;
 | |
| 
 | |
|     while (len-- && *s >= '0' && *s <= '7') {
 | |
| 	retval <<= 3;
 | |
| 	retval |= *s++ - '0';
 | |
|     }
 | |
|     *retlen = (int)(s - start);	/* less than len */
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| ruby_scan_hex(const char *start, size_t len, size_t *retlen)
 | |
| {
 | |
|     register const char *s = start;
 | |
|     register unsigned long retval = 0;
 | |
|     const char *tmp;
 | |
| 
 | |
|     while (len-- && *s && (tmp = strchr(hexdigit, *s))) {
 | |
| 	retval <<= 4;
 | |
| 	retval |= (tmp - hexdigit) & 15;
 | |
| 	s++;
 | |
|     }
 | |
|     *retlen = (int)(s - start);	/* less than len */
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| const signed char ruby_digit36_to_number_table[] = {
 | |
|     /*     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
 | |
|     /*0*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*1*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*2*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*3*/  0, 1, 2, 3, 4, 5, 6, 7, 8, 9,-1,-1,-1,-1,-1,-1,
 | |
|     /*4*/ -1,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
 | |
|     /*5*/ 25,26,27,28,29,30,31,32,33,34,35,-1,-1,-1,-1,-1,
 | |
|     /*6*/ -1,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
 | |
|     /*7*/ 25,26,27,28,29,30,31,32,33,34,35,-1,-1,-1,-1,-1,
 | |
|     /*8*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*9*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*a*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*b*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*c*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*d*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*e*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
|     /*f*/ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 | |
| };
 | |
| 
 | |
| unsigned long
 | |
| ruby_scan_digits(const char *str, ssize_t len, int base, size_t *retlen, int *overflow)
 | |
| {
 | |
| 
 | |
|     const char *start = str;
 | |
|     unsigned long ret = 0, x;
 | |
|     unsigned long mul_overflow = (~(unsigned long)0) / base;
 | |
| 
 | |
|     *overflow = 0;
 | |
| 
 | |
|     if (!len) {
 | |
| 	*retlen = 0;
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
| 	int d = ruby_digit36_to_number_table[(unsigned char)*str++];
 | |
|         if (d == -1 || base <= d) {
 | |
| 	    --str;
 | |
| 	    break;
 | |
|         }
 | |
|         if (mul_overflow < ret)
 | |
|             *overflow = 1;
 | |
|         ret *= base;
 | |
|         x = ret;
 | |
|         ret += d;
 | |
|         if (ret < x)
 | |
|             *overflow = 1;
 | |
|     } while (len < 0 || --len);
 | |
|     *retlen = str - start;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| ruby_strtoul(const char *str, char **endptr, int base)
 | |
| {
 | |
|     int c, b, overflow;
 | |
|     int sign = 0;
 | |
|     size_t len;
 | |
|     unsigned long ret;
 | |
|     const char *subject_found = str;
 | |
| 
 | |
|     if (base == 1 || 36 < base) {
 | |
|         errno = EINVAL;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     while ((c = *str) && ISSPACE(c))
 | |
|         str++;
 | |
| 
 | |
|     if (c == '+') {
 | |
|         sign = 1;
 | |
|         str++;
 | |
|     }
 | |
|     else if (c == '-') {
 | |
|         sign = -1;
 | |
|         str++;
 | |
|     }
 | |
| 
 | |
|     if (str[0] == '0') {
 | |
|         subject_found = str+1;
 | |
|         if (base == 0 || base == 16) {
 | |
|             if (str[1] == 'x' || str[1] == 'X') {
 | |
|                 b = 16;
 | |
|                 str += 2;
 | |
|             }
 | |
|             else {
 | |
|                 b = base == 0 ? 8 : 16;
 | |
|                 str++;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             b = base;
 | |
|             str++;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         b = base == 0 ? 10 : base;
 | |
|     }
 | |
| 
 | |
|     ret = ruby_scan_digits(str, -1, b, &len, &overflow);
 | |
| 
 | |
|     if (0 < len)
 | |
|         subject_found = str+len;
 | |
| 
 | |
|     if (endptr)
 | |
|         *endptr = (char*)subject_found;
 | |
| 
 | |
|     if (overflow) {
 | |
|         errno = ERANGE;
 | |
|         return ULONG_MAX;
 | |
|     }
 | |
| 
 | |
|     if (sign < 0) {
 | |
|         ret = (unsigned long)(-(long)ret);
 | |
|         return ret;
 | |
|     }
 | |
|     else {
 | |
|         return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #ifdef HAVE_UNISTD_H
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| #if defined(HAVE_FCNTL_H)
 | |
| #include <fcntl.h>
 | |
| #endif
 | |
| 
 | |
| #ifndef S_ISDIR
 | |
| #   define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
 | |
| #endif
 | |
| 
 | |
| #if defined HAVE_BSD_QSORT_R
 | |
| typedef int (cmpfunc_t)(const void*, const void*, void*);
 | |
| 
 | |
| struct bsd_qsort_r_args {
 | |
|     cmpfunc_t *cmp;
 | |
|     void *arg;
 | |
| };
 | |
| 
 | |
| static int
 | |
| cmp_bsd_qsort(void *d, const void *a, const void *b)
 | |
| {
 | |
|     const struct bsd_qsort_r_args *args = d;
 | |
|     return (*args->cmp)(a, b, args->arg);
 | |
| }
 | |
| 
 | |
| void
 | |
| ruby_qsort(void* base, const size_t nel, const size_t size, cmpfunc_t *cmp, void *d)
 | |
| {
 | |
|     struct bsd_qsort_r_args args;
 | |
|     args.cmp = cmp;
 | |
|     args.arg = d;
 | |
|     qsort_r(base, nel, size, &args, cmp_bsd_qsort);
 | |
| }
 | |
| #elif !defined HAVE_GNU_QSORT_R
 | |
| /* mm.c */
 | |
| 
 | |
| #define mmtype long
 | |
| #define mmcount (16 / SIZEOF_LONG)
 | |
| #define A ((mmtype*)a)
 | |
| #define B ((mmtype*)b)
 | |
| #define C ((mmtype*)c)
 | |
| #define D ((mmtype*)d)
 | |
| 
 | |
| #define mmstep (sizeof(mmtype) * mmcount)
 | |
| #define mmprepare(base, size) do {\
 | |
|  if (((VALUE)(base) % sizeof(mmtype)) == 0 && ((size) % sizeof(mmtype)) == 0) \
 | |
|    if ((size) >= mmstep) mmkind = 1;\
 | |
|    else              mmkind = 0;\
 | |
|  else                mmkind = -1;\
 | |
|  high = ((size) / mmstep) * mmstep;\
 | |
|  low  = ((size) % mmstep);\
 | |
| } while (0)\
 | |
| 
 | |
| #define mmarg mmkind, size, high, low
 | |
| #define mmargdecl int mmkind, size_t size, size_t high, size_t low
 | |
| 
 | |
| static void mmswap_(register char *a, register char *b, mmargdecl)
 | |
| {
 | |
|  if (a == b) return;
 | |
|  if (mmkind >= 0) {
 | |
|    register mmtype s;
 | |
| #if mmcount > 1
 | |
|    if (mmkind > 0) {
 | |
|      register char *t = a + high;
 | |
|      do {
 | |
|        s = A[0]; A[0] = B[0]; B[0] = s;
 | |
|        s = A[1]; A[1] = B[1]; B[1] = s;
 | |
| #if mmcount > 2
 | |
|        s = A[2]; A[2] = B[2]; B[2] = s;
 | |
| #if mmcount > 3
 | |
|        s = A[3]; A[3] = B[3]; B[3] = s;
 | |
| #endif
 | |
| #endif
 | |
|        a += mmstep; b += mmstep;
 | |
|      } while (a < t);
 | |
|    }
 | |
| #endif
 | |
|    if (low != 0) { s = A[0]; A[0] = B[0]; B[0] = s;
 | |
| #if mmcount > 2
 | |
|      if (low >= 2 * sizeof(mmtype)) { s = A[1]; A[1] = B[1]; B[1] = s;
 | |
| #if mmcount > 3
 | |
|        if (low >= 3 * sizeof(mmtype)) {s = A[2]; A[2] = B[2]; B[2] = s;}
 | |
| #endif
 | |
|      }
 | |
| #endif
 | |
|    }
 | |
|  }
 | |
|  else {
 | |
|    register char *t = a + size, s;
 | |
|    do {s = *a; *a++ = *b; *b++ = s;} while (a < t);
 | |
|  }
 | |
| }
 | |
| #define mmswap(a,b) mmswap_((a),(b),mmarg)
 | |
| 
 | |
| /* a, b, c = b, c, a */
 | |
| static void mmrot3_(register char *a, register char *b, register char *c, mmargdecl)
 | |
| {
 | |
|  if (mmkind >= 0) {
 | |
|    register mmtype s;
 | |
| #if mmcount > 1
 | |
|    if (mmkind > 0) {
 | |
|      register char *t = a + high;
 | |
|      do {
 | |
|        s = A[0]; A[0] = B[0]; B[0] = C[0]; C[0] = s;
 | |
|        s = A[1]; A[1] = B[1]; B[1] = C[1]; C[1] = s;
 | |
| #if mmcount > 2
 | |
|        s = A[2]; A[2] = B[2]; B[2] = C[2]; C[2] = s;
 | |
| #if mmcount > 3
 | |
|        s = A[3]; A[3] = B[3]; B[3] = C[3]; C[3] = s;
 | |
| #endif
 | |
| #endif
 | |
|        a += mmstep; b += mmstep; c += mmstep;
 | |
|      } while (a < t);
 | |
|    }
 | |
| #endif
 | |
|    if (low != 0) { s = A[0]; A[0] = B[0]; B[0] = C[0]; C[0] = s;
 | |
| #if mmcount > 2
 | |
|      if (low >= 2 * sizeof(mmtype)) { s = A[1]; A[1] = B[1]; B[1] = C[1]; C[1] = s;
 | |
| #if mmcount > 3
 | |
|        if (low == 3 * sizeof(mmtype)) {s = A[2]; A[2] = B[2]; B[2] = C[2]; C[2] = s;}
 | |
| #endif
 | |
|      }
 | |
| #endif
 | |
|    }
 | |
|  }
 | |
|  else {
 | |
|    register char *t = a + size, s;
 | |
|    do {s = *a; *a++ = *b; *b++ = *c; *c++ = s;} while (a < t);
 | |
|  }
 | |
| }
 | |
| #define mmrot3(a,b,c) mmrot3_((a),(b),(c),mmarg)
 | |
| 
 | |
| /* qs6.c */
 | |
| /*****************************************************/
 | |
| /*                                                   */
 | |
| /*          qs6   (Quick sort function)              */
 | |
| /*                                                   */
 | |
| /* by  Tomoyuki Kawamura              1995.4.21      */
 | |
| /* kawamura@tokuyama.ac.jp                           */
 | |
| /*****************************************************/
 | |
| 
 | |
| typedef struct { char *LL, *RR; } stack_node; /* Stack structure for L,l,R,r */
 | |
| #define PUSH(ll,rr) do { top->LL = (ll); top->RR = (rr); ++top; } while (0)  /* Push L,l,R,r */
 | |
| #define POP(ll,rr)  do { --top; (ll) = top->LL; (rr) = top->RR; } while (0)      /* Pop L,l,R,r */
 | |
| 
 | |
| #define med3(a,b,c) ((*cmp)((a),(b),d)<0 ?                                   \
 | |
|                        ((*cmp)((b),(c),d)<0 ? (b) : ((*cmp)((a),(c),d)<0 ? (c) : (a))) : \
 | |
|                        ((*cmp)((b),(c),d)>0 ? (b) : ((*cmp)((a),(c),d)<0 ? (a) : (c))))
 | |
| 
 | |
| typedef int (cmpfunc_t)(const void*, const void*, void*);
 | |
| void
 | |
| ruby_qsort(void* base, const size_t nel, const size_t size, cmpfunc_t *cmp, void *d)
 | |
| {
 | |
|   register char *l, *r, *m;          	/* l,r:left,right group   m:median point */
 | |
|   register int t, eq_l, eq_r;       	/* eq_l: all items in left group are equal to S */
 | |
|   char *L = base;                    	/* left end of current region */
 | |
|   char *R = (char*)base + size*(nel-1); /* right end of current region */
 | |
|   size_t chklim = 63;                   /* threshold of ordering element check */
 | |
|   enum {size_bits = sizeof(size) * CHAR_BIT};
 | |
|   stack_node stack[size_bits];          /* enough for size_t size */
 | |
|   stack_node *top = stack;
 | |
|   int mmkind;
 | |
|   size_t high, low, n;
 | |
| 
 | |
|   if (nel <= 1) return;        /* need not to sort */
 | |
|   mmprepare(base, size);
 | |
|   goto start;
 | |
| 
 | |
|   nxt:
 | |
|   if (stack == top) return;    /* return if stack is empty */
 | |
|   POP(L,R);
 | |
| 
 | |
|   for (;;) {
 | |
|     start:
 | |
|     if (L + size == R) {       /* 2 elements */
 | |
|       if ((*cmp)(L,R,d) > 0) mmswap(L,R); goto nxt;
 | |
|     }
 | |
| 
 | |
|     l = L; r = R;
 | |
|     n = (r - l + size) / size;  /* number of elements */
 | |
|     m = l + size * (n >> 1);    /* calculate median value */
 | |
| 
 | |
|     if (n >= 60) {
 | |
|       register char *m1;
 | |
|       register char *m3;
 | |
|       if (n >= 200) {
 | |
| 	n = size*(n>>3); /* number of bytes in splitting 8 */
 | |
| 	{
 | |
| 	  register char *p1 = l  + n;
 | |
| 	  register char *p2 = p1 + n;
 | |
| 	  register char *p3 = p2 + n;
 | |
| 	  m1 = med3(p1, p2, p3);
 | |
| 	  p1 = m  + n;
 | |
| 	  p2 = p1 + n;
 | |
| 	  p3 = p2 + n;
 | |
| 	  m3 = med3(p1, p2, p3);
 | |
| 	}
 | |
|       }
 | |
|       else {
 | |
| 	n = size*(n>>2); /* number of bytes in splitting 4 */
 | |
| 	m1 = l + n;
 | |
| 	m3 = m + n;
 | |
|       }
 | |
|       m = med3(m1, m, m3);
 | |
|     }
 | |
| 
 | |
|     if ((t = (*cmp)(l,m,d)) < 0) {                           /*3-5-?*/
 | |
|       if ((t = (*cmp)(m,r,d)) < 0) {                         /*3-5-7*/
 | |
| 	if (chklim && nel >= chklim) {   /* check if already ascending order */
 | |
| 	  char *p;
 | |
| 	  chklim = 0;
 | |
| 	  for (p=l; p<r; p+=size) if ((*cmp)(p,p+size,d) > 0) goto fail;
 | |
| 	  goto nxt;
 | |
| 	}
 | |
| 	fail: goto loopA;                                    /*3-5-7*/
 | |
|       }
 | |
|       if (t > 0) {
 | |
| 	if ((*cmp)(l,r,d) <= 0) {mmswap(m,r); goto loopA;}     /*3-5-4*/
 | |
| 	mmrot3(r,m,l); goto loopA;                           /*3-5-2*/
 | |
|       }
 | |
|       goto loopB;                                            /*3-5-5*/
 | |
|     }
 | |
| 
 | |
|     if (t > 0) {                                             /*7-5-?*/
 | |
|       if ((t = (*cmp)(m,r,d)) > 0) {                         /*7-5-3*/
 | |
| 	if (chklim && nel >= chklim) {   /* check if already ascending order */
 | |
| 	  char *p;
 | |
| 	  chklim = 0;
 | |
| 	  for (p=l; p<r; p+=size) if ((*cmp)(p,p+size,d) < 0) goto fail2;
 | |
| 	  while (l<r) {mmswap(l,r); l+=size; r-=size;}  /* reverse region */
 | |
| 	  goto nxt;
 | |
| 	}
 | |
| 	fail2: mmswap(l,r); goto loopA;                      /*7-5-3*/
 | |
|       }
 | |
|       if (t < 0) {
 | |
| 	if ((*cmp)(l,r,d) <= 0) {mmswap(l,m); goto loopB;}   /*7-5-8*/
 | |
| 	mmrot3(l,m,r); goto loopA;                           /*7-5-6*/
 | |
|       }
 | |
|       mmswap(l,r); goto loopA;                               /*7-5-5*/
 | |
|     }
 | |
| 
 | |
|     if ((t = (*cmp)(m,r,d)) < 0)  {goto loopA;}              /*5-5-7*/
 | |
|     if (t > 0) {mmswap(l,r); goto loopB;}                    /*5-5-3*/
 | |
| 
 | |
|     /* determining splitting type in case 5-5-5 */           /*5-5-5*/
 | |
|     for (;;) {
 | |
|       if ((l += size) == r)      goto nxt;                   /*5-5-5*/
 | |
|       if (l == m) continue;
 | |
|       if ((t = (*cmp)(l,m,d)) > 0) {mmswap(l,r); l = L; goto loopA;}/*575-5*/
 | |
|       if (t < 0)                 {mmswap(L,l); l = L; goto loopB;}  /*535-5*/
 | |
|     }
 | |
| 
 | |
|     loopA: eq_l = 1; eq_r = 1;  /* splitting type A */ /* left <= median < right */
 | |
|     for (;;) {
 | |
|       for (;;) {
 | |
| 	if ((l += size) == r)
 | |
| 	  {l -= size; if (l != m) mmswap(m,l); l -= size; goto fin;}
 | |
| 	if (l == m) continue;
 | |
| 	if ((t = (*cmp)(l,m,d)) > 0) {eq_r = 0; break;}
 | |
| 	if (t < 0) eq_l = 0;
 | |
|       }
 | |
|       for (;;) {
 | |
| 	if (l == (r -= size))
 | |
| 	  {l -= size; if (l != m) mmswap(m,l); l -= size; goto fin;}
 | |
| 	if (r == m) {m = l; break;}
 | |
| 	if ((t = (*cmp)(r,m,d)) < 0) {eq_l = 0; break;}
 | |
| 	if (t == 0) break;
 | |
|       }
 | |
|       mmswap(l,r);    /* swap left and right */
 | |
|     }
 | |
| 
 | |
|     loopB: eq_l = 1; eq_r = 1;  /* splitting type B */ /* left < median <= right */
 | |
|     for (;;) {
 | |
|       for (;;) {
 | |
| 	if (l == (r -= size))
 | |
| 	  {r += size; if (r != m) mmswap(r,m); r += size; goto fin;}
 | |
| 	if (r == m) continue;
 | |
| 	if ((t = (*cmp)(r,m,d)) < 0) {eq_l = 0; break;}
 | |
| 	if (t > 0) eq_r = 0;
 | |
|       }
 | |
|       for (;;) {
 | |
| 	if ((l += size) == r)
 | |
| 	  {r += size; if (r != m) mmswap(r,m); r += size; goto fin;}
 | |
| 	if (l == m) {m = r; break;}
 | |
| 	if ((t = (*cmp)(l,m,d)) > 0) {eq_r = 0; break;}
 | |
| 	if (t == 0) break;
 | |
|       }
 | |
|       mmswap(l,r);    /* swap left and right */
 | |
|     }
 | |
| 
 | |
|     fin:
 | |
|     if (eq_l == 0)                         /* need to sort left side */
 | |
|       if (eq_r == 0)                       /* need to sort right side */
 | |
| 	if (l-L < R-r) {PUSH(r,R); R = l;} /* sort left side first */
 | |
| 	else           {PUSH(L,l); L = r;} /* sort right side first */
 | |
|       else R = l;                          /* need to sort left side only */
 | |
|     else if (eq_r == 0) L = r;             /* need to sort right side only */
 | |
|     else goto nxt;                         /* need not to sort both sides */
 | |
|   }
 | |
| }
 | |
| #endif /* HAVE_GNU_QSORT_R */
 | |
| 
 | |
| char *
 | |
| ruby_strdup(const char *str)
 | |
| {
 | |
|     char *tmp;
 | |
|     size_t len = strlen(str) + 1;
 | |
| 
 | |
|     tmp = xmalloc(len);
 | |
|     memcpy(tmp, str, len);
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| char *
 | |
| ruby_getcwd(void)
 | |
| {
 | |
| #if defined __native_client__
 | |
|     char *buf = xmalloc(2);
 | |
|     strcpy(buf, ".");
 | |
| #elif defined HAVE_GETCWD
 | |
| # if defined NO_GETCWD_MALLOC
 | |
|     int size = 200;
 | |
|     char *buf = xmalloc(size);
 | |
| 
 | |
|     while (!getcwd(buf, size)) {
 | |
| 	int e = errno;
 | |
| 	if (e != ERANGE) {
 | |
| 	    xfree(buf);
 | |
| 	    rb_syserr_fail(e, "getcwd");
 | |
| 	}
 | |
| 	size *= 2;
 | |
| 	buf = xrealloc(buf, size);
 | |
|     }
 | |
| # else
 | |
|     char *buf, *cwd = getcwd(NULL, 0);
 | |
|     if (!cwd) rb_sys_fail("getcwd");
 | |
|     buf = ruby_strdup(cwd);	/* allocate by xmalloc */
 | |
|     free(cwd);
 | |
| # endif
 | |
| #else
 | |
| # ifndef PATH_MAX
 | |
| #  define PATH_MAX 8192
 | |
| # endif
 | |
|     char *buf = xmalloc(PATH_MAX+1);
 | |
| 
 | |
|     if (!getwd(buf)) {
 | |
| 	int e = errno;
 | |
| 	xfree(buf);
 | |
| 	rb_syserr_fail(e, "getwd");
 | |
|     }
 | |
| #endif
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| /****************************************************************
 | |
|  *
 | |
|  * The author of this software is David M. Gay.
 | |
|  *
 | |
|  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software for any
 | |
|  * purpose without fee is hereby granted, provided that this entire notice
 | |
|  * is included in all copies of any software which is or includes a copy
 | |
|  * or modification of this software and in all copies of the supporting
 | |
|  * documentation for such software.
 | |
|  *
 | |
|  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 | |
|  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | |
|  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | |
|  *
 | |
|  ***************************************************************/
 | |
| 
 | |
| /* Please send bug reports to David M. Gay (dmg at acm dot org,
 | |
|  * with " at " changed at "@" and " dot " changed to ".").	*/
 | |
| 
 | |
| /* On a machine with IEEE extended-precision registers, it is
 | |
|  * necessary to specify double-precision (53-bit) rounding precision
 | |
|  * before invoking strtod or dtoa.  If the machine uses (the equivalent
 | |
|  * of) Intel 80x87 arithmetic, the call
 | |
|  *	_control87(PC_53, MCW_PC);
 | |
|  * does this with many compilers.  Whether this or another call is
 | |
|  * appropriate depends on the compiler; for this to work, it may be
 | |
|  * necessary to #include "float.h" or another system-dependent header
 | |
|  * file.
 | |
|  */
 | |
| 
 | |
| /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
 | |
|  *
 | |
|  * This strtod returns a nearest machine number to the input decimal
 | |
|  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
 | |
|  * broken by the IEEE round-even rule.  Otherwise ties are broken by
 | |
|  * biased rounding (add half and chop).
 | |
|  *
 | |
|  * Inspired loosely by William D. Clinger's paper "How to Read Floating
 | |
|  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *
 | |
|  *	1. We only require IEEE, IBM, or VAX double-precision
 | |
|  *		arithmetic (not IEEE double-extended).
 | |
|  *	2. We get by with floating-point arithmetic in a case that
 | |
|  *		Clinger missed -- when we're computing d * 10^n
 | |
|  *		for a small integer d and the integer n is not too
 | |
|  *		much larger than 22 (the maximum integer k for which
 | |
|  *		we can represent 10^k exactly), we may be able to
 | |
|  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
 | |
|  *	3. Rather than a bit-at-a-time adjustment of the binary
 | |
|  *		result in the hard case, we use floating-point
 | |
|  *		arithmetic to determine the adjustment to within
 | |
|  *		one bit; only in really hard cases do we need to
 | |
|  *		compute a second residual.
 | |
|  *	4. Because of 3., we don't need a large table of powers of 10
 | |
|  *		for ten-to-e (just some small tables, e.g. of 10^k
 | |
|  *		for 0 <= k <= 22).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
 | |
|  *	significant byte has the lowest address.
 | |
|  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
 | |
|  *	significant byte has the lowest address.
 | |
|  * #define Long int on machines with 32-bit ints and 64-bit longs.
 | |
|  * #define IBM for IBM mainframe-style floating-point arithmetic.
 | |
|  * #define VAX for VAX-style floating-point arithmetic (D_floating).
 | |
|  * #define No_leftright to omit left-right logic in fast floating-point
 | |
|  *	computation of dtoa.
 | |
|  * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
 | |
|  *	and strtod and dtoa should round accordingly.
 | |
|  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
 | |
|  *	and Honor_FLT_ROUNDS is not #defined.
 | |
|  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
 | |
|  *	that use extended-precision instructions to compute rounded
 | |
|  *	products and quotients) with IBM.
 | |
|  * #define ROUND_BIASED for IEEE-format with biased rounding.
 | |
|  * #define Inaccurate_Divide for IEEE-format with correctly rounded
 | |
|  *	products but inaccurate quotients, e.g., for Intel i860.
 | |
|  * #define NO_LONG_LONG on machines that do not have a "long long"
 | |
|  *	integer type (of >= 64 bits).  On such machines, you can
 | |
|  *	#define Just_16 to store 16 bits per 32-bit Long when doing
 | |
|  *	high-precision integer arithmetic.  Whether this speeds things
 | |
|  *	up or slows things down depends on the machine and the number
 | |
|  *	being converted.  If long long is available and the name is
 | |
|  *	something other than "long long", #define Llong to be the name,
 | |
|  *	and if "unsigned Llong" does not work as an unsigned version of
 | |
|  *	Llong, #define #ULLong to be the corresponding unsigned type.
 | |
|  * #define KR_headers for old-style C function headers.
 | |
|  * #define Bad_float_h if your system lacks a float.h or if it does not
 | |
|  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
 | |
|  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
 | |
|  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
 | |
|  *	if memory is available and otherwise does something you deem
 | |
|  *	appropriate.  If MALLOC is undefined, malloc will be invoked
 | |
|  *	directly -- and assumed always to succeed.
 | |
|  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
 | |
|  *	memory allocations from a private pool of memory when possible.
 | |
|  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
 | |
|  *	unless #defined to be a different length.  This default length
 | |
|  *	suffices to get rid of MALLOC calls except for unusual cases,
 | |
|  *	such as decimal-to-binary conversion of a very long string of
 | |
|  *	digits.  The longest string dtoa can return is about 751 bytes
 | |
|  *	long.  For conversions by strtod of strings of 800 digits and
 | |
|  *	all dtoa conversions in single-threaded executions with 8-byte
 | |
|  *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
 | |
|  *	pointers, PRIVATE_MEM >= 7112 appears adequate.
 | |
|  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
 | |
|  *	Infinity and NaN (case insensitively).  On some systems (e.g.,
 | |
|  *	some HP systems), it may be necessary to #define NAN_WORD0
 | |
|  *	appropriately -- to the most significant word of a quiet NaN.
 | |
|  *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
 | |
|  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
 | |
|  *	strtod also accepts (case insensitively) strings of the form
 | |
|  *	NaN(x), where x is a string of hexadecimal digits and spaces;
 | |
|  *	if there is only one string of hexadecimal digits, it is taken
 | |
|  *	for the 52 fraction bits of the resulting NaN; if there are two
 | |
|  *	or more strings of hex digits, the first is for the high 20 bits,
 | |
|  *	the second and subsequent for the low 32 bits, with intervening
 | |
|  *	white space ignored; but if this results in none of the 52
 | |
|  *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
 | |
|  *	and NAN_WORD1 are used instead.
 | |
|  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
 | |
|  *	multiple threads.  In this case, you must provide (or suitably
 | |
|  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
 | |
|  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
 | |
|  *	in pow5mult, ensures lazy evaluation of only one copy of high
 | |
|  *	powers of 5; omitting this lock would introduce a small
 | |
|  *	probability of wasting memory, but would otherwise be harmless.)
 | |
|  *	You must also invoke freedtoa(s) to free the value s returned by
 | |
|  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
 | |
|  * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
 | |
|  *	avoids underflows on inputs whose result does not underflow.
 | |
|  *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format
 | |
|  *	floating-point numbers and flushes underflows to zero rather
 | |
|  *	than implementing gradual underflow, then you must also #define
 | |
|  *	Sudden_Underflow.
 | |
|  * #define YES_ALIAS to permit aliasing certain double values with
 | |
|  *	arrays of ULongs.  This leads to slightly better code with
 | |
|  *	some compilers and was always used prior to 19990916, but it
 | |
|  *	is not strictly legal and can cause trouble with aggressively
 | |
|  *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
 | |
|  * #define USE_LOCALE to use the current locale's decimal_point value.
 | |
|  * #define SET_INEXACT if IEEE arithmetic is being used and extra
 | |
|  *	computation should be done to set the inexact flag when the
 | |
|  *	result is inexact and avoid setting inexact when the result
 | |
|  *	is exact.  In this case, dtoa.c must be compiled in
 | |
|  *	an environment, perhaps provided by #include "dtoa.c" in a
 | |
|  *	suitable wrapper, that defines two functions,
 | |
|  *		int get_inexact(void);
 | |
|  *		void clear_inexact(void);
 | |
|  *	such that get_inexact() returns a nonzero value if the
 | |
|  *	inexact bit is already set, and clear_inexact() sets the
 | |
|  *	inexact bit to 0.  When SET_INEXACT is #defined, strtod
 | |
|  *	also does extra computations to set the underflow and overflow
 | |
|  *	flags when appropriate (i.e., when the result is tiny and
 | |
|  *	inexact or when it is a numeric value rounded to +-infinity).
 | |
|  * #define NO_ERRNO if strtod should not assign errno = ERANGE when
 | |
|  *	the result overflows to +-Infinity or underflows to 0.
 | |
|  */
 | |
| 
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| #define IEEE_BIG_ENDIAN
 | |
| #else
 | |
| #define IEEE_LITTLE_ENDIAN
 | |
| #endif
 | |
| 
 | |
| #ifdef __vax__
 | |
| #define VAX
 | |
| #undef IEEE_BIG_ENDIAN
 | |
| #undef IEEE_LITTLE_ENDIAN
 | |
| #endif
 | |
| 
 | |
| #if defined(__arm__) && !defined(__VFP_FP__)
 | |
| #define IEEE_BIG_ENDIAN
 | |
| #undef IEEE_LITTLE_ENDIAN
 | |
| #endif
 | |
| 
 | |
| #undef Long
 | |
| #undef ULong
 | |
| 
 | |
| #if SIZEOF_INT == 4
 | |
| #define Long int
 | |
| #define ULong unsigned int
 | |
| #elif SIZEOF_LONG == 4
 | |
| #define Long long int
 | |
| #define ULong unsigned long int
 | |
| #endif
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| #define Llong LONG_LONG
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #include "stdio.h"
 | |
| #define Bug(x) {fprintf(stderr, "%s\n", (x)); exit(EXIT_FAILURE);}
 | |
| #endif
 | |
| 
 | |
| #include "stdlib.h"
 | |
| #include "string.h"
 | |
| 
 | |
| #ifdef USE_LOCALE
 | |
| #include "locale.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC
 | |
| extern void *MALLOC(size_t);
 | |
| #else
 | |
| #define MALLOC malloc
 | |
| #endif
 | |
| #ifdef FREE
 | |
| extern void FREE(void*);
 | |
| #else
 | |
| #define FREE free
 | |
| #endif
 | |
| 
 | |
| #ifndef Omit_Private_Memory
 | |
| #ifndef PRIVATE_MEM
 | |
| #define PRIVATE_MEM 2304
 | |
| #endif
 | |
| #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
 | |
| static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
 | |
| #endif
 | |
| 
 | |
| #undef IEEE_Arith
 | |
| #undef Avoid_Underflow
 | |
| #ifdef IEEE_BIG_ENDIAN
 | |
| #define IEEE_Arith
 | |
| #endif
 | |
| #ifdef IEEE_LITTLE_ENDIAN
 | |
| #define IEEE_Arith
 | |
| #endif
 | |
| 
 | |
| #ifdef Bad_float_h
 | |
| 
 | |
| #ifdef IEEE_Arith
 | |
| #define DBL_DIG 15
 | |
| #define DBL_MAX_10_EXP 308
 | |
| #define DBL_MAX_EXP 1024
 | |
| #define FLT_RADIX 2
 | |
| #endif /*IEEE_Arith*/
 | |
| 
 | |
| #ifdef IBM
 | |
| #define DBL_DIG 16
 | |
| #define DBL_MAX_10_EXP 75
 | |
| #define DBL_MAX_EXP 63
 | |
| #define FLT_RADIX 16
 | |
| #define DBL_MAX 7.2370055773322621e+75
 | |
| #endif
 | |
| 
 | |
| #ifdef VAX
 | |
| #define DBL_DIG 16
 | |
| #define DBL_MAX_10_EXP 38
 | |
| #define DBL_MAX_EXP 127
 | |
| #define FLT_RADIX 2
 | |
| #define DBL_MAX 1.7014118346046923e+38
 | |
| #endif
 | |
| 
 | |
| #ifndef LONG_MAX
 | |
| #define LONG_MAX 2147483647
 | |
| #endif
 | |
| 
 | |
| #else /* ifndef Bad_float_h */
 | |
| #include "float.h"
 | |
| #endif /* Bad_float_h */
 | |
| 
 | |
| #ifndef __MATH_H__
 | |
| #include "math.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #if 0
 | |
| } /* satisfy cc-mode */
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
 | |
| Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
 | |
| #endif
 | |
| 
 | |
| typedef union { double d; ULong L[2]; } U;
 | |
| 
 | |
| #ifdef YES_ALIAS
 | |
| typedef double double_u;
 | |
| #  define dval(x) (x)
 | |
| #  ifdef IEEE_LITTLE_ENDIAN
 | |
| #    define word0(x) (((ULong *)&(x))[1])
 | |
| #    define word1(x) (((ULong *)&(x))[0])
 | |
| #  else
 | |
| #    define word0(x) (((ULong *)&(x))[0])
 | |
| #    define word1(x) (((ULong *)&(x))[1])
 | |
| #  endif
 | |
| #else
 | |
| typedef U double_u;
 | |
| #  ifdef IEEE_LITTLE_ENDIAN
 | |
| #    define word0(x) ((x).L[1])
 | |
| #    define word1(x) ((x).L[0])
 | |
| #  else
 | |
| #    define word0(x) ((x).L[0])
 | |
| #    define word1(x) ((x).L[1])
 | |
| #  endif
 | |
| #  define dval(x) ((x).d)
 | |
| #endif
 | |
| 
 | |
| /* The following definition of Storeinc is appropriate for MIPS processors.
 | |
|  * An alternative that might be better on some machines is
 | |
|  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
 | |
|  */
 | |
| #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
 | |
| #define Storeinc(a,b,c) (((unsigned short *)(a))[1] = (unsigned short)(b), \
 | |
| ((unsigned short *)(a))[0] = (unsigned short)(c), (a)++)
 | |
| #else
 | |
| #define Storeinc(a,b,c) (((unsigned short *)(a))[0] = (unsigned short)(b), \
 | |
| ((unsigned short *)(a))[1] = (unsigned short)(c), (a)++)
 | |
| #endif
 | |
| 
 | |
| /* #define P DBL_MANT_DIG */
 | |
| /* Ten_pmax = floor(P*log(2)/log(5)) */
 | |
| /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
 | |
| /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
 | |
| /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
 | |
| 
 | |
| #ifdef IEEE_Arith
 | |
| #define Exp_shift  20
 | |
| #define Exp_shift1 20
 | |
| #define Exp_msk1    0x100000
 | |
| #define Exp_msk11   0x100000
 | |
| #define Exp_mask  0x7ff00000
 | |
| #define P 53
 | |
| #define Bias 1023
 | |
| #define Emin (-1022)
 | |
| #define Exp_1  0x3ff00000
 | |
| #define Exp_11 0x3ff00000
 | |
| #define Ebits 11
 | |
| #define Frac_mask  0xfffff
 | |
| #define Frac_mask1 0xfffff
 | |
| #define Ten_pmax 22
 | |
| #define Bletch 0x10
 | |
| #define Bndry_mask  0xfffff
 | |
| #define Bndry_mask1 0xfffff
 | |
| #define LSB 1
 | |
| #define Sign_bit 0x80000000
 | |
| #define Log2P 1
 | |
| #define Tiny0 0
 | |
| #define Tiny1 1
 | |
| #define Quick_max 14
 | |
| #define Int_max 14
 | |
| #ifndef NO_IEEE_Scale
 | |
| #define Avoid_Underflow
 | |
| #ifdef Flush_Denorm	/* debugging option */
 | |
| #undef Sudden_Underflow
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef Flt_Rounds
 | |
| #ifdef FLT_ROUNDS
 | |
| #define Flt_Rounds FLT_ROUNDS
 | |
| #else
 | |
| #define Flt_Rounds 1
 | |
| #endif
 | |
| #endif /*Flt_Rounds*/
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| #define Rounding rounding
 | |
| #undef Check_FLT_ROUNDS
 | |
| #define Check_FLT_ROUNDS
 | |
| #else
 | |
| #define Rounding Flt_Rounds
 | |
| #endif
 | |
| 
 | |
| #else /* ifndef IEEE_Arith */
 | |
| #undef Check_FLT_ROUNDS
 | |
| #undef Honor_FLT_ROUNDS
 | |
| #undef SET_INEXACT
 | |
| #undef  Sudden_Underflow
 | |
| #define Sudden_Underflow
 | |
| #ifdef IBM
 | |
| #undef Flt_Rounds
 | |
| #define Flt_Rounds 0
 | |
| #define Exp_shift  24
 | |
| #define Exp_shift1 24
 | |
| #define Exp_msk1   0x1000000
 | |
| #define Exp_msk11  0x1000000
 | |
| #define Exp_mask  0x7f000000
 | |
| #define P 14
 | |
| #define Bias 65
 | |
| #define Exp_1  0x41000000
 | |
| #define Exp_11 0x41000000
 | |
| #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
 | |
| #define Frac_mask  0xffffff
 | |
| #define Frac_mask1 0xffffff
 | |
| #define Bletch 4
 | |
| #define Ten_pmax 22
 | |
| #define Bndry_mask  0xefffff
 | |
| #define Bndry_mask1 0xffffff
 | |
| #define LSB 1
 | |
| #define Sign_bit 0x80000000
 | |
| #define Log2P 4
 | |
| #define Tiny0 0x100000
 | |
| #define Tiny1 0
 | |
| #define Quick_max 14
 | |
| #define Int_max 15
 | |
| #else /* VAX */
 | |
| #undef Flt_Rounds
 | |
| #define Flt_Rounds 1
 | |
| #define Exp_shift  23
 | |
| #define Exp_shift1 7
 | |
| #define Exp_msk1    0x80
 | |
| #define Exp_msk11   0x800000
 | |
| #define Exp_mask  0x7f80
 | |
| #define P 56
 | |
| #define Bias 129
 | |
| #define Exp_1  0x40800000
 | |
| #define Exp_11 0x4080
 | |
| #define Ebits 8
 | |
| #define Frac_mask  0x7fffff
 | |
| #define Frac_mask1 0xffff007f
 | |
| #define Ten_pmax 24
 | |
| #define Bletch 2
 | |
| #define Bndry_mask  0xffff007f
 | |
| #define Bndry_mask1 0xffff007f
 | |
| #define LSB 0x10000
 | |
| #define Sign_bit 0x8000
 | |
| #define Log2P 1
 | |
| #define Tiny0 0x80
 | |
| #define Tiny1 0
 | |
| #define Quick_max 15
 | |
| #define Int_max 15
 | |
| #endif /* IBM, VAX */
 | |
| #endif /* IEEE_Arith */
 | |
| 
 | |
| #ifndef IEEE_Arith
 | |
| #define ROUND_BIASED
 | |
| #endif
 | |
| 
 | |
| #ifdef RND_PRODQUOT
 | |
| #define rounded_product(a,b) ((a) = rnd_prod((a), (b)))
 | |
| #define rounded_quotient(a,b) ((a) = rnd_quot((a), (b)))
 | |
| extern double rnd_prod(double, double), rnd_quot(double, double);
 | |
| #else
 | |
| #define rounded_product(a,b) ((a) *= (b))
 | |
| #define rounded_quotient(a,b) ((a) /= (b))
 | |
| #endif
 | |
| 
 | |
| #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
 | |
| #define Big1 0xffffffff
 | |
| 
 | |
| #ifndef Pack_32
 | |
| #define Pack_32
 | |
| #endif
 | |
| 
 | |
| #define FFFFFFFF 0xffffffffUL
 | |
| 
 | |
| #ifdef NO_LONG_LONG
 | |
| #undef ULLong
 | |
| #ifdef Just_16
 | |
| #undef Pack_32
 | |
| /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
 | |
|  * This makes some inner loops simpler and sometimes saves work
 | |
|  * during multiplications, but it often seems to make things slightly
 | |
|  * slower.  Hence the default is now to store 32 bits per Long.
 | |
|  */
 | |
| #endif
 | |
| #else	/* long long available */
 | |
| #ifndef Llong
 | |
| #define Llong long long
 | |
| #endif
 | |
| #ifndef ULLong
 | |
| #define ULLong unsigned Llong
 | |
| #endif
 | |
| #endif /* NO_LONG_LONG */
 | |
| 
 | |
| #define MULTIPLE_THREADS 1
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
 | |
| #define FREE_DTOA_LOCK(n)	/*nothing*/
 | |
| #else
 | |
| #define ACQUIRE_DTOA_LOCK(n)	/*unused right now*/
 | |
| #define FREE_DTOA_LOCK(n)	/*unused right now*/
 | |
| #endif
 | |
| 
 | |
| #define Kmax 15
 | |
| 
 | |
| struct Bigint {
 | |
|     struct Bigint *next;
 | |
|     int k, maxwds, sign, wds;
 | |
|     ULong x[1];
 | |
| };
 | |
| 
 | |
| typedef struct Bigint Bigint;
 | |
| 
 | |
| static Bigint *freelist[Kmax+1];
 | |
| 
 | |
| static Bigint *
 | |
| Balloc(int k)
 | |
| {
 | |
|     int x;
 | |
|     Bigint *rv;
 | |
| #ifndef Omit_Private_Memory
 | |
|     size_t len;
 | |
| #endif
 | |
| 
 | |
|     ACQUIRE_DTOA_LOCK(0);
 | |
|     if (k <= Kmax && (rv = freelist[k]) != 0) {
 | |
|         freelist[k] = rv->next;
 | |
|     }
 | |
|     else {
 | |
|         x = 1 << k;
 | |
| #ifdef Omit_Private_Memory
 | |
|         rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
 | |
| #else
 | |
|         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
 | |
|                 /sizeof(double);
 | |
|         if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
 | |
|             rv = (Bigint*)pmem_next;
 | |
|             pmem_next += len;
 | |
|         }
 | |
|         else
 | |
|             rv = (Bigint*)MALLOC(len*sizeof(double));
 | |
| #endif
 | |
|         rv->k = k;
 | |
|         rv->maxwds = x;
 | |
|     }
 | |
|     FREE_DTOA_LOCK(0);
 | |
|     rv->sign = rv->wds = 0;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| static void
 | |
| Bfree(Bigint *v)
 | |
| {
 | |
|     if (v) {
 | |
|         if (v->k > Kmax) {
 | |
|             FREE(v);
 | |
|             return;
 | |
|         }
 | |
|         ACQUIRE_DTOA_LOCK(0);
 | |
|         v->next = freelist[v->k];
 | |
|         freelist[v->k] = v;
 | |
|         FREE_DTOA_LOCK(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define Bcopy(x,y) memcpy((char *)&(x)->sign, (char *)&(y)->sign, \
 | |
| (y)->wds*sizeof(Long) + 2*sizeof(int))
 | |
| 
 | |
| static Bigint *
 | |
| multadd(Bigint *b, int m, int a)   /* multiply by m and add a */
 | |
| {
 | |
|     int i, wds;
 | |
|     ULong *x;
 | |
| #ifdef ULLong
 | |
|     ULLong carry, y;
 | |
| #else
 | |
|     ULong carry, y;
 | |
| #ifdef Pack_32
 | |
|     ULong xi, z;
 | |
| #endif
 | |
| #endif
 | |
|     Bigint *b1;
 | |
| 
 | |
|     wds = b->wds;
 | |
|     x = b->x;
 | |
|     i = 0;
 | |
|     carry = a;
 | |
|     do {
 | |
| #ifdef ULLong
 | |
|         y = *x * (ULLong)m + carry;
 | |
|         carry = y >> 32;
 | |
|         *x++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
| #ifdef Pack_32
 | |
|         xi = *x;
 | |
|         y = (xi & 0xffff) * m + carry;
 | |
|         z = (xi >> 16) * m + (y >> 16);
 | |
|         carry = z >> 16;
 | |
|         *x++ = (z << 16) + (y & 0xffff);
 | |
| #else
 | |
|         y = *x * m + carry;
 | |
|         carry = y >> 16;
 | |
|         *x++ = y & 0xffff;
 | |
| #endif
 | |
| #endif
 | |
|     } while (++i < wds);
 | |
|     if (carry) {
 | |
|         if (wds >= b->maxwds) {
 | |
|             b1 = Balloc(b->k+1);
 | |
|             Bcopy(b1, b);
 | |
|             Bfree(b);
 | |
|             b = b1;
 | |
|         }
 | |
|         b->x[wds++] = (ULong)carry;
 | |
|         b->wds = wds;
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| s2b(const char *s, int nd0, int nd, ULong y9)
 | |
| {
 | |
|     Bigint *b;
 | |
|     int i, k;
 | |
|     Long x, y;
 | |
| 
 | |
|     x = (nd + 8) / 9;
 | |
|     for (k = 0, y = 1; x > y; y <<= 1, k++) ;
 | |
| #ifdef Pack_32
 | |
|     b = Balloc(k);
 | |
|     b->x[0] = y9;
 | |
|     b->wds = 1;
 | |
| #else
 | |
|     b = Balloc(k+1);
 | |
|     b->x[0] = y9 & 0xffff;
 | |
|     b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
 | |
| #endif
 | |
| 
 | |
|     i = 9;
 | |
|     if (9 < nd0) {
 | |
|         s += 9;
 | |
|         do {
 | |
|             b = multadd(b, 10, *s++ - '0');
 | |
|         } while (++i < nd0);
 | |
|         s++;
 | |
|     }
 | |
|     else
 | |
|         s += 10;
 | |
|     for (; i < nd; i++)
 | |
|         b = multadd(b, 10, *s++ - '0');
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hi0bits(register ULong x)
 | |
| {
 | |
|     register int k = 0;
 | |
| 
 | |
|     if (!(x & 0xffff0000)) {
 | |
|         k = 16;
 | |
|         x <<= 16;
 | |
|     }
 | |
|     if (!(x & 0xff000000)) {
 | |
|         k += 8;
 | |
|         x <<= 8;
 | |
|     }
 | |
|     if (!(x & 0xf0000000)) {
 | |
|         k += 4;
 | |
|         x <<= 4;
 | |
|     }
 | |
|     if (!(x & 0xc0000000)) {
 | |
|         k += 2;
 | |
|         x <<= 2;
 | |
|     }
 | |
|     if (!(x & 0x80000000)) {
 | |
|         k++;
 | |
|         if (!(x & 0x40000000))
 | |
|             return 32;
 | |
|     }
 | |
|     return k;
 | |
| }
 | |
| 
 | |
| static int
 | |
| lo0bits(ULong *y)
 | |
| {
 | |
|     register int k;
 | |
|     register ULong x = *y;
 | |
| 
 | |
|     if (x & 7) {
 | |
|         if (x & 1)
 | |
|             return 0;
 | |
|         if (x & 2) {
 | |
|             *y = x >> 1;
 | |
|             return 1;
 | |
|         }
 | |
|         *y = x >> 2;
 | |
|         return 2;
 | |
|     }
 | |
|     k = 0;
 | |
|     if (!(x & 0xffff)) {
 | |
|         k = 16;
 | |
|         x >>= 16;
 | |
|     }
 | |
|     if (!(x & 0xff)) {
 | |
|         k += 8;
 | |
|         x >>= 8;
 | |
|     }
 | |
|     if (!(x & 0xf)) {
 | |
|         k += 4;
 | |
|         x >>= 4;
 | |
|     }
 | |
|     if (!(x & 0x3)) {
 | |
|         k += 2;
 | |
|         x >>= 2;
 | |
|     }
 | |
|     if (!(x & 1)) {
 | |
|         k++;
 | |
|         x >>= 1;
 | |
|         if (!x)
 | |
|             return 32;
 | |
|     }
 | |
|     *y = x;
 | |
|     return k;
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| i2b(int i)
 | |
| {
 | |
|     Bigint *b;
 | |
| 
 | |
|     b = Balloc(1);
 | |
|     b->x[0] = i;
 | |
|     b->wds = 1;
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| mult(Bigint *a, Bigint *b)
 | |
| {
 | |
|     Bigint *c;
 | |
|     int k, wa, wb, wc;
 | |
|     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
 | |
|     ULong y;
 | |
| #ifdef ULLong
 | |
|     ULLong carry, z;
 | |
| #else
 | |
|     ULong carry, z;
 | |
| #ifdef Pack_32
 | |
|     ULong z2;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     if (a->wds < b->wds) {
 | |
|         c = a;
 | |
|         a = b;
 | |
|         b = c;
 | |
|     }
 | |
|     k = a->k;
 | |
|     wa = a->wds;
 | |
|     wb = b->wds;
 | |
|     wc = wa + wb;
 | |
|     if (wc > a->maxwds)
 | |
|         k++;
 | |
|     c = Balloc(k);
 | |
|     for (x = c->x, xa = x + wc; x < xa; x++)
 | |
|         *x = 0;
 | |
|     xa = a->x;
 | |
|     xae = xa + wa;
 | |
|     xb = b->x;
 | |
|     xbe = xb + wb;
 | |
|     xc0 = c->x;
 | |
| #ifdef ULLong
 | |
|     for (; xb < xbe; xc0++) {
 | |
|         if ((y = *xb++) != 0) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             do {
 | |
|                 z = *x++ * (ULLong)y + *xc + carry;
 | |
|                 carry = z >> 32;
 | |
|                 *xc++ = (ULong)(z & FFFFFFFF);
 | |
|             } while (x < xae);
 | |
|             *xc = (ULong)carry;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
| #ifdef Pack_32
 | |
|     for (; xb < xbe; xb++, xc0++) {
 | |
|         if (y = *xb & 0xffff) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             do {
 | |
|                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
 | |
|                 carry = z >> 16;
 | |
|                 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
 | |
|                 carry = z2 >> 16;
 | |
|                 Storeinc(xc, z2, z);
 | |
|             } while (x < xae);
 | |
|             *xc = (ULong)carry;
 | |
|         }
 | |
|         if (y = *xb >> 16) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             z2 = *xc;
 | |
|             do {
 | |
|                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
 | |
|                 carry = z >> 16;
 | |
|                 Storeinc(xc, z, z2);
 | |
|                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
 | |
|                 carry = z2 >> 16;
 | |
|             } while (x < xae);
 | |
|             *xc = z2;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     for (; xb < xbe; xc0++) {
 | |
|         if (y = *xb++) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             do {
 | |
|                 z = *x++ * y + *xc + carry;
 | |
|                 carry = z >> 16;
 | |
|                 *xc++ = z & 0xffff;
 | |
|             } while (x < xae);
 | |
|             *xc = (ULong)carry;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
 | |
|     c->wds = wc;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| static Bigint *p5s;
 | |
| 
 | |
| static Bigint *
 | |
| pow5mult(Bigint *b, int k)
 | |
| {
 | |
|     Bigint *b1, *p5, *p51;
 | |
|     int i;
 | |
|     static int p05[3] = { 5, 25, 125 };
 | |
| 
 | |
|     if ((i = k & 3) != 0)
 | |
|         b = multadd(b, p05[i-1], 0);
 | |
| 
 | |
|     if (!(k >>= 2))
 | |
|         return b;
 | |
|     if (!(p5 = p5s)) {
 | |
|         /* first time */
 | |
| #ifdef MULTIPLE_THREADS
 | |
|         ACQUIRE_DTOA_LOCK(1);
 | |
|         if (!(p5 = p5s)) {
 | |
|             p5 = p5s = i2b(625);
 | |
|             p5->next = 0;
 | |
|         }
 | |
|         FREE_DTOA_LOCK(1);
 | |
| #else
 | |
|         p5 = p5s = i2b(625);
 | |
|         p5->next = 0;
 | |
| #endif
 | |
|     }
 | |
|     for (;;) {
 | |
|         if (k & 1) {
 | |
|             b1 = mult(b, p5);
 | |
|             Bfree(b);
 | |
|             b = b1;
 | |
|         }
 | |
|         if (!(k >>= 1))
 | |
|             break;
 | |
|         if (!(p51 = p5->next)) {
 | |
| #ifdef MULTIPLE_THREADS
 | |
|             ACQUIRE_DTOA_LOCK(1);
 | |
|             if (!(p51 = p5->next)) {
 | |
|                 p51 = p5->next = mult(p5,p5);
 | |
|                 p51->next = 0;
 | |
|             }
 | |
|             FREE_DTOA_LOCK(1);
 | |
| #else
 | |
|             p51 = p5->next = mult(p5,p5);
 | |
|             p51->next = 0;
 | |
| #endif
 | |
|         }
 | |
|         p5 = p51;
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| lshift(Bigint *b, int k)
 | |
| {
 | |
|     int i, k1, n, n1;
 | |
|     Bigint *b1;
 | |
|     ULong *x, *x1, *xe, z;
 | |
| 
 | |
| #ifdef Pack_32
 | |
|     n = k >> 5;
 | |
| #else
 | |
|     n = k >> 4;
 | |
| #endif
 | |
|     k1 = b->k;
 | |
|     n1 = n + b->wds + 1;
 | |
|     for (i = b->maxwds; n1 > i; i <<= 1)
 | |
|         k1++;
 | |
|     b1 = Balloc(k1);
 | |
|     x1 = b1->x;
 | |
|     for (i = 0; i < n; i++)
 | |
|         *x1++ = 0;
 | |
|     x = b->x;
 | |
|     xe = x + b->wds;
 | |
| #ifdef Pack_32
 | |
|     if (k &= 0x1f) {
 | |
|         k1 = 32 - k;
 | |
|         z = 0;
 | |
|         do {
 | |
|             *x1++ = *x << k | z;
 | |
|             z = *x++ >> k1;
 | |
|         } while (x < xe);
 | |
|         if ((*x1 = z) != 0)
 | |
|             ++n1;
 | |
|     }
 | |
| #else
 | |
|     if (k &= 0xf) {
 | |
|         k1 = 16 - k;
 | |
|         z = 0;
 | |
|         do {
 | |
|             *x1++ = *x << k  & 0xffff | z;
 | |
|             z = *x++ >> k1;
 | |
|         } while (x < xe);
 | |
|         if (*x1 = z)
 | |
|             ++n1;
 | |
|     }
 | |
| #endif
 | |
|     else
 | |
|         do {
 | |
|             *x1++ = *x++;
 | |
|         } while (x < xe);
 | |
|     b1->wds = n1 - 1;
 | |
|     Bfree(b);
 | |
|     return b1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cmp(Bigint *a, Bigint *b)
 | |
| {
 | |
|     ULong *xa, *xa0, *xb, *xb0;
 | |
|     int i, j;
 | |
| 
 | |
|     i = a->wds;
 | |
|     j = b->wds;
 | |
| #ifdef DEBUG
 | |
|     if (i > 1 && !a->x[i-1])
 | |
|         Bug("cmp called with a->x[a->wds-1] == 0");
 | |
|     if (j > 1 && !b->x[j-1])
 | |
|         Bug("cmp called with b->x[b->wds-1] == 0");
 | |
| #endif
 | |
|     if (i -= j)
 | |
|         return i;
 | |
|     xa0 = a->x;
 | |
|     xa = xa0 + j;
 | |
|     xb0 = b->x;
 | |
|     xb = xb0 + j;
 | |
|     for (;;) {
 | |
|         if (*--xa != *--xb)
 | |
|             return *xa < *xb ? -1 : 1;
 | |
|         if (xa <= xa0)
 | |
|             break;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| diff(Bigint *a, Bigint *b)
 | |
| {
 | |
|     Bigint *c;
 | |
|     int i, wa, wb;
 | |
|     ULong *xa, *xae, *xb, *xbe, *xc;
 | |
| #ifdef ULLong
 | |
|     ULLong borrow, y;
 | |
| #else
 | |
|     ULong borrow, y;
 | |
| #ifdef Pack_32
 | |
|     ULong z;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     i = cmp(a,b);
 | |
|     if (!i) {
 | |
|         c = Balloc(0);
 | |
|         c->wds = 1;
 | |
|         c->x[0] = 0;
 | |
|         return c;
 | |
|     }
 | |
|     if (i < 0) {
 | |
|         c = a;
 | |
|         a = b;
 | |
|         b = c;
 | |
|         i = 1;
 | |
|     }
 | |
|     else
 | |
|         i = 0;
 | |
|     c = Balloc(a->k);
 | |
|     c->sign = i;
 | |
|     wa = a->wds;
 | |
|     xa = a->x;
 | |
|     xae = xa + wa;
 | |
|     wb = b->wds;
 | |
|     xb = b->x;
 | |
|     xbe = xb + wb;
 | |
|     xc = c->x;
 | |
|     borrow = 0;
 | |
| #ifdef ULLong
 | |
|     do {
 | |
|         y = (ULLong)*xa++ - *xb++ - borrow;
 | |
|         borrow = y >> 32 & (ULong)1;
 | |
|         *xc++ = (ULong)(y & FFFFFFFF);
 | |
|     } while (xb < xbe);
 | |
|     while (xa < xae) {
 | |
|         y = *xa++ - borrow;
 | |
|         borrow = y >> 32 & (ULong)1;
 | |
|         *xc++ = (ULong)(y & FFFFFFFF);
 | |
|     }
 | |
| #else
 | |
| #ifdef Pack_32
 | |
|     do {
 | |
|         y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
 | |
|         borrow = (z & 0x10000) >> 16;
 | |
|         Storeinc(xc, z, y);
 | |
|     } while (xb < xbe);
 | |
|     while (xa < xae) {
 | |
|         y = (*xa & 0xffff) - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         z = (*xa++ >> 16) - borrow;
 | |
|         borrow = (z & 0x10000) >> 16;
 | |
|         Storeinc(xc, z, y);
 | |
|     }
 | |
| #else
 | |
|     do {
 | |
|         y = *xa++ - *xb++ - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         *xc++ = y & 0xffff;
 | |
|     } while (xb < xbe);
 | |
|     while (xa < xae) {
 | |
|         y = *xa++ - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         *xc++ = y & 0xffff;
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     while (!*--xc)
 | |
|         wa--;
 | |
|     c->wds = wa;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| static double
 | |
| ulp(double x_)
 | |
| {
 | |
|     register Long L;
 | |
|     double_u x, a;
 | |
|     dval(x) = x_;
 | |
| 
 | |
|     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
 | |
| #ifndef Avoid_Underflow
 | |
| #ifndef Sudden_Underflow
 | |
|     if (L > 0) {
 | |
| #endif
 | |
| #endif
 | |
| #ifdef IBM
 | |
|         L |= Exp_msk1 >> 4;
 | |
| #endif
 | |
|         word0(a) = L;
 | |
|         word1(a) = 0;
 | |
| #ifndef Avoid_Underflow
 | |
| #ifndef Sudden_Underflow
 | |
|     }
 | |
|     else {
 | |
|         L = -L >> Exp_shift;
 | |
|         if (L < Exp_shift) {
 | |
|             word0(a) = 0x80000 >> L;
 | |
|             word1(a) = 0;
 | |
|         }
 | |
|         else {
 | |
|             word0(a) = 0;
 | |
|             L -= Exp_shift;
 | |
|             word1(a) = L >= 31 ? 1 : 1 << 31 - L;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     return dval(a);
 | |
| }
 | |
| 
 | |
| static double
 | |
| b2d(Bigint *a, int *e)
 | |
| {
 | |
|     ULong *xa, *xa0, w, y, z;
 | |
|     int k;
 | |
|     double_u d;
 | |
| #ifdef VAX
 | |
|     ULong d0, d1;
 | |
| #else
 | |
| #define d0 word0(d)
 | |
| #define d1 word1(d)
 | |
| #endif
 | |
| 
 | |
|     xa0 = a->x;
 | |
|     xa = xa0 + a->wds;
 | |
|     y = *--xa;
 | |
| #ifdef DEBUG
 | |
|     if (!y) Bug("zero y in b2d");
 | |
| #endif
 | |
|     k = hi0bits(y);
 | |
|     *e = 32 - k;
 | |
| #ifdef Pack_32
 | |
|     if (k < Ebits) {
 | |
|         d0 = Exp_1 | y >> (Ebits - k);
 | |
|         w = xa > xa0 ? *--xa : 0;
 | |
|         d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
 | |
|         goto ret_d;
 | |
|     }
 | |
|     z = xa > xa0 ? *--xa : 0;
 | |
|     if (k -= Ebits) {
 | |
|         d0 = Exp_1 | y << k | z >> (32 - k);
 | |
|         y = xa > xa0 ? *--xa : 0;
 | |
|         d1 = z << k | y >> (32 - k);
 | |
|     }
 | |
|     else {
 | |
|         d0 = Exp_1 | y;
 | |
|         d1 = z;
 | |
|     }
 | |
| #else
 | |
|     if (k < Ebits + 16) {
 | |
|         z = xa > xa0 ? *--xa : 0;
 | |
|         d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
 | |
|         w = xa > xa0 ? *--xa : 0;
 | |
|         y = xa > xa0 ? *--xa : 0;
 | |
|         d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
 | |
|         goto ret_d;
 | |
|     }
 | |
|     z = xa > xa0 ? *--xa : 0;
 | |
|     w = xa > xa0 ? *--xa : 0;
 | |
|     k -= Ebits + 16;
 | |
|     d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
 | |
|     y = xa > xa0 ? *--xa : 0;
 | |
|     d1 = w << k + 16 | y << k;
 | |
| #endif
 | |
| ret_d:
 | |
| #ifdef VAX
 | |
|     word0(d) = d0 >> 16 | d0 << 16;
 | |
|     word1(d) = d1 >> 16 | d1 << 16;
 | |
| #else
 | |
| #undef d0
 | |
| #undef d1
 | |
| #endif
 | |
|     return dval(d);
 | |
| }
 | |
| 
 | |
| static Bigint *
 | |
| d2b(double d_, int *e, int *bits)
 | |
| {
 | |
|     double_u d;
 | |
|     Bigint *b;
 | |
|     int de, k;
 | |
|     ULong *x, y, z;
 | |
| #ifndef Sudden_Underflow
 | |
|     int i;
 | |
| #endif
 | |
| #ifdef VAX
 | |
|     ULong d0, d1;
 | |
| #endif
 | |
|     dval(d) = d_;
 | |
| #ifdef VAX
 | |
|     d0 = word0(d) >> 16 | word0(d) << 16;
 | |
|     d1 = word1(d) >> 16 | word1(d) << 16;
 | |
| #else
 | |
| #define d0 word0(d)
 | |
| #define d1 word1(d)
 | |
| #endif
 | |
| 
 | |
| #ifdef Pack_32
 | |
|     b = Balloc(1);
 | |
| #else
 | |
|     b = Balloc(2);
 | |
| #endif
 | |
|     x = b->x;
 | |
| 
 | |
|     z = d0 & Frac_mask;
 | |
|     d0 &= 0x7fffffff;   /* clear sign bit, which we ignore */
 | |
| #ifdef Sudden_Underflow
 | |
|     de = (int)(d0 >> Exp_shift);
 | |
| #ifndef IBM
 | |
|     z |= Exp_msk11;
 | |
| #endif
 | |
| #else
 | |
|     if ((de = (int)(d0 >> Exp_shift)) != 0)
 | |
|         z |= Exp_msk1;
 | |
| #endif
 | |
| #ifdef Pack_32
 | |
|     if ((y = d1) != 0) {
 | |
|         if ((k = lo0bits(&y)) != 0) {
 | |
|             x[0] = y | z << (32 - k);
 | |
|             z >>= k;
 | |
|         }
 | |
|         else
 | |
|             x[0] = y;
 | |
| #ifndef Sudden_Underflow
 | |
|         i =
 | |
| #endif
 | |
|         b->wds = (x[1] = z) ? 2 : 1;
 | |
|     }
 | |
|     else {
 | |
| #ifdef DEBUG
 | |
|         if (!z)
 | |
|             Bug("Zero passed to d2b");
 | |
| #endif
 | |
|         k = lo0bits(&z);
 | |
|         x[0] = z;
 | |
| #ifndef Sudden_Underflow
 | |
|         i =
 | |
| #endif
 | |
|         b->wds = 1;
 | |
|         k += 32;
 | |
|     }
 | |
| #else
 | |
|     if (y = d1) {
 | |
|         if (k = lo0bits(&y))
 | |
|             if (k >= 16) {
 | |
|                 x[0] = y | z << 32 - k & 0xffff;
 | |
|                 x[1] = z >> k - 16 & 0xffff;
 | |
|                 x[2] = z >> k;
 | |
|                 i = 2;
 | |
|             }
 | |
|             else {
 | |
|                 x[0] = y & 0xffff;
 | |
|                 x[1] = y >> 16 | z << 16 - k & 0xffff;
 | |
|                 x[2] = z >> k & 0xffff;
 | |
|                 x[3] = z >> k+16;
 | |
|                 i = 3;
 | |
|             }
 | |
|         else {
 | |
|             x[0] = y & 0xffff;
 | |
|             x[1] = y >> 16;
 | |
|             x[2] = z & 0xffff;
 | |
|             x[3] = z >> 16;
 | |
|             i = 3;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
| #ifdef DEBUG
 | |
|         if (!z)
 | |
|             Bug("Zero passed to d2b");
 | |
| #endif
 | |
|         k = lo0bits(&z);
 | |
|         if (k >= 16) {
 | |
|             x[0] = z;
 | |
|             i = 0;
 | |
|         }
 | |
|         else {
 | |
|             x[0] = z & 0xffff;
 | |
|             x[1] = z >> 16;
 | |
|             i = 1;
 | |
|         }
 | |
|         k += 32;
 | |
|     }
 | |
|     while (!x[i])
 | |
|         --i;
 | |
|     b->wds = i + 1;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
|     if (de) {
 | |
| #endif
 | |
| #ifdef IBM
 | |
|         *e = (de - Bias - (P-1) << 2) + k;
 | |
|         *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
 | |
| #else
 | |
|         *e = de - Bias - (P-1) + k;
 | |
|         *bits = P - k;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
|     }
 | |
|     else {
 | |
|         *e = de - Bias - (P-1) + 1 + k;
 | |
| #ifdef Pack_32
 | |
|         *bits = 32*i - hi0bits(x[i-1]);
 | |
| #else
 | |
|         *bits = (i+2)*16 - hi0bits(x[i]);
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
|     return b;
 | |
| }
 | |
| #undef d0
 | |
| #undef d1
 | |
| 
 | |
| static double
 | |
| ratio(Bigint *a, Bigint *b)
 | |
| {
 | |
|     double_u da, db;
 | |
|     int k, ka, kb;
 | |
| 
 | |
|     dval(da) = b2d(a, &ka);
 | |
|     dval(db) = b2d(b, &kb);
 | |
| #ifdef Pack_32
 | |
|     k = ka - kb + 32*(a->wds - b->wds);
 | |
| #else
 | |
|     k = ka - kb + 16*(a->wds - b->wds);
 | |
| #endif
 | |
| #ifdef IBM
 | |
|     if (k > 0) {
 | |
|         word0(da) += (k >> 2)*Exp_msk1;
 | |
|         if (k &= 3)
 | |
|             dval(da) *= 1 << k;
 | |
|     }
 | |
|     else {
 | |
|         k = -k;
 | |
|         word0(db) += (k >> 2)*Exp_msk1;
 | |
|         if (k &= 3)
 | |
|             dval(db) *= 1 << k;
 | |
|     }
 | |
| #else
 | |
|     if (k > 0)
 | |
|         word0(da) += k*Exp_msk1;
 | |
|     else {
 | |
|         k = -k;
 | |
|         word0(db) += k*Exp_msk1;
 | |
|     }
 | |
| #endif
 | |
|     return dval(da) / dval(db);
 | |
| }
 | |
| 
 | |
| static const double
 | |
| tens[] = {
 | |
|     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
 | |
|     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
 | |
|     1e20, 1e21, 1e22
 | |
| #ifdef VAX
 | |
|     , 1e23, 1e24
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const double
 | |
| #ifdef IEEE_Arith
 | |
| bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
 | |
| static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
 | |
| #ifdef Avoid_Underflow
 | |
|     9007199254740992.*9007199254740992.e-256
 | |
|     /* = 2^106 * 1e-53 */
 | |
| #else
 | |
|     1e-256
 | |
| #endif
 | |
| };
 | |
| /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
 | |
| /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
 | |
| #define Scale_Bit 0x10
 | |
| #define n_bigtens 5
 | |
| #else
 | |
| #ifdef IBM
 | |
| bigtens[] = { 1e16, 1e32, 1e64 };
 | |
| static const double tinytens[] = { 1e-16, 1e-32, 1e-64 };
 | |
| #define n_bigtens 3
 | |
| #else
 | |
| bigtens[] = { 1e16, 1e32 };
 | |
| static const double tinytens[] = { 1e-16, 1e-32 };
 | |
| #define n_bigtens 2
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef IEEE_Arith
 | |
| #undef INFNAN_CHECK
 | |
| #endif
 | |
| 
 | |
| #ifdef INFNAN_CHECK
 | |
| 
 | |
| #ifndef NAN_WORD0
 | |
| #define NAN_WORD0 0x7ff80000
 | |
| #endif
 | |
| 
 | |
| #ifndef NAN_WORD1
 | |
| #define NAN_WORD1 0
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| match(const char **sp, char *t)
 | |
| {
 | |
|     int c, d;
 | |
|     const char *s = *sp;
 | |
| 
 | |
|     while (d = *t++) {
 | |
|         if ((c = *++s) >= 'A' && c <= 'Z')
 | |
|             c += 'a' - 'A';
 | |
|         if (c != d)
 | |
|             return 0;
 | |
|     }
 | |
|     *sp = s + 1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #ifndef No_Hex_NaN
 | |
| static void
 | |
| hexnan(double *rvp, const char **sp)
 | |
| {
 | |
|     ULong c, x[2];
 | |
|     const char *s;
 | |
|     int havedig, udx0, xshift;
 | |
| 
 | |
|     x[0] = x[1] = 0;
 | |
|     havedig = xshift = 0;
 | |
|     udx0 = 1;
 | |
|     s = *sp;
 | |
|     while (c = *(const unsigned char*)++s) {
 | |
|         if (c >= '0' && c <= '9')
 | |
|             c -= '0';
 | |
|         else if (c >= 'a' && c <= 'f')
 | |
|             c += 10 - 'a';
 | |
|         else if (c >= 'A' && c <= 'F')
 | |
|             c += 10 - 'A';
 | |
|         else if (c <= ' ') {
 | |
|             if (udx0 && havedig) {
 | |
|                 udx0 = 0;
 | |
|                 xshift = 1;
 | |
|             }
 | |
|             continue;
 | |
|         }
 | |
|         else if (/*(*/ c == ')' && havedig) {
 | |
|             *sp = s + 1;
 | |
|             break;
 | |
|         }
 | |
|         else
 | |
|             return; /* invalid form: don't change *sp */
 | |
|         havedig = 1;
 | |
|         if (xshift) {
 | |
|             xshift = 0;
 | |
|             x[0] = x[1];
 | |
|             x[1] = 0;
 | |
|         }
 | |
|         if (udx0)
 | |
|             x[0] = (x[0] << 4) | (x[1] >> 28);
 | |
|         x[1] = (x[1] << 4) | c;
 | |
|     }
 | |
|     if ((x[0] &= 0xfffff) || x[1]) {
 | |
|         word0(*rvp) = Exp_mask | x[0];
 | |
|         word1(*rvp) = x[1];
 | |
|     }
 | |
| }
 | |
| #endif /*No_Hex_NaN*/
 | |
| #endif /* INFNAN_CHECK */
 | |
| 
 | |
| double
 | |
| ruby_strtod(const char *s00, char **se)
 | |
| {
 | |
| #ifdef Avoid_Underflow
 | |
|     int scale;
 | |
| #endif
 | |
|     int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
 | |
|          e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
 | |
|     const char *s, *s0, *s1;
 | |
|     double aadj, adj;
 | |
|     double_u aadj1, rv, rv0;
 | |
|     Long L;
 | |
|     ULong y, z;
 | |
|     Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
 | |
| #ifdef SET_INEXACT
 | |
|     int inexact, oldinexact;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     int rounding;
 | |
| #endif
 | |
| #ifdef USE_LOCALE
 | |
|     const char *s2;
 | |
| #endif
 | |
| 
 | |
|     errno = 0;
 | |
|     sign = nz0 = nz = 0;
 | |
|     dval(rv) = 0.;
 | |
|     for (s = s00;;s++)
 | |
|         switch (*s) {
 | |
|           case '-':
 | |
|             sign = 1;
 | |
|             /* no break */
 | |
|           case '+':
 | |
|             if (*++s)
 | |
|                 goto break2;
 | |
|             /* no break */
 | |
|           case 0:
 | |
|             goto ret0;
 | |
|           case '\t':
 | |
|           case '\n':
 | |
|           case '\v':
 | |
|           case '\f':
 | |
|           case '\r':
 | |
|           case ' ':
 | |
|             continue;
 | |
|           default:
 | |
|             goto break2;
 | |
|         }
 | |
| break2:
 | |
|     if (*s == '0') {
 | |
| 	if (s[1] == 'x' || s[1] == 'X') {
 | |
| 	    s0 = ++s;
 | |
| 	    adj = 0;
 | |
| 	    aadj = 1.0;
 | |
| 	    nd0 = -4;
 | |
| 
 | |
| 	    if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
 | |
| 	    if (*s == '0') {
 | |
| 		while (*++s == '0');
 | |
| 		s1 = strchr(hexdigit, *s);
 | |
| 	    }
 | |
| 	    if (s1 != NULL) {
 | |
| 		do {
 | |
| 		    adj += aadj * ((s1 - hexdigit) & 15);
 | |
| 		    nd0 += 4;
 | |
| 		    aadj /= 16;
 | |
| 		} while (*++s && (s1 = strchr(hexdigit, *s)));
 | |
| 	    }
 | |
| 
 | |
| 	    if (*s == '.') {
 | |
| 		dsign = 1;
 | |
| 		if (!*++s || !(s1 = strchr(hexdigit, *s))) goto ret0;
 | |
| 		if (nd0 < 0) {
 | |
| 		    while (*s == '0') {
 | |
| 			s++;
 | |
| 			nd0 -= 4;
 | |
| 		    }
 | |
| 		}
 | |
| 		for (; *s && (s1 = strchr(hexdigit, *s)); ++s) {
 | |
| 		    adj += aadj * ((s1 - hexdigit) & 15);
 | |
| 		    if ((aadj /= 16) == 0.0) {
 | |
| 			while (strchr(hexdigit, *++s));
 | |
| 			break;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	    else {
 | |
| 		dsign = 0;
 | |
| 	    }
 | |
| 
 | |
| 	    if (*s == 'P' || *s == 'p') {
 | |
| 		dsign = 0x2C - *++s; /* +: 2B, -: 2D */
 | |
| 		if (abs(dsign) == 1) s++;
 | |
| 		else dsign = 1;
 | |
| 
 | |
| 		nd = 0;
 | |
| 		c = *s;
 | |
| 		if (c < '0' || '9' < c) goto ret0;
 | |
| 		do {
 | |
| 		    nd *= 10;
 | |
| 		    nd += c;
 | |
| 		    nd -= '0';
 | |
| 		    c = *++s;
 | |
| 		    /* Float("0x0."+("0"*267)+"1fp2095") */
 | |
| 		    if (nd + dsign * nd0 > 2095) {
 | |
| 			while ('0' <= c && c <= '9') c = *++s;
 | |
| 			break;
 | |
| 		    }
 | |
| 		} while ('0' <= c && c <= '9');
 | |
| 		nd0 += nd * dsign;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		if (dsign) goto ret0;
 | |
| 	    }
 | |
| 	    dval(rv) = ldexp(adj, nd0);
 | |
| 	    goto ret;
 | |
| 	}
 | |
|         nz0 = 1;
 | |
|         while (*++s == '0') ;
 | |
|         if (!*s)
 | |
|             goto ret;
 | |
|     }
 | |
|     s0 = s;
 | |
|     y = z = 0;
 | |
|     for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
 | |
|         if (nd < 9)
 | |
|             y = 10*y + c - '0';
 | |
|         else if (nd < 16)
 | |
|             z = 10*z + c - '0';
 | |
|     nd0 = nd;
 | |
| #ifdef USE_LOCALE
 | |
|     s1 = localeconv()->decimal_point;
 | |
|     if (c == *s1) {
 | |
|         c = '.';
 | |
|         if (*++s1) {
 | |
|             s2 = s;
 | |
|             for (;;) {
 | |
|                 if (*++s2 != *s1) {
 | |
|                     c = 0;
 | |
|                     break;
 | |
|                 }
 | |
|                 if (!*++s1) {
 | |
|                     s = s2;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     if (c == '.') {
 | |
|         if (!ISDIGIT(s[1]))
 | |
|             goto dig_done;
 | |
|         c = *++s;
 | |
|         if (!nd) {
 | |
|             for (; c == '0'; c = *++s)
 | |
|                 nz++;
 | |
|             if (c > '0' && c <= '9') {
 | |
|                 s0 = s;
 | |
|                 nf += nz;
 | |
|                 nz = 0;
 | |
|                 goto have_dig;
 | |
|             }
 | |
|             goto dig_done;
 | |
|         }
 | |
|         for (; c >= '0' && c <= '9'; c = *++s) {
 | |
| have_dig:
 | |
|             nz++;
 | |
|             if (nf > DBL_DIG * 4) continue;
 | |
|             if (c -= '0') {
 | |
|                 nf += nz;
 | |
|                 for (i = 1; i < nz; i++)
 | |
|                     if (nd++ < 9)
 | |
|                         y *= 10;
 | |
|                     else if (nd <= DBL_DIG + 1)
 | |
|                         z *= 10;
 | |
|                 if (nd++ < 9)
 | |
|                     y = 10*y + c;
 | |
|                 else if (nd <= DBL_DIG + 1)
 | |
|                     z = 10*z + c;
 | |
|                 nz = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| dig_done:
 | |
|     e = 0;
 | |
|     if (c == 'e' || c == 'E') {
 | |
|         if (!nd && !nz && !nz0) {
 | |
|             goto ret0;
 | |
|         }
 | |
|         s00 = s;
 | |
|         esign = 0;
 | |
|         switch (c = *++s) {
 | |
|           case '-':
 | |
|             esign = 1;
 | |
|           case '+':
 | |
|             c = *++s;
 | |
|         }
 | |
|         if (c >= '0' && c <= '9') {
 | |
|             while (c == '0')
 | |
|                 c = *++s;
 | |
|             if (c > '0' && c <= '9') {
 | |
|                 L = c - '0';
 | |
|                 s1 = s;
 | |
|                 while ((c = *++s) >= '0' && c <= '9')
 | |
|                     L = 10*L + c - '0';
 | |
|                 if (s - s1 > 8 || L > 19999)
 | |
|                     /* Avoid confusion from exponents
 | |
|                      * so large that e might overflow.
 | |
|                      */
 | |
|                     e = 19999; /* safe for 16 bit ints */
 | |
|                 else
 | |
|                     e = (int)L;
 | |
|                 if (esign)
 | |
|                     e = -e;
 | |
|             }
 | |
|             else
 | |
|                 e = 0;
 | |
|         }
 | |
|         else
 | |
|             s = s00;
 | |
|     }
 | |
|     if (!nd) {
 | |
|         if (!nz && !nz0) {
 | |
| #ifdef INFNAN_CHECK
 | |
|             /* Check for Nan and Infinity */
 | |
|             switch (c) {
 | |
|               case 'i':
 | |
|               case 'I':
 | |
|                 if (match(&s,"nf")) {
 | |
|                     --s;
 | |
|                     if (!match(&s,"inity"))
 | |
|                         ++s;
 | |
|                     word0(rv) = 0x7ff00000;
 | |
|                     word1(rv) = 0;
 | |
|                     goto ret;
 | |
|                 }
 | |
|                 break;
 | |
|               case 'n':
 | |
|               case 'N':
 | |
|                 if (match(&s, "an")) {
 | |
|                     word0(rv) = NAN_WORD0;
 | |
|                     word1(rv) = NAN_WORD1;
 | |
| #ifndef No_Hex_NaN
 | |
|                     if (*s == '(') /*)*/
 | |
|                         hexnan(&rv, &s);
 | |
| #endif
 | |
|                     goto ret;
 | |
|                 }
 | |
|             }
 | |
| #endif /* INFNAN_CHECK */
 | |
| ret0:
 | |
|             s = s00;
 | |
|             sign = 0;
 | |
|         }
 | |
|         goto ret;
 | |
|     }
 | |
|     e1 = e -= nf;
 | |
| 
 | |
|     /* Now we have nd0 digits, starting at s0, followed by a
 | |
|      * decimal point, followed by nd-nd0 digits.  The number we're
 | |
|      * after is the integer represented by those digits times
 | |
|      * 10**e */
 | |
| 
 | |
|     if (!nd0)
 | |
|         nd0 = nd;
 | |
|     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
 | |
|     dval(rv) = y;
 | |
|     if (k > 9) {
 | |
| #ifdef SET_INEXACT
 | |
|         if (k > DBL_DIG)
 | |
|             oldinexact = get_inexact();
 | |
| #endif
 | |
|         dval(rv) = tens[k - 9] * dval(rv) + z;
 | |
|     }
 | |
|     bd0 = bb = bd = bs = delta = 0;
 | |
|     if (nd <= DBL_DIG
 | |
| #ifndef RND_PRODQUOT
 | |
| #ifndef Honor_FLT_ROUNDS
 | |
|         && Flt_Rounds == 1
 | |
| #endif
 | |
| #endif
 | |
|     ) {
 | |
|         if (!e)
 | |
|             goto ret;
 | |
|         if (e > 0) {
 | |
|             if (e <= Ten_pmax) {
 | |
| #ifdef VAX
 | |
|                 goto vax_ovfl_check;
 | |
| #else
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 /* round correctly FLT_ROUNDS = 2 or 3 */
 | |
|                 if (sign) {
 | |
|                     dval(rv) = -dval(rv);
 | |
|                     sign = 0;
 | |
|                 }
 | |
| #endif
 | |
|                 /* rv = */ rounded_product(dval(rv), tens[e]);
 | |
|                 goto ret;
 | |
| #endif
 | |
|             }
 | |
|             i = DBL_DIG - nd;
 | |
|             if (e <= Ten_pmax + i) {
 | |
|                 /* A fancier test would sometimes let us do
 | |
|                  * this for larger i values.
 | |
|                  */
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 /* round correctly FLT_ROUNDS = 2 or 3 */
 | |
|                 if (sign) {
 | |
|                     dval(rv) = -dval(rv);
 | |
|                     sign = 0;
 | |
|                 }
 | |
| #endif
 | |
|                 e -= i;
 | |
|                 dval(rv) *= tens[i];
 | |
| #ifdef VAX
 | |
|                 /* VAX exponent range is so narrow we must
 | |
|                  * worry about overflow here...
 | |
|                  */
 | |
| vax_ovfl_check:
 | |
|                 word0(rv) -= P*Exp_msk1;
 | |
|                 /* rv = */ rounded_product(dval(rv), tens[e]);
 | |
|                 if ((word0(rv) & Exp_mask)
 | |
|                         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
 | |
|                     goto ovfl;
 | |
|                 word0(rv) += P*Exp_msk1;
 | |
| #else
 | |
|                 /* rv = */ rounded_product(dval(rv), tens[e]);
 | |
| #endif
 | |
|                 goto ret;
 | |
|             }
 | |
|         }
 | |
| #ifndef Inaccurate_Divide
 | |
|         else if (e >= -Ten_pmax) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|             /* round correctly FLT_ROUNDS = 2 or 3 */
 | |
|             if (sign) {
 | |
|                 dval(rv) = -dval(rv);
 | |
|                 sign = 0;
 | |
|             }
 | |
| #endif
 | |
|             /* rv = */ rounded_quotient(dval(rv), tens[-e]);
 | |
|             goto ret;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     e1 += nd - k;
 | |
| 
 | |
| #ifdef IEEE_Arith
 | |
| #ifdef SET_INEXACT
 | |
|     inexact = 1;
 | |
|     if (k <= DBL_DIG)
 | |
|         oldinexact = get_inexact();
 | |
| #endif
 | |
| #ifdef Avoid_Underflow
 | |
|     scale = 0;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     if ((rounding = Flt_Rounds) >= 2) {
 | |
|         if (sign)
 | |
|             rounding = rounding == 2 ? 0 : 2;
 | |
|         else
 | |
|             if (rounding != 2)
 | |
|                 rounding = 0;
 | |
|     }
 | |
| #endif
 | |
| #endif /*IEEE_Arith*/
 | |
| 
 | |
|     /* Get starting approximation = rv * 10**e1 */
 | |
| 
 | |
|     if (e1 > 0) {
 | |
|         if ((i = e1 & 15) != 0)
 | |
|             dval(rv) *= tens[i];
 | |
|         if (e1 &= ~15) {
 | |
|             if (e1 > DBL_MAX_10_EXP) {
 | |
| ovfl:
 | |
| #ifndef NO_ERRNO
 | |
|                 errno = ERANGE;
 | |
| #endif
 | |
|                 /* Can't trust HUGE_VAL */
 | |
| #ifdef IEEE_Arith
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 switch (rounding) {
 | |
|                   case 0: /* toward 0 */
 | |
|                   case 3: /* toward -infinity */
 | |
|                     word0(rv) = Big0;
 | |
|                     word1(rv) = Big1;
 | |
|                     break;
 | |
|                   default:
 | |
|                     word0(rv) = Exp_mask;
 | |
|                     word1(rv) = 0;
 | |
|                 }
 | |
| #else /*Honor_FLT_ROUNDS*/
 | |
|                 word0(rv) = Exp_mask;
 | |
|                 word1(rv) = 0;
 | |
| #endif /*Honor_FLT_ROUNDS*/
 | |
| #ifdef SET_INEXACT
 | |
|                 /* set overflow bit */
 | |
|                 dval(rv0) = 1e300;
 | |
|                 dval(rv0) *= dval(rv0);
 | |
| #endif
 | |
| #else /*IEEE_Arith*/
 | |
|                 word0(rv) = Big0;
 | |
|                 word1(rv) = Big1;
 | |
| #endif /*IEEE_Arith*/
 | |
|                 if (bd0)
 | |
|                     goto retfree;
 | |
|                 goto ret;
 | |
|             }
 | |
|             e1 >>= 4;
 | |
|             for (j = 0; e1 > 1; j++, e1 >>= 1)
 | |
|                 if (e1 & 1)
 | |
|                     dval(rv) *= bigtens[j];
 | |
|             /* The last multiplication could overflow. */
 | |
|             word0(rv) -= P*Exp_msk1;
 | |
|             dval(rv) *= bigtens[j];
 | |
|             if ((z = word0(rv) & Exp_mask)
 | |
|                     > Exp_msk1*(DBL_MAX_EXP+Bias-P))
 | |
|                 goto ovfl;
 | |
|             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
 | |
|                 /* set to largest number */
 | |
|                 /* (Can't trust DBL_MAX) */
 | |
|                 word0(rv) = Big0;
 | |
|                 word1(rv) = Big1;
 | |
|             }
 | |
|             else
 | |
|                 word0(rv) += P*Exp_msk1;
 | |
|         }
 | |
|     }
 | |
|     else if (e1 < 0) {
 | |
|         e1 = -e1;
 | |
|         if ((i = e1 & 15) != 0)
 | |
|             dval(rv) /= tens[i];
 | |
|         if (e1 >>= 4) {
 | |
|             if (e1 >= 1 << n_bigtens)
 | |
|                 goto undfl;
 | |
| #ifdef Avoid_Underflow
 | |
|             if (e1 & Scale_Bit)
 | |
|                 scale = 2*P;
 | |
|             for (j = 0; e1 > 0; j++, e1 >>= 1)
 | |
|                 if (e1 & 1)
 | |
|                     dval(rv) *= tinytens[j];
 | |
|             if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
 | |
|                     >> Exp_shift)) > 0) {
 | |
|                 /* scaled rv is denormal; zap j low bits */
 | |
|                 if (j >= 32) {
 | |
|                     word1(rv) = 0;
 | |
|                     if (j >= 53)
 | |
|                         word0(rv) = (P+2)*Exp_msk1;
 | |
|                     else
 | |
|                         word0(rv) &= 0xffffffff << (j-32);
 | |
|                 }
 | |
|                 else
 | |
|                     word1(rv) &= 0xffffffff << j;
 | |
|             }
 | |
| #else
 | |
|             for (j = 0; e1 > 1; j++, e1 >>= 1)
 | |
|                 if (e1 & 1)
 | |
|                     dval(rv) *= tinytens[j];
 | |
|             /* The last multiplication could underflow. */
 | |
|             dval(rv0) = dval(rv);
 | |
|             dval(rv) *= tinytens[j];
 | |
|             if (!dval(rv)) {
 | |
|                 dval(rv) = 2.*dval(rv0);
 | |
|                 dval(rv) *= tinytens[j];
 | |
| #endif
 | |
|                 if (!dval(rv)) {
 | |
| undfl:
 | |
|                     dval(rv) = 0.;
 | |
| #ifndef NO_ERRNO
 | |
|                     errno = ERANGE;
 | |
| #endif
 | |
|                     if (bd0)
 | |
|                         goto retfree;
 | |
|                     goto ret;
 | |
|                 }
 | |
| #ifndef Avoid_Underflow
 | |
|                 word0(rv) = Tiny0;
 | |
|                 word1(rv) = Tiny1;
 | |
|                 /* The refinement below will clean
 | |
|                  * this approximation up.
 | |
|                  */
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Now the hard part -- adjusting rv to the correct value.*/
 | |
| 
 | |
|     /* Put digits into bd: true value = bd * 10^e */
 | |
| 
 | |
|     bd0 = s2b(s0, nd0, nd, y);
 | |
| 
 | |
|     for (;;) {
 | |
|         bd = Balloc(bd0->k);
 | |
|         Bcopy(bd, bd0);
 | |
|         bb = d2b(dval(rv), &bbe, &bbbits);  /* rv = bb * 2^bbe */
 | |
|         bs = i2b(1);
 | |
| 
 | |
|         if (e >= 0) {
 | |
|             bb2 = bb5 = 0;
 | |
|             bd2 = bd5 = e;
 | |
|         }
 | |
|         else {
 | |
|             bb2 = bb5 = -e;
 | |
|             bd2 = bd5 = 0;
 | |
|         }
 | |
|         if (bbe >= 0)
 | |
|             bb2 += bbe;
 | |
|         else
 | |
|             bd2 -= bbe;
 | |
|         bs2 = bb2;
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         if (rounding != 1)
 | |
|             bs2++;
 | |
| #endif
 | |
| #ifdef Avoid_Underflow
 | |
|         j = bbe - scale;
 | |
|         i = j + bbbits - 1; /* logb(rv) */
 | |
|         if (i < Emin)   /* denormal */
 | |
|             j += P - Emin;
 | |
|         else
 | |
|             j = P + 1 - bbbits;
 | |
| #else /*Avoid_Underflow*/
 | |
| #ifdef Sudden_Underflow
 | |
| #ifdef IBM
 | |
|         j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
 | |
| #else
 | |
|         j = P + 1 - bbbits;
 | |
| #endif
 | |
| #else /*Sudden_Underflow*/
 | |
|         j = bbe;
 | |
|         i = j + bbbits - 1; /* logb(rv) */
 | |
|         if (i < Emin)   /* denormal */
 | |
|             j += P - Emin;
 | |
|         else
 | |
|             j = P + 1 - bbbits;
 | |
| #endif /*Sudden_Underflow*/
 | |
| #endif /*Avoid_Underflow*/
 | |
|         bb2 += j;
 | |
|         bd2 += j;
 | |
| #ifdef Avoid_Underflow
 | |
|         bd2 += scale;
 | |
| #endif
 | |
|         i = bb2 < bd2 ? bb2 : bd2;
 | |
|         if (i > bs2)
 | |
|             i = bs2;
 | |
|         if (i > 0) {
 | |
|             bb2 -= i;
 | |
|             bd2 -= i;
 | |
|             bs2 -= i;
 | |
|         }
 | |
|         if (bb5 > 0) {
 | |
|             bs = pow5mult(bs, bb5);
 | |
|             bb1 = mult(bs, bb);
 | |
|             Bfree(bb);
 | |
|             bb = bb1;
 | |
|         }
 | |
|         if (bb2 > 0)
 | |
|             bb = lshift(bb, bb2);
 | |
|         if (bd5 > 0)
 | |
|             bd = pow5mult(bd, bd5);
 | |
|         if (bd2 > 0)
 | |
|             bd = lshift(bd, bd2);
 | |
|         if (bs2 > 0)
 | |
|             bs = lshift(bs, bs2);
 | |
|         delta = diff(bb, bd);
 | |
|         dsign = delta->sign;
 | |
|         delta->sign = 0;
 | |
|         i = cmp(delta, bs);
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         if (rounding != 1) {
 | |
|             if (i < 0) {
 | |
|                 /* Error is less than an ulp */
 | |
|                 if (!delta->x[0] && delta->wds <= 1) {
 | |
|                     /* exact */
 | |
| #ifdef SET_INEXACT
 | |
|                     inexact = 0;
 | |
| #endif
 | |
|                     break;
 | |
|                 }
 | |
|                 if (rounding) {
 | |
|                     if (dsign) {
 | |
|                         adj = 1.;
 | |
|                         goto apply_adj;
 | |
|                     }
 | |
|                 }
 | |
|                 else if (!dsign) {
 | |
|                     adj = -1.;
 | |
|                     if (!word1(rv)
 | |
|                      && !(word0(rv) & Frac_mask)) {
 | |
|                         y = word0(rv) & Exp_mask;
 | |
| #ifdef Avoid_Underflow
 | |
|                         if (!scale || y > 2*P*Exp_msk1)
 | |
| #else
 | |
|                         if (y)
 | |
| #endif
 | |
|                         {
 | |
|                             delta = lshift(delta,Log2P);
 | |
|                             if (cmp(delta, bs) <= 0)
 | |
|                                 adj = -0.5;
 | |
|                         }
 | |
|                     }
 | |
| apply_adj:
 | |
| #ifdef Avoid_Underflow
 | |
|                     if (scale && (y = word0(rv) & Exp_mask)
 | |
|                             <= 2*P*Exp_msk1)
 | |
|                         word0(adj) += (2*P+1)*Exp_msk1 - y;
 | |
| #else
 | |
| #ifdef Sudden_Underflow
 | |
|                     if ((word0(rv) & Exp_mask) <=
 | |
|                             P*Exp_msk1) {
 | |
|                         word0(rv) += P*Exp_msk1;
 | |
|                         dval(rv) += adj*ulp(dval(rv));
 | |
|                         word0(rv) -= P*Exp_msk1;
 | |
|                     }
 | |
|                     else
 | |
| #endif /*Sudden_Underflow*/
 | |
| #endif /*Avoid_Underflow*/
 | |
|                     dval(rv) += adj*ulp(dval(rv));
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             adj = ratio(delta, bs);
 | |
|             if (adj < 1.)
 | |
|                 adj = 1.;
 | |
|             if (adj <= 0x7ffffffe) {
 | |
|                 /* adj = rounding ? ceil(adj) : floor(adj); */
 | |
|                 y = adj;
 | |
|                 if (y != adj) {
 | |
|                     if (!((rounding>>1) ^ dsign))
 | |
|                         y++;
 | |
|                     adj = y;
 | |
|                 }
 | |
|             }
 | |
| #ifdef Avoid_Underflow
 | |
|             if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
 | |
|                 word0(adj) += (2*P+1)*Exp_msk1 - y;
 | |
| #else
 | |
| #ifdef Sudden_Underflow
 | |
|             if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
 | |
|                 word0(rv) += P*Exp_msk1;
 | |
|                 adj *= ulp(dval(rv));
 | |
|                 if (dsign)
 | |
|                     dval(rv) += adj;
 | |
|                 else
 | |
|                     dval(rv) -= adj;
 | |
|                 word0(rv) -= P*Exp_msk1;
 | |
|                 goto cont;
 | |
|             }
 | |
| #endif /*Sudden_Underflow*/
 | |
| #endif /*Avoid_Underflow*/
 | |
|             adj *= ulp(dval(rv));
 | |
|             if (dsign)
 | |
|                 dval(rv) += adj;
 | |
|             else
 | |
|                 dval(rv) -= adj;
 | |
|             goto cont;
 | |
|         }
 | |
| #endif /*Honor_FLT_ROUNDS*/
 | |
| 
 | |
|         if (i < 0) {
 | |
|             /* Error is less than half an ulp -- check for
 | |
|              * special case of mantissa a power of two.
 | |
|              */
 | |
|             if (dsign || word1(rv) || word0(rv) & Bndry_mask
 | |
| #ifdef IEEE_Arith
 | |
| #ifdef Avoid_Underflow
 | |
|                 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
 | |
| #else
 | |
|                 || (word0(rv) & Exp_mask) <= Exp_msk1
 | |
| #endif
 | |
| #endif
 | |
|             ) {
 | |
| #ifdef SET_INEXACT
 | |
|                 if (!delta->x[0] && delta->wds <= 1)
 | |
|                     inexact = 0;
 | |
| #endif
 | |
|                 break;
 | |
|             }
 | |
|             if (!delta->x[0] && delta->wds <= 1) {
 | |
|                 /* exact result */
 | |
| #ifdef SET_INEXACT
 | |
|                 inexact = 0;
 | |
| #endif
 | |
|                 break;
 | |
|             }
 | |
|             delta = lshift(delta,Log2P);
 | |
|             if (cmp(delta, bs) > 0)
 | |
|                 goto drop_down;
 | |
|             break;
 | |
|         }
 | |
|         if (i == 0) {
 | |
|             /* exactly half-way between */
 | |
|             if (dsign) {
 | |
|                 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
 | |
|                         &&  word1(rv) == (
 | |
| #ifdef Avoid_Underflow
 | |
|                         (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
 | |
|                         ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
 | |
| #endif
 | |
|                         0xffffffff)) {
 | |
|                     /*boundary case -- increment exponent*/
 | |
|                     word0(rv) = (word0(rv) & Exp_mask)
 | |
|                                 + Exp_msk1
 | |
| #ifdef IBM
 | |
|                                 | Exp_msk1 >> 4
 | |
| #endif
 | |
|                     ;
 | |
|                     word1(rv) = 0;
 | |
| #ifdef Avoid_Underflow
 | |
|                     dsign = 0;
 | |
| #endif
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
 | |
| drop_down:
 | |
|                 /* boundary case -- decrement exponent */
 | |
| #ifdef Sudden_Underflow /*{{*/
 | |
|                 L = word0(rv) & Exp_mask;
 | |
| #ifdef IBM
 | |
|                 if (L <  Exp_msk1)
 | |
| #else
 | |
| #ifdef Avoid_Underflow
 | |
|                 if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
 | |
| #else
 | |
|                 if (L <= Exp_msk1)
 | |
| #endif /*Avoid_Underflow*/
 | |
| #endif /*IBM*/
 | |
|                     goto undfl;
 | |
|                 L -= Exp_msk1;
 | |
| #else /*Sudden_Underflow}{*/
 | |
| #ifdef Avoid_Underflow
 | |
|                 if (scale) {
 | |
|                     L = word0(rv) & Exp_mask;
 | |
|                     if (L <= (2*P+1)*Exp_msk1) {
 | |
|                         if (L > (P+2)*Exp_msk1)
 | |
|                             /* round even ==> */
 | |
|                             /* accept rv */
 | |
|                             break;
 | |
|                         /* rv = smallest denormal */
 | |
|                         goto undfl;
 | |
|                     }
 | |
|                 }
 | |
| #endif /*Avoid_Underflow*/
 | |
|                 L = (word0(rv) & Exp_mask) - Exp_msk1;
 | |
| #endif /*Sudden_Underflow}}*/
 | |
|                 word0(rv) = L | Bndry_mask1;
 | |
|                 word1(rv) = 0xffffffff;
 | |
| #ifdef IBM
 | |
|                 goto cont;
 | |
| #else
 | |
|                 break;
 | |
| #endif
 | |
|             }
 | |
| #ifndef ROUND_BIASED
 | |
|             if (!(word1(rv) & LSB))
 | |
|                 break;
 | |
| #endif
 | |
|             if (dsign)
 | |
|                 dval(rv) += ulp(dval(rv));
 | |
| #ifndef ROUND_BIASED
 | |
|             else {
 | |
|                 dval(rv) -= ulp(dval(rv));
 | |
| #ifndef Sudden_Underflow
 | |
|                 if (!dval(rv))
 | |
|                     goto undfl;
 | |
| #endif
 | |
|             }
 | |
| #ifdef Avoid_Underflow
 | |
|             dsign = 1 - dsign;
 | |
| #endif
 | |
| #endif
 | |
|             break;
 | |
|         }
 | |
|         if ((aadj = ratio(delta, bs)) <= 2.) {
 | |
|             if (dsign)
 | |
|                 aadj = dval(aadj1) = 1.;
 | |
|             else if (word1(rv) || word0(rv) & Bndry_mask) {
 | |
| #ifndef Sudden_Underflow
 | |
|                 if (word1(rv) == Tiny1 && !word0(rv))
 | |
|                     goto undfl;
 | |
| #endif
 | |
|                 aadj = 1.;
 | |
|                 dval(aadj1) = -1.;
 | |
|             }
 | |
|             else {
 | |
|                 /* special case -- power of FLT_RADIX to be */
 | |
|                 /* rounded down... */
 | |
| 
 | |
|                 if (aadj < 2./FLT_RADIX)
 | |
|                     aadj = 1./FLT_RADIX;
 | |
|                 else
 | |
|                     aadj *= 0.5;
 | |
|                 dval(aadj1) = -aadj;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             aadj *= 0.5;
 | |
|             dval(aadj1) = dsign ? aadj : -aadj;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|             switch (Rounding) {
 | |
|               case 2: /* towards +infinity */
 | |
|                 dval(aadj1) -= 0.5;
 | |
|                 break;
 | |
|               case 0: /* towards 0 */
 | |
|               case 3: /* towards -infinity */
 | |
|                 dval(aadj1) += 0.5;
 | |
|             }
 | |
| #else
 | |
|             if (Flt_Rounds == 0)
 | |
|                 dval(aadj1) += 0.5;
 | |
| #endif /*Check_FLT_ROUNDS*/
 | |
|         }
 | |
|         y = word0(rv) & Exp_mask;
 | |
| 
 | |
|         /* Check for overflow */
 | |
| 
 | |
|         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
 | |
|             dval(rv0) = dval(rv);
 | |
|             word0(rv) -= P*Exp_msk1;
 | |
|             adj = dval(aadj1) * ulp(dval(rv));
 | |
|             dval(rv) += adj;
 | |
|             if ((word0(rv) & Exp_mask) >=
 | |
|                     Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
 | |
|                 if (word0(rv0) == Big0 && word1(rv0) == Big1)
 | |
|                     goto ovfl;
 | |
|                 word0(rv) = Big0;
 | |
|                 word1(rv) = Big1;
 | |
|                 goto cont;
 | |
|             }
 | |
|             else
 | |
|                 word0(rv) += P*Exp_msk1;
 | |
|         }
 | |
|         else {
 | |
| #ifdef Avoid_Underflow
 | |
|             if (scale && y <= 2*P*Exp_msk1) {
 | |
|                 if (aadj <= 0x7fffffff) {
 | |
|                     if ((z = (int)aadj) <= 0)
 | |
|                         z = 1;
 | |
|                     aadj = z;
 | |
|                     dval(aadj1) = dsign ? aadj : -aadj;
 | |
|                 }
 | |
|                 word0(aadj1) += (2*P+1)*Exp_msk1 - y;
 | |
|             }
 | |
|             adj = dval(aadj1) * ulp(dval(rv));
 | |
|             dval(rv) += adj;
 | |
| #else
 | |
| #ifdef Sudden_Underflow
 | |
|             if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
 | |
|                 dval(rv0) = dval(rv);
 | |
|                 word0(rv) += P*Exp_msk1;
 | |
|                 adj = dval(aadj1) * ulp(dval(rv));
 | |
|                 dval(rv) += adj;
 | |
| #ifdef IBM
 | |
|                 if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
 | |
| #else
 | |
|                 if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
 | |
| #endif
 | |
|                 {
 | |
|                     if (word0(rv0) == Tiny0 && word1(rv0) == Tiny1)
 | |
|                         goto undfl;
 | |
|                     word0(rv) = Tiny0;
 | |
|                     word1(rv) = Tiny1;
 | |
|                     goto cont;
 | |
|                 }
 | |
|                 else
 | |
|                     word0(rv) -= P*Exp_msk1;
 | |
|             }
 | |
|             else {
 | |
|                 adj = dval(aadj1) * ulp(dval(rv));
 | |
|                 dval(rv) += adj;
 | |
|             }
 | |
| #else /*Sudden_Underflow*/
 | |
|             /* Compute adj so that the IEEE rounding rules will
 | |
|              * correctly round rv + adj in some half-way cases.
 | |
|              * If rv * ulp(rv) is denormalized (i.e.,
 | |
|              * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
 | |
|              * trouble from bits lost to denormalization;
 | |
|              * example: 1.2e-307 .
 | |
|              */
 | |
|             if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
 | |
|                 dval(aadj1) = (double)(int)(aadj + 0.5);
 | |
|                 if (!dsign)
 | |
|                     dval(aadj1) = -dval(aadj1);
 | |
|             }
 | |
|             adj = dval(aadj1) * ulp(dval(rv));
 | |
|             dval(rv) += adj;
 | |
| #endif /*Sudden_Underflow*/
 | |
| #endif /*Avoid_Underflow*/
 | |
|         }
 | |
|         z = word0(rv) & Exp_mask;
 | |
| #ifndef SET_INEXACT
 | |
| #ifdef Avoid_Underflow
 | |
|         if (!scale)
 | |
| #endif
 | |
|         if (y == z) {
 | |
|             /* Can we stop now? */
 | |
|             L = (Long)aadj;
 | |
|             aadj -= L;
 | |
|             /* The tolerances below are conservative. */
 | |
|             if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
 | |
|                 if (aadj < .4999999 || aadj > .5000001)
 | |
|                     break;
 | |
|             }
 | |
|             else if (aadj < .4999999/FLT_RADIX)
 | |
|                 break;
 | |
|         }
 | |
| #endif
 | |
| cont:
 | |
|         Bfree(bb);
 | |
|         Bfree(bd);
 | |
|         Bfree(bs);
 | |
|         Bfree(delta);
 | |
|     }
 | |
| #ifdef SET_INEXACT
 | |
|     if (inexact) {
 | |
|         if (!oldinexact) {
 | |
|             word0(rv0) = Exp_1 + (70 << Exp_shift);
 | |
|             word1(rv0) = 0;
 | |
|             dval(rv0) += 1.;
 | |
|         }
 | |
|     }
 | |
|     else if (!oldinexact)
 | |
|         clear_inexact();
 | |
| #endif
 | |
| #ifdef Avoid_Underflow
 | |
|     if (scale) {
 | |
|         word0(rv0) = Exp_1 - 2*P*Exp_msk1;
 | |
|         word1(rv0) = 0;
 | |
|         dval(rv) *= dval(rv0);
 | |
| #ifndef NO_ERRNO
 | |
|         /* try to avoid the bug of testing an 8087 register value */
 | |
|         if (word0(rv) == 0 && word1(rv) == 0)
 | |
|             errno = ERANGE;
 | |
| #endif
 | |
|     }
 | |
| #endif /* Avoid_Underflow */
 | |
| #ifdef SET_INEXACT
 | |
|     if (inexact && !(word0(rv) & Exp_mask)) {
 | |
|         /* set underflow bit */
 | |
|         dval(rv0) = 1e-300;
 | |
|         dval(rv0) *= dval(rv0);
 | |
|     }
 | |
| #endif
 | |
| retfree:
 | |
|     Bfree(bb);
 | |
|     Bfree(bd);
 | |
|     Bfree(bs);
 | |
|     Bfree(bd0);
 | |
|     Bfree(delta);
 | |
| ret:
 | |
|     if (se)
 | |
|         *se = (char *)s;
 | |
|     return sign ? -dval(rv) : dval(rv);
 | |
| }
 | |
| 
 | |
| static int
 | |
| quorem(Bigint *b, Bigint *S)
 | |
| {
 | |
|     int n;
 | |
|     ULong *bx, *bxe, q, *sx, *sxe;
 | |
| #ifdef ULLong
 | |
|     ULLong borrow, carry, y, ys;
 | |
| #else
 | |
|     ULong borrow, carry, y, ys;
 | |
| #ifdef Pack_32
 | |
|     ULong si, z, zs;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     n = S->wds;
 | |
| #ifdef DEBUG
 | |
|     /*debug*/ if (b->wds > n)
 | |
|     /*debug*/   Bug("oversize b in quorem");
 | |
| #endif
 | |
|     if (b->wds < n)
 | |
|         return 0;
 | |
|     sx = S->x;
 | |
|     sxe = sx + --n;
 | |
|     bx = b->x;
 | |
|     bxe = bx + n;
 | |
|     q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
 | |
| #ifdef DEBUG
 | |
|     /*debug*/ if (q > 9)
 | |
|     /*debug*/   Bug("oversized quotient in quorem");
 | |
| #endif
 | |
|     if (q) {
 | |
|         borrow = 0;
 | |
|         carry = 0;
 | |
|         do {
 | |
| #ifdef ULLong
 | |
|             ys = *sx++ * (ULLong)q + carry;
 | |
|             carry = ys >> 32;
 | |
|             y = *bx - (ys & FFFFFFFF) - borrow;
 | |
|             borrow = y >> 32 & (ULong)1;
 | |
|             *bx++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
| #ifdef Pack_32
 | |
|             si = *sx++;
 | |
|             ys = (si & 0xffff) * q + carry;
 | |
|             zs = (si >> 16) * q + (ys >> 16);
 | |
|             carry = zs >> 16;
 | |
|             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | |
|             borrow = (z & 0x10000) >> 16;
 | |
|             Storeinc(bx, z, y);
 | |
| #else
 | |
|             ys = *sx++ * q + carry;
 | |
|             carry = ys >> 16;
 | |
|             y = *bx - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             *bx++ = y & 0xffff;
 | |
| #endif
 | |
| #endif
 | |
|         } while (sx <= sxe);
 | |
|         if (!*bxe) {
 | |
|             bx = b->x;
 | |
|             while (--bxe > bx && !*bxe)
 | |
|                 --n;
 | |
|             b->wds = n;
 | |
|         }
 | |
|     }
 | |
|     if (cmp(b, S) >= 0) {
 | |
|         q++;
 | |
|         borrow = 0;
 | |
|         carry = 0;
 | |
|         bx = b->x;
 | |
|         sx = S->x;
 | |
|         do {
 | |
| #ifdef ULLong
 | |
|             ys = *sx++ + carry;
 | |
|             carry = ys >> 32;
 | |
|             y = *bx - (ys & FFFFFFFF) - borrow;
 | |
|             borrow = y >> 32 & (ULong)1;
 | |
|             *bx++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
| #ifdef Pack_32
 | |
|             si = *sx++;
 | |
|             ys = (si & 0xffff) + carry;
 | |
|             zs = (si >> 16) + (ys >> 16);
 | |
|             carry = zs >> 16;
 | |
|             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | |
|             borrow = (z & 0x10000) >> 16;
 | |
|             Storeinc(bx, z, y);
 | |
| #else
 | |
|             ys = *sx++ + carry;
 | |
|             carry = ys >> 16;
 | |
|             y = *bx - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             *bx++ = y & 0xffff;
 | |
| #endif
 | |
| #endif
 | |
|         } while (sx <= sxe);
 | |
|         bx = b->x;
 | |
|         bxe = bx + n;
 | |
|         if (!*bxe) {
 | |
|             while (--bxe > bx && !*bxe)
 | |
|                 --n;
 | |
|             b->wds = n;
 | |
|         }
 | |
|     }
 | |
|     return q;
 | |
| }
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| static char *dtoa_result;
 | |
| #endif
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| static char *
 | |
| rv_alloc(int i)
 | |
| {
 | |
|     return dtoa_result = xmalloc(i);
 | |
| }
 | |
| #else
 | |
| #define rv_alloc(i) xmalloc(i)
 | |
| #endif
 | |
| 
 | |
| static char *
 | |
| nrv_alloc(const char *s, char **rve, size_t n)
 | |
| {
 | |
|     char *rv, *t;
 | |
| 
 | |
|     t = rv = rv_alloc(n);
 | |
|     while ((*t = *s++) != 0) t++;
 | |
|     if (rve)
 | |
|         *rve = t;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| #define rv_strdup(s, rve) nrv_alloc((s), (rve), strlen(s)+1)
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| /* freedtoa(s) must be used to free values s returned by dtoa
 | |
|  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
 | |
|  * but for consistency with earlier versions of dtoa, it is optional
 | |
|  * when MULTIPLE_THREADS is not defined.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| freedtoa(char *s)
 | |
| {
 | |
|     xfree(s);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const char INFSTR[] = "Infinity";
 | |
| static const char NANSTR[] = "NaN";
 | |
| static const char ZEROSTR[] = "0";
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *  1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *     to determine k = floor(log10(d)).  We scale relevant
 | |
|  *     quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *     try to generate digits strictly left to right.  Instead, we
 | |
|  *     compute with fewer bits and propagate the carry if necessary
 | |
|  *     when rounding the final digit up.  This is often faster.
 | |
|  *  3. Under the assumption that input will be rounded nearest,
 | |
|  *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *     That is, we allow equality in stopping tests when the
 | |
|  *     round-nearest rule will give the same floating-point value
 | |
|  *     as would satisfaction of the stopping test with strict
 | |
|  *     inequality.
 | |
|  *  4. We remove common factors of powers of 2 from relevant
 | |
|  *     quantities.
 | |
|  *  5. When converting floating-point integers less than 1e16,
 | |
|  *     we use floating-point arithmetic rather than resorting
 | |
|  *     to multiple-precision integers.
 | |
|  *  6. When asked to produce fewer than 15 digits, we first try
 | |
|  *     to get by with floating-point arithmetic; we resort to
 | |
|  *     multiple-precision integer arithmetic only if we cannot
 | |
|  *     guarantee that the floating-point calculation has given
 | |
|  *     the correctly rounded result.  For k requested digits and
 | |
|  *     "uniformly" distributed input, the probability is
 | |
|  *     something like 10^(k-15) that we must resort to the Long
 | |
|  *     calculation.
 | |
|  */
 | |
| 
 | |
| char *
 | |
| ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve)
 | |
| {
 | |
|  /* Arguments ndigits, decpt, sign are similar to those
 | |
|     of ecvt and fcvt; trailing zeros are suppressed from
 | |
|     the returned string.  If not null, *rve is set to point
 | |
|     to the end of the return value.  If d is +-Infinity or NaN,
 | |
|     then *decpt is set to 9999.
 | |
| 
 | |
|     mode:
 | |
|         0 ==> shortest string that yields d when read in
 | |
|             and rounded to nearest.
 | |
|         1 ==> like 0, but with Steele & White stopping rule;
 | |
|             e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
|             1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
|         2 ==> max(1,ndigits) significant digits.  This gives a
 | |
|             return value similar to that of ecvt, except
 | |
|             that trailing zeros are suppressed.
 | |
|         3 ==> through ndigits past the decimal point.  This
 | |
|             gives a return value similar to that from fcvt,
 | |
|             except that trailing zeros are suppressed, and
 | |
|             ndigits can be negative.
 | |
|         4,5 ==> similar to 2 and 3, respectively, but (in
 | |
|             round-nearest mode) with the tests of mode 0 to
 | |
|             possibly return a shorter string that rounds to d.
 | |
|             With IEEE arithmetic and compilation with
 | |
|             -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | |
|             as modes 2 and 3 when FLT_ROUNDS != 1.
 | |
|         6-9 ==> Debugging modes similar to mode - 4:  don't try
 | |
|             fast floating-point estimate (if applicable).
 | |
| 
 | |
|         Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
|         Sufficient space is allocated to the return value
 | |
|         to hold the suppressed trailing zeros.
 | |
|     */
 | |
| 
 | |
|     int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
 | |
|         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | |
|         spec_case, try_quick;
 | |
|     Long L;
 | |
| #ifndef Sudden_Underflow
 | |
|     int denorm;
 | |
|     ULong x;
 | |
| #endif
 | |
|     Bigint *b, *b1, *delta, *mlo = 0, *mhi = 0, *S;
 | |
|     double ds;
 | |
|     double_u d, d2, eps;
 | |
|     char *s, *s0;
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     int rounding;
 | |
| #endif
 | |
| #ifdef SET_INEXACT
 | |
|     int inexact, oldinexact;
 | |
| #endif
 | |
| 
 | |
|     dval(d) = d_;
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
|     if (dtoa_result) {
 | |
|         freedtoa(dtoa_result);
 | |
|         dtoa_result = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (word0(d) & Sign_bit) {
 | |
|         /* set sign for everything, including 0's and NaNs */
 | |
|         *sign = 1;
 | |
|         word0(d) &= ~Sign_bit;  /* clear sign bit */
 | |
|     }
 | |
|     else
 | |
|         *sign = 0;
 | |
| 
 | |
| #if defined(IEEE_Arith) + defined(VAX)
 | |
| #ifdef IEEE_Arith
 | |
|     if ((word0(d) & Exp_mask) == Exp_mask)
 | |
| #else
 | |
|     if (word0(d)  == 0x8000)
 | |
| #endif
 | |
|     {
 | |
|         /* Infinity or NaN */
 | |
|         *decpt = 9999;
 | |
| #ifdef IEEE_Arith
 | |
|         if (!word1(d) && !(word0(d) & 0xfffff))
 | |
|             return rv_strdup(INFSTR, rve);
 | |
| #endif
 | |
|         return rv_strdup(NANSTR, rve);
 | |
|     }
 | |
| #endif
 | |
| #ifdef IBM
 | |
|     dval(d) += 0; /* normalize */
 | |
| #endif
 | |
|     if (!dval(d)) {
 | |
|         *decpt = 1;
 | |
|         return rv_strdup(ZEROSTR, rve);
 | |
|     }
 | |
| 
 | |
| #ifdef SET_INEXACT
 | |
|     try_quick = oldinexact = get_inexact();
 | |
|     inexact = 1;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     if ((rounding = Flt_Rounds) >= 2) {
 | |
|         if (*sign)
 | |
|             rounding = rounding == 2 ? 0 : 2;
 | |
|         else
 | |
|             if (rounding != 2)
 | |
|                 rounding = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     b = d2b(dval(d), &be, &bbits);
 | |
| #ifdef Sudden_Underflow
 | |
|     i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
 | |
| #else
 | |
|     if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
 | |
| #endif
 | |
|         dval(d2) = dval(d);
 | |
|         word0(d2) &= Frac_mask1;
 | |
|         word0(d2) |= Exp_11;
 | |
| #ifdef IBM
 | |
|         if (j = 11 - hi0bits(word0(d2) & Frac_mask))
 | |
|             dval(d2) /= 1 << j;
 | |
| #endif
 | |
| 
 | |
|         /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
 | |
|          * log10(x)  =  log(x) / log(10)
 | |
|          *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
|          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
|          *
 | |
|          * This suggests computing an approximation k to log10(d) by
 | |
|          *
 | |
|          * k = (i - Bias)*0.301029995663981
 | |
|          *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
|          *
 | |
|          * We want k to be too large rather than too small.
 | |
|          * The error in the first-order Taylor series approximation
 | |
|          * is in our favor, so we just round up the constant enough
 | |
|          * to compensate for any error in the multiplication of
 | |
|          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
|          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
|          * adding 1e-13 to the constant term more than suffices.
 | |
|          * Hence we adjust the constant term to 0.1760912590558.
 | |
|          * (We could get a more accurate k by invoking log10,
 | |
|          *  but this is probably not worthwhile.)
 | |
|          */
 | |
| 
 | |
|         i -= Bias;
 | |
| #ifdef IBM
 | |
|         i <<= 2;
 | |
|         i += j;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
|         denorm = 0;
 | |
|     }
 | |
|     else {
 | |
|         /* d is denormalized */
 | |
| 
 | |
|         i = bbits + be + (Bias + (P-1) - 1);
 | |
|         x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
 | |
| 	    : word1(d) << (32 - i);
 | |
|         dval(d2) = x;
 | |
|         word0(d2) -= 31*Exp_msk1; /* adjust exponent */
 | |
|         i -= (Bias + (P-1) - 1) + 1;
 | |
|         denorm = 1;
 | |
|     }
 | |
| #endif
 | |
|     ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | |
|     k = (int)ds;
 | |
|     if (ds < 0. && ds != k)
 | |
|         k--;    /* want k = floor(ds) */
 | |
|     k_check = 1;
 | |
|     if (k >= 0 && k <= Ten_pmax) {
 | |
|         if (dval(d) < tens[k])
 | |
|             k--;
 | |
|         k_check = 0;
 | |
|     }
 | |
|     j = bbits - i - 1;
 | |
|     if (j >= 0) {
 | |
|         b2 = 0;
 | |
|         s2 = j;
 | |
|     }
 | |
|     else {
 | |
|         b2 = -j;
 | |
|         s2 = 0;
 | |
|     }
 | |
|     if (k >= 0) {
 | |
|         b5 = 0;
 | |
|         s5 = k;
 | |
|         s2 += k;
 | |
|     }
 | |
|     else {
 | |
|         b2 -= k;
 | |
|         b5 = -k;
 | |
|         s5 = 0;
 | |
|     }
 | |
|     if (mode < 0 || mode > 9)
 | |
|         mode = 0;
 | |
| 
 | |
| #ifndef SET_INEXACT
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|     try_quick = Rounding == 1;
 | |
| #else
 | |
|     try_quick = 1;
 | |
| #endif
 | |
| #endif /*SET_INEXACT*/
 | |
| 
 | |
|     if (mode > 5) {
 | |
|         mode -= 4;
 | |
|         try_quick = 0;
 | |
|     }
 | |
|     leftright = 1;
 | |
|     ilim = ilim1 = -1;
 | |
|     switch (mode) {
 | |
|       case 0:
 | |
|       case 1:
 | |
|         i = 18;
 | |
|         ndigits = 0;
 | |
|         break;
 | |
|       case 2:
 | |
|         leftright = 0;
 | |
|         /* no break */
 | |
|       case 4:
 | |
|         if (ndigits <= 0)
 | |
|             ndigits = 1;
 | |
|         ilim = ilim1 = i = ndigits;
 | |
|         break;
 | |
|       case 3:
 | |
|         leftright = 0;
 | |
|         /* no break */
 | |
|       case 5:
 | |
|         i = ndigits + k + 1;
 | |
|         ilim = i;
 | |
|         ilim1 = i - 1;
 | |
|         if (i <= 0)
 | |
|             i = 1;
 | |
|     }
 | |
|     s = s0 = rv_alloc(i+1);
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     if (mode > 1 && rounding != 1)
 | |
|         leftright = 0;
 | |
| #endif
 | |
| 
 | |
|     if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | |
| 
 | |
|         /* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
|         i = 0;
 | |
|         dval(d2) = dval(d);
 | |
|         k0 = k;
 | |
|         ilim0 = ilim;
 | |
|         ieps = 2; /* conservative */
 | |
|         if (k > 0) {
 | |
|             ds = tens[k&0xf];
 | |
|             j = k >> 4;
 | |
|             if (j & Bletch) {
 | |
|                 /* prevent overflows */
 | |
|                 j &= Bletch - 1;
 | |
|                 dval(d) /= bigtens[n_bigtens-1];
 | |
|                 ieps++;
 | |
|             }
 | |
|             for (; j; j >>= 1, i++)
 | |
|                 if (j & 1) {
 | |
|                     ieps++;
 | |
|                     ds *= bigtens[i];
 | |
|                 }
 | |
|             dval(d) /= ds;
 | |
|         }
 | |
|         else if ((j1 = -k) != 0) {
 | |
|             dval(d) *= tens[j1 & 0xf];
 | |
|             for (j = j1 >> 4; j; j >>= 1, i++)
 | |
|                 if (j & 1) {
 | |
|                     ieps++;
 | |
|                     dval(d) *= bigtens[i];
 | |
|                 }
 | |
|         }
 | |
|         if (k_check && dval(d) < 1. && ilim > 0) {
 | |
|             if (ilim1 <= 0)
 | |
|                 goto fast_failed;
 | |
|             ilim = ilim1;
 | |
|             k--;
 | |
|             dval(d) *= 10.;
 | |
|             ieps++;
 | |
|         }
 | |
|         dval(eps) = ieps*dval(d) + 7.;
 | |
|         word0(eps) -= (P-1)*Exp_msk1;
 | |
|         if (ilim == 0) {
 | |
|             S = mhi = 0;
 | |
|             dval(d) -= 5.;
 | |
|             if (dval(d) > dval(eps))
 | |
|                 goto one_digit;
 | |
|             if (dval(d) < -dval(eps))
 | |
|                 goto no_digits;
 | |
|             goto fast_failed;
 | |
|         }
 | |
| #ifndef No_leftright
 | |
|         if (leftright) {
 | |
|             /* Use Steele & White method of only
 | |
|              * generating digits needed.
 | |
|              */
 | |
|             dval(eps) = 0.5/tens[ilim-1] - dval(eps);
 | |
|             for (i = 0;;) {
 | |
|                 L = (int)dval(d);
 | |
|                 dval(d) -= L;
 | |
|                 *s++ = '0' + (int)L;
 | |
|                 if (dval(d) < dval(eps))
 | |
|                     goto ret1;
 | |
|                 if (1. - dval(d) < dval(eps))
 | |
|                     goto bump_up;
 | |
|                 if (++i >= ilim)
 | |
|                     break;
 | |
|                 dval(eps) *= 10.;
 | |
|                 dval(d) *= 10.;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
| #endif
 | |
|             /* Generate ilim digits, then fix them up. */
 | |
|             dval(eps) *= tens[ilim-1];
 | |
|             for (i = 1;; i++, dval(d) *= 10.) {
 | |
|                 L = (Long)(dval(d));
 | |
|                 if (!(dval(d) -= L))
 | |
|                     ilim = i;
 | |
|                 *s++ = '0' + (int)L;
 | |
|                 if (i == ilim) {
 | |
|                     if (dval(d) > 0.5 + dval(eps))
 | |
|                         goto bump_up;
 | |
|                     else if (dval(d) < 0.5 - dval(eps)) {
 | |
|                         while (*--s == '0') ;
 | |
|                         s++;
 | |
|                         goto ret1;
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| #ifndef No_leftright
 | |
|         }
 | |
| #endif
 | |
| fast_failed:
 | |
|         s = s0;
 | |
|         dval(d) = dval(d2);
 | |
|         k = k0;
 | |
|         ilim = ilim0;
 | |
|     }
 | |
| 
 | |
|     /* Do we have a "small" integer? */
 | |
| 
 | |
|     if (be >= 0 && k <= Int_max) {
 | |
|         /* Yes. */
 | |
|         ds = tens[k];
 | |
|         if (ndigits < 0 && ilim <= 0) {
 | |
|             S = mhi = 0;
 | |
|             if (ilim < 0 || dval(d) <= 5*ds)
 | |
|                 goto no_digits;
 | |
|             goto one_digit;
 | |
|         }
 | |
|         for (i = 1;; i++, dval(d) *= 10.) {
 | |
|             L = (Long)(dval(d) / ds);
 | |
|             dval(d) -= L*ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|             /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
|             if (dval(d) < 0) {
 | |
|                 L--;
 | |
|                 dval(d) += ds;
 | |
|             }
 | |
| #endif
 | |
|             *s++ = '0' + (int)L;
 | |
|             if (!dval(d)) {
 | |
| #ifdef SET_INEXACT
 | |
|                 inexact = 0;
 | |
| #endif
 | |
|                 break;
 | |
|             }
 | |
|             if (i == ilim) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 if (mode > 1)
 | |
|                 switch (rounding) {
 | |
|                   case 0: goto ret1;
 | |
|                   case 2: goto bump_up;
 | |
|                 }
 | |
| #endif
 | |
|                 dval(d) += dval(d);
 | |
|                 if (dval(d) > ds || (dval(d) == ds && (L & 1))) {
 | |
| bump_up:
 | |
|                     while (*--s == '9')
 | |
|                         if (s == s0) {
 | |
|                             k++;
 | |
|                             *s = '0';
 | |
|                             break;
 | |
|                         }
 | |
|                     ++*s++;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         goto ret1;
 | |
|     }
 | |
| 
 | |
|     m2 = b2;
 | |
|     m5 = b5;
 | |
|     if (leftright) {
 | |
|         i =
 | |
| #ifndef Sudden_Underflow
 | |
|             denorm ? be + (Bias + (P-1) - 1 + 1) :
 | |
| #endif
 | |
| #ifdef IBM
 | |
|             1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
 | |
| #else
 | |
|             1 + P - bbits;
 | |
| #endif
 | |
|         b2 += i;
 | |
|         s2 += i;
 | |
|         mhi = i2b(1);
 | |
|     }
 | |
|     if (m2 > 0 && s2 > 0) {
 | |
|         i = m2 < s2 ? m2 : s2;
 | |
|         b2 -= i;
 | |
|         m2 -= i;
 | |
|         s2 -= i;
 | |
|     }
 | |
|     if (b5 > 0) {
 | |
|         if (leftright) {
 | |
|             if (m5 > 0) {
 | |
|                 mhi = pow5mult(mhi, m5);
 | |
|                 b1 = mult(mhi, b);
 | |
|                 Bfree(b);
 | |
|                 b = b1;
 | |
|             }
 | |
|             if ((j = b5 - m5) != 0)
 | |
|                 b = pow5mult(b, j);
 | |
|         }
 | |
|         else
 | |
|             b = pow5mult(b, b5);
 | |
|     }
 | |
|     S = i2b(1);
 | |
|     if (s5 > 0)
 | |
|         S = pow5mult(S, s5);
 | |
| 
 | |
|     /* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
|     spec_case = 0;
 | |
|     if ((mode < 2 || leftright)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|             && rounding == 1
 | |
| #endif
 | |
|     ) {
 | |
|         if (!word1(d) && !(word0(d) & Bndry_mask)
 | |
| #ifndef Sudden_Underflow
 | |
|             && word0(d) & (Exp_mask & ~Exp_msk1)
 | |
| #endif
 | |
|         ) {
 | |
|             /* The special case */
 | |
|             b2 += Log2P;
 | |
|             s2 += Log2P;
 | |
|             spec_case = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Arrange for convenient computation of quotients:
 | |
|      * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|      *
 | |
|      * Perhaps we should just compute leading 28 bits of S once
 | |
|      * and for all and pass them and a shift to quorem, so it
 | |
|      * can do shifts and ors to compute the numerator for q.
 | |
|      */
 | |
| #ifdef Pack_32
 | |
|     if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
 | |
|         i = 32 - i;
 | |
| #else
 | |
|     if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) != 0)
 | |
|         i = 16 - i;
 | |
| #endif
 | |
|     if (i > 4) {
 | |
|         i -= 4;
 | |
|         b2 += i;
 | |
|         m2 += i;
 | |
|         s2 += i;
 | |
|     }
 | |
|     else if (i < 4) {
 | |
|         i += 28;
 | |
|         b2 += i;
 | |
|         m2 += i;
 | |
|         s2 += i;
 | |
|     }
 | |
|     if (b2 > 0)
 | |
|         b = lshift(b, b2);
 | |
|     if (s2 > 0)
 | |
|         S = lshift(S, s2);
 | |
|     if (k_check) {
 | |
|         if (cmp(b,S) < 0) {
 | |
|             k--;
 | |
|             b = multadd(b, 10, 0);  /* we botched the k estimate */
 | |
|             if (leftright)
 | |
|                 mhi = multadd(mhi, 10, 0);
 | |
|             ilim = ilim1;
 | |
|         }
 | |
|     }
 | |
|     if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | |
|         if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | |
|             /* no digits, fcvt style */
 | |
| no_digits:
 | |
|             k = -1 - ndigits;
 | |
|             goto ret;
 | |
|         }
 | |
| one_digit:
 | |
|         *s++ = '1';
 | |
|         k++;
 | |
|         goto ret;
 | |
|     }
 | |
|     if (leftright) {
 | |
|         if (m2 > 0)
 | |
|             mhi = lshift(mhi, m2);
 | |
| 
 | |
|         /* Compute mlo -- check for special case
 | |
|          * that d is a normalized power of 2.
 | |
|          */
 | |
| 
 | |
|         mlo = mhi;
 | |
|         if (spec_case) {
 | |
|             mhi = Balloc(mhi->k);
 | |
|             Bcopy(mhi, mlo);
 | |
|             mhi = lshift(mhi, Log2P);
 | |
|         }
 | |
| 
 | |
|         for (i = 1;;i++) {
 | |
|             dig = quorem(b,S) + '0';
 | |
|             /* Do we yet have the shortest decimal string
 | |
|              * that will round to d?
 | |
|              */
 | |
|             j = cmp(b, mlo);
 | |
|             delta = diff(S, mhi);
 | |
|             j1 = delta->sign ? 1 : cmp(b, delta);
 | |
|             Bfree(delta);
 | |
| #ifndef ROUND_BIASED
 | |
|             if (j1 == 0 && mode != 1 && !(word1(d) & 1)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 && rounding >= 1
 | |
| #endif
 | |
|             ) {
 | |
|                 if (dig == '9')
 | |
|                     goto round_9_up;
 | |
|                 if (j > 0)
 | |
|                     dig++;
 | |
| #ifdef SET_INEXACT
 | |
|                 else if (!b->x[0] && b->wds <= 1)
 | |
|                     inexact = 0;
 | |
| #endif
 | |
|                 *s++ = dig;
 | |
|                 goto ret;
 | |
|             }
 | |
| #endif
 | |
|             if (j < 0 || (j == 0 && mode != 1
 | |
| #ifndef ROUND_BIASED
 | |
|                 && !(word1(d) & 1)
 | |
| #endif
 | |
|             )) {
 | |
|                 if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
|                     inexact = 0;
 | |
| #endif
 | |
|                     goto accept_dig;
 | |
|                 }
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 if (mode > 1)
 | |
|                     switch (rounding) {
 | |
|                       case 0: goto accept_dig;
 | |
|                       case 2: goto keep_dig;
 | |
|                     }
 | |
| #endif /*Honor_FLT_ROUNDS*/
 | |
|                 if (j1 > 0) {
 | |
|                     b = lshift(b, 1);
 | |
|                     j1 = cmp(b, S);
 | |
|                     if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9')
 | |
|                         goto round_9_up;
 | |
|                 }
 | |
| accept_dig:
 | |
|                 *s++ = dig;
 | |
|                 goto ret;
 | |
|             }
 | |
|             if (j1 > 0) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|                 if (!rounding)
 | |
|                     goto accept_dig;
 | |
| #endif
 | |
|                 if (dig == '9') { /* possible if i == 1 */
 | |
| round_9_up:
 | |
|                     *s++ = '9';
 | |
|                     goto roundoff;
 | |
|                 }
 | |
|                 *s++ = dig + 1;
 | |
|                 goto ret;
 | |
|             }
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| keep_dig:
 | |
| #endif
 | |
|             *s++ = dig;
 | |
|             if (i == ilim)
 | |
|                 break;
 | |
|             b = multadd(b, 10, 0);
 | |
|             if (mlo == mhi)
 | |
|                 mlo = mhi = multadd(mhi, 10, 0);
 | |
|             else {
 | |
|                 mlo = multadd(mlo, 10, 0);
 | |
|                 mhi = multadd(mhi, 10, 0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|         for (i = 1;; i++) {
 | |
|             *s++ = dig = quorem(b,S) + '0';
 | |
|             if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
|                 inexact = 0;
 | |
| #endif
 | |
|                 goto ret;
 | |
|             }
 | |
|             if (i >= ilim)
 | |
|                 break;
 | |
|             b = multadd(b, 10, 0);
 | |
|         }
 | |
| 
 | |
|     /* Round off last digit */
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|     switch (rounding) {
 | |
|       case 0: goto trimzeros;
 | |
|       case 2: goto roundoff;
 | |
|     }
 | |
| #endif
 | |
|     b = lshift(b, 1);
 | |
|     j = cmp(b, S);
 | |
|     if (j > 0 || (j == 0 && (dig & 1))) {
 | |
|  roundoff:
 | |
|         while (*--s == '9')
 | |
|             if (s == s0) {
 | |
|                 k++;
 | |
|                 *s++ = '1';
 | |
|                 goto ret;
 | |
|             }
 | |
|         ++*s++;
 | |
|     }
 | |
|     else {
 | |
|         while (*--s == '0') ;
 | |
|         s++;
 | |
|     }
 | |
| ret:
 | |
|     Bfree(S);
 | |
|     if (mhi) {
 | |
|         if (mlo && mlo != mhi)
 | |
|             Bfree(mlo);
 | |
|         Bfree(mhi);
 | |
|     }
 | |
| ret1:
 | |
| #ifdef SET_INEXACT
 | |
|     if (inexact) {
 | |
|         if (!oldinexact) {
 | |
|             word0(d) = Exp_1 + (70 << Exp_shift);
 | |
|             word1(d) = 0;
 | |
|             dval(d) += 1.;
 | |
|         }
 | |
|     }
 | |
|     else if (!oldinexact)
 | |
|         clear_inexact();
 | |
| #endif
 | |
|     Bfree(b);
 | |
|     *s = 0;
 | |
|     *decpt = k + 1;
 | |
|     if (rve)
 | |
|         *rve = s;
 | |
|     return s0;
 | |
| }
 | |
| 
 | |
| void
 | |
| ruby_each_words(const char *str, void (*func)(const char*, int, void*), void *arg)
 | |
| {
 | |
|     const char *end;
 | |
|     int len;
 | |
| 
 | |
|     if (!str) return;
 | |
|     for (; *str; str = end) {
 | |
| 	while (ISSPACE(*str) || *str == ',') str++;
 | |
| 	if (!*str) break;
 | |
| 	end = str;
 | |
| 	while (*end && !ISSPACE(*end) && *end != ',') end++;
 | |
| 	len = (int)(end - str);	/* assume no string exceeds INT_MAX */
 | |
| 	(*func)(str, len, arg);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 2004-2008 David Schultz <das@FreeBSD.ORG>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #define	DBL_MANH_SIZE	20
 | |
| #define	DBL_MANL_SIZE	32
 | |
| #define	DBL_ADJ	(DBL_MAX_EXP - 2)
 | |
| #define	SIGFIGS	((DBL_MANT_DIG + 3) / 4 + 1)
 | |
| #define dexp_get(u) ((int)(word0(u) >> Exp_shift) & ~Exp_msk1)
 | |
| #define dexp_set(u,v) (word0(u) = (((int)(word0(u)) & ~Exp_mask) | ((v) << Exp_shift)))
 | |
| #define dmanh_get(u) ((uint32_t)(word0(u) & Frac_mask))
 | |
| #define dmanl_get(u) ((uint32_t)word1(u))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This procedure converts a double-precision number in IEEE format
 | |
|  * into a string of hexadecimal digits and an exponent of 2.  Its
 | |
|  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
 | |
|  * following exceptions:
 | |
|  *
 | |
|  * - An ndigits < 0 causes it to use as many digits as necessary to
 | |
|  *   represent the number exactly.
 | |
|  * - The additional xdigs argument should point to either the string
 | |
|  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
 | |
|  *   which case is desired.
 | |
|  * - This routine does not repeat dtoa's mistake of setting decpt
 | |
|  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
 | |
|  *   for this purpose instead.
 | |
|  *
 | |
|  * Note that the C99 standard does not specify what the leading digit
 | |
|  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
 | |
|  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation always makes
 | |
|  * the leading digit a 1. This ensures that the exponent printed is the
 | |
|  * actual base-2 exponent, i.e., ilogb(d).
 | |
|  *
 | |
|  * Inputs:	d, xdigs, ndigits
 | |
|  * Outputs:	decpt, sign, rve
 | |
|  */
 | |
| char *
 | |
| ruby_hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
 | |
|     char **rve)
 | |
| {
 | |
| 	U u;
 | |
| 	char *s, *s0;
 | |
| 	int bufsize;
 | |
| 	uint32_t manh, manl;
 | |
| 
 | |
| 	u.d = d;
 | |
| 	if (word0(u) & Sign_bit) {
 | |
| 	    /* set sign for everything, including 0's and NaNs */
 | |
| 	    *sign = 1;
 | |
| 	    word0(u) &= ~Sign_bit;  /* clear sign bit */
 | |
| 	}
 | |
| 	else
 | |
| 	    *sign = 0;
 | |
| 
 | |
| 	if (isinf(d)) { /* FP_INFINITE */
 | |
| 	    *decpt = INT_MAX;
 | |
| 	    return rv_strdup(INFSTR, rve);
 | |
| 	}
 | |
| 	else if (isnan(d)) { /* FP_NAN */
 | |
| 	    *decpt = INT_MAX;
 | |
| 	    return rv_strdup(NANSTR, rve);
 | |
| 	}
 | |
| 	else if (d == 0.0) { /* FP_ZERO */
 | |
| 	    *decpt = 1;
 | |
| 	    return rv_strdup(ZEROSTR, rve);
 | |
| 	}
 | |
| 	else if (dexp_get(u)) { /* FP_NORMAL */
 | |
| 	    *decpt = dexp_get(u) - DBL_ADJ;
 | |
| 	}
 | |
| 	else { /* FP_SUBNORMAL */
 | |
| 	    u.d *= 5.363123171977039e+154 /* 0x1p514 */;
 | |
| 	    *decpt = dexp_get(u) - (514 + DBL_ADJ);
 | |
| 	}
 | |
| 
 | |
| 	if (ndigits == 0)		/* dtoa() compatibility */
 | |
| 		ndigits = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If ndigits < 0, we are expected to auto-size, so we allocate
 | |
| 	 * enough space for all the digits.
 | |
| 	 */
 | |
| 	bufsize = (ndigits > 0) ? ndigits : SIGFIGS;
 | |
| 	s0 = rv_alloc(bufsize+1);
 | |
| 
 | |
| 	/* Round to the desired number of digits. */
 | |
| 	if (SIGFIGS > ndigits && ndigits > 0) {
 | |
| 		float redux = 1.0f;
 | |
| 		int offset = 4 * ndigits + DBL_MAX_EXP - 4 - DBL_MANT_DIG;
 | |
| 		dexp_set(u, offset);
 | |
| 		u.d += redux;
 | |
| 		u.d -= redux;
 | |
| 		*decpt += dexp_get(u) - offset;
 | |
| 	}
 | |
| 
 | |
| 	manh = dmanh_get(u);
 | |
| 	manl = dmanl_get(u);
 | |
| 	*s0 = '1';
 | |
| 	for (s = s0 + 1; s < s0 + bufsize; s++) {
 | |
| 		*s = xdigs[(manh >> (DBL_MANH_SIZE - 4)) & 0xf];
 | |
| 		manh = (manh << 4) | (manl >> (DBL_MANL_SIZE - 4));
 | |
| 		manl <<= 4;
 | |
| 	}
 | |
| 
 | |
| 	/* If ndigits < 0, we are expected to auto-size the precision. */
 | |
| 	if (ndigits < 0) {
 | |
| 		for (ndigits = SIGFIGS; s0[ndigits - 1] == '0'; ndigits--)
 | |
| 			;
 | |
| 	}
 | |
| 
 | |
| 	s = s0 + ndigits;
 | |
| 	*s = '\0';
 | |
| 	if (rve != NULL)
 | |
| 		*rve = s;
 | |
| 	return (s0);
 | |
| }
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| #if 0
 | |
| { /* satisfy cc-mode */
 | |
| #endif
 | |
| }
 | |
| #endif
 |