ruby--ruby/lib/rexml/xpath_parser.rb

524 lines
14 KiB
Ruby

require 'rexml/namespace'
require 'rexml/xmltokens'
require 'rexml/parsers/xpathparser'
module REXML
# You don't want to use this class. Really. Use XPath, which is a wrapper
# for this class. Believe me. You don't want to poke around in here.
# There is strange, dark magic at work in this code. Beware. Go back! Go
# back while you still can!
class XPathParser
include XMLTokens
LITERAL = /^'([^']*)'|^"([^"]*)"/u
def initialize( )
@parser = REXML::Parsers::XPathParser.new
@namespaces = {}
@variables = {}
end
def namespaces=( namespaces={} )
Functions::namespace_context = namespaces
@namespaces = namespaces
end
def variables=( vars={} )
Functions::variables = vars
@variables = vars
end
def parse path, nodeset
path_stack = @parser.parse( path )
#puts "PARSE: #{path} => #{path_stack.inspect}"
match( path_stack, nodeset )
end
def predicate path, nodeset
path_stack = @parser.predicate( path )
return Predicate( path_stack, nodeset )
end
def []=( variable_name, value )
@variables[ variable_name ] = value
end
private
def match( path_stack, nodeset )
while ( path_stack.size > 0 and nodeset.size > 0 )
#puts "PARSE: #{path_stack.inspect} '#{nodeset.collect{|n|n.type}.inspect}'"
nodeset = internal_parse( path_stack, nodeset )
#puts "NODESET: #{nodeset.size}"
#puts "PATH_STACK: #{path_stack.inspect}"
end
nodeset
end
def internal_parse path_stack, nodeset
return nodeset if nodeset.size == 0 or path_stack.size == 0
#puts "INTERNAL_PARSE: #{path_stack.inspect}, #{nodeset.collect{|n| n.type}.inspect}"
case path_stack.shift
when :document
return [ nodeset[0].root.parent ]
when :qname
prefix = path_stack.shift
name = path_stack.shift
#puts "QNAME #{prefix}#{prefix.size>0?':':''}#{name}"
n = nodeset.clone
ns = @namespaces[prefix]
ns = ns ? ns : ''
n.delete_if do |node|
# FIXME: This DOUBLES the time XPath searches take
ns = node.namespace( prefix ) if node.node_type == :element and ns == ''
#puts "NODE: '#{node.to_s}'; node.has_name?( #{name.inspect}, #{ns.inspect} ): #{ node.has_name?( name, ns )}; node.namespace() = #{node.namespace().inspect}; node.prefix = #{node.prefix().inspect}" if node.node_type == :element
!(node.node_type == :element and node.name == name and node.namespace == ns )
end
return n
when :any
n = nodeset.clone
n.delete_if { |node| node.node_type != :element }
return n
when :self
# THIS SPACE LEFT INTENTIONALLY BLANK
when :processing_instruction
target = path_stack.shift
n = nodeset.clone
n.delete_if do |node|
(node.node_type != :processing_instruction) or
( !target.nil? and ( node.target != target ) )
end
return n
when :text
#puts ":TEXT"
n = nodeset.clone
n.delete_if do |node|
#puts "#{node} :: #{node.node_type}"
node.node_type != :text
end
return n
when :comment
n = nodeset.clone
n.delete_if do |node|
node.node_type != :comment
end
return n
when :node
return nodeset
#n = nodeset.clone
#n.delete_if do |node|
# !node.node?
#end
#return n
# FIXME: I suspect the following XPath will fail:
# /a/*/*[1]
when :child
#puts "CHILD"
new_nodeset = []
nt = nil
for node in nodeset
nt = node.node_type
new_nodeset += node.children if nt == :element or nt == :document
end
#path_stack[0,(path_stack.size-ps_clone.size)] = []
return new_nodeset
when :literal
literal = path_stack.shift
if literal =~ /^\d+(\.\d+)?$/
return ($1 ? literal.to_f : literal.to_i)
end
#puts "RETURNING '#{literal}'"
return literal
when :attribute
#puts ":ATTRIBUTE"
new_nodeset = []
case path_stack.shift
when :qname
prefix = path_stack.shift
name = path_stack.shift
for element in nodeset
if element.node_type == :element
#puts element.name
#puts "looking for attribute #{name} in '#{@namespaces[prefix]}'"
attr = element.attribute( name, @namespaces[prefix] )
#puts ":ATTRIBUTE: attr => #{attr}"
new_nodeset << attr if attr
end
end
when :any
for element in nodeset
if element.node_type == :element
attr = element.attributes
end
end
end
#puts "RETURNING #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :parent
return internal_parse( path_stack, nodeset.collect{|n| n.parent}.compact )
when :ancestor
#puts "ANCESTOR"
new_nodeset = []
for node in nodeset
while node.parent
node = node.parent
new_nodeset << node unless new_nodeset.include? node
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :ancestor_or_self
new_nodeset = []
for node in nodeset
if node.node_type == :element
new_nodeset << node
while ( node.parent )
node = node.parent
new_nodeset << node unless new_nodeset.includes? node
end
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :predicate
#puts "@"*80
#puts "NODESET = #{nodeset.collect{|n|n.to_s}.inspect}"
predicate = path_stack.shift
new_nodeset = []
Functions::size = nodeset.size
nodeset.size.times do |index|
node = nodeset[index]
Functions::node = node
Functions::index = index+1
#puts "Node #{node} and index=#{index+1}"
result = Predicate( predicate, node )
#puts "Predicate returned #{result} (#{result.type}) for #{node.type}"
if result.kind_of? Numeric
#puts "#{result} == #{index} => #{result == index}"
new_nodeset << node if result == (index+1)
elsif result.instance_of? Array
new_nodeset << node if result.size > 0
else
new_nodeset << node if result
end
end
#puts "Nodeset after predicate #{predicate.inspect} has #{new_nodeset.size} nodes"
#puts "NODESET: #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :descendant_or_self
rv = descendant_or_self( path_stack, nodeset )
path_stack.clear
return rv
when :descendant
#puts ":DESCENDANT"
results = []
nt = nil
for node in nodeset
nt = node.node_type
results += internal_parse( path_stack.clone.unshift( :descendant_or_self ),
node.children ) if nt == :element or nt == :document
end
return results
when :following_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
results += internal_parse( path_stack.clone, following_siblings )
end
return results
when :preceding_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
results += internal_parse( path_stack.clone, preceding_siblings )
end
return results
when :preceding
new_nodeset = []
for node in nodeset
new_nodeset += preceding( node )
end
return new_nodeset
when :following
new_nodeset = []
for node in nodeset
new_nodeset += following( node )
end
return new_nodeset
when :namespace
new_set = []
for node in nodeset
new_nodeset << node.namespace if node.node_type == :element or node.node_type == :attribute
end
return new_nodeset
when :variable
var_name = path_stack.shift
return @variables[ var_name ]
end
nodeset
end
##########################################################
# The next two methods are BAD MOJO!
# This is my achilles heel. If anybody thinks of a better
# way of doing this, be my guest. This really sucks, but
# it took me three days to get it to work at all.
# ########################################################
def descendant_or_self( path_stack, nodeset )
rs = []
d_o_s( path_stack, nodeset, rs )
#puts "RS = #{rs.collect{|n|n.to_s}.inspect}"
rs.flatten.compact
end
def d_o_s( p, ns, r )
#puts r.collect{|n|n.to_s}.inspect
#puts ns.collect{|n|n.to_s}.inspect
nt = nil
ns.each_index do |i|
n = ns[i]
x = match( p.clone, [ n ] )
#puts "Got a match on #{p.inspect} for #{ns.collect{|n|n.to_s+"("+n.type.to_s+")"}.inspect}"
nt = n.node_type
d_o_s( p, n.children, x ) if nt == :element or nt == :document
r[i,0] = [x] if x.size > 0
end
end
def recurse( nodeset, &block )
for node in nodeset
yield node
recurse( node, &block ) if node.node_type == :element
end
end
# Given a predicate, a node, and a context, evaluates to true or false.
def Predicate( predicate, node )
predicate = predicate.clone
#puts "#"*20
#puts "Predicate( #{predicate.inspect}, #{node.type} )"
results = []
case (predicate[0])
when :and, :or, :eq, :neq, :lt, :lteq, :gt, :gteq
eq = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
return equality_relational_compare( left, eq, right )
when :div, :mod, :mult, :plus, :minus, :union
op = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
left = Functions::number( left )
right = Functions::number( right )
case op
when :div
return left.to_f / right.to_f
when :mod
return left % right
when :mult
return left * right
when :plus
return left + right
when :minus
return left - right
when :union
return (left | right)
end
when :neg
predicate.shift
operand = Functions::number(Predicate( predicate, node ))
return -operand
when :not
predicate.shift
return !Predicate( predicate.shift, node )
when :function
predicate.shift
func_name = predicate.shift.tr('-', '_')
arguments = predicate.shift
#puts "\nFUNCTION: #{func_name}"
#puts "ARGUMENTS: #{arguments.inspect} #{node.to_s}"
args = arguments.collect { |arg| Predicate( arg, node ) }
#puts "FUNCTION: #{func_name}( #{args.collect{|n|n.to_s}.inspect} )"
result = Functions.send( func_name, *args )
#puts "RESULTS: #{result.inspect}"
return result
else
return match( predicate, [ node ] )
end
end
# Builds a nodeset of all of the following nodes of the supplied node,
# in document order
def following( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
following = []
recurse( following_siblings ) { |node| following << node }
following.shift
#puts "following is returning #{puta following}"
following
end
# Builds a nodeset of all of the preceding nodes of the supplied node,
# in reverse document order
def preceding( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
preceding_siblings.reverse!
preceding = []
recurse( preceding_siblings ) { |node| preceding << node }
preceding.reverse
end
def equality_relational_compare( set1, op, set2 )
#puts "EQ_REL_COMP: #{set1.to_s}, #{op}, #{set2.to_s}"
if set1.kind_of? Array and set2.kind_of? Array
if set1.size == 1 and set2.size == 1
set1 = set1[0]
set2 = set2[0]
else
set1.each do |i1|
i1 = i1.to_s
set2.each do |i2|
i2 = i2.to_s
return true if compare( i1, op, i2 )
end
end
return false
end
end
#puts "COMPARING VALUES"
# If one is nodeset and other is number, compare number to each item
# in nodeset s.t. number op number(string(item))
# If one is nodeset and other is string, compare string to each item
# in nodeset s.t. string op string(item)
# If one is nodeset and other is boolean, compare boolean to each item
# in nodeset s.t. boolean op boolean(item)
if set1.kind_of? Array or set2.kind_of? Array
#puts "ISA ARRAY"
if set1.kind_of? Array
a = set1
b = set2.to_s
else
a = set2
b = set1.to_s
end
case b
when 'true', 'false'
b = Functions::boolean( b )
for v in a
v = Functions::boolean(v)
return true if compare( v, op, b )
end
when /^\d+(\.\d+)?$/
b = Functions::number( b )
for v in a
v = Functions::number(v)
return true if compare( v, op, b )
end
else
b = Functions::string( b )
for v in a
v = Functions::string(v)
return true if compare( v, op, b )
end
end
else
# If neither is nodeset,
# If op is = or !=
# If either boolean, convert to boolean
# If either number, convert to number
# Else, convert to string
# Else
# Convert both to numbers and compare
s1 = set1.to_s
s2 = set2.to_s
#puts "EQ_REL_COMP: #{set1}=>#{s1}, #{set2}=>#{s2}"
if s1 == 'true' or s1 == 'false' or s2 == 'true' or s2 == 'false'
#puts "Functions::boolean(#{set1})=>#{Functions::boolean(set1)}"
#puts "Functions::boolean(#{set2})=>#{Functions::boolean(set2)}"
set1 = Functions::boolean( set1 )
set2 = Functions::boolean( set2 )
else
if op == :eq or op == :neq
if s1 =~ /^\d+(\.\d+)?$/ or s2 =~ /^\d+(\.\d+)?$/
set1 = Functions::number( s1 )
set2 = Functions::number( s2 )
else
set1 = Functions::string( set1 )
set2 = Functions::string( set2 )
end
else
set1 = Functions::number( set1 )
set2 = Functions::number( set2 )
end
end
#puts "EQ_REL_COMP: #{set1} #{op} #{set2}"
return compare( set1, op, set2 )
end
return false
end
def compare a, op, b
case op
when :eq
a == b
when :neq
a != b
when :lt
a < b
when :lteq
a <= b
when :gt
a > b
when :gteq
a >= b
when :and
a and b
when :or
a or b
else
false
end
end
end
end