1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/object.c
dave 8d32798543 RDoc Struct and random
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@5340 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2003-12-28 20:47:56 +00:00

2635 lines
61 KiB
C

/**********************************************************************
object.c -
$Author$
$Date$
created at: Thu Jul 15 12:01:24 JST 1993
Copyright (C) 1993-2003 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "st.h"
#include "util.h"
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <math.h>
VALUE rb_mKernel;
VALUE rb_cObject;
VALUE rb_cModule;
VALUE rb_cClass;
VALUE rb_cData;
VALUE rb_cNilClass;
VALUE rb_cTrueClass;
VALUE rb_cFalseClass;
VALUE rb_cSymbol;
static ID id_eq, id_eql, id_inspect, id_init_copy;
/*
* call-seq:
* obj === other => true or false
*
* Case Equality---For class <code>Object</code>, effectivelt the same
* as calling <code>#==</code>, but typically overridden by descendents
* to provide meaningful semantics in <code>case</code> statements.
*/
VALUE
rb_equal(obj1, obj2)
VALUE obj1, obj2;
{
VALUE result;
if (obj1 == obj2) return Qtrue;
result = rb_funcall(obj1, id_eq, 1, obj2);
if (RTEST(result)) return Qtrue;
return Qfalse;
}
int
rb_eql(obj1, obj2)
VALUE obj1, obj2;
{
return RTEST(rb_funcall(obj1, id_eql, 1, obj2));
}
/*
* call-seq:
* obj == other => true or false
* obj.equal?(other) => true or false
* obj.eql?(other) => true or false
*
* Equality---At the <code>Object</code> level, <code>==</code> returns
* <code>true</code> only if <i>obj</i> and <i>other</i> are the
* same object. Typically, this method is overridden in descendent
* classes to provide class-specific meaning.
*
* Unlike <code>==</code>, the <code>equal?</code> method should never be
* overridden by subclasses: it is used to determine object identity
* (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
* object as <code>b</code>).
*
* The <code>eql?</code> method returns <code>true</code> if
<i>obj</i> and <i>anObject</i> have the
* same value. Used by <code>Hash</code> to test members for equality.
* For objects of class <code>Object</code>, <code>eql?</code> is
* synonymous with <code>==</code>. Subclasses normally continue this
* tradition, but there are exceptions. <code>Numeric</code> types, for
* example, perform type conversion across <code>==</code>, but not
* across <code>eql?</code>, so:
*
* 1 == 1.0 #=> true
* 1.eql? 1.0 #=> false
*/
static VALUE
rb_obj_equal(obj1, obj2)
VALUE obj1, obj2;
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ => fixnum
* obj.object_id => fixnum
*
* Returns an integer identifier for <i>obj</i>. The same number will
* be returned on all calls to <code>id</code> for a given object, and
* no two active objects will share an id.
* <code>Object#object_id</code> is a different concept from the
* <code>:name</code> notation, which returns the symbol id of
* <code>name</code>. Replaces the deprecated <code>Object#id</code>.
*/
/*
* call-seq:
* obj.hash => fixnum
*
* Generates a <code>Fixnum</code> hash value for this object. This
* function must have the property that <code>a.eql?(b)</code> implies
* <code>a.hash == b.hash</code>. The hash value is used by class
* <code>Hash</code>. Any hash value that exceeds the capacity of a
* <code>Fixnum</code> will be truncated before being used.
*/
VALUE
rb_obj_id(obj)
VALUE obj;
{
if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((long)obj);
}
return (VALUE)((long)obj|FIXNUM_FLAG);
}
/*
* call-seq:
* obj.id => fixnum
*
* Soon-to-be deprecated version of <code>Object#object_id</code>.
*/
VALUE
rb_obj_id_obsolete(obj)
VALUE obj;
{
rb_warning("Object#id will be deprecated; use Object#object_id");
return rb_obj_id(obj);
}
VALUE
rb_class_real(cl)
VALUE cl;
{
while (FL_TEST(cl, FL_SINGLETON) || TYPE(cl) == T_ICLASS) {
cl = RCLASS(cl)->super;
}
return cl;
}
/*
* call-seq:
* obj.type => class
*
* Deprecated synonym for <code>Object#class</code>.
*/
VALUE
rb_obj_type(obj)
VALUE obj;
{
rb_warn("Object#type is deprecated; use Object#class");
return rb_class_real(CLASS_OF(obj));
}
/*
* call-seq:
* obj.class => class
*
* Returns the class of <i>obj</i>, now preferred over
* <code>Object#type</code>, as an object's type in Ruby is only
* loosely tied to that object's class. This method must always be
* called with an explicit receiver, as <code>class</code> is also a
* reserved word in Ruby.
*
* 1.class #=> Fixnum
* self.class #=> Object
*/
VALUE
rb_obj_class(obj)
VALUE obj;
{
return rb_class_real(CLASS_OF(obj));
}
static void
init_copy(dest, obj)
VALUE dest, obj;
{
if (OBJ_FROZEN(dest)) {
rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest));
}
RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR);
RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT);
if (FL_TEST(obj, FL_EXIVAR)) {
rb_copy_generic_ivar(dest, obj);
}
rb_gc_copy_finalizer(dest, obj);
switch (TYPE(obj)) {
case T_OBJECT:
case T_CLASS:
case T_MODULE:
if (ROBJECT(dest)->iv_tbl) {
st_free_table(ROBJECT(dest)->iv_tbl);
ROBJECT(dest)->iv_tbl = 0;
}
if (ROBJECT(obj)->iv_tbl) {
ROBJECT(dest)->iv_tbl = st_copy(ROBJECT(obj)->iv_tbl);
}
}
rb_funcall(dest, id_init_copy, 1, obj);
}
/*
* call-seq:
* obj.clone -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference. Copies
* the frozen and tainted state of <i>obj</i>. See also the discussion
* under <code>Object#dup</code>.
*
* class Klass
* attr_accessor :str
* end
* s1 = Klass.new #=> #<Klass:0x401b3a38>
* s1.str = "Hello" #=> "Hello"
* s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
* s2.str[1,4] = "i" #=> "i"
* s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
* s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
*/
VALUE
rb_obj_clone(obj)
VALUE obj;
{
VALUE clone;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
}
clone = rb_obj_alloc(rb_obj_class(obj));
RBASIC(clone)->klass = rb_singleton_class_clone(obj);
RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT)) & ~FL_FREEZE;
init_copy(clone, obj);
RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
return clone;
}
/*
* call-seq:
* obj.dup -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference.
* <code>dup</code> copies the tainted state of <i>obj</i>. See also
* the discussion under <code>Object#clone</code>. In general,
* <code>clone</code> and <code>dup</code> may have different semantics
* in descendent classes. While <code>clone</code> is used to duplicate
* an object, including its internal state, <code>dup</code> typically
* uses the class of the descendent object to create the new instance.
*/
VALUE
rb_obj_dup(obj)
VALUE obj;
{
VALUE dup;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
}
dup = rb_obj_alloc(rb_obj_class(obj));
init_copy(dup, obj);
return dup;
}
VALUE
rb_obj_init_copy(obj, orig)
VALUE obj, orig;
{
if (obj == orig) return obj;
rb_check_frozen(obj);
if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
rb_raise(rb_eTypeError, "initialize_copy should take same class object");
}
return obj;
}
/*
* call-seq:
* obj.to_a -> anArray
*
* Returns an array representation of <i>obj</i>. For objects of class
* <code>Object</code> and others that don't explicitly override the
* method, the return value is an array containing <code>self</code>.
* However, this latter behavior will soon be obsolete.
*
* self.to_a #=> -:1: warning: default `to_a' will be obsolete
* "hello".to_a #=> ["hello"]
* Time.new.to_a #=> [39, 54, 8, 9, 4, 2003, 3, 99, true, "CDT"]
*/
static VALUE
rb_any_to_a(obj)
VALUE obj;
{
rb_warn("default `to_a' will be obsolete");
return rb_ary_new3(1, obj);
}
/*
* call-seq:
* obj.to_s => string
*
* Returns a string representing <i>obj</i>. The default
* <code>to_s</code> prints the object's class and an encoding of the
* object id. As a special case, the top-level object that is the
* initial execution context of Ruby programs returns ``main.''
*/
VALUE
rb_any_to_s(obj)
VALUE obj;
{
char *cname = rb_obj_classname(obj);
VALUE str;
str = rb_str_new(0, strlen(cname)+6+16+1); /* 6:tags 16:addr 1:nul */
sprintf(RSTRING(str)->ptr, "#<%s:0x%lx>", cname, obj);
RSTRING(str)->len = strlen(RSTRING(str)->ptr);
if (OBJ_TAINTED(obj)) OBJ_TAINT(str);
return str;
}
VALUE
rb_inspect(obj)
VALUE obj;
{
return rb_obj_as_string(rb_funcall(obj, id_inspect, 0, 0));
}
static int
inspect_i(id, value, str)
ID id;
VALUE value;
VALUE str;
{
VALUE str2;
char *ivname;
/* need not to show internal data */
if (CLASS_OF(value) == 0) return ST_CONTINUE;
if (!rb_is_instance_id(id)) return ST_CONTINUE;
if (RSTRING(str)->ptr[0] == '-') { /* first element */
RSTRING(str)->ptr[0] = '#';
rb_str_cat2(str, " ");
}
else {
rb_str_cat2(str, ", ");
}
ivname = rb_id2name(id);
rb_str_cat2(str, ivname);
rb_str_cat2(str, "=");
str2 = rb_inspect(value);
rb_str_append(str, str2);
OBJ_INFECT(str, str2);
return ST_CONTINUE;
}
static VALUE
inspect_obj(obj, str)
VALUE obj, str;
{
st_foreach(ROBJECT(obj)->iv_tbl, inspect_i, str);
rb_str_cat2(str, ">");
RSTRING(str)->ptr[0] = '#';
OBJ_INFECT(str, obj);
return str;
}
/*
* call-seq:
* obj.inspect => string
*
* Returns a string containing a human-readable representation of
* <i>obj</i>. If not overridden, uses the <code>to_s</code> method to
* generate the string.
*
* [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
* Time.new.inspect #=> "Wed Apr 09 08:54:39 CDT 2003"
*/
static VALUE
rb_obj_inspect(obj)
VALUE obj;
{
if (TYPE(obj) == T_OBJECT
&& ROBJECT(obj)->iv_tbl
&& ROBJECT(obj)->iv_tbl->num_entries > 0) {
VALUE str;
char *c;
c = rb_obj_classname(obj);
if (rb_inspecting_p(obj)) {
str = rb_str_new(0, strlen(c)+10+16+1); /* 10:tags 16:addr 1:nul */
sprintf(RSTRING(str)->ptr, "#<%s:0x%lx ...>", c, obj);
RSTRING(str)->len = strlen(RSTRING(str)->ptr);
return str;
}
str = rb_str_new(0, strlen(c)+6+16+1); /* 6:tags 16:addr 1:nul */
sprintf(RSTRING(str)->ptr, "-<%s:0x%lx", c, obj);
RSTRING(str)->len = strlen(RSTRING(str)->ptr);
return rb_protect_inspect(inspect_obj, obj, str);
}
return rb_funcall(obj, rb_intern("to_s"), 0, 0);
}
/*
* call-seq:
* obj.instance_of?(class) => true or false
*
* Returns <code>true</code> if <i>obj</i> is an instance of the given
* class. See also <code>Object#kind_of?</code>.
*/
VALUE
rb_obj_is_instance_of(obj, c)
VALUE obj, c;
{
switch (TYPE(c)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
break;
default:
rb_raise(rb_eTypeError, "class or module required");
}
if (rb_obj_class(obj) == c) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* obj.is_a?(class) => true or false
* obj.kind_of?(class) => true or false
*
* Returns <code>true</code> if <i>class</i> is the class of
* <i>obj</i>, or if <i>class</i> is one of the superclasses of
* <i>obj</i> or modules included in <i>obj</i>.
*
* module M; end
* class A
* include M
* end
* class B < A; end
* class C < B; end
* b = B.new
* b.instance_of? A #=> false
* b.instance_of? B #=> true
* b.instance_of? C #=> false
* b.instance_of? M #=> false
* b.kind_of? A #=> true
* b.kind_of? B #=> true
* b.kind_of? C #=> false
* b.kind_of? M #=> true
*/
VALUE
rb_obj_is_kind_of(obj, c)
VALUE obj, c;
{
VALUE cl = CLASS_OF(obj);
switch (TYPE(c)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
break;
default:
rb_raise(rb_eTypeError, "class or module required");
}
while (cl) {
if (cl == c || RCLASS(cl)->m_tbl == RCLASS(c)->m_tbl)
return Qtrue;
cl = RCLASS(cl)->super;
}
return Qfalse;
}
/*
* Document-method: singleton-method-added
*
* call-seq:
* singleton_method_added(symbol)
*
* Invoked as a callback whenever a singleton method is added to the
* receiver.
*
* module Chatty
* def Chatty.singleton_method_added(id)
* puts "Adding #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* end
*
* <em>produces:</em>
*
* Adding singleton_method_added
* Adding one
* Adding three
*
*/
/*
* Document-method: singleton-method-removed
*
* call-seq:
* singleton_method_removed(symbol)
*
* Invoked as a callback whenever a singleton method is removed from
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_removed(id)
* puts "Removing #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* class <<self
* remove_method :three
* remove_method :one
* end
* end
*
* <em>produces:</em>
*
* Removing three
* Removing one
*/
/*
* Document-method: singleton-method-undefined
*
* call-seq:
* singleton_method_undefined(symbol)
*
* Invoked as a callback whenever a singleton method is undefined in
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_undefined(id)
* puts "Undefining #{id.id2name}"
* end
* def Chatty.one() end
* class << self
* undef_method(:one)
* end
* end
*
* <em>produces:</em>
*
* Undefining one
*/
static VALUE
rb_obj_dummy()
{
return Qnil;
}
/*
* call-seq:
* obj.tainted? => true or false
*
* Returns <code>true</code> if the object is tainted.
*/
VALUE
rb_obj_tainted(obj)
VALUE obj;
{
if (OBJ_TAINTED(obj))
return Qtrue;
return Qfalse;
}
/*
* call-seq:
* obj.taint -> obj
*
* Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
* set appropriately, many method calls which might alter the running
* programs environment will refuse to accept tainted strings.
*/
VALUE
rb_obj_taint(obj)
VALUE obj;
{
rb_secure(4);
if (!OBJ_TAINTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
OBJ_TAINT(obj);
}
return obj;
}
/*
* call-seq:
* obj.untaint => obj
*
* Removes the taint from <i>obj</i>.
*/
VALUE
rb_obj_untaint(obj)
VALUE obj;
{
rb_secure(3);
if (OBJ_TAINTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
FL_UNSET(obj, FL_TAINT);
}
return obj;
}
void
rb_obj_infect(obj1, obj2)
VALUE obj1, obj2;
{
OBJ_INFECT(obj1, obj2);
}
/*
* call-seq:
* obj.freeze => obj
*
* Prevents further modifications to <i>obj</i>. A
* <code>TypeError</code> will be raised if modification is attempted.
* There is no way to unfreeze a frozen object. See also
* <code>Object#frozen?</code>.
*
* a = [ "a", "b", "c" ]
* a.freeze
* a << "z"
*
* <em>produces:</em>
*
* prog.rb:3:in `<<': can't modify frozen array (TypeError)
* from prog.rb:3
*/
VALUE
rb_obj_freeze(obj)
VALUE obj;
{
if (!OBJ_FROZEN(obj)) {
if (rb_safe_level() >= 4 && !OBJ_TAINTED(obj)) {
rb_raise(rb_eSecurityError, "Insecure: can't freeze object");
}
OBJ_FREEZE(obj);
}
return obj;
}
/*
* call-seq:
* obj.frozen? => true or false
*
* Returns the freeze status of <i>obj</i>.
*
* a = [ "a", "b", "c" ]
* a.freeze #=> ["a", "b", "c"]
* a.frozen? #=> true
*/
static VALUE
rb_obj_frozen_p(obj)
VALUE obj;
{
if (OBJ_FROZEN(obj)) return Qtrue;
return Qfalse;
}
/*
* Document-class: NilClass
*
* The class of the singleton object <code>nil</code>.
*/
/*
* call-seq:
* nil.to_i => 0
*
* Always returns zero.
*
* nil.to_i #=> 0
*/
static VALUE
nil_to_i(obj)
VALUE obj;
{
return INT2FIX(0);
}
/*
* call-seq:
* nil.to_f => 0.0
*
* Always returns zero.
*
* nil.to_f #=> 0.0
*/
static VALUE
nil_to_f(obj)
VALUE obj;
{
return rb_float_new(0.0);
}
/*
* call-seq:
* nil.to_s => ""
*
* Always returns the empty string.
*
* nil.to_s #=> ""
*/
static VALUE
nil_to_s(obj)
VALUE obj;
{
return rb_str_new2("");
}
/*
* call-seq:
* nil.to_a => []
*
* Always returns an empty array.
*
* nil.to_a #=> []
*/
static VALUE
nil_to_a(obj)
VALUE obj;
{
return rb_ary_new2(0);
}
/*
* call-seq:
* nil.to_s => "nil"
*
* Always returns the string "nil".
*/
static VALUE
nil_inspect(obj)
VALUE obj;
{
return rb_str_new2("nil");
}
#ifdef NIL_PLUS
static VALUE
nil_plus(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_NIL:
case T_FIXNUM:
case T_FLOAT:
case T_BIGNUM:
case T_STRING:
case T_ARRAY:
return y;
default:
rb_raise(rb_eTypeError, "tried to add %s(%s) to nil",
RSTRING(rb_inspect(y))->ptr,
rb_obj_classname(y));
}
/* not reached */
}
#endif
static VALUE
main_to_s(obj)
VALUE obj;
{
return rb_str_new2("main");
}
/***********************************************************************
* Document-class: TrueClass
*
* The global value <code>true</code> is the only instance of class
* <code>TrueClass</code> and represents a logically true value in
* boolean expressions. The class provides operators allowing
* <code>true</code> to be used in logical expressions.
*/
/*
* call-seq:
* true.to_s => "true"
*
* The string representation of <code>true</code> is "true".
*/
static VALUE
true_to_s(obj)
VALUE obj;
{
return rb_str_new2("true");
}
/*
* call-seq:
* true & obj => true or false
*
* And---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
*/
static VALUE
true_and(obj, obj2)
VALUE obj, obj2;
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* true | obj => true
*
* Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
* a method call, it is always evaluated; there is no short-circuit
* evaluation in this case.
*
* true | puts("or")
* true || puts("logical or")
*
* <em>produces:</em>
*
* or
*/
static VALUE
true_or(obj, obj2)
VALUE obj, obj2;
{
return Qtrue;
}
/*
* call-seq:
* true ^ obj => !obj
*
* Exclusive Or---Returns <code>true</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>false</code>
* otherwise.
*/
static VALUE
true_xor(obj, obj2)
VALUE obj, obj2;
{
return RTEST(obj2)?Qfalse:Qtrue;
}
/*
* Document-class: FalseClass
*
* The global value <code>false</code> is the only instance of class
* <code>FalseClass</code> and represents a logically false value in
* boolean expressions. The class provides operators allowing
* <code>false</code> to participate correctly in logical expressions.
*
*/
/*
* call-seq:
* false.to_s => "false"
*
* 'nuf said...
*/
static VALUE
false_to_s(obj)
VALUE obj;
{
return rb_str_new2("false");
}
/*
* call-seq:
* false & obj => false
* nil & obj => false
*
* And---Returns <code>false</code>. <i>obj</i> is always
* evaluated as it is the argument to a method call---there is no
* short-circuit evaluation in this case.
*/
static VALUE
false_and(obj, obj2)
VALUE obj, obj2;
{
return Qfalse;
}
/*
* call-seq:
* false | obj => true or false
* nil | obj => true or false
*
* Or---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
*/
static VALUE
false_or(obj, obj2)
VALUE obj, obj2;
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* false ^ obj => true or false
* nil ^ obj => true or false
*
* Exclusive Or---If <i>obj</i> is <code>nil</code> or
* <code>false</code>, returns <code>false</code>; otherwise, returns
* <code>true</code>.
*
*/
static VALUE
false_xor(obj, obj2)
VALUE obj, obj2;
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call_seq:
* nil.nil? => true
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*/
static VALUE
rb_true(obj)
VALUE obj;
{
return Qtrue;
}
/*
* call_seq:
* nil.nil? => true
* <anything_else>.nil? => false
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*/
static VALUE
rb_false(obj)
VALUE obj;
{
return Qfalse;
}
/*
* call-seq:
* obj =~ other => false
*
* Pattern Match---Overridden by descendents (notably
* <code>Regexp</code> and <code>String</code>) to provide meaningful
* pattern-match semantics.
*/
static VALUE
rb_obj_pattern_match(obj)
VALUE obj;
{
return Qfalse;
}
/**********************************************************************
* Document-class: Symbol
*
* <code>Symbol</code> objects represent names and some strings
* inside the Ruby
* interpreter. They are generated using the <code>:name</code> and
* <code>:"string"</code> literals
* syntax, and by the various <code>to_sym</code> methods. The same
* <code>Symbol</code> object will be created for a given name or string
* for the duration of a program's execution, regardless of the context
* or meaning of that name. Thus if <code>Fred</code> is a constant in
* one context, a method in another, and a class in a third, the
* <code>Symbol</code> <code>:Fred</code> will be the same object in
* all three contexts.
*
* module One
* class Fred
* end
* $f1 = :Fred
* end
* module Two
* Fred = 1
* $f2 = :Fred
* end
* def Fred()
* end
* $f3 = :Fred
* $f1.id #=> 2514190
* $f2.id #=> 2514190
* $f3.id #=> 2514190
*
*/
/*
* call-seq:
* sym.to_i => fixnum
* sym.to_int => fixnum
*
* Returns an integer that is unique for each symbol within a
* particular execution of a program.
*
* :fred.to_i #=> 9809
* "fred".to_sym.to_i #=> 9809
*/
static VALUE
sym_to_i(sym)
VALUE sym;
{
ID id = SYM2ID(sym);
return LONG2FIX(id);
}
/*
* call-seq:
* sym.inspect => string
*
* Returns the representation of <i>sym</i> as a symbol literal.
*
* :fred.inspect #=> ":fred"
*/
static VALUE
sym_inspect(sym)
VALUE sym;
{
VALUE str;
char *name;
ID id = SYM2ID(sym);
name = rb_id2name(id);
str = rb_str_new(0, strlen(name)+1);
RSTRING(str)->ptr[0] = ':';
strcpy(RSTRING(str)->ptr+1, name);
if (rb_is_junk_id(id)) {
str = rb_str_dump(str);
strncpy(RSTRING(str)->ptr, ":\"", 2);
}
return str;
}
/*
* call-seq:
* sym.id2name => string
* sym.to_s => string
*
* Returns the name or string corresponding to <i>sym</i>.
*
* :fred.id2name #=> "fred"
*/
static VALUE
sym_to_s(sym)
VALUE sym;
{
return rb_str_new2(rb_id2name(SYM2ID(sym)));
}
/*
* call-seq:
* sym.to_sym => sym
*
* In general, <code>to_sym</code> returns the <code>Symbol</code> correspopnding
* to an object. As <i>sym</i> is already a symbol, <code>self</code> is returned
* in this case.
*/
static VALUE
sym_to_sym(sym)
VALUE sym;
{
return sym;
}
/***********************************************************************
*
* Document-class: Module
*
* A <code>Module</code> is a collection of methods and constants. The
* methods in a module may be instance methods or module methods.
* Instance methods appear as methods in a class when the module is
* included, module methods do not. Conversely, module methods may be
* called without creating an encapsulating object, while instance
* methods may not. (See <code>Module#module_function</code>)
*
* In the descriptions that follow, the parameter <i>syml</i> refers
* to a symbol, which is either a quoted string or a
* <code>Symbol</code> (such as <code>:name</code>).
*
* module Mod
* include Math
* CONST = 1
* def meth
* # ...
* end
* end
* Mod.class #=> Module
* Mod.constants #=> ["E", "PI", "CONST"]
* Mod.instance_methods #=> ["meth"]
*
*/
static VALUE
rb_mod_to_s(klass)
VALUE klass;
{
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_str_new2("#<");
VALUE v = rb_iv_get(klass, "__attached__");
rb_str_cat2(s, "Class:");
switch (TYPE(v)) {
case T_CLASS: case T_MODULE:
rb_str_append(s, rb_inspect(v));
break;
default:
rb_str_append(s, rb_any_to_s(v));
break;
}
rb_str_cat2(s, ">");
return s;
}
return rb_str_dup(rb_class_path(klass));
}
/*
* call-seq:
* mod === obj => true or false
*
* Case Equality---Returns <code>true</code> if <i>anObject</i> is an
* instance of <i>mod</i> or one of <i>mod</i>'s descendents. Of
* limited use for modules, but can be used in <code>case</code>
* statements to classify objects by class.
*/
static VALUE
rb_mod_eqq(mod, arg)
VALUE mod, arg;
{
return rb_obj_is_kind_of(arg, mod);
}
/*
* call-seq:
* mod <= other => true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i> or
* is the same as <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "A<B").
*
*/
static VALUE
rb_mod_le(mod, arg)
VALUE mod, arg;
{
VALUE start = mod;
if (mod == arg) return Qtrue;
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
while (mod) {
if (RCLASS(mod)->m_tbl == RCLASS(arg)->m_tbl)
return Qtrue;
mod = RCLASS(mod)->super;
}
/* not mod < arg; check if mod > arg */
while (arg) {
if (RCLASS(arg)->m_tbl == RCLASS(start)->m_tbl)
return Qfalse;
arg = RCLASS(arg)->super;
}
return Qnil;
}
/*
* call-seq:
* mod < other => true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "A<B").
*
*/
static VALUE
rb_mod_lt(mod, arg)
VALUE mod, arg;
{
if (mod == arg) return Qfalse;
return rb_mod_le(mod, arg);
}
/*
* call-seq:
* mod >= other => true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
* two modules are the same. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "B>A").
*
*/
static VALUE
rb_mod_ge(mod, arg)
VALUE mod, arg;
{
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_mod_le(arg, mod);
}
/*
* call-seq:
* mod > other => true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "B>A").
*
*/
static VALUE
rb_mod_gt(mod, arg)
VALUE mod, arg;
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
/*
* call-seq:
* mod <=> other_mod => -1, 0, +1, or nil
*
* Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
* <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
* included by <i>other_mod</i> or if <i>mod</i> has no relationship with
* <i>other_mod</i>. Returns <code>nil</code> if <i>other_mod</i> is
* not a module.
*/
static VALUE
rb_mod_cmp(mod, arg)
VALUE mod, arg;
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
return Qnil;
}
cmp = rb_mod_le(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
static VALUE rb_module_s_alloc _((VALUE));
static VALUE
rb_module_s_alloc(klass)
VALUE klass;
{
VALUE mod = rb_module_new();
RBASIC(mod)->klass = klass;
return mod;
}
static VALUE rb_class_s_alloc _((VALUE));
static VALUE
rb_class_s_alloc(klass)
VALUE klass;
{
return rb_class_boot(0);
}
/*
* call-seq:
* Module.new => mod
* Module.new {|mod| block } => mod
*
* Creates a new anonymous module. If a block is given, it is passed
* the module object, and the block is evaluated in the context of this
* module using <code>module_eval</code>.
*
* Fred = Module.new do
* def meth1
* "hello"
* end
* def meth2
* "bye"
* end
* end
* a = "my string"
* a.extend(Fred) #=> "my string"
* a.meth1 #=> "hello"
* a.meth2 #=> "bye"
*/
static VALUE
rb_mod_initialize(module)
VALUE module;
{
if (rb_block_given_p()) {
rb_mod_module_eval(0, 0, module);
}
return Qnil;
}
/*
* call-seq:
* Class.new(super_class=Object) => a_class
*
* Creates a new anonymous (unnamed) class with the given superclass
* (or <code>Object</code> if no parameter is given). You can give a
* class a name by assigning the class object to a constant.
*
*/
static VALUE
rb_class_initialize(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
VALUE super;
if (RCLASS(klass)->super != 0) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (rb_scan_args(argc, argv, "01", &super) == 0) {
super = rb_cObject;
}
else {
rb_check_inheritable(super);
}
RCLASS(klass)->super = super;
rb_make_metaclass(klass, RBASIC(super)->klass);
rb_mod_initialize(klass);
rb_class_inherited(super, klass);
return klass;
}
/*
* call-seq:
* class.allocate() => obj
*
* Allocates space for a new object of <i>class</i>'s class. The
* returned object must be an instance of <i>class</i>.
*
*/
VALUE
rb_obj_alloc(klass)
VALUE klass;
{
VALUE obj;
if (RCLASS(klass)->super == 0) {
rb_raise(rb_eTypeError, "can't instantiate uninitialized class");
}
if (FL_TEST(klass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't create instance of virtual class");
}
obj = rb_funcall(klass, ID_ALLOCATOR, 0, 0);
if (rb_obj_class(obj) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "wrong instance allocation");
}
return obj;
}
static VALUE rb_class_allocate_instance _((VALUE));
static VALUE
rb_class_allocate_instance(klass)
VALUE klass;
{
NEWOBJ(obj, struct RObject);
OBJSETUP(obj, klass, T_OBJECT);
return (VALUE)obj;
}
/*
* call-seq:
* class.new(args, ...) => obj
*
* Calls <code>allocate</code> to create a new object of
* <i>class</i>'s class, then invokes that object's
* <code>initialize</code> method, passing it <i>args</i>.
* This is the method that ends up getting called whenever
* an object is constructed using .new.
*
*/
VALUE
rb_class_new_instance(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
VALUE obj;
obj = rb_obj_alloc(klass);
rb_obj_call_init(obj, argc, argv);
return obj;
}
/*
* call-seq:
* class.superclass -> a_super_class or nil
*
* Returns the superclass of <i>class</i>, or <code>nil</code>.
*
* File.superclass #=> IO
* IO.superclass #=> Object
* Object.superclass #=> nil
*
*/
static VALUE
rb_class_superclass(klass)
VALUE klass;
{
VALUE super = RCLASS(klass)->super;
if (!super) {
rb_raise(rb_eTypeError, "uninitialized class");
}
while (TYPE(super) == T_ICLASS) {
super = RCLASS(super)->super;
}
if (!super) {
return Qnil;
}
return super;
}
static ID
str_to_id(str)
VALUE str;
{
if (!RSTRING(str)->ptr || RSTRING(str)->len == 0) {
rb_raise(rb_eArgError, "empty symbol string");
}
return rb_intern(RSTRING(str)->ptr);
}
ID
rb_to_id(name)
VALUE name;
{
VALUE tmp;
ID id;
switch (TYPE(name)) {
case T_STRING:
return str_to_id(name);
case T_FIXNUM:
rb_warn("do not use Fixnums as Symbols");
id = FIX2LONG(name);
if (!rb_id2name(id)) {
rb_raise(rb_eArgError, "%ld is not a symbol", id);
}
break;
case T_SYMBOL:
id = SYM2ID(name);
break;
default:
tmp = rb_check_string_type(name);
if (!NIL_P(tmp)) {
return str_to_id(tmp);
}
rb_raise(rb_eTypeError, "%s is not a symbol", RSTRING(rb_inspect(name))->ptr);
}
return id;
}
/*
* call-seq:
* attr(symbol, writable=false) => nil
*
* Defines a named attribute for this module, where the name is
* <i>symbol.</i><code>id2name</code>, creating an instance variable
* (<code>@name</code>) and a corresponding access method to read it.
* If the optional <i>writable</i> argument is <code>true</code>, also
* creates a method called <code>name=</code> to set the attribute.
*
* module Mod
* attr :size, true
* end
*
* <em>is equivalent to:</em>
*
* module Mod
* def size
* @size
* end
* def size=(val)
* @size = val
* end
* end
*/
static VALUE
rb_mod_attr(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
VALUE name, pub;
rb_scan_args(argc, argv, "11", &name, &pub);
rb_attr(klass, rb_to_id(name), 1, RTEST(pub), Qtrue);
return Qnil;
}
/*
* call-seq:
* attr_reader(symbol, ...) => nil
*
* Creates instance variables and corresponding methods that return the
* value of each instance variable. Equivalent to calling
* ``<code>attr</code><i>:name</i>'' on each name in turn.
*/
static VALUE
rb_mod_attr_reader(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), 1, 0, Qtrue);
}
return Qnil;
}
/*
* call-seq:
* attr_writer(symbol, ...) => nil
*
* Creates an accessor method to allow assignment to the attribute
* <i>aSymbol</i><code>.id2name</code>.
*/
static VALUE
rb_mod_attr_writer(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), 0, 1, Qtrue);
}
return Qnil;
}
/*
* call-seq:
* attr_accessor(symbol, ...) => nil
*
* Equivalent to calling ``<code>attr</code><i>symbol</i><code>,
* true</code>'' on each <i>symbol</i> in turn.
*
* module Mod
* attr_accessor(:one, :two)
* end
* Mod.instance_methods.sort #=> ["one", "one=", "two", "two="]
*/
static VALUE
rb_mod_attr_accessor(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), 1, 1, Qtrue);
}
return Qnil;
}
/*
* call-seq:
* mod.const_get(sym) => obj
*
* Returns the value of the named constant in <i>mod</i>.
*
* Math.const_get(:PI) #=> 3.14159265358979
*/
static VALUE
rb_mod_const_get(mod, name)
VALUE mod, name;
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
return rb_const_get(mod, id);
}
/*
* call-seq:
* mod.const_set(sym, obj) => obj
*
* Sets the named constant to the given object, returning that object.
* Creates a new constant if no constant with the given name previously
* existed.
*
* Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
* Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
*/
static VALUE
rb_mod_const_set(mod, name, value)
VALUE mod, name, value;
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
rb_const_set(mod, id, value);
return value;
}
/*
* call-seq:
* mod.const_defined?(sym) => true or false
*
* Returns <code>true</code> if a constant with the given name is
* defined by <i>mod</i>.
*
* Math.const_defined? "PI" #=> true
*/
static VALUE
rb_mod_const_defined(mod, name)
VALUE mod, name;
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
return rb_const_defined_at(mod, id);
}
/*
* call-seq:
* obj.methods => array
*
* Returns a list of the names of methods publicly accessible in
* <i>obj</i>. This will include all the methods accessible in
* <i>obj</i>'s ancestors.
*
* class Klass
* def kMethod()
* end
* end
* k = Klass.new
* k.methods[0..9] #=> ["kMethod", "freeze", "nil?", "is_a?",
* "class", "instance_variable_set",
* "methods", "extend", "__send__", "instance_eval"]
* k.methods.length #=> 42
*/
static VALUE
rb_obj_methods(argc, argv, obj)
int argc;
VALUE *argv;
VALUE obj;
{
retry:
if (argc == 0) {
VALUE args[1];
args[0] = Qtrue;
return rb_class_instance_methods(1, args, CLASS_OF(obj));
}
else {
VALUE recur;
rb_scan_args(argc, argv, "1", &recur);
if (RTEST(recur)) {
argc = 0;
goto retry;
}
return rb_obj_singleton_methods(argc, argv, obj);
}
}
/*
* call-seq:
* obj.protected_methods(all=true) => array
*
* Returns the list of protected methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_protected_methods(argc, argv, obj)
int argc;
VALUE *argv;
VALUE obj;
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_protected_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_protected_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.private_methods(all=true) => array
*
* Returns the list of private methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_private_methods(argc, argv, obj)
int argc;
VALUE *argv;
VALUE obj;
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_private_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_private_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.public_methods(all=true) => array
*
* Returns the list of public methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_public_methods(argc, argv, obj)
int argc;
VALUE *argv;
VALUE obj;
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_public_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_public_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.instance_variable_get(symbol) => obj
*
* Returns the value of the given instance variable (or throws a
* <code>NameError</code> exception). The <code>@</code> part of the
* variable name should be included for regular instance variables
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_get(:@a) #=> "cat"
* fred.instance_variable_get("@b") #=> 99
*/
static VALUE
rb_obj_ivar_get(obj, iv)
VALUE obj, iv;
{
ID id = rb_to_id(iv);
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
}
return rb_ivar_get(obj, id);
}
/*
* call-seq:
* obj.instance_variable_set(symbol, obj) => obj
*
* Sets the instance variable names by <i>symbol</i> to
* <i>object</i>, thereby frustrating the efforts of the class's
* author to attempt to provide proper encapsulation.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_set(:@a, 'dog') #=> "dog"
* fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99>"
*/
static VALUE
rb_obj_ivar_set(obj, iv, val)
VALUE obj, iv, val;
{
ID id = rb_to_id(iv);
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
}
return rb_ivar_set(obj, id, val);
}
static VALUE
convert_type(val, tname, method, raise)
VALUE val;
const char *tname, *method;
int raise;
{
ID m;
m = rb_intern(method);
if (!rb_respond_to(val, m)) {
if (raise) {
rb_raise(rb_eTypeError, "cannot convert %s into %s",
NIL_P(val) ? "nil" :
val == Qtrue ? "true" :
val == Qfalse ? "false" :
rb_obj_classname(val),
tname);
}
else {
return Qnil;
}
}
return rb_funcall(val, m, 0);
}
VALUE
rb_convert_type(val, type, tname, method)
VALUE val;
int type;
const char *tname, *method;
{
VALUE v;
if (TYPE(val) == type) return val;
v = convert_type(val, tname, method, Qtrue);
if (TYPE(v) != type) {
rb_raise(rb_eTypeError, "%s#%s should return %s",
rb_obj_classname(val), method, tname);
}
return v;
}
VALUE
rb_check_convert_type(val, type, tname, method)
VALUE val;
int type;
const char *tname, *method;
{
VALUE v;
/* always convert T_DATA */
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type(val, tname, method, Qfalse);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {
rb_raise(rb_eTypeError, "%s#%s should return %s",
rb_obj_classname(val), method, tname);
}
return v;
}
static VALUE
rb_to_integer(val, method)
VALUE val;
char *method;
{
VALUE v = convert_type(val, "Integer", method, Qtrue);
if (!rb_obj_is_kind_of(v, rb_cInteger)) {
rb_raise(rb_eTypeError, "%s#%s should return Integer",
rb_obj_classname(val), method);
}
return v;
}
VALUE
rb_to_int(val)
VALUE val;
{
return rb_to_integer(val, "to_int");
}
VALUE
rb_Integer(val)
VALUE val;
{
switch (TYPE(val)) {
case T_FLOAT:
if (RFLOAT(val)->value <= (double)FIXNUM_MAX
&& RFLOAT(val)->value >= (double)FIXNUM_MIN) {
break;
}
return rb_dbl2big(RFLOAT(val)->value);
case T_FIXNUM:
case T_BIGNUM:
return val;
case T_STRING:
return rb_str_to_inum(val, 0, Qtrue);
default:
break;
}
if (rb_respond_to(val, rb_intern("to_int"))) {
return rb_to_integer(val, "to_int");
}
return rb_to_integer(val, "to_i");
}
/*
* call-seq:
* Integer(arg) => integer
*
* Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
* Numeric types are converted directly (with floating point numbers
* being truncated). If <i>arg</i> is a <code>String</code>, leading
* radix indicators (<code>0</code>, <code>0b</code>, and
* <code>0x</code>) are honored. Others are converted using
* <code>to_int</code> and <code>to_i</code>. This behavior is
* different from that of <code>String#to_i</code>.
*
* Integer(123.999) #=> 123
* Integer("0x1a") #=> 26
* Integer(Time.new) #=> 1049896590
*/
static VALUE
rb_f_integer(obj, arg)
VALUE obj, arg;
{
return rb_Integer(arg);
}
double
rb_cstr_to_dbl(p, badcheck)
const char *p;
int badcheck;
{
const char *q;
char *end;
double d;
if (!p) return 0.0;
q = p;
if (badcheck) {
while (ISSPACE(*p)) p++;
}
else {
while (ISSPACE(*p) || *p == '_') p++;
}
d = strtod(p, &end);
if (errno == ERANGE) {
rb_warn("Float %*s out of range", end-p, p);
errno = 0;
}
if (p == end) {
if (badcheck) {
bad:
rb_invalid_str(q, "Float()");
}
return d;
}
if (*end) {
char *buf = ALLOCA_N(char, strlen(p)+1);
char *n = buf;
while (p < end) *n++ = *p++;
while (*p) {
if (*p == '_') {
/* remove underscores between digits */
if (badcheck) {
if (n == buf || !ISDIGIT(n[-1])) goto bad;
++p;
if (!ISDIGIT(*p)) goto bad;
}
else {
while (*++p == '_');
continue;
}
}
*n++ = *p++;
}
*n = '\0';
p = buf;
d = strtod(p, &end);
if (errno == ERANGE) {
rb_warn("Float %*s out of range", end-p, p);
errno = 0;
}
if (badcheck) {
if (p == end) goto bad;
while (*end && ISSPACE(*end)) end++;
if (*end) goto bad;
}
}
if (errno == ERANGE) {
errno = 0;
rb_raise(rb_eArgError, "Float %s out of range", q);
}
return d;
}
double
rb_str_to_dbl(str, badcheck)
VALUE str;
int badcheck;
{
char *s;
long len;
StringValue(str);
s = RSTRING(str)->ptr;
len = RSTRING(str)->len;
if (s) {
if (s[len]) { /* no sentinel somehow */
char *p = ALLOCA_N(char, len+1);
MEMCPY(p, s, char, len);
p[len] = '\0';
s = p;
}
if (badcheck && len != strlen(s)) {
rb_raise(rb_eArgError, "string for Float contains null byte");
}
}
return rb_cstr_to_dbl(s, badcheck);
}
VALUE
rb_Float(val)
VALUE val;
{
switch (TYPE(val)) {
case T_FIXNUM:
return rb_float_new((double)FIX2LONG(val));
case T_FLOAT:
return val;
case T_BIGNUM:
return rb_float_new(rb_big2dbl(val));
case T_STRING:
return rb_float_new(rb_str_to_dbl(val, Qtrue));
case T_NIL:
rb_raise(rb_eTypeError, "cannot convert nil into Float");
break;
default:
{
VALUE f = rb_convert_type(val, T_FLOAT, "Float", "to_f");
if (isnan(RFLOAT(f)->value)) {
rb_raise(rb_eArgError, "invalid value for Float()");
}
return f;
}
}
}
/*
* call-seq:
* Float(arg) => float
*
* Returns <i>arg</i> converted to a float. Numeric types are converted
* directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
* 1.8, converting <code>nil</code> generates a <code>TypeError</code>.
*
* Float(1) #=> 1.0
* Float("123.456") #=> 123.456
*/
static VALUE
rb_f_float(obj, arg)
VALUE obj, arg;
{
return rb_Float(arg);
}
double
rb_num2dbl(val)
VALUE val;
{
switch (TYPE(val)) {
case T_FLOAT:
return RFLOAT(val)->value;
case T_STRING:
rb_raise(rb_eTypeError, "no implicit conversion to float from string");
break;
case T_NIL:
rb_raise(rb_eTypeError, "no implicit conversion to float from nil");
break;
default:
break;
}
return RFLOAT(rb_Float(val))->value;
}
char*
rb_str2cstr(str, len)
VALUE str;
long *len;
{
StringValue(str);
if (len) *len = RSTRING(str)->len;
else if (RTEST(ruby_verbose) && RSTRING(str)->len != strlen(RSTRING(str)->ptr)) {
rb_warn("string contains \\0 character");
}
return RSTRING(str)->ptr;
}
VALUE
rb_String(val)
VALUE val;
{
return rb_convert_type(val, T_STRING, "String", "to_s");
}
/*
* call-seq:
* String(arg) => string
*
* Converts <i>arg</i> to a <code>String</code> by calling its
* <code>to_s</code> method.
*
* String(self) #=> "main"
* String(self.class #=> "Object"
* String(123456) #=> "123456"
*/
static VALUE
rb_f_string(obj, arg)
VALUE obj, arg;
{
return rb_String(arg);
}
#if 0
VALUE
rb_Array(val)
VALUE val;
{
VALUE tmp = rb_check_array_type(val);
ID to_a;
if (NIL_P(tmp)) {
to_a = rb_intern("to_a");
if (rb_respond_to(val, to_a)) {
val = rb_funcall(val, to_a, 0);
if (TYPE(val) != T_ARRAY) {
rb_raise(rb_eTypeError, "`to_a' did not return Array");
}
return val;
}
else {
return rb_ary_new3(1, val);
}
}
return tmp;
}
#endif
/*
* call-seq:
* Array(arg) => array
*
* Returns <i>arg</i> as an <code>Array</code>. First tries to call
* <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
* If both fail, creates a single element array containing <i>arg</i>
* (unless <i>arg</i> is <code>nil</code>).
*
* Array(1..5) #=> [1, 2, 3, 4, 5]
*/
static VALUE
rb_f_array(obj, arg)
VALUE obj, arg;
{
return rb_Array(arg);
}
static VALUE
boot_defclass(name, super)
char *name;
VALUE super;
{
extern st_table *rb_class_tbl;
VALUE obj = rb_class_boot(super);
ID id = rb_intern(name);
rb_name_class(obj, id);
st_add_direct(rb_class_tbl, id, obj);
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
return obj;
}
VALUE ruby_top_self;
/*
* Document-class: Class
*
* Classes in Ruby are first-class objects---each is an instance of
* class <code>Class</code>.
*
* When a new class is created (typically using <code>class Name ...
* end</code>), an object of type <code>Class</code> is created and
* assigned to a global constant (<code>Name</code> in this case). When
* <code>Name.new</code> is called to create a new object, the
* <code>new</code> method in <code>Class</code> is run by default.
* This can be demonstrated by overriding <code>new</code> in
* <code>Class</code>:
*
* class Class
* alias oldNew new
* def new(*args)
* print "Creating a new ", self.name, "\n"
* oldNew(*args)
* end
* end
*
*
* class Name
* end
*
*
* n = Name.new
*
* <em>produces:</em>
*
* Creating a new Name
*
* Classes, modules, and objects are interrelated. In the diagram
* that follows, the arrows represent inheritance, and the
* parentheses meta-classes. All metaclasses are instances
* of the class `Class'.
*
* +------------------+
* | |
* Object---->(Object) |
* ^ ^ ^ ^ |
* | | | | |
* | | +-----+ +---------+ |
* | | | | |
* | +-----------+ | |
* | | | | |
* +------+ | Module--->(Module) |
* | | ^ ^ |
* OtherClass-->(OtherClass) | | |
* | | |
* Class---->(Class) |
* ^ |
* | |
* +----------------+
*
*
*/
/*
* <code>Object</code> is the parent class of all classes in Ruby. Its
* methods are therefore available to all objects unless explicitly
* overridden.
*
* <code>Object</code> mixes in the <code>Kernel</code> module, making
* the built-in kernel functions globally accessible. Although the
* instance methods of <code>Object</code> are defined by the
* <code>Kernel</code> module, we have chosen to document them here for
* clarity.
*
* In the descriptions of Object's methods, the parameter <i>symbol</i> refers
* to a symbol, which is either a quoted string or a
* <code>Symbol</code> (such as <code>:name</code>).
*/
void
Init_Object()
{
VALUE metaclass;
rb_cObject = boot_defclass("Object", 0);
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);
metaclass = rb_make_metaclass(rb_cObject, rb_cClass);
metaclass = rb_make_metaclass(rb_cModule, metaclass);
metaclass = rb_make_metaclass(rb_cClass, metaclass);
rb_mKernel = rb_define_module("Kernel");
rb_include_module(rb_cObject, rb_mKernel);
rb_define_alloc_func(rb_cObject, rb_class_allocate_instance);
rb_define_private_method(rb_cObject, "initialize", rb_obj_dummy, 0);
rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1);
rb_define_method(rb_mKernel, "nil?", rb_false, 0);
rb_define_method(rb_mKernel, "==", rb_obj_equal, 1);
rb_define_method(rb_mKernel, "equal?", rb_obj_equal, 1);
rb_define_method(rb_mKernel, "===", rb_equal, 1);
rb_define_method(rb_mKernel, "=~", rb_obj_pattern_match, 1);
rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1);
rb_define_method(rb_mKernel, "hash", rb_obj_id, 0);
rb_define_method(rb_mKernel, "id", rb_obj_id_obsolete, 0);
rb_define_method(rb_mKernel, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_method(rb_mKernel, "type", rb_obj_type, 0);
rb_define_method(rb_mKernel, "class", rb_obj_class, 0);
rb_define_method(rb_mKernel, "clone", rb_obj_clone, 0);
rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0);
rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1);
rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0);
rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0);
rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0);
rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0);
rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0);
rb_define_method(rb_mKernel, "to_a", rb_any_to_a, 0); /* to be removed */
rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0);
rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0);
rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1);
rb_define_method(rb_mKernel, "singleton_methods",
rb_obj_singleton_methods, -1); // in class.c
rb_define_method(rb_mKernel, "protected_methods",
rb_obj_protected_methods, -1);
rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1);
rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1);
rb_define_method(rb_mKernel, "instance_variables",
rb_obj_instance_variables, 0); // in variable.c
rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1);
rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2);
rb_define_private_method(rb_mKernel, "remove_instance_variable",
rb_obj_remove_instance_variable, 1); // in variable.c
rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1);
rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1);
rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1);
rb_define_private_method(rb_mKernel, "singleton_method_added", rb_obj_dummy, 1);
rb_define_private_method(rb_mKernel, "singleton_method_removed", rb_obj_dummy, 1);
rb_define_private_method(rb_mKernel, "singleton_method_undefined", rb_obj_dummy, 1);
rb_define_global_function("sprintf", rb_f_sprintf, -1); // in sprintf.c
rb_define_global_function("format", rb_f_sprintf, -1); // in sprintf.c
rb_define_global_function("Integer", rb_f_integer, 1);
rb_define_global_function("Float", rb_f_float, 1);
rb_define_global_function("String", rb_f_string, 1);
rb_define_global_function("Array", rb_f_array, 1);
rb_cNilClass = rb_define_class("NilClass", rb_cObject);
rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0);
rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0);
rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0);
rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0);
rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0);
rb_define_method(rb_cNilClass, "&", false_and, 1);
rb_define_method(rb_cNilClass, "|", false_or, 1);
rb_define_method(rb_cNilClass, "^", false_xor, 1);
rb_define_method(rb_cNilClass, "nil?", rb_true, 0);
rb_undef_alloc_func(rb_cNilClass);
rb_undef_method(CLASS_OF(rb_cNilClass), "new");
rb_define_global_const("NIL", Qnil);
rb_cSymbol = rb_define_class("Symbol", rb_cObject);
rb_define_singleton_method(rb_cSymbol, "all_symbols",
rb_sym_all_symbols, 0); // in parse.y
rb_undef_alloc_func(rb_cSymbol);
rb_undef_method(CLASS_OF(rb_cSymbol), "new");
rb_define_method(rb_cSymbol, "to_i", sym_to_i, 0);
rb_define_method(rb_cSymbol, "to_int", sym_to_i, 0);
rb_define_method(rb_cSymbol, "inspect", sym_inspect, 0);
rb_define_method(rb_cSymbol, "to_s", sym_to_s, 0);
rb_define_method(rb_cSymbol, "id2name", sym_to_s, 0);
rb_define_method(rb_cSymbol, "to_sym", sym_to_sym, 0);
rb_define_method(rb_cModule, "===", rb_mod_eqq, 1);
rb_define_method(rb_cModule, "==", rb_obj_equal, 1);
rb_define_method(rb_cModule, "<=>", rb_mod_cmp, 1);
rb_define_method(rb_cModule, "<", rb_mod_lt, 1);
rb_define_method(rb_cModule, "<=", rb_mod_le, 1);
rb_define_method(rb_cModule, ">", rb_mod_gt, 1);
rb_define_method(rb_cModule, ">=", rb_mod_ge, 1);
rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1);
rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0);
rb_define_method(rb_cModule, "included_modules",
rb_mod_included_modules, 0); // in class.c
rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); // in class.c
rb_define_method(rb_cModule, "name", rb_mod_name, 0); // in variable.c
rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); // in class.c
rb_define_private_method(rb_cModule, "attr", rb_mod_attr, -1);
rb_define_private_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1);
rb_define_private_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1);
rb_define_private_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1);
rb_define_alloc_func(rb_cModule, rb_module_s_alloc);
rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0);
rb_define_method(rb_cModule, "instance_methods",
rb_class_instance_methods, -1); // in class.c
rb_define_method(rb_cModule, "public_instance_methods",
rb_class_public_instance_methods, -1); // in class.c
rb_define_method(rb_cModule, "protected_instance_methods",
rb_class_protected_instance_methods, -1); // in class.c
rb_define_method(rb_cModule, "private_instance_methods",
rb_class_private_instance_methods, -1); // in class.c
rb_define_method(rb_cModule, "constants", rb_mod_constants, 0); // in variable.c
rb_define_method(rb_cModule, "const_get", rb_mod_const_get, 1);
rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2);
rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, 1);
rb_define_private_method(rb_cModule, "remove_const",
rb_mod_remove_const, 1); // in variable.c
rb_define_method(rb_cModule, "const_missing",
rb_mod_const_missing, 1); // in variable.c
rb_define_method(rb_cModule, "class_variables",
rb_mod_class_variables, 0); // in variable.c
rb_define_private_method(rb_cModule, "remove_class_variable",
rb_mod_remove_cvar, 1); // in variable.c
rb_define_method(rb_cClass, "allocate", rb_obj_alloc, 0);
rb_define_method(rb_cClass, "new", rb_class_new_instance, -1);
rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1);
rb_define_method(rb_cClass, "initialize_copy", rb_class_init_copy, 1);
rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0);
rb_define_alloc_func(rb_cClass, rb_class_s_alloc);
rb_undef_method(rb_cClass, "extend_object");
rb_undef_method(rb_cClass, "append_features");
rb_cData = rb_define_class("Data", rb_cObject);
rb_undef_alloc_func(rb_cData);
ruby_top_self = rb_obj_alloc(rb_cObject);
rb_global_variable(&ruby_top_self);
rb_define_singleton_method(ruby_top_self, "to_s", main_to_s, 0);
rb_cTrueClass = rb_define_class("TrueClass", rb_cObject);
rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0);
rb_define_method(rb_cTrueClass, "&", true_and, 1);
rb_define_method(rb_cTrueClass, "|", true_or, 1);
rb_define_method(rb_cTrueClass, "^", true_xor, 1);
rb_undef_alloc_func(rb_cTrueClass);
rb_undef_method(CLASS_OF(rb_cTrueClass), "new");
rb_define_global_const("TRUE", Qtrue);
rb_cFalseClass = rb_define_class("FalseClass", rb_cObject);
rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0);
rb_define_method(rb_cFalseClass, "&", false_and, 1);
rb_define_method(rb_cFalseClass, "|", false_or, 1);
rb_define_method(rb_cFalseClass, "^", false_xor, 1);
rb_undef_alloc_func(rb_cFalseClass);
rb_undef_method(CLASS_OF(rb_cFalseClass), "new");
rb_define_global_const("FALSE", Qfalse);
id_eq = rb_intern("==");
id_eql = rb_intern("eql?");
id_inspect = rb_intern("inspect");
id_init_copy = rb_intern("initialize_copy");
}