mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	out of scope. Coverity Scan found this bug. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@43120 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1394 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1394 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**********************************************************************
 | 
						|
 | 
						|
  random.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
  created at: Fri Dec 24 16:39:21 JST 1993
 | 
						|
 | 
						|
  Copyright (C) 1993-2007 Yukihiro Matsumoto
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
This is based on trimmed version of MT19937.  To get the original version,
 | 
						|
contact <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>.
 | 
						|
 | 
						|
The original copyright notice follows.
 | 
						|
 | 
						|
   A C-program for MT19937, with initialization improved 2002/2/10.
 | 
						|
   Coded by Takuji Nishimura and Makoto Matsumoto.
 | 
						|
   This is a faster version by taking Shawn Cokus's optimization,
 | 
						|
   Matthe Bellew's simplification, Isaku Wada's real version.
 | 
						|
 | 
						|
   Before using, initialize the state by using init_genrand(mt, seed)
 | 
						|
   or init_by_array(mt, init_key, key_length).
 | 
						|
 | 
						|
   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | 
						|
   All rights reserved.
 | 
						|
 | 
						|
   Redistribution and use in source and binary forms, with or without
 | 
						|
   modification, are permitted provided that the following conditions
 | 
						|
   are met:
 | 
						|
 | 
						|
     1. Redistributions of source code must retain the above copyright
 | 
						|
        notice, this list of conditions and the following disclaimer.
 | 
						|
 | 
						|
     2. Redistributions in binary form must reproduce the above copyright
 | 
						|
        notice, this list of conditions and the following disclaimer in the
 | 
						|
        documentation and/or other materials provided with the distribution.
 | 
						|
 | 
						|
     3. The names of its contributors may not be used to endorse or promote
 | 
						|
        products derived from this software without specific prior written
 | 
						|
        permission.
 | 
						|
 | 
						|
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | 
						|
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | 
						|
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | 
						|
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
 | 
						|
   Any feedback is very welcome.
 | 
						|
   http://www.math.keio.ac.jp/matumoto/emt.html
 | 
						|
   email: matumoto@math.keio.ac.jp
 | 
						|
*/
 | 
						|
 | 
						|
#include "ruby/ruby.h"
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#ifdef HAVE_UNISTD_H
 | 
						|
#include <unistd.h>
 | 
						|
#endif
 | 
						|
#include <time.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#ifdef HAVE_FCNTL_H
 | 
						|
#include <fcntl.h>
 | 
						|
#endif
 | 
						|
#include <math.h>
 | 
						|
#include <errno.h>
 | 
						|
#if defined(HAVE_SYS_TIME_H)
 | 
						|
#include <sys/time.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
# if !defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0400
 | 
						|
#  undef _WIN32_WINNT
 | 
						|
#  define _WIN32_WINNT 0x400
 | 
						|
#  undef __WINCRYPT_H__
 | 
						|
# endif
 | 
						|
#include <wincrypt.h>
 | 
						|
#endif
 | 
						|
 | 
						|
typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1];
 | 
						|
 | 
						|
/* Period parameters */
 | 
						|
#define N 624
 | 
						|
#define M 397
 | 
						|
#define MATRIX_A 0x9908b0dfU	/* constant vector a */
 | 
						|
#define UMASK 0x80000000U	/* most significant w-r bits */
 | 
						|
#define LMASK 0x7fffffffU	/* least significant r bits */
 | 
						|
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
 | 
						|
#define TWIST(u,v) ((MIXBITS((u),(v)) >> 1) ^ ((v)&1U ? MATRIX_A : 0U))
 | 
						|
 | 
						|
enum {MT_MAX_STATE = N};
 | 
						|
 | 
						|
struct MT {
 | 
						|
    /* assume int is enough to store 32bits */
 | 
						|
    unsigned int state[N]; /* the array for the state vector  */
 | 
						|
    unsigned int *next;
 | 
						|
    int left;
 | 
						|
};
 | 
						|
 | 
						|
#define genrand_initialized(mt) ((mt)->next != 0)
 | 
						|
#define uninit_genrand(mt) ((mt)->next = 0)
 | 
						|
 | 
						|
/* initializes state[N] with a seed */
 | 
						|
static void
 | 
						|
init_genrand(struct MT *mt, unsigned int s)
 | 
						|
{
 | 
						|
    int j;
 | 
						|
    mt->state[0] = s & 0xffffffffU;
 | 
						|
    for (j=1; j<N; j++) {
 | 
						|
        mt->state[j] = (1812433253U * (mt->state[j-1] ^ (mt->state[j-1] >> 30)) + j);
 | 
						|
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | 
						|
        /* In the previous versions, MSBs of the seed affect   */
 | 
						|
        /* only MSBs of the array state[].                     */
 | 
						|
        /* 2002/01/09 modified by Makoto Matsumoto             */
 | 
						|
        mt->state[j] &= 0xffffffff;  /* for >32 bit machines */
 | 
						|
    }
 | 
						|
    mt->left = 1;
 | 
						|
    mt->next = mt->state + N;
 | 
						|
}
 | 
						|
 | 
						|
/* initialize by an array with array-length */
 | 
						|
/* init_key is the array for initializing keys */
 | 
						|
/* key_length is its length */
 | 
						|
/* slight change for C++, 2004/2/26 */
 | 
						|
static void
 | 
						|
init_by_array(struct MT *mt, unsigned int init_key[], int key_length)
 | 
						|
{
 | 
						|
    int i, j, k;
 | 
						|
    init_genrand(mt, 19650218U);
 | 
						|
    i=1; j=0;
 | 
						|
    k = (N>key_length ? N : key_length);
 | 
						|
    for (; k; k--) {
 | 
						|
        mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1664525U))
 | 
						|
          + init_key[j] + j; /* non linear */
 | 
						|
        mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | 
						|
        i++; j++;
 | 
						|
        if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | 
						|
        if (j>=key_length) j=0;
 | 
						|
    }
 | 
						|
    for (k=N-1; k; k--) {
 | 
						|
        mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1566083941U))
 | 
						|
          - i; /* non linear */
 | 
						|
        mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | 
						|
        i++;
 | 
						|
        if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | 
						|
    }
 | 
						|
 | 
						|
    mt->state[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
next_state(struct MT *mt)
 | 
						|
{
 | 
						|
    unsigned int *p = mt->state;
 | 
						|
    int j;
 | 
						|
 | 
						|
    mt->left = N;
 | 
						|
    mt->next = mt->state;
 | 
						|
 | 
						|
    for (j=N-M+1; --j; p++)
 | 
						|
        *p = p[M] ^ TWIST(p[0], p[1]);
 | 
						|
 | 
						|
    for (j=M; --j; p++)
 | 
						|
        *p = p[M-N] ^ TWIST(p[0], p[1]);
 | 
						|
 | 
						|
    *p = p[M-N] ^ TWIST(p[0], mt->state[0]);
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,0xffffffff]-interval */
 | 
						|
static unsigned int
 | 
						|
genrand_int32(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned int y;
 | 
						|
 | 
						|
    if (--mt->left <= 0) next_state(mt);
 | 
						|
    y = *mt->next++;
 | 
						|
 | 
						|
    /* Tempering */
 | 
						|
    y ^= (y >> 11);
 | 
						|
    y ^= (y << 7) & 0x9d2c5680;
 | 
						|
    y ^= (y << 15) & 0xefc60000;
 | 
						|
    y ^= (y >> 18);
 | 
						|
 | 
						|
    return y;
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,1) with 53-bit resolution*/
 | 
						|
static double
 | 
						|
genrand_real(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned int a = genrand_int32(mt)>>5, b = genrand_int32(mt)>>6;
 | 
						|
    return(a*67108864.0+b)*(1.0/9007199254740992.0);
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,1] with 53-bit resolution*/
 | 
						|
static double int_pair_to_real_inclusive(uint32_t a, uint32_t b);
 | 
						|
static double
 | 
						|
genrand_real2(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    uint32_t a = genrand_int32(mt), b = genrand_int32(mt);
 | 
						|
    return int_pair_to_real_inclusive(a, b);
 | 
						|
}
 | 
						|
 | 
						|
/* These real versions are due to Isaku Wada, 2002/01/09 added */
 | 
						|
 | 
						|
#undef N
 | 
						|
#undef M
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    VALUE seed;
 | 
						|
    struct MT mt;
 | 
						|
} rb_random_t;
 | 
						|
 | 
						|
#define DEFAULT_SEED_CNT 4
 | 
						|
 | 
						|
static rb_random_t default_rand;
 | 
						|
 | 
						|
static VALUE rand_init(struct MT *mt, VALUE vseed);
 | 
						|
static VALUE random_seed(void);
 | 
						|
 | 
						|
static rb_random_t *
 | 
						|
rand_start(rb_random_t *r)
 | 
						|
{
 | 
						|
    struct MT *mt = &r->mt;
 | 
						|
    if (!genrand_initialized(mt)) {
 | 
						|
	r->seed = rand_init(mt, random_seed());
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static struct MT *
 | 
						|
default_mt(void)
 | 
						|
{
 | 
						|
    return &rand_start(&default_rand)->mt;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
rb_genrand_int32(void)
 | 
						|
{
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
    return genrand_int32(mt);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
rb_genrand_real(void)
 | 
						|
{
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
    return genrand_real(mt);
 | 
						|
}
 | 
						|
 | 
						|
#define SIZEOF_INT32 (31/CHAR_BIT + 1)
 | 
						|
 | 
						|
static double
 | 
						|
int_pair_to_real_inclusive(uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    VALUE x;
 | 
						|
    VALUE m;
 | 
						|
    uint32_t xary[2], mary[2];
 | 
						|
    double r;
 | 
						|
 | 
						|
    /* (a << 32) | b */
 | 
						|
    xary[0] = a;
 | 
						|
    xary[1] = b;
 | 
						|
    x = rb_integer_unpack(xary, 2, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
 | 
						|
        INTEGER_PACK_FORCE_BIGNUM);
 | 
						|
 | 
						|
    /* (1 << 53) | 1 */
 | 
						|
    mary[0] = 0x00200000;
 | 
						|
    mary[1] = 0x00000001;
 | 
						|
    m = rb_integer_unpack(mary, 2, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
 | 
						|
        INTEGER_PACK_FORCE_BIGNUM);
 | 
						|
 | 
						|
    x = rb_big_mul(x, m);
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
#if CHAR_BIT * SIZEOF_LONG > 64
 | 
						|
	r = (double)(FIX2ULONG(x) >> 64);
 | 
						|
#else
 | 
						|
	return 0.0;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        uint32_t uary[4];
 | 
						|
        rb_integer_pack(x, uary, numberof(uary), sizeof(uint32_t), 0,
 | 
						|
                INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
        /* r = x >> 64 */
 | 
						|
        r = (double)uary[0] * (0x10000 * (double)0x10000) + (double)uary[1];
 | 
						|
    }
 | 
						|
    return ldexp(r, -53);
 | 
						|
}
 | 
						|
 | 
						|
VALUE rb_cRandom;
 | 
						|
#define id_minus '-'
 | 
						|
#define id_plus  '+'
 | 
						|
static ID id_rand, id_bytes;
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static void
 | 
						|
random_mark(void *ptr)
 | 
						|
{
 | 
						|
    rb_gc_mark(((rb_random_t *)ptr)->seed);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
random_free(void *ptr)
 | 
						|
{
 | 
						|
    if (ptr != &default_rand)
 | 
						|
	xfree(ptr);
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
random_memsize(const void *ptr)
 | 
						|
{
 | 
						|
    return ptr ? sizeof(rb_random_t) : 0;
 | 
						|
}
 | 
						|
 | 
						|
static const rb_data_type_t random_data_type = {
 | 
						|
    "random",
 | 
						|
    {
 | 
						|
	random_mark,
 | 
						|
	random_free,
 | 
						|
	random_memsize,
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static rb_random_t *
 | 
						|
get_rnd(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *ptr;
 | 
						|
    TypedData_Get_Struct(obj, rb_random_t, &random_data_type, ptr);
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static rb_random_t *
 | 
						|
try_get_rnd(VALUE obj)
 | 
						|
{
 | 
						|
    if (obj == rb_cRandom) {
 | 
						|
	return rand_start(&default_rand);
 | 
						|
    }
 | 
						|
    if (!rb_typeddata_is_kind_of(obj, &random_data_type)) return NULL;
 | 
						|
    return DATA_PTR(obj);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_alloc(VALUE klass)
 | 
						|
{
 | 
						|
    rb_random_t *rnd;
 | 
						|
    VALUE obj = TypedData_Make_Struct(klass, rb_random_t, &random_data_type, rnd);
 | 
						|
    rnd->seed = INT2FIX(0);
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rand_init(struct MT *mt, VALUE vseed)
 | 
						|
{
 | 
						|
    volatile VALUE seed;
 | 
						|
    uint32_t buf0[SIZEOF_LONG / SIZEOF_INT32 * 4], *buf = buf0;
 | 
						|
    size_t len;
 | 
						|
    int sign;
 | 
						|
 | 
						|
    seed = rb_to_int(vseed);
 | 
						|
 | 
						|
    len = rb_absint_numwords(seed, 32, NULL);
 | 
						|
    if (MT_MAX_STATE < len)
 | 
						|
        len = MT_MAX_STATE;
 | 
						|
    if (len > numberof(buf0))
 | 
						|
        buf = ALLOC_N(unsigned int, len);
 | 
						|
    sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
    if (sign < 0)
 | 
						|
        sign = -sign;
 | 
						|
    if (sign != 2) { /* not overflow */
 | 
						|
        while (0 < len && buf[len-1] == 0)
 | 
						|
            len--;
 | 
						|
    }
 | 
						|
    if (len == 0) {
 | 
						|
        buf[0] = 0;
 | 
						|
        len = 1;
 | 
						|
    }
 | 
						|
    if (len <= 1) {
 | 
						|
        init_genrand(mt, buf[0]);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */
 | 
						|
            len--;
 | 
						|
        init_by_array(mt, buf, (int)len);
 | 
						|
    }
 | 
						|
    if (buf != buf0) xfree(buf);
 | 
						|
    return seed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   Random.new(seed = Random.new_seed) -> prng
 | 
						|
 *
 | 
						|
 * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
 | 
						|
 * omitted, the generator is initialized with Random.new_seed.
 | 
						|
 *
 | 
						|
 * See Random.srand for more information on the use of seed values.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_init(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE vseed;
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	rb_check_frozen(obj);
 | 
						|
	vseed = random_seed();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &vseed);
 | 
						|
	rb_check_copyable(obj, vseed);
 | 
						|
    }
 | 
						|
    rnd->seed = rand_init(&rnd->mt, vseed);
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
#define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
 | 
						|
 | 
						|
#if defined(S_ISCHR) && !defined(DOSISH)
 | 
						|
# define USE_DEV_URANDOM 1
 | 
						|
#else
 | 
						|
# define USE_DEV_URANDOM 0
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
fill_random_seed(uint32_t seed[DEFAULT_SEED_CNT])
 | 
						|
{
 | 
						|
    static int n = 0;
 | 
						|
    struct timeval tv;
 | 
						|
#if USE_DEV_URANDOM
 | 
						|
    int fd;
 | 
						|
    struct stat statbuf;
 | 
						|
#elif defined(_WIN32)
 | 
						|
    HCRYPTPROV prov;
 | 
						|
#endif
 | 
						|
 | 
						|
    memset(seed, 0, DEFAULT_SEED_LEN);
 | 
						|
 | 
						|
#if USE_DEV_URANDOM
 | 
						|
    if ((fd = rb_cloexec_open("/dev/urandom", O_RDONLY
 | 
						|
#ifdef O_NONBLOCK
 | 
						|
            |O_NONBLOCK
 | 
						|
#endif
 | 
						|
#ifdef O_NOCTTY
 | 
						|
            |O_NOCTTY
 | 
						|
#endif
 | 
						|
            , 0)) >= 0) {
 | 
						|
        rb_update_max_fd(fd);
 | 
						|
        if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
 | 
						|
	    if (read(fd, seed, DEFAULT_SEED_LEN) < DEFAULT_SEED_LEN) {
 | 
						|
		/* abandon */;
 | 
						|
	    }
 | 
						|
        }
 | 
						|
        close(fd);
 | 
						|
    }
 | 
						|
#elif defined(_WIN32)
 | 
						|
    if (CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
 | 
						|
	CryptGenRandom(prov, DEFAULT_SEED_LEN, (void *)seed);
 | 
						|
	CryptReleaseContext(prov, 0);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    gettimeofday(&tv, 0);
 | 
						|
    seed[0] ^= tv.tv_usec;
 | 
						|
    seed[1] ^= (unsigned int)tv.tv_sec;
 | 
						|
#if SIZEOF_TIME_T > SIZEOF_INT
 | 
						|
    seed[0] ^= (unsigned int)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
 | 
						|
#endif
 | 
						|
    seed[2] ^= getpid() ^ (n++ << 16);
 | 
						|
    seed[3] ^= (unsigned int)(VALUE)&seed;
 | 
						|
#if SIZEOF_VOIDP > SIZEOF_INT
 | 
						|
    seed[2] ^= (unsigned int)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
make_seed_value(const uint32_t *ptr)
 | 
						|
{
 | 
						|
    VALUE seed;
 | 
						|
    size_t len;
 | 
						|
    uint32_t buf[DEFAULT_SEED_CNT+1];
 | 
						|
 | 
						|
    if (ptr[DEFAULT_SEED_CNT-1] <= 1) {
 | 
						|
        /* set leading-zero-guard */
 | 
						|
        MEMCPY(buf, ptr, uint32_t, DEFAULT_SEED_CNT);
 | 
						|
        buf[DEFAULT_SEED_CNT] = 1;
 | 
						|
        ptr = buf;
 | 
						|
        len = DEFAULT_SEED_CNT+1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        len = DEFAULT_SEED_CNT;
 | 
						|
    }
 | 
						|
 | 
						|
    seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
 | 
						|
    return seed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: Random.new_seed -> integer
 | 
						|
 *
 | 
						|
 * Returns an arbitrary seed value. This is used by Random.new
 | 
						|
 * when no seed value is specified as an argument.
 | 
						|
 *
 | 
						|
 *   Random.new_seed  #=> 115032730400174366788466674494640623225
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_seed(void)
 | 
						|
{
 | 
						|
    uint32_t buf[DEFAULT_SEED_CNT];
 | 
						|
    fill_random_seed(buf);
 | 
						|
    return make_seed_value(buf);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: prng.seed -> integer
 | 
						|
 *
 | 
						|
 * Returns the seed value used to initialize the generator. This may be used to
 | 
						|
 * initialize another generator with the same state at a later time, causing it
 | 
						|
 * to produce the same sequence of numbers.
 | 
						|
 *
 | 
						|
 *   prng1 = Random.new(1234)
 | 
						|
 *   prng1.seed       #=> 1234
 | 
						|
 *   prng1.rand(100)  #=> 47
 | 
						|
 *
 | 
						|
 *   prng2 = Random.new(prng1.seed)
 | 
						|
 *   prng2.rand(100)  #=> 47
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_get_seed(VALUE obj)
 | 
						|
{
 | 
						|
    return get_rnd(obj)->seed;
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_copy(VALUE obj, VALUE orig)
 | 
						|
{
 | 
						|
    rb_random_t *rnd1, *rnd2;
 | 
						|
    struct MT *mt;
 | 
						|
 | 
						|
    if (!OBJ_INIT_COPY(obj, orig)) return obj;
 | 
						|
 | 
						|
    rnd1 = get_rnd(obj);
 | 
						|
    rnd2 = get_rnd(orig);
 | 
						|
    mt = &rnd1->mt;
 | 
						|
 | 
						|
    *rnd1 = *rnd2;
 | 
						|
    mt->next = mt->state + numberof(mt->state) - mt->left + 1;
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
mt_state(const struct MT *mt)
 | 
						|
{
 | 
						|
    return rb_integer_unpack(mt->state, numberof(mt->state),
 | 
						|
        sizeof(*mt->state), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_state(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return mt_state(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_s_state(VALUE klass)
 | 
						|
{
 | 
						|
    return mt_state(&default_rand.mt);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_left(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return INT2FIX(rnd->mt.left);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_s_left(VALUE klass)
 | 
						|
{
 | 
						|
    return INT2FIX(default_rand.mt.left);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_dump(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    VALUE dump = rb_ary_new2(3);
 | 
						|
 | 
						|
    rb_ary_push(dump, mt_state(&rnd->mt));
 | 
						|
    rb_ary_push(dump, INT2FIX(rnd->mt.left));
 | 
						|
    rb_ary_push(dump, rnd->seed);
 | 
						|
 | 
						|
    return dump;
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_load(VALUE obj, VALUE dump)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    struct MT *mt = &rnd->mt;
 | 
						|
    VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
 | 
						|
    const VALUE *ary;
 | 
						|
    unsigned long x;
 | 
						|
 | 
						|
    rb_check_copyable(obj, dump);
 | 
						|
    Check_Type(dump, T_ARRAY);
 | 
						|
    ary = RARRAY_CONST_PTR(dump);
 | 
						|
    switch (RARRAY_LEN(dump)) {
 | 
						|
      case 3:
 | 
						|
	seed = ary[2];
 | 
						|
      case 2:
 | 
						|
	left = ary[1];
 | 
						|
      case 1:
 | 
						|
	state = ary[0];
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	rb_raise(rb_eArgError, "wrong dump data");
 | 
						|
    }
 | 
						|
    rb_integer_pack(state, mt->state, numberof(mt->state),
 | 
						|
        sizeof(*mt->state), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
    x = NUM2ULONG(left);
 | 
						|
    if (x > numberof(mt->state)) {
 | 
						|
	rb_raise(rb_eArgError, "wrong value");
 | 
						|
    }
 | 
						|
    mt->left = (unsigned int)x;
 | 
						|
    mt->next = mt->state + numberof(mt->state) - x + 1;
 | 
						|
    rnd->seed = rb_to_int(seed);
 | 
						|
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   srand(number = Random.new_seed) -> old_seed
 | 
						|
 *
 | 
						|
 * Seeds the system pseudo-random number generator, Random::DEFAULT, with
 | 
						|
 * +number+.  The previous seed value is returned.
 | 
						|
 *
 | 
						|
 * If +number+ is omitted, seeds the generator using a source of entropy
 | 
						|
 * provided by the operating system, if available (/dev/urandom on Unix systems
 | 
						|
 * or the RSA cryptographic provider on Windows), which is then combined with
 | 
						|
 * the time, the process id, and a sequence number.
 | 
						|
 *
 | 
						|
 * srand may be used to ensure repeatable sequences of pseudo-random numbers
 | 
						|
 * between different runs of the program. By setting the seed to a known value,
 | 
						|
 * programs can be made deterministic during testing.
 | 
						|
 *
 | 
						|
 *   srand 1234               # => 268519324636777531569100071560086917274
 | 
						|
 *   [ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
 | 
						|
 *   [ rand(10), rand(1000) ] # => [4, 664]
 | 
						|
 *   srand 1234               # => 1234
 | 
						|
 *   [ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_f_srand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE seed, old;
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	seed = random_seed();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &seed);
 | 
						|
    }
 | 
						|
    old = r->seed;
 | 
						|
    r->seed = rand_init(&r->mt, seed);
 | 
						|
 | 
						|
    return old;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
make_mask(unsigned long x)
 | 
						|
{
 | 
						|
    x = x | x >> 1;
 | 
						|
    x = x | x >> 2;
 | 
						|
    x = x | x >> 4;
 | 
						|
    x = x | x >> 8;
 | 
						|
    x = x | x >> 16;
 | 
						|
#if 4 < SIZEOF_LONG
 | 
						|
    x = x | x >> 32;
 | 
						|
#endif
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
limited_rand(struct MT *mt, unsigned long limit)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    int i;
 | 
						|
    unsigned long val, mask;
 | 
						|
 | 
						|
    if (!limit) return 0;
 | 
						|
    mask = make_mask(limit);
 | 
						|
  retry:
 | 
						|
    val = 0;
 | 
						|
    for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
 | 
						|
        if ((mask >> (i * 32)) & 0xffffffff) {
 | 
						|
            val |= (unsigned long)genrand_int32(mt) << (i * 32);
 | 
						|
            val &= mask;
 | 
						|
            if (limit < val)
 | 
						|
                goto retry;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
limited_big_rand(struct MT *mt, VALUE limit)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
 | 
						|
    uint32_t mask;
 | 
						|
    long i;
 | 
						|
    int boundary;
 | 
						|
 | 
						|
    size_t len;
 | 
						|
    uint32_t *tmp, *lim_array, *rnd_array;
 | 
						|
    VALUE vtmp;
 | 
						|
    VALUE val;
 | 
						|
 | 
						|
    len = rb_absint_numwords(limit, 32, NULL);
 | 
						|
    tmp = ALLOCV_N(uint32_t, vtmp, len*2);
 | 
						|
    lim_array = tmp;
 | 
						|
    rnd_array = tmp + len;
 | 
						|
    rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
 | 
						|
  retry:
 | 
						|
    mask = 0;
 | 
						|
    boundary = 1;
 | 
						|
    for (i = len-1; 0 <= i; i--) {
 | 
						|
	uint32_t rnd;
 | 
						|
        uint32_t lim = lim_array[i];
 | 
						|
        mask = mask ? 0xffffffff : (uint32_t)make_mask(lim);
 | 
						|
        if (mask) {
 | 
						|
            rnd = genrand_int32(mt) & mask;
 | 
						|
            if (boundary) {
 | 
						|
                if (lim < rnd)
 | 
						|
                    goto retry;
 | 
						|
                if (rnd < lim)
 | 
						|
                    boundary = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            rnd = 0;
 | 
						|
        }
 | 
						|
        rnd_array[i] = rnd;
 | 
						|
    }
 | 
						|
    val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0,
 | 
						|
        INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | 
						|
    ALLOCV_END(vtmp);
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns random unsigned long value in [0, +limit+].
 | 
						|
 *
 | 
						|
 * Note that +limit+ is included, and the range of the argument and the
 | 
						|
 * return value depends on environments.
 | 
						|
 */
 | 
						|
unsigned long
 | 
						|
rb_genrand_ulong_limited(unsigned long limit)
 | 
						|
{
 | 
						|
    return limited_rand(default_mt(), limit);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
rb_random_int32(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = try_get_rnd(obj);
 | 
						|
    if (!rnd) {
 | 
						|
#if SIZEOF_LONG * CHAR_BIT > 32
 | 
						|
	VALUE lim = ULONG2NUM(0x100000000UL);
 | 
						|
#elif defined HAVE_LONG_LONG
 | 
						|
	VALUE lim = ULL2NUM((LONG_LONG)0xffffffff+1);
 | 
						|
#else
 | 
						|
	VALUE lim = rb_big_plus(ULONG2NUM(0xffffffff), INT2FIX(1));
 | 
						|
#endif
 | 
						|
	return (unsigned int)NUM2ULONG(rb_funcall2(obj, id_rand, 1, &lim));
 | 
						|
    }
 | 
						|
    return genrand_int32(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
rb_random_real(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = try_get_rnd(obj);
 | 
						|
    if (!rnd) {
 | 
						|
	VALUE v = rb_funcall2(obj, id_rand, 0, 0);
 | 
						|
	double d = NUM2DBL(v);
 | 
						|
	if (d < 0.0) {
 | 
						|
	    rb_raise(rb_eRangeError, "random number too small %g", d);
 | 
						|
	}
 | 
						|
	else if (d >= 1.0) {
 | 
						|
	    rb_raise(rb_eRangeError, "random number too big %g", d);
 | 
						|
	}
 | 
						|
	return d;
 | 
						|
    }
 | 
						|
    return genrand_real(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
static inline VALUE
 | 
						|
ulong_to_num_plus_1(unsigned long n)
 | 
						|
{
 | 
						|
#if HAVE_LONG_LONG
 | 
						|
    return ULL2NUM((LONG_LONG)n+1);
 | 
						|
#else
 | 
						|
    if (n >= ULONG_MAX) {
 | 
						|
	return rb_big_plus(ULONG2NUM(n), INT2FIX(1));
 | 
						|
    }
 | 
						|
    return ULONG2NUM(n+1);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_random_ulong_limited(VALUE obj, unsigned long limit)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = try_get_rnd(obj);
 | 
						|
    if (!rnd) {
 | 
						|
	extern int rb_num_negative_p(VALUE);
 | 
						|
	VALUE lim = ulong_to_num_plus_1(limit);
 | 
						|
	VALUE v = rb_to_int(rb_funcall2(obj, id_rand, 1, &lim));
 | 
						|
	unsigned long r = NUM2ULONG(v);
 | 
						|
	if (rb_num_negative_p(v)) {
 | 
						|
	    rb_raise(rb_eRangeError, "random number too small %ld", r);
 | 
						|
	}
 | 
						|
	if (r > limit) {
 | 
						|
	    rb_raise(rb_eRangeError, "random number too big %ld", r);
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
    }
 | 
						|
    return limited_rand(&rnd->mt, limit);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: prng.bytes(size) -> a_string
 | 
						|
 *
 | 
						|
 * Returns a random binary string containing +size+ bytes.
 | 
						|
 *
 | 
						|
 *   random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
 | 
						|
 *   random_string.size                   # => 10
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_bytes(VALUE obj, VALUE len)
 | 
						|
{
 | 
						|
    return rb_random_bytes(obj, NUM2LONG(rb_to_int(len)));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_random_bytes(VALUE obj, long n)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = try_get_rnd(obj);
 | 
						|
    VALUE bytes;
 | 
						|
    char *ptr;
 | 
						|
    unsigned int r, i;
 | 
						|
 | 
						|
    if (!rnd) {
 | 
						|
	VALUE len = LONG2NUM(n);
 | 
						|
	return rb_funcall2(obj, id_bytes, 1, &len);
 | 
						|
    }
 | 
						|
    bytes = rb_str_new(0, n);
 | 
						|
    ptr = RSTRING_PTR(bytes);
 | 
						|
    for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
 | 
						|
	r = genrand_int32(&rnd->mt);
 | 
						|
	i = SIZEOF_INT32;
 | 
						|
	do {
 | 
						|
	    *ptr++ = (char)r;
 | 
						|
	    r >>= CHAR_BIT;
 | 
						|
        } while (--i);
 | 
						|
    }
 | 
						|
    if (n > 0) {
 | 
						|
	r = genrand_int32(&rnd->mt);
 | 
						|
	do {
 | 
						|
	    *ptr++ = (char)r;
 | 
						|
	    r >>= CHAR_BIT;
 | 
						|
	} while (--n);
 | 
						|
    }
 | 
						|
    return bytes;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
 | 
						|
{
 | 
						|
    VALUE end, r;
 | 
						|
 | 
						|
    if (!rb_range_values(vmax, begp, &end, exclp)) return Qfalse;
 | 
						|
    if (endp) *endp = end;
 | 
						|
    if (!rb_respond_to(end, id_minus)) return Qfalse;
 | 
						|
    r = rb_funcall2(end, id_minus, 1, begp);
 | 
						|
    if (NIL_P(r)) return Qfalse;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rand_int(struct MT *mt, VALUE vmax, int restrictive)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    long max;
 | 
						|
    unsigned long r;
 | 
						|
 | 
						|
    if (FIXNUM_P(vmax)) {
 | 
						|
	max = FIX2LONG(vmax);
 | 
						|
	if (!max) return Qnil;
 | 
						|
	if (max < 0) {
 | 
						|
	    if (restrictive) return Qnil;
 | 
						|
	    max = -max;
 | 
						|
	}
 | 
						|
	r = limited_rand(mt, (unsigned long)max - 1);
 | 
						|
	return ULONG2NUM(r);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	VALUE ret;
 | 
						|
	if (rb_bigzero_p(vmax)) return Qnil;
 | 
						|
	if (!RBIGNUM_SIGN(vmax)) {
 | 
						|
	    if (restrictive) return Qnil;
 | 
						|
            vmax = rb_big_uminus(vmax);
 | 
						|
	}
 | 
						|
	vmax = rb_big_minus(vmax, INT2FIX(1));
 | 
						|
	if (FIXNUM_P(vmax)) {
 | 
						|
	    max = FIX2LONG(vmax);
 | 
						|
	    if (max == -1) return Qnil;
 | 
						|
	    r = limited_rand(mt, max);
 | 
						|
	    return LONG2NUM(r);
 | 
						|
	}
 | 
						|
	ret = limited_big_rand(mt, vmax);
 | 
						|
	RB_GC_GUARD(vmax);
 | 
						|
	return ret;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline double
 | 
						|
float_value(VALUE v)
 | 
						|
{
 | 
						|
    double x = RFLOAT_VALUE(v);
 | 
						|
    if (isinf(x) || isnan(x)) {
 | 
						|
	VALUE error = INT2FIX(EDOM);
 | 
						|
	rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static inline VALUE
 | 
						|
rand_range(struct MT* mt, VALUE range)
 | 
						|
{
 | 
						|
    VALUE beg = Qundef, end = Qundef, vmax, v;
 | 
						|
    int excl = 0;
 | 
						|
 | 
						|
    if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
 | 
						|
	return Qfalse;
 | 
						|
    if (!RB_TYPE_P(vmax, T_FLOAT) && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | 
						|
	long max;
 | 
						|
	vmax = v;
 | 
						|
	v = Qnil;
 | 
						|
	if (FIXNUM_P(vmax)) {
 | 
						|
	  fixnum:
 | 
						|
	    if ((max = FIX2LONG(vmax) - excl) >= 0) {
 | 
						|
		unsigned long r = limited_rand(mt, (unsigned long)max);
 | 
						|
		v = ULONG2NUM(r);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	else if (BUILTIN_TYPE(vmax) == T_BIGNUM && RBIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
 | 
						|
	    vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
 | 
						|
	    if (FIXNUM_P(vmax)) {
 | 
						|
		excl = 0;
 | 
						|
		goto fixnum;
 | 
						|
	    }
 | 
						|
	    v = limited_big_rand(mt, vmax);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | 
						|
	int scale = 1;
 | 
						|
	double max = RFLOAT_VALUE(v), mid = 0.5, r;
 | 
						|
	if (isinf(max)) {
 | 
						|
	    double min = float_value(rb_to_float(beg)) / 2.0;
 | 
						|
	    max = float_value(rb_to_float(end)) / 2.0;
 | 
						|
	    scale = 2;
 | 
						|
	    mid = max + min;
 | 
						|
	    max -= min;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    float_value(v);
 | 
						|
	}
 | 
						|
	v = Qnil;
 | 
						|
	if (max > 0.0) {
 | 
						|
	    if (excl) {
 | 
						|
		r = genrand_real(mt);
 | 
						|
	    }
 | 
						|
	    else {
 | 
						|
		r = genrand_real2(mt);
 | 
						|
	    }
 | 
						|
	    if (scale > 1) {
 | 
						|
		return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
 | 
						|
	    }
 | 
						|
	    v = rb_float_new(r * max);
 | 
						|
	}
 | 
						|
	else if (max == 0.0 && !excl) {
 | 
						|
	    v = rb_float_new(0.0);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (FIXNUM_P(beg) && FIXNUM_P(v)) {
 | 
						|
	long x = FIX2LONG(beg) + FIX2LONG(v);
 | 
						|
	return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    switch (TYPE(v)) {
 | 
						|
      case T_NIL:
 | 
						|
	break;
 | 
						|
      case T_BIGNUM:
 | 
						|
	return rb_big_plus(v, beg);
 | 
						|
      case T_FLOAT: {
 | 
						|
	VALUE f = rb_check_to_float(beg);
 | 
						|
	if (!NIL_P(f)) {
 | 
						|
	    return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f));
 | 
						|
	}
 | 
						|
      }
 | 
						|
      default:
 | 
						|
	return rb_funcall2(beg, id_plus, 1, &v);
 | 
						|
    }
 | 
						|
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE rand_random(int argc, VALUE *argv, rb_random_t *rnd);
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   prng.rand -> float
 | 
						|
 *   prng.rand(max) -> number
 | 
						|
 *
 | 
						|
 * When +max+ is an Integer, +rand+ returns a random integer greater than
 | 
						|
 * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
 | 
						|
 * is a negative integer or zero, +rand+ raises an ArgumentError.
 | 
						|
 *
 | 
						|
 *   prng = Random.new
 | 
						|
 *   prng.rand(100)       # => 42
 | 
						|
 *
 | 
						|
 * When +max+ is a Float, +rand+ returns a random floating point number
 | 
						|
 * between 0.0 and +max+, including 0.0 and excluding +max+.
 | 
						|
 *
 | 
						|
 *   prng.rand(1.5)       # => 1.4600282860034115
 | 
						|
 *
 | 
						|
 * When +max+ is a Range, +rand+ returns a random number where
 | 
						|
 * range.member?(number) == true.
 | 
						|
 *
 | 
						|
 *   prng.rand(5..9)      # => one of [5, 6, 7, 8, 9]
 | 
						|
 *   prng.rand(5...9)     # => one of [5, 6, 7, 8]
 | 
						|
 *   prng.rand(5.0..9.0)  # => between 5.0 and 9.0, including 9.0
 | 
						|
 *   prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
 | 
						|
 *
 | 
						|
 * Both the beginning and ending values of the range must respond to subtract
 | 
						|
 * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
 | 
						|
 * ArgumentError.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_rand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    return rand_random(argc, argv, get_rnd(obj));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rand_random(int argc, VALUE *argv, rb_random_t *rnd)
 | 
						|
{
 | 
						|
    VALUE vmax, v;
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	return rb_float_new(genrand_real(&rnd->mt));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_check_arity(argc, 0, 1);
 | 
						|
    }
 | 
						|
    vmax = argv[0];
 | 
						|
    if (NIL_P(vmax)) {
 | 
						|
	v = Qnil;
 | 
						|
    }
 | 
						|
    else if (!RB_TYPE_P(vmax, T_FLOAT) && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | 
						|
	v = rand_int(&rnd->mt, v, 1);
 | 
						|
    }
 | 
						|
    else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | 
						|
	double max = float_value(v);
 | 
						|
	if (max > 0.0)
 | 
						|
	    v = rb_float_new(max * genrand_real(&rnd->mt));
 | 
						|
	else
 | 
						|
	    v = Qnil;
 | 
						|
    }
 | 
						|
    else if ((v = rand_range(&rnd->mt, vmax)) != Qfalse) {
 | 
						|
	/* nothing to do */
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	v = Qnil;
 | 
						|
	(void)NUM2LONG(vmax);
 | 
						|
    }
 | 
						|
    if (NIL_P(v)) {
 | 
						|
	VALUE mesg = rb_str_new_cstr("invalid argument - ");
 | 
						|
	rb_str_append(mesg, rb_obj_as_string(argv[0]));
 | 
						|
	rb_exc_raise(rb_exc_new3(rb_eArgError, mesg));
 | 
						|
    }
 | 
						|
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   prng1 == prng2 -> true or false
 | 
						|
 *
 | 
						|
 * Returns true if the two generators have the same internal state, otherwise
 | 
						|
 * false.  Equivalent generators will return the same sequence of
 | 
						|
 * pseudo-random numbers.  Two generators will generally have the same state
 | 
						|
 * only if they were initialized with the same seed
 | 
						|
 *
 | 
						|
 *   Random.new == Random.new             # => false
 | 
						|
 *   Random.new(1234) == Random.new(1234) # => true
 | 
						|
 *
 | 
						|
 * and have the same invocation history.
 | 
						|
 *
 | 
						|
 *   prng1 = Random.new(1234)
 | 
						|
 *   prng2 = Random.new(1234)
 | 
						|
 *   prng1 == prng2 # => true
 | 
						|
 *
 | 
						|
 *   prng1.rand     # => 0.1915194503788923
 | 
						|
 *   prng1 == prng2 # => false
 | 
						|
 *
 | 
						|
 *   prng2.rand     # => 0.1915194503788923
 | 
						|
 *   prng1 == prng2 # => true
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_equal(VALUE self, VALUE other)
 | 
						|
{
 | 
						|
    rb_random_t *r1, *r2;
 | 
						|
    if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
 | 
						|
    r1 = get_rnd(self);
 | 
						|
    r2 = get_rnd(other);
 | 
						|
    if (!RTEST(rb_funcall2(r1->seed, rb_intern("=="), 1, &r2->seed))) return Qfalse;
 | 
						|
    if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
 | 
						|
    if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
 | 
						|
    if (r1->mt.left != r2->mt.left) return Qfalse;
 | 
						|
    return Qtrue;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   rand(max=0)    -> number
 | 
						|
 *
 | 
						|
 * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
 | 
						|
 * returns a pseudo-random floating point number between 0.0 and 1.0,
 | 
						|
 * including 0.0 and excluding 1.0.
 | 
						|
 *
 | 
						|
 *   rand        #=> 0.2725926052826416
 | 
						|
 *
 | 
						|
 * When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
 | 
						|
 * integer greater than or equal to 0 and less than +max.to_i.abs+.
 | 
						|
 *
 | 
						|
 *   rand(100)   #=> 12
 | 
						|
 *
 | 
						|
 * When +max+ is a Range, +rand+ returns a random number where
 | 
						|
 * range.member?(number) == true.
 | 
						|
 *
 | 
						|
 * Negative or floating point values for +max+ are allowed, but may give
 | 
						|
 * surprising results.
 | 
						|
 *
 | 
						|
 *   rand(-100) # => 87
 | 
						|
 *   rand(-0.5) # => 0.8130921818028143
 | 
						|
 *   rand(1.9)  # equivalent to rand(1), which is always 0
 | 
						|
 *
 | 
						|
 * Kernel.srand may be used to ensure that sequences of random numbers are
 | 
						|
 * reproducible between different runs of a program.
 | 
						|
 *
 | 
						|
 * See also Random.rand.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_f_rand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE v, vmax, r;
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
 | 
						|
    if (argc == 0) goto zero_arg;
 | 
						|
    rb_scan_args(argc, argv, "01", &vmax);
 | 
						|
    if (NIL_P(vmax)) goto zero_arg;
 | 
						|
    if ((v = rand_range(mt, vmax)) != Qfalse) {
 | 
						|
	return v;
 | 
						|
    }
 | 
						|
    vmax = rb_to_int(vmax);
 | 
						|
    if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax, 0))) {
 | 
						|
      zero_arg:
 | 
						|
	return DBL2NUM(genrand_real(mt));
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   Random.rand -> float
 | 
						|
 *   Random.rand(max) -> number
 | 
						|
 *
 | 
						|
 * Alias of Random::DEFAULT.rand.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
random_s_rand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    return rand_random(argc, argv, rand_start(&default_rand));
 | 
						|
}
 | 
						|
 | 
						|
#define SIP_HASH_STREAMING 0
 | 
						|
#define sip_hash24 ruby_sip_hash24
 | 
						|
#if !defined _WIN32 && !defined BYTE_ORDER
 | 
						|
# ifdef WORDS_BIGENDIAN
 | 
						|
#   define BYTE_ORDER BIG_ENDIAN
 | 
						|
# else
 | 
						|
#   define BYTE_ORDER LITTLE_ENDIAN
 | 
						|
# endif
 | 
						|
# ifndef LITTLE_ENDIAN
 | 
						|
#   define LITTLE_ENDIAN 1234
 | 
						|
# endif
 | 
						|
# ifndef BIG_ENDIAN
 | 
						|
#   define BIG_ENDIAN    4321
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
#include "siphash.c"
 | 
						|
 | 
						|
static st_index_t hashseed;
 | 
						|
static union {
 | 
						|
    uint8_t key[16];
 | 
						|
    uint32_t u32[(16 * sizeof(uint8_t) - 1) / sizeof(uint32_t)];
 | 
						|
} sipseed;
 | 
						|
 | 
						|
static VALUE
 | 
						|
init_randomseed(struct MT *mt, uint32_t initial[DEFAULT_SEED_CNT])
 | 
						|
{
 | 
						|
    VALUE seed;
 | 
						|
    fill_random_seed(initial);
 | 
						|
    init_by_array(mt, initial, DEFAULT_SEED_CNT);
 | 
						|
    seed = make_seed_value(initial);
 | 
						|
    memset(initial, 0, DEFAULT_SEED_LEN);
 | 
						|
    return seed;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Init_RandomSeed(void)
 | 
						|
{
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
    uint32_t initial[DEFAULT_SEED_CNT];
 | 
						|
    struct MT *mt = &r->mt;
 | 
						|
    VALUE seed = init_randomseed(mt, initial);
 | 
						|
    int i;
 | 
						|
 | 
						|
    hashseed = genrand_int32(mt);
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
 | 
						|
    for (i = 0; i < numberof(sipseed.u32); ++i)
 | 
						|
	sipseed.u32[i] = genrand_int32(mt);
 | 
						|
 | 
						|
    rb_global_variable(&r->seed);
 | 
						|
    r->seed = seed;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
rb_hash_start(st_index_t h)
 | 
						|
{
 | 
						|
    return st_hash_start(hashseed + h);
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
rb_memhash(const void *ptr, long len)
 | 
						|
{
 | 
						|
    sip_uint64_t h = sip_hash24(sipseed.key, ptr, len);
 | 
						|
#ifdef HAVE_UINT64_T
 | 
						|
    return (st_index_t)h;
 | 
						|
#else
 | 
						|
    return (st_index_t)(h.u32[0] ^ h.u32[1]);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
Init_RandomSeed2(void)
 | 
						|
{
 | 
						|
    VALUE seed = default_rand.seed;
 | 
						|
 | 
						|
    if (RB_TYPE_P(seed, T_BIGNUM)) {
 | 
						|
	rb_obj_reveal(seed, rb_cBignum);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_reset_random_seed(void)
 | 
						|
{
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
    uninit_genrand(&r->mt);
 | 
						|
    r->seed = INT2FIX(0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Document-class: Random
 | 
						|
 *
 | 
						|
 * Random provides an interface to Ruby's pseudo-random number generator, or
 | 
						|
 * PRNG.  The PRNG produces a deterministic sequence of bits which approximate
 | 
						|
 * true randomness. The sequence may be represented by integers, floats, or
 | 
						|
 * binary strings.
 | 
						|
 *
 | 
						|
 * The generator may be initialized with either a system-generated or
 | 
						|
 * user-supplied seed value by using Random.srand.
 | 
						|
 *
 | 
						|
 * The class method Random.rand provides the base functionality of Kernel.rand
 | 
						|
 * along with better handling of floating point values. These are both
 | 
						|
 * interfaces to Random::DEFAULT, the Ruby system PRNG.
 | 
						|
 *
 | 
						|
 * Random.new will create a new PRNG with a state independent of
 | 
						|
 * Random::DEFAULT, allowing multiple generators with different seed values or
 | 
						|
 * sequence positions to exist simultaneously. Random objects can be
 | 
						|
 * marshaled, allowing sequences to be saved and resumed.
 | 
						|
 *
 | 
						|
 * PRNGs are currently implemented as a modified Mersenne Twister with a period
 | 
						|
 * of 2**19937-1.
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
Init_Random(void)
 | 
						|
{
 | 
						|
    Init_RandomSeed2();
 | 
						|
    rb_define_global_function("srand", rb_f_srand, -1);
 | 
						|
    rb_define_global_function("rand", rb_f_rand, -1);
 | 
						|
 | 
						|
    rb_cRandom = rb_define_class("Random", rb_cObject);
 | 
						|
    rb_define_alloc_func(rb_cRandom, random_alloc);
 | 
						|
    rb_define_method(rb_cRandom, "initialize", random_init, -1);
 | 
						|
    rb_define_method(rb_cRandom, "rand", random_rand, -1);
 | 
						|
    rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
 | 
						|
    rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
 | 
						|
    rb_define_method(rb_cRandom, "initialize_copy", random_copy, 1);
 | 
						|
    rb_define_private_method(rb_cRandom, "marshal_dump", random_dump, 0);
 | 
						|
    rb_define_private_method(rb_cRandom, "marshal_load", random_load, 1);
 | 
						|
    rb_define_private_method(rb_cRandom, "state", random_state, 0);
 | 
						|
    rb_define_private_method(rb_cRandom, "left", random_left, 0);
 | 
						|
    rb_define_method(rb_cRandom, "==", random_equal, 1);
 | 
						|
 | 
						|
    {
 | 
						|
	VALUE rand_default = TypedData_Wrap_Struct(rb_cRandom, &random_data_type, &default_rand);
 | 
						|
	rb_gc_register_mark_object(rand_default);
 | 
						|
	/* Direct access to Ruby's Pseudorandom number generator (PRNG). */
 | 
						|
	rb_define_const(rb_cRandom, "DEFAULT", rand_default);
 | 
						|
    }
 | 
						|
 | 
						|
    rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
 | 
						|
    rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
 | 
						|
    rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
 | 
						|
    rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
 | 
						|
    rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
 | 
						|
 | 
						|
    id_rand = rb_intern("rand");
 | 
						|
    id_bytes = rb_intern("bytes");
 | 
						|
}
 |