1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/internal.h
卜部昌平 19b6678132 rb_uninterruptible now free from ANYARGS
After 5e86b005c0, I now think ANYARGS is
dangerous and should be extinct.  This function has only one call site
so adding appropriate prototype is trivial.
2019-08-27 15:52:26 +09:00

2599 lines
82 KiB
C

/**********************************************************************
internal.h -
$Author$
created at: Tue May 17 11:42:20 JST 2011
Copyright (C) 2011 Yukihiro Matsumoto
**********************************************************************/
#ifndef RUBY_INTERNAL_H
#define RUBY_INTERNAL_H 1
#include "ruby.h"
#if defined(__cplusplus)
extern "C" {
#if 0
} /* satisfy cc-mode */
#endif
#endif
#ifdef HAVE_STDBOOL_H
# include <stdbool.h>
#else
# include "missing/stdbool.h"
#endif
/* The most significant bit of the lower part of half-long integer.
* If sizeof(long) == 4, this is 0x8000.
* If sizeof(long) == 8, this is 0x80000000.
*/
#define HALF_LONG_MSB ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2))
#define LIKELY(x) RB_LIKELY(x)
#define UNLIKELY(x) RB_UNLIKELY(x)
#ifndef MAYBE_UNUSED
# define MAYBE_UNUSED(x) x
#endif
#ifndef WARN_UNUSED_RESULT
# define WARN_UNUSED_RESULT(x) x
#endif
#ifndef __has_feature
# define __has_feature(x) 0
#endif
#ifndef __has_extension
# define __has_extension __has_feature
#endif
#if 0
#elif defined(NO_SANITIZE) && __has_feature(memory_sanitizer)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_SANITIZE("memory", NO_SANITIZE("address", NOINLINE(x)))
#elif defined(NO_SANITIZE)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_SANITIZE("address", NOINLINE(x))
#elif defined(NO_SANITIZE_ADDRESS)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_SANITIZE_ADDRESS(NOINLINE(x))
#elif defined(NO_ADDRESS_SAFETY_ANALYSIS)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_ADDRESS_SAFETY_ANALYSIS(NOINLINE(x))
#else
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) x
#endif
#if defined(NO_SANITIZE) && defined(__GNUC__) &&! defined(__clang__)
/* GCC warns about unknown sanitizer, which is annoying. */
#undef NO_SANITIZE
#define NO_SANITIZE(x, y) \
COMPILER_WARNING_PUSH; \
COMPILER_WARNING_IGNORED(-Wattributes); \
__attribute__((__no_sanitize__(x))) y; \
COMPILER_WARNING_POP
#endif
#ifndef NO_SANITIZE
# define NO_SANITIZE(x, y) y
#endif
#ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
# ifndef VALGRIND_MAKE_MEM_DEFINED
# define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
# endif
# ifndef VALGRIND_MAKE_MEM_UNDEFINED
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
# endif
#else
# define VALGRIND_MAKE_MEM_DEFINED(p, n) 0
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0
#endif
#define numberof(array) ((int)(sizeof(array) / sizeof((array)[0])))
#ifndef MJIT_HEADER
#ifdef HAVE_SANITIZER_ASAN_INTERFACE_H
# include <sanitizer/asan_interface.h>
#endif
#if !__has_feature(address_sanitizer)
# define __asan_poison_memory_region(x, y)
# define __asan_unpoison_memory_region(x, y)
# define __asan_region_is_poisoned(x, y) 0
#endif
#ifdef HAVE_SANITIZER_MSAN_INTERFACE_H
# if __has_feature(memory_sanitizer)
# include <sanitizer/msan_interface.h>
# endif
#endif
#if !__has_feature(memory_sanitizer)
# define __msan_allocated_memory(x, y) ((void)(x), (void)(y))
# define __msan_poison(x, y) ((void)(x), (void)(y))
# define __msan_unpoison(x, y) ((void)(x), (void)(y))
# define __msan_unpoison_string(x) ((void)(x))
#endif
/*!
* This function asserts that a (continuous) memory region from ptr to size
* being "poisoned". Both read / write access to such memory region are
* prohibited until properly unpoisoned. The region must be previously
* allocated (do not pass a freed pointer here), but not necessarily be an
* entire object that the malloc returns. You can punch hole a part of a
* gigantic heap arena. This is handy when you do not free an allocated memory
* region to reuse later: poison when you keep it unused, and unpoison when you
* reuse.
*
* \param[in] ptr pointer to the beginning of the memory region to poison.
* \param[in] size the length of the memory region to poison.
*/
static inline void
asan_poison_memory_region(const volatile void *ptr, size_t size)
{
__msan_poison(ptr, size);
__asan_poison_memory_region(ptr, size);
}
/*!
* This is a variant of asan_poison_memory_region that takes a VALUE.
*
* \param[in] obj target object.
*/
static inline void
asan_poison_object(VALUE obj)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
asan_poison_memory_region(ptr, SIZEOF_VALUE);
}
#if !__has_feature(address_sanitizer)
#define asan_poison_object_if(ptr, obj) ((void)(ptr), (void)(obj))
#else
#define asan_poison_object_if(ptr, obj) do { \
if (ptr) asan_poison_object(obj); \
} while (0)
#endif
/*!
* This function predicates if the given object is fully addressable or not.
*
* \param[in] obj target object.
* \retval 0 the given object is fully addressable.
* \retval otherwise pointer to first such byte who is poisoned.
*/
static inline void *
asan_poisoned_object_p(VALUE obj)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
return __asan_region_is_poisoned(ptr, SIZEOF_VALUE);
}
/*!
* This function asserts that a (formally poisoned) memory region from ptr to
* size is now addressable. Write access to such memory region gets allowed.
* However read access might or might not be possible depending on situations,
* because the region can have contents of previous usages. That information
* should be passed by the malloc_p flag. If that is true, the contents of the
* region is _not_ fully defined (like the return value of malloc behaves).
* Reading from there is NG; write something first. If malloc_p is false on
* the other hand, that memory region is fully defined and can be read
* immediately.
*
* \param[in] ptr pointer to the beginning of the memory region to unpoison.
* \param[in] size the length of the memory region.
* \param[in] malloc_p if the memory region is like a malloc's return value or not.
*/
static inline void
asan_unpoison_memory_region(const volatile void *ptr, size_t size, bool malloc_p)
{
__asan_unpoison_memory_region(ptr, size);
if (malloc_p) {
__msan_allocated_memory(ptr, size);
}
else {
__msan_unpoison(ptr, size);
}
}
/*!
* This is a variant of asan_unpoison_memory_region that takes a VALUE.
*
* \param[in] obj target object.
* \param[in] malloc_p if the memory region is like a malloc's return value or not.
*/
static inline void
asan_unpoison_object(VALUE obj, bool newobj_p)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
asan_unpoison_memory_region(ptr, SIZEOF_VALUE, newobj_p);
}
#endif
/* Prevent compiler from reordering access */
#define ACCESS_ONCE(type,x) (*((volatile type *)&(x)))
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
# define STATIC_ASSERT(name, expr) _Static_assert(expr, #name ": " #expr)
#elif GCC_VERSION_SINCE(4, 6, 0) || __has_extension(c_static_assert)
# define STATIC_ASSERT(name, expr) RB_GNUC_EXTENSION _Static_assert(expr, #name ": " #expr)
#else
# define STATIC_ASSERT(name, expr) typedef int static_assert_##name##_check[1 - 2*!(expr)]
#endif
#define SIGNED_INTEGER_TYPE_P(int_type) (0 > ((int_type)0)-1)
#define SIGNED_INTEGER_MAX(sint_type) \
(sint_type) \
((((sint_type)1) << (sizeof(sint_type) * CHAR_BIT - 2)) | \
((((sint_type)1) << (sizeof(sint_type) * CHAR_BIT - 2)) - 1))
#define SIGNED_INTEGER_MIN(sint_type) (-SIGNED_INTEGER_MAX(sint_type)-1)
#define UNSIGNED_INTEGER_MAX(uint_type) (~(uint_type)0)
#if SIGNEDNESS_OF_TIME_T < 0 /* signed */
# define TIMET_MAX SIGNED_INTEGER_MAX(time_t)
# define TIMET_MIN SIGNED_INTEGER_MIN(time_t)
#elif SIGNEDNESS_OF_TIME_T > 0 /* unsigned */
# define TIMET_MAX UNSIGNED_INTEGER_MAX(time_t)
# define TIMET_MIN ((time_t)0)
#endif
#define TIMET_MAX_PLUS_ONE (2*(double)(TIMET_MAX/2+1))
#ifdef HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW_P
#define MUL_OVERFLOW_P(a, b) \
__builtin_mul_overflow_p((a), (b), (__typeof__(a * b))0)
#elif defined HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW
#define MUL_OVERFLOW_P(a, b) \
RB_GNUC_EXTENSION_BLOCK(__typeof__(a) c; __builtin_mul_overflow((a), (b), &c))
#endif
#define MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, min, max) ( \
(a) == 0 ? 0 : \
(a) == -1 ? (b) < -(max) : \
(a) > 0 ? \
((b) > 0 ? (max) / (a) < (b) : (min) / (a) > (b)) : \
((b) > 0 ? (min) / (a) < (b) : (max) / (a) > (b)))
#ifdef HAVE_BUILTIN___BUILTIN_MUL_OVERFLOW_P
/* __builtin_mul_overflow_p can take bitfield */
/* and GCC permits bitfields for integers other than int */
#define MUL_OVERFLOW_FIXNUM_P(a, b) RB_GNUC_EXTENSION_BLOCK( \
struct { long fixnum : SIZEOF_LONG * CHAR_BIT - 1; } c; \
__builtin_mul_overflow_p((a), (b), c.fixnum); \
)
#else
#define MUL_OVERFLOW_FIXNUM_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXNUM_MIN, FIXNUM_MAX)
#endif
#ifdef MUL_OVERFLOW_P
#define MUL_OVERFLOW_LONG_LONG_P(a, b) MUL_OVERFLOW_P(a, b)
#define MUL_OVERFLOW_LONG_P(a, b) MUL_OVERFLOW_P(a, b)
#define MUL_OVERFLOW_INT_P(a, b) MUL_OVERFLOW_P(a, b)
#else
#define MUL_OVERFLOW_LONG_LONG_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, LLONG_MIN, LLONG_MAX)
#define MUL_OVERFLOW_LONG_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, LONG_MIN, LONG_MAX)
#define MUL_OVERFLOW_INT_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, INT_MIN, INT_MAX)
#endif
#ifndef swap16
# ifdef HAVE_BUILTIN___BUILTIN_BSWAP16
# define swap16(x) __builtin_bswap16(x)
# endif
#endif
#ifndef swap16
# define swap16(x) ((uint16_t)((((x)&0xFF)<<8) | (((x)>>8)&0xFF)))
#endif
#ifndef swap32
# ifdef HAVE_BUILTIN___BUILTIN_BSWAP32
# define swap32(x) __builtin_bswap32(x)
# endif
#endif
#ifndef swap32
# define swap32(x) ((uint32_t)((((x)&0xFF)<<24) \
|(((x)>>24)&0xFF) \
|(((x)&0x0000FF00)<<8) \
|(((x)&0x00FF0000)>>8) ))
#endif
#ifndef swap64
# ifdef HAVE_BUILTIN___BUILTIN_BSWAP64
# define swap64(x) __builtin_bswap64(x)
# endif
#endif
#ifndef swap64
# ifdef HAVE_INT64_T
# define byte_in_64bit(n) ((uint64_t)0xff << (n))
# define swap64(x) ((uint64_t)((((x)&byte_in_64bit(0))<<56) \
|(((x)>>56)&0xFF) \
|(((x)&byte_in_64bit(8))<<40) \
|(((x)&byte_in_64bit(48))>>40) \
|(((x)&byte_in_64bit(16))<<24) \
|(((x)&byte_in_64bit(40))>>24) \
|(((x)&byte_in_64bit(24))<<8) \
|(((x)&byte_in_64bit(32))>>8)))
# endif
#endif
static inline unsigned int
nlz_int(unsigned int x)
{
#if defined(HAVE_BUILTIN___BUILTIN_CLZ)
if (x == 0) return SIZEOF_INT * CHAR_BIT;
return (unsigned int)__builtin_clz(x);
#else
unsigned int y;
# if 64 < SIZEOF_INT * CHAR_BIT
unsigned int n = 128;
# elif 32 < SIZEOF_INT * CHAR_BIT
unsigned int n = 64;
# else
unsigned int n = 32;
# endif
# if 64 < SIZEOF_INT * CHAR_BIT
y = x >> 64; if (y) {n -= 64; x = y;}
# endif
# if 32 < SIZEOF_INT * CHAR_BIT
y = x >> 32; if (y) {n -= 32; x = y;}
# endif
y = x >> 16; if (y) {n -= 16; x = y;}
y = x >> 8; if (y) {n -= 8; x = y;}
y = x >> 4; if (y) {n -= 4; x = y;}
y = x >> 2; if (y) {n -= 2; x = y;}
y = x >> 1; if (y) {return n - 2;}
return (unsigned int)(n - x);
#endif
}
static inline unsigned int
nlz_long(unsigned long x)
{
#if defined(HAVE_BUILTIN___BUILTIN_CLZL)
if (x == 0) return SIZEOF_LONG * CHAR_BIT;
return (unsigned int)__builtin_clzl(x);
#else
unsigned long y;
# if 64 < SIZEOF_LONG * CHAR_BIT
unsigned int n = 128;
# elif 32 < SIZEOF_LONG * CHAR_BIT
unsigned int n = 64;
# else
unsigned int n = 32;
# endif
# if 64 < SIZEOF_LONG * CHAR_BIT
y = x >> 64; if (y) {n -= 64; x = y;}
# endif
# if 32 < SIZEOF_LONG * CHAR_BIT
y = x >> 32; if (y) {n -= 32; x = y;}
# endif
y = x >> 16; if (y) {n -= 16; x = y;}
y = x >> 8; if (y) {n -= 8; x = y;}
y = x >> 4; if (y) {n -= 4; x = y;}
y = x >> 2; if (y) {n -= 2; x = y;}
y = x >> 1; if (y) {return n - 2;}
return (unsigned int)(n - x);
#endif
}
#ifdef HAVE_LONG_LONG
static inline unsigned int
nlz_long_long(unsigned LONG_LONG x)
{
#if defined(HAVE_BUILTIN___BUILTIN_CLZLL)
if (x == 0) return SIZEOF_LONG_LONG * CHAR_BIT;
return (unsigned int)__builtin_clzll(x);
#else
unsigned LONG_LONG y;
# if 64 < SIZEOF_LONG_LONG * CHAR_BIT
unsigned int n = 128;
# elif 32 < SIZEOF_LONG_LONG * CHAR_BIT
unsigned int n = 64;
# else
unsigned int n = 32;
# endif
# if 64 < SIZEOF_LONG_LONG * CHAR_BIT
y = x >> 64; if (y) {n -= 64; x = y;}
# endif
# if 32 < SIZEOF_LONG_LONG * CHAR_BIT
y = x >> 32; if (y) {n -= 32; x = y;}
# endif
y = x >> 16; if (y) {n -= 16; x = y;}
y = x >> 8; if (y) {n -= 8; x = y;}
y = x >> 4; if (y) {n -= 4; x = y;}
y = x >> 2; if (y) {n -= 2; x = y;}
y = x >> 1; if (y) {return n - 2;}
return (unsigned int)(n - x);
#endif
}
#endif
#ifdef HAVE_UINT128_T
static inline unsigned int
nlz_int128(uint128_t x)
{
uint128_t y;
unsigned int n = 128;
y = x >> 64; if (y) {n -= 64; x = y;}
y = x >> 32; if (y) {n -= 32; x = y;}
y = x >> 16; if (y) {n -= 16; x = y;}
y = x >> 8; if (y) {n -= 8; x = y;}
y = x >> 4; if (y) {n -= 4; x = y;}
y = x >> 2; if (y) {n -= 2; x = y;}
y = x >> 1; if (y) {return n - 2;}
return (unsigned int)(n - x);
}
#endif
static inline unsigned int
nlz_intptr(uintptr_t x)
{
#if SIZEOF_UINTPTR_T == SIZEOF_INT
return nlz_int(x);
#elif SIZEOF_UINTPTR_T == SIZEOF_LONG
return nlz_long(x);
#elif SIZEOF_UINTPTR_T == SIZEOF_LONG_LONG
return nlz_long_long(x);
#else
#error no known integer type corresponds uintptr_t
return /* sane compiler */ ~0;
#endif
}
static inline unsigned int
rb_popcount32(uint32_t x)
{
#ifdef HAVE_BUILTIN___BUILTIN_POPCOUNT
return (unsigned int)__builtin_popcount(x);
#else
x = (x & 0x55555555) + (x >> 1 & 0x55555555);
x = (x & 0x33333333) + (x >> 2 & 0x33333333);
x = (x & 0x0f0f0f0f) + (x >> 4 & 0x0f0f0f0f);
x = (x & 0x001f001f) + (x >> 8 & 0x001f001f);
return (x & 0x0000003f) + (x >>16 & 0x0000003f);
#endif
}
static inline int
rb_popcount64(uint64_t x)
{
#ifdef HAVE_BUILTIN___BUILTIN_POPCOUNT
return __builtin_popcountll(x);
#else
x = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555);
x = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333);
x = (x & 0x0707070707070707) + (x >> 4 & 0x0707070707070707);
x = (x & 0x001f001f001f001f) + (x >> 8 & 0x001f001f001f001f);
x = (x & 0x0000003f0000003f) + (x >>16 & 0x0000003f0000003f);
return (x & 0x7f) + (x >>32 & 0x7f);
#endif
}
static inline int
rb_popcount_intptr(uintptr_t x)
{
#if SIZEOF_VOIDP == 8
return rb_popcount64(x);
#elif SIZEOF_VOIDP == 4
return rb_popcount32(x);
#endif
}
static inline int
ntz_int32(uint32_t x)
{
#ifdef HAVE_BUILTIN___BUILTIN_CTZ
return __builtin_ctz(x);
#else
return rb_popcount32((~x) & (x-1));
#endif
}
static inline int
ntz_int64(uint64_t x)
{
#ifdef HAVE_BUILTIN___BUILTIN_CTZLL
return __builtin_ctzll(x);
#else
return rb_popcount64((~x) & (x-1));
#endif
}
static inline int
ntz_intptr(uintptr_t x)
{
#if SIZEOF_VOIDP == 8
return ntz_int64(x);
#elif SIZEOF_VOIDP == 4
return ntz_int32(x);
#endif
}
#if HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
# define DLONG LONG_LONG
# define DL2NUM(x) LL2NUM(x)
#elif defined(HAVE_INT128_T)
# define DLONG int128_t
# define DL2NUM(x) (RB_FIXABLE(x) ? LONG2FIX(x) : rb_int128t2big(x))
VALUE rb_int128t2big(int128_t n);
#endif
static inline long
rb_overflowed_fix_to_int(long x)
{
return (long)((unsigned long)(x >> 1) ^ (1LU << (SIZEOF_LONG * CHAR_BIT - 1)));
}
static inline VALUE
rb_fix_plus_fix(VALUE x, VALUE y)
{
#ifdef HAVE_BUILTIN___BUILTIN_ADD_OVERFLOW
long lz;
/* NOTE
* (1) `LONG2FIX(FIX2LONG(x)+FIX2LONG(y))`
+ = `((lx*2+1)/2 + (ly*2+1)/2)*2+1`
+ = `lx*2 + ly*2 + 1`
+ = `(lx*2+1) + (ly*2+1) - 1`
+ = `x + y - 1`
* (2) Fixnum's LSB is always 1.
* It means you can always run `x - 1` without overflow.
* (3) Of course `z = x + (y-1)` may overflow.
* At that time true value is
* * positive: 0b0 1xxx...1, and z = 0b1xxx...1
* * nevative: 0b1 0xxx...1, and z = 0b0xxx...1
* To convert this true value to long,
* (a) Use arithmetic shift
* * positive: 0b11xxx...
* * negative: 0b00xxx...
* (b) invert MSB
* * positive: 0b01xxx...
* * negative: 0b10xxx...
*/
if (__builtin_add_overflow((long)x, (long)y-1, &lz)) {
return rb_int2big(rb_overflowed_fix_to_int(lz));
}
else {
return (VALUE)lz;
}
#else
long lz = FIX2LONG(x) + FIX2LONG(y);
return LONG2NUM(lz);
#endif
}
static inline VALUE
rb_fix_minus_fix(VALUE x, VALUE y)
{
#ifdef HAVE_BUILTIN___BUILTIN_SUB_OVERFLOW
long lz;
if (__builtin_sub_overflow((long)x, (long)y-1, &lz)) {
return rb_int2big(rb_overflowed_fix_to_int(lz));
}
else {
return (VALUE)lz;
}
#else
long lz = FIX2LONG(x) - FIX2LONG(y);
return LONG2NUM(lz);
#endif
}
/* arguments must be Fixnum */
static inline VALUE
rb_fix_mul_fix(VALUE x, VALUE y)
{
long lx = FIX2LONG(x);
long ly = FIX2LONG(y);
#ifdef DLONG
return DL2NUM((DLONG)lx * (DLONG)ly);
#else
if (MUL_OVERFLOW_FIXNUM_P(lx, ly)) {
return rb_big_mul(rb_int2big(lx), rb_int2big(ly));
}
else {
return LONG2FIX(lx * ly);
}
#endif
}
/*
* This behaves different from C99 for negative arguments.
* Note that div may overflow fixnum.
*/
static inline void
rb_fix_divmod_fix(VALUE a, VALUE b, VALUE *divp, VALUE *modp)
{
/* assume / and % comply C99.
* ldiv(3) won't be inlined by GCC and clang.
* I expect / and % are compiled as single idiv.
*/
long x = FIX2LONG(a);
long y = FIX2LONG(b);
long div, mod;
if (x == FIXNUM_MIN && y == -1) {
if (divp) *divp = LONG2NUM(-FIXNUM_MIN);
if (modp) *modp = LONG2FIX(0);
return;
}
div = x / y;
mod = x % y;
if (y > 0 ? mod < 0 : mod > 0) {
mod += y;
div -= 1;
}
if (divp) *divp = LONG2FIX(div);
if (modp) *modp = LONG2FIX(mod);
}
/* div() for Ruby
* This behaves different from C99 for negative arguments.
*/
static inline VALUE
rb_fix_div_fix(VALUE x, VALUE y)
{
VALUE div;
rb_fix_divmod_fix(x, y, &div, NULL);
return div;
}
/* mod() for Ruby
* This behaves different from C99 for negative arguments.
*/
static inline VALUE
rb_fix_mod_fix(VALUE x, VALUE y)
{
VALUE mod;
rb_fix_divmod_fix(x, y, NULL, &mod);
return mod;
}
#if defined(HAVE_UINT128_T) && defined(HAVE_LONG_LONG)
# define bit_length(x) \
(unsigned int) \
(sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \
sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \
sizeof(x) <= SIZEOF_LONG_LONG ? SIZEOF_LONG_LONG * CHAR_BIT - nlz_long_long((unsigned LONG_LONG)(x)) : \
SIZEOF_INT128_T * CHAR_BIT - nlz_int128((uint128_t)(x)))
#elif defined(HAVE_UINT128_T)
# define bit_length(x) \
(unsigned int) \
(sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \
sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \
SIZEOF_INT128_T * CHAR_BIT - nlz_int128((uint128_t)(x)))
#elif defined(HAVE_LONG_LONG)
# define bit_length(x) \
(unsigned int) \
(sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \
sizeof(x) <= SIZEOF_LONG ? SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)) : \
SIZEOF_LONG_LONG * CHAR_BIT - nlz_long_long((unsigned LONG_LONG)(x)))
#else
# define bit_length(x) \
(unsigned int) \
(sizeof(x) <= SIZEOF_INT ? SIZEOF_INT * CHAR_BIT - nlz_int((unsigned int)(x)) : \
SIZEOF_LONG * CHAR_BIT - nlz_long((unsigned long)(x)))
#endif
#ifndef BDIGIT
# if SIZEOF_INT*2 <= SIZEOF_LONG_LONG
# define BDIGIT unsigned int
# define SIZEOF_BDIGIT SIZEOF_INT
# define BDIGIT_DBL unsigned LONG_LONG
# define BDIGIT_DBL_SIGNED LONG_LONG
# define PRI_BDIGIT_PREFIX ""
# define PRI_BDIGIT_DBL_PREFIX PRI_LL_PREFIX
# elif SIZEOF_INT*2 <= SIZEOF_LONG
# define BDIGIT unsigned int
# define SIZEOF_BDIGIT SIZEOF_INT
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX ""
# define PRI_BDIGIT_DBL_PREFIX "l"
# elif SIZEOF_SHORT*2 <= SIZEOF_LONG
# define BDIGIT unsigned short
# define SIZEOF_BDIGIT SIZEOF_SHORT
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX "h"
# define PRI_BDIGIT_DBL_PREFIX "l"
# else
# define BDIGIT unsigned short
# define SIZEOF_BDIGIT (SIZEOF_LONG/2)
# define SIZEOF_ACTUAL_BDIGIT SIZEOF_LONG
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX "h"
# define PRI_BDIGIT_DBL_PREFIX "l"
# endif
#endif
#ifndef SIZEOF_ACTUAL_BDIGIT
# define SIZEOF_ACTUAL_BDIGIT SIZEOF_BDIGIT
#endif
#ifdef PRI_BDIGIT_PREFIX
# define PRIdBDIGIT PRI_BDIGIT_PREFIX"d"
# define PRIiBDIGIT PRI_BDIGIT_PREFIX"i"
# define PRIoBDIGIT PRI_BDIGIT_PREFIX"o"
# define PRIuBDIGIT PRI_BDIGIT_PREFIX"u"
# define PRIxBDIGIT PRI_BDIGIT_PREFIX"x"
# define PRIXBDIGIT PRI_BDIGIT_PREFIX"X"
#endif
#ifdef PRI_BDIGIT_DBL_PREFIX
# define PRIdBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"d"
# define PRIiBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"i"
# define PRIoBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"o"
# define PRIuBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"u"
# define PRIxBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"x"
# define PRIXBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"X"
#endif
#define BIGNUM_EMBED_LEN_NUMBITS 3
#ifndef BIGNUM_EMBED_LEN_MAX
# if (SIZEOF_VALUE*RVALUE_EMBED_LEN_MAX/SIZEOF_ACTUAL_BDIGIT) < (1 << BIGNUM_EMBED_LEN_NUMBITS)-1
# define BIGNUM_EMBED_LEN_MAX (SIZEOF_VALUE*RVALUE_EMBED_LEN_MAX/SIZEOF_ACTUAL_BDIGIT)
# else
# define BIGNUM_EMBED_LEN_MAX ((1 << BIGNUM_EMBED_LEN_NUMBITS)-1)
# endif
#endif
struct RBignum {
struct RBasic basic;
union {
struct {
size_t len;
BDIGIT *digits;
} heap;
BDIGIT ary[BIGNUM_EMBED_LEN_MAX];
} as;
};
#define BIGNUM_SIGN_BIT ((VALUE)FL_USER1)
/* sign: positive:1, negative:0 */
#define BIGNUM_SIGN(b) ((RBASIC(b)->flags & BIGNUM_SIGN_BIT) != 0)
#define BIGNUM_SET_SIGN(b,sign) \
((sign) ? (RBASIC(b)->flags |= BIGNUM_SIGN_BIT) \
: (RBASIC(b)->flags &= ~BIGNUM_SIGN_BIT))
#define BIGNUM_POSITIVE_P(b) BIGNUM_SIGN(b)
#define BIGNUM_NEGATIVE_P(b) (!BIGNUM_SIGN(b))
#define BIGNUM_NEGATE(b) (RBASIC(b)->flags ^= BIGNUM_SIGN_BIT)
#define BIGNUM_EMBED_FLAG ((VALUE)FL_USER2)
#define BIGNUM_EMBED_LEN_MASK \
(~(~(VALUE)0U << BIGNUM_EMBED_LEN_NUMBITS) << BIGNUM_EMBED_LEN_SHIFT)
#define BIGNUM_EMBED_LEN_SHIFT \
(FL_USHIFT+3) /* bit offset of BIGNUM_EMBED_LEN_MASK */
#define BIGNUM_LEN(b) \
((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \
(size_t)((RBASIC(b)->flags >> BIGNUM_EMBED_LEN_SHIFT) & \
(BIGNUM_EMBED_LEN_MASK >> BIGNUM_EMBED_LEN_SHIFT)) : \
RBIGNUM(b)->as.heap.len)
/* LSB:BIGNUM_DIGITS(b)[0], MSB:BIGNUM_DIGITS(b)[BIGNUM_LEN(b)-1] */
#define BIGNUM_DIGITS(b) \
((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \
RBIGNUM(b)->as.ary : \
RBIGNUM(b)->as.heap.digits)
#define BIGNUM_LENINT(b) rb_long2int(BIGNUM_LEN(b))
#define RBIGNUM(obj) (R_CAST(RBignum)(obj))
struct RRational {
struct RBasic basic;
VALUE num;
VALUE den;
};
#define RRATIONAL(obj) (R_CAST(RRational)(obj))
#define RRATIONAL_SET_NUM(rat, n) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->num,(n))
#define RRATIONAL_SET_DEN(rat, d) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->den,(d))
struct RFloat {
struct RBasic basic;
double float_value;
};
#define RFLOAT(obj) (R_CAST(RFloat)(obj))
struct RComplex {
struct RBasic basic;
VALUE real;
VALUE imag;
};
#define RCOMPLEX(obj) (R_CAST(RComplex)(obj))
/* shortcut macro for internal only */
#define RCOMPLEX_SET_REAL(cmp, r) RB_OBJ_WRITE((cmp), &((struct RComplex *)(cmp))->real,(r))
#define RCOMPLEX_SET_IMAG(cmp, i) RB_OBJ_WRITE((cmp), &((struct RComplex *)(cmp))->imag,(i))
enum ruby_rhash_flags {
RHASH_PROC_DEFAULT = FL_USER2, /* FL 2 */
RHASH_ST_TABLE_FLAG = FL_USER3, /* FL 3 */
#define RHASH_AR_TABLE_MAX_SIZE SIZEOF_VALUE
RHASH_AR_TABLE_SIZE_MASK = (FL_USER4|FL_USER5|FL_USER6|FL_USER7), /* FL 4..7 */
RHASH_AR_TABLE_SIZE_SHIFT = (FL_USHIFT+4),
RHASH_AR_TABLE_BOUND_MASK = (FL_USER8|FL_USER9|FL_USER10|FL_USER11), /* FL 8..11 */
RHASH_AR_TABLE_BOUND_SHIFT = (FL_USHIFT+8),
// we can not put it in "enum" because it can exceed "int" range.
#define RHASH_LEV_MASK (FL_USER13 | FL_USER14 | FL_USER15 | /* FL 13..19 */ \
FL_USER16 | FL_USER17 | FL_USER18 | FL_USER19)
#if USE_TRANSIENT_HEAP
RHASH_TRANSIENT_FLAG = FL_USER12, /* FL 12 */
#endif
RHASH_LEV_SHIFT = (FL_USHIFT + 13),
RHASH_LEV_MAX = 127, /* 7 bits */
RHASH_ENUM_END
};
#define RHASH_AR_TABLE_SIZE_RAW(h) \
((unsigned int)((RBASIC(h)->flags & RHASH_AR_TABLE_SIZE_MASK) >> RHASH_AR_TABLE_SIZE_SHIFT))
int rb_hash_ar_table_p(VALUE hash);
struct ar_table_struct *rb_hash_ar_table(VALUE hash);
st_table *rb_hash_st_table(VALUE hash);
void rb_hash_st_table_set(VALUE hash, st_table *st);
#if 0 /* for debug */
#define RHASH_AR_TABLE_P(hash) rb_hash_ar_table_p(hash)
#define RHASH_AR_TABLE(h) rb_hash_ar_table(h)
#define RHASH_ST_TABLE(h) rb_hash_st_table(h)
#else
#define RHASH_AR_TABLE_P(hash) (!FL_TEST_RAW((hash), RHASH_ST_TABLE_FLAG))
#define RHASH_AR_TABLE(hash) (RHASH(hash)->as.ar)
#define RHASH_ST_TABLE(hash) (RHASH(hash)->as.st)
#endif
#define RHASH(obj) (R_CAST(RHash)(obj))
#define RHASH_ST_SIZE(h) (RHASH_ST_TABLE(h)->num_entries)
#define RHASH_ST_TABLE_P(h) (!RHASH_AR_TABLE_P(h))
#define RHASH_ST_CLEAR(h) (FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG), RHASH(h)->as.ar = NULL)
#define RHASH_AR_TABLE_SIZE_MASK (VALUE)RHASH_AR_TABLE_SIZE_MASK
#define RHASH_AR_TABLE_SIZE_SHIFT RHASH_AR_TABLE_SIZE_SHIFT
#define RHASH_AR_TABLE_BOUND_MASK (VALUE)RHASH_AR_TABLE_BOUND_MASK
#define RHASH_AR_TABLE_BOUND_SHIFT RHASH_AR_TABLE_BOUND_SHIFT
#if USE_TRANSIENT_HEAP
#define RHASH_TRANSIENT_P(hash) FL_TEST_RAW((hash), RHASH_TRANSIENT_FLAG)
#define RHASH_SET_TRANSIENT_FLAG(h) FL_SET_RAW(h, RHASH_TRANSIENT_FLAG)
#define RHASH_UNSET_TRANSIENT_FLAG(h) FL_UNSET_RAW(h, RHASH_TRANSIENT_FLAG)
#else
#define RHASH_TRANSIENT_P(hash) 0
#define RHASH_SET_TRANSIENT_FLAG(h) ((void)0)
#define RHASH_UNSET_TRANSIENT_FLAG(h) ((void)0)
#endif
#if SIZEOF_VALUE / RHASH_AR_TABLE_MAX_SIZE == 2
typedef uint16_t ar_hint_t;
#elif SIZEOF_VALUE / RHASH_AR_TABLE_MAX_SIZE == 1
typedef unsigned char ar_hint_t;
#else
#error unsupported
#endif
struct RHash {
struct RBasic basic;
union {
st_table *st;
struct ar_table_struct *ar; /* possibly 0 */
} as;
const VALUE ifnone;
union {
ar_hint_t ary[RHASH_AR_TABLE_MAX_SIZE];
VALUE word;
} ar_hint;
};
#ifdef RHASH_IFNONE
# undef RHASH_IFNONE
# undef RHASH_SIZE
# define RHASH_IFNONE(h) (RHASH(h)->ifnone)
# define RHASH_SIZE(h) (RHASH_AR_TABLE_P(h) ? RHASH_AR_TABLE_SIZE_RAW(h) : RHASH_ST_SIZE(h))
#endif /* ifdef RHASH_IFNONE */
struct RMoved {
VALUE flags;
VALUE destination;
VALUE next;
};
/* missing/setproctitle.c */
#ifndef HAVE_SETPROCTITLE
extern void ruby_init_setproctitle(int argc, char *argv[]);
#endif
#define RSTRUCT_EMBED_LEN_MAX RSTRUCT_EMBED_LEN_MAX
#define RSTRUCT_EMBED_LEN_MASK RSTRUCT_EMBED_LEN_MASK
#define RSTRUCT_EMBED_LEN_SHIFT RSTRUCT_EMBED_LEN_SHIFT
enum {
RSTRUCT_EMBED_LEN_MAX = RVALUE_EMBED_LEN_MAX,
RSTRUCT_EMBED_LEN_MASK = (RUBY_FL_USER2|RUBY_FL_USER1),
RSTRUCT_EMBED_LEN_SHIFT = (RUBY_FL_USHIFT+1),
RSTRUCT_TRANSIENT_FLAG = FL_USER3,
RSTRUCT_ENUM_END
};
#if USE_TRANSIENT_HEAP
#define RSTRUCT_TRANSIENT_P(st) FL_TEST_RAW((obj), RSTRUCT_TRANSIENT_FLAG)
#define RSTRUCT_TRANSIENT_SET(st) FL_SET_RAW((st), RSTRUCT_TRANSIENT_FLAG)
#define RSTRUCT_TRANSIENT_UNSET(st) FL_UNSET_RAW((st), RSTRUCT_TRANSIENT_FLAG)
#else
#define RSTRUCT_TRANSIENT_P(st) 0
#define RSTRUCT_TRANSIENT_SET(st) ((void)0)
#define RSTRUCT_TRANSIENT_UNSET(st) ((void)0)
#endif
struct RStruct {
struct RBasic basic;
union {
struct {
long len;
const VALUE *ptr;
} heap;
const VALUE ary[RSTRUCT_EMBED_LEN_MAX];
} as;
};
#undef RSTRUCT_LEN
#undef RSTRUCT_PTR
#undef RSTRUCT_SET
#undef RSTRUCT_GET
#define RSTRUCT_EMBED_LEN(st) \
(long)((RBASIC(st)->flags >> RSTRUCT_EMBED_LEN_SHIFT) & \
(RSTRUCT_EMBED_LEN_MASK >> RSTRUCT_EMBED_LEN_SHIFT))
#define RSTRUCT_LEN(st) rb_struct_len(st)
#define RSTRUCT_LENINT(st) rb_long2int(RSTRUCT_LEN(st))
#define RSTRUCT_CONST_PTR(st) rb_struct_const_ptr(st)
#define RSTRUCT_PTR(st) ((VALUE *)RSTRUCT_CONST_PTR(RB_OBJ_WB_UNPROTECT_FOR(STRUCT, st)))
#define RSTRUCT_SET(st, idx, v) RB_OBJ_WRITE(st, &RSTRUCT_CONST_PTR(st)[idx], (v))
#define RSTRUCT_GET(st, idx) (RSTRUCT_CONST_PTR(st)[idx])
#define RSTRUCT(obj) (R_CAST(RStruct)(obj))
static inline long
rb_struct_len(VALUE st)
{
return (RBASIC(st)->flags & RSTRUCT_EMBED_LEN_MASK) ?
RSTRUCT_EMBED_LEN(st) : RSTRUCT(st)->as.heap.len;
}
static inline const VALUE *
rb_struct_const_ptr(VALUE st)
{
return FIX_CONST_VALUE_PTR((RBASIC(st)->flags & RSTRUCT_EMBED_LEN_MASK) ?
RSTRUCT(st)->as.ary : RSTRUCT(st)->as.heap.ptr);
}
static inline const VALUE *
rb_struct_const_heap_ptr(VALUE st)
{
/* TODO: check embed on debug mode */
return RSTRUCT(st)->as.heap.ptr;
}
/* class.c */
struct rb_deprecated_classext_struct {
char conflict[sizeof(VALUE) * 3];
};
struct rb_subclass_entry;
typedef struct rb_subclass_entry rb_subclass_entry_t;
struct rb_subclass_entry {
VALUE klass;
rb_subclass_entry_t *next;
};
#if defined(HAVE_LONG_LONG)
typedef unsigned LONG_LONG rb_serial_t;
#define SERIALT2NUM ULL2NUM
#define PRI_SERIALT_PREFIX PRI_LL_PREFIX
#elif defined(HAVE_UINT64_T)
typedef uint64_t rb_serial_t;
#define SERIALT2NUM SIZET2NUM
#define PRI_SERIALT_PREFIX PRI_64_PREFIX
#else
typedef unsigned long rb_serial_t;
#define SERIALT2NUM ULONG2NUM
#define PRI_SERIALT_PREFIX PRI_LONG_PREFIX
#endif
struct rb_classext_struct {
struct st_table *iv_index_tbl;
struct st_table *iv_tbl;
struct rb_id_table *const_tbl;
struct rb_id_table *callable_m_tbl;
rb_subclass_entry_t *subclasses;
rb_subclass_entry_t **parent_subclasses;
/**
* In the case that this is an `ICLASS`, `module_subclasses` points to the link
* in the module's `subclasses` list that indicates that the klass has been
* included. Hopefully that makes sense.
*/
rb_subclass_entry_t **module_subclasses;
rb_serial_t class_serial;
const VALUE origin_;
const VALUE refined_class;
rb_alloc_func_t allocator;
};
typedef struct rb_classext_struct rb_classext_t;
#undef RClass
struct RClass {
struct RBasic basic;
VALUE super;
rb_classext_t *ptr;
struct rb_id_table *m_tbl;
};
void rb_class_subclass_add(VALUE super, VALUE klass);
void rb_class_remove_from_super_subclasses(VALUE);
int rb_singleton_class_internal_p(VALUE sklass);
#define RCLASS_EXT(c) (RCLASS(c)->ptr)
#define RCLASS_IV_TBL(c) (RCLASS_EXT(c)->iv_tbl)
#define RCLASS_CONST_TBL(c) (RCLASS_EXT(c)->const_tbl)
#define RCLASS_M_TBL(c) (RCLASS(c)->m_tbl)
#define RCLASS_CALLABLE_M_TBL(c) (RCLASS_EXT(c)->callable_m_tbl)
#define RCLASS_IV_INDEX_TBL(c) (RCLASS_EXT(c)->iv_index_tbl)
#define RCLASS_ORIGIN(c) (RCLASS_EXT(c)->origin_)
#define RCLASS_REFINED_CLASS(c) (RCLASS_EXT(c)->refined_class)
#define RCLASS_SERIAL(c) (RCLASS_EXT(c)->class_serial)
#define RCLASS_CLONED FL_USER6
#define RICLASS_IS_ORIGIN FL_USER5
static inline void
RCLASS_SET_ORIGIN(VALUE klass, VALUE origin)
{
RB_OBJ_WRITE(klass, &RCLASS_ORIGIN(klass), origin);
if (klass != origin) FL_SET(origin, RICLASS_IS_ORIGIN);
}
#undef RCLASS_SUPER
static inline VALUE
RCLASS_SUPER(VALUE klass)
{
return RCLASS(klass)->super;
}
static inline VALUE
RCLASS_SET_SUPER(VALUE klass, VALUE super)
{
if (super) {
rb_class_remove_from_super_subclasses(klass);
rb_class_subclass_add(super, klass);
}
RB_OBJ_WRITE(klass, &RCLASS(klass)->super, super);
return super;
}
/* IMEMO: Internal memo object */
#ifndef IMEMO_DEBUG
#define IMEMO_DEBUG 0
#endif
struct RIMemo {
VALUE flags;
VALUE v0;
VALUE v1;
VALUE v2;
VALUE v3;
};
enum imemo_type {
imemo_env = 0,
imemo_cref = 1, /*!< class reference */
imemo_svar = 2, /*!< special variable */
imemo_throw_data = 3,
imemo_ifunc = 4, /*!< iterator function */
imemo_memo = 5,
imemo_ment = 6,
imemo_iseq = 7,
imemo_tmpbuf = 8,
imemo_ast = 9,
imemo_parser_strterm = 10
};
#define IMEMO_MASK 0x0f
static inline enum imemo_type
imemo_type(VALUE imemo)
{
return (RBASIC(imemo)->flags >> FL_USHIFT) & IMEMO_MASK;
}
static inline int
imemo_type_p(VALUE imemo, enum imemo_type imemo_type)
{
if (LIKELY(!RB_SPECIAL_CONST_P(imemo))) {
/* fixed at compile time if imemo_type is given. */
const VALUE mask = (IMEMO_MASK << FL_USHIFT) | RUBY_T_MASK;
const VALUE expected_type = (imemo_type << FL_USHIFT) | T_IMEMO;
/* fixed at runtime. */
return expected_type == (RBASIC(imemo)->flags & mask);
}
else {
return 0;
}
}
/* FL_USER0 to FL_USER3 is for type */
#define IMEMO_FL_USHIFT (FL_USHIFT + 4)
#define IMEMO_FL_USER0 FL_USER4
#define IMEMO_FL_USER1 FL_USER5
#define IMEMO_FL_USER2 FL_USER6
#define IMEMO_FL_USER3 FL_USER7
#define IMEMO_FL_USER4 FL_USER8
/* CREF (Class REFerence) is defined in method.h */
/*! SVAR (Special VARiable) */
struct vm_svar {
VALUE flags;
const VALUE cref_or_me; /*!< class reference or rb_method_entry_t */
const VALUE lastline;
const VALUE backref;
const VALUE others;
};
#define THROW_DATA_CONSUMED IMEMO_FL_USER0
/*! THROW_DATA */
struct vm_throw_data {
VALUE flags;
VALUE reserved;
const VALUE throw_obj;
const struct rb_control_frame_struct *catch_frame;
int throw_state;
};
#define THROW_DATA_P(err) RB_TYPE_P((VALUE)(err), T_IMEMO)
/* IFUNC (Internal FUNCtion) */
struct vm_ifunc_argc {
#if SIZEOF_INT * 2 > SIZEOF_VALUE
signed int min: (SIZEOF_VALUE * CHAR_BIT) / 2;
signed int max: (SIZEOF_VALUE * CHAR_BIT) / 2;
#else
int min, max;
#endif
};
/*! IFUNC (Internal FUNCtion) */
struct vm_ifunc {
VALUE flags;
VALUE reserved;
rb_block_call_func_t func;
const void *data;
struct vm_ifunc_argc argc;
};
#define IFUNC_NEW(a, b, c) ((struct vm_ifunc *)rb_imemo_new(imemo_ifunc, (VALUE)(a), (VALUE)(b), (VALUE)(c), 0))
struct vm_ifunc *rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc);
static inline struct vm_ifunc *
rb_vm_ifunc_proc_new(rb_block_call_func_t func, const void *data)
{
return rb_vm_ifunc_new(func, data, 0, UNLIMITED_ARGUMENTS);
}
typedef struct rb_imemo_tmpbuf_struct {
VALUE flags;
VALUE reserved;
VALUE *ptr; /* malloc'ed buffer */
struct rb_imemo_tmpbuf_struct *next; /* next imemo */
size_t cnt; /* buffer size in VALUE */
} rb_imemo_tmpbuf_t;
VALUE rb_imemo_tmpbuf_auto_free_pointer(void *buf);
VALUE rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(void *buf, size_t cnt);
rb_imemo_tmpbuf_t *rb_imemo_tmpbuf_parser_heap(void *buf, rb_imemo_tmpbuf_t *old_heap, size_t cnt);
#define RB_IMEMO_TMPBUF_PTR(v) \
((void *)(((const struct rb_imemo_tmpbuf_struct *)(v))->ptr))
static inline VALUE
rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(VALUE str)
{
const void *src;
VALUE imemo;
rb_imemo_tmpbuf_t *tmpbuf;
void *dst;
size_t len;
SafeStringValue(str);
/* create tmpbuf to keep the pointer before xmalloc */
imemo = rb_imemo_tmpbuf_auto_free_pointer(NULL);
tmpbuf = (rb_imemo_tmpbuf_t *)imemo;
len = RSTRING_LEN(str);
src = RSTRING_PTR(str);
dst = ruby_xmalloc(len);
memcpy(dst, src, len);
tmpbuf->ptr = dst;
return imemo;
}
void rb_strterm_mark(VALUE obj);
/*! MEMO
*
* @see imemo_type
* */
struct MEMO {
VALUE flags;
VALUE reserved;
const VALUE v1;
const VALUE v2;
union {
long cnt;
long state;
const VALUE value;
void (*func)(void);
} u3;
};
#define MEMO_V1_SET(m, v) RB_OBJ_WRITE((m), &(m)->v1, (v))
#define MEMO_V2_SET(m, v) RB_OBJ_WRITE((m), &(m)->v2, (v))
#define MEMO_CAST(m) ((struct MEMO *)m)
#define MEMO_NEW(a, b, c) ((struct MEMO *)rb_imemo_new(imemo_memo, (VALUE)(a), (VALUE)(b), (VALUE)(c), 0))
#define roomof(x, y) (((x) + (y) - 1) / (y))
#define type_roomof(x, y) roomof(sizeof(x), sizeof(y))
#define MEMO_FOR(type, value) ((type *)RARRAY_PTR(value))
#define NEW_MEMO_FOR(type, value) \
((value) = rb_ary_tmp_new_fill(type_roomof(type, VALUE)), MEMO_FOR(type, value))
#define NEW_PARTIAL_MEMO_FOR(type, value, member) \
((value) = rb_ary_tmp_new_fill(type_roomof(type, VALUE)), \
rb_ary_set_len((value), offsetof(type, member) / sizeof(VALUE)), \
MEMO_FOR(type, value))
#define STRING_P(s) (RB_TYPE_P((s), T_STRING) && CLASS_OF(s) == rb_cString)
#ifdef RUBY_INTEGER_UNIFICATION
# define rb_cFixnum rb_cInteger
# define rb_cBignum rb_cInteger
#endif
enum {
cmp_opt_Fixnum,
cmp_opt_String,
cmp_opt_Float,
cmp_optimizable_count
};
struct cmp_opt_data {
unsigned int opt_methods;
unsigned int opt_inited;
};
#define NEW_CMP_OPT_MEMO(type, value) \
NEW_PARTIAL_MEMO_FOR(type, value, cmp_opt)
#define CMP_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(cmp_opt_,type))
#define CMP_OPTIMIZABLE(data, type) \
(((data).opt_inited & CMP_OPTIMIZABLE_BIT(type)) ? \
((data).opt_methods & CMP_OPTIMIZABLE_BIT(type)) : \
(((data).opt_inited |= CMP_OPTIMIZABLE_BIT(type)), \
rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
((data).opt_methods |= CMP_OPTIMIZABLE_BIT(type))))
#define OPTIMIZED_CMP(a, b, data) \
((FIXNUM_P(a) && FIXNUM_P(b) && CMP_OPTIMIZABLE(data, Fixnum)) ? \
(((long)a > (long)b) ? 1 : ((long)a < (long)b) ? -1 : 0) : \
(STRING_P(a) && STRING_P(b) && CMP_OPTIMIZABLE(data, String)) ? \
rb_str_cmp(a, b) : \
(RB_FLOAT_TYPE_P(a) && RB_FLOAT_TYPE_P(b) && CMP_OPTIMIZABLE(data, Float)) ? \
rb_float_cmp(a, b) : \
rb_cmpint(rb_funcallv(a, id_cmp, 1, &b), a, b))
/* ment is in method.h */
/* global variable */
struct rb_global_entry {
struct rb_global_variable *var;
ID id;
};
struct rb_global_entry *rb_global_entry(ID);
VALUE rb_gvar_get(struct rb_global_entry *);
VALUE rb_gvar_set(struct rb_global_entry *, VALUE);
VALUE rb_gvar_defined(struct rb_global_entry *);
/* array.c */
#ifndef ARRAY_DEBUG
#define ARRAY_DEBUG (0+RUBY_DEBUG)
#endif
#ifdef ARRAY_DEBUG
#define RARRAY_PTR_IN_USE_FLAG FL_USER14
#define ARY_PTR_USING_P(ary) FL_TEST_RAW((ary), RARRAY_PTR_IN_USE_FLAG)
#else
/* disable debug function */
#undef RARRAY_PTR_USE_START_TRANSIENT
#undef RARRAY_PTR_USE_END_TRANSIENT
#define RARRAY_PTR_USE_START_TRANSIENT(a) ((VALUE *)RARRAY_CONST_PTR_TRANSIENT(a))
#define RARRAY_PTR_USE_END_TRANSIENT(a)
#define ARY_PTR_USING_P(ary) 0
#endif
#if USE_TRANSIENT_HEAP
#define RARY_TRANSIENT_SET(ary) FL_SET_RAW((ary), RARRAY_TRANSIENT_FLAG);
#define RARY_TRANSIENT_UNSET(ary) FL_UNSET_RAW((ary), RARRAY_TRANSIENT_FLAG);
#else
#undef RARRAY_TRANSIENT_P
#define RARRAY_TRANSIENT_P(a) 0
#define RARY_TRANSIENT_SET(ary) ((void)0)
#define RARY_TRANSIENT_UNSET(ary) ((void)0)
#endif
VALUE rb_ary_last(int, const VALUE *, VALUE);
void rb_ary_set_len(VALUE, long);
void rb_ary_delete_same(VALUE, VALUE);
VALUE rb_ary_tmp_new_fill(long capa);
VALUE rb_ary_at(VALUE, VALUE);
VALUE rb_ary_aref1(VALUE ary, VALUE i);
VALUE rb_ary_aref2(VALUE ary, VALUE b, VALUE e);
size_t rb_ary_memsize(VALUE);
VALUE rb_to_array_type(VALUE obj);
VALUE rb_check_to_array(VALUE ary);
VALUE rb_ary_tmp_new_from_values(VALUE, long, const VALUE *);
VALUE rb_ary_behead(VALUE, long);
#if defined(__GNUC__) && defined(HAVE_VA_ARGS_MACRO)
#define rb_ary_new_from_args(n, ...) \
__extension__ ({ \
const VALUE args_to_new_ary[] = {__VA_ARGS__}; \
if (__builtin_constant_p(n)) { \
STATIC_ASSERT(rb_ary_new_from_args, numberof(args_to_new_ary) == (n)); \
} \
rb_ary_new_from_values(numberof(args_to_new_ary), args_to_new_ary); \
})
#endif
static inline VALUE
rb_ary_entry_internal(VALUE ary, long offset)
{
long len = RARRAY_LEN(ary);
const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
if (len == 0) return Qnil;
if (offset < 0) {
offset += len;
if (offset < 0) return Qnil;
}
else if (len <= offset) {
return Qnil;
}
return ptr[offset];
}
/* MRI debug support */
void rb_obj_info_dump(VALUE obj);
void rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func);
void ruby_debug_breakpoint(void);
// show obj data structure without any side-effect
#define rp(obj) rb_obj_info_dump_loc((VALUE)(obj), __FILE__, __LINE__, __func__)
// same as rp, but add message header
#define rp_m(msg, obj) do { \
fprintf(stderr, "%s", (msg)); \
rb_obj_info_dump((VALUE)obj); \
} while (0)
// `ruby_debug_breakpoint()` does nothing,
// but breakpoint is set in run.gdb, so `make gdb` can stop here.
#define bp() ruby_debug_breakpoint()
/* bignum.c */
extern const char ruby_digitmap[];
double rb_big_fdiv_double(VALUE x, VALUE y);
VALUE rb_big_uminus(VALUE x);
VALUE rb_big_hash(VALUE);
VALUE rb_big_odd_p(VALUE);
VALUE rb_big_even_p(VALUE);
size_t rb_big_size(VALUE);
VALUE rb_integer_float_cmp(VALUE x, VALUE y);
VALUE rb_integer_float_eq(VALUE x, VALUE y);
VALUE rb_cstr_parse_inum(const char *str, ssize_t len, char **endp, int base);
VALUE rb_str_convert_to_inum(VALUE str, int base, int badcheck, int raise_exception);
VALUE rb_big_comp(VALUE x);
VALUE rb_big_aref(VALUE x, VALUE y);
VALUE rb_big_abs(VALUE x);
VALUE rb_big_size_m(VALUE big);
VALUE rb_big_bit_length(VALUE big);
VALUE rb_big_remainder(VALUE x, VALUE y);
VALUE rb_big_gt(VALUE x, VALUE y);
VALUE rb_big_ge(VALUE x, VALUE y);
VALUE rb_big_lt(VALUE x, VALUE y);
VALUE rb_big_le(VALUE x, VALUE y);
VALUE rb_int_powm(int const argc, VALUE * const argv, VALUE const num);
/* class.c */
VALUE rb_class_boot(VALUE);
VALUE rb_class_inherited(VALUE, VALUE);
VALUE rb_make_metaclass(VALUE, VALUE);
VALUE rb_include_class_new(VALUE, VALUE);
void rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE);
void rb_class_detach_subclasses(VALUE);
void rb_class_detach_module_subclasses(VALUE);
void rb_class_remove_from_module_subclasses(VALUE);
VALUE rb_obj_methods(int argc, const VALUE *argv, VALUE obj);
VALUE rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj);
VALUE rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj);
VALUE rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj);
VALUE rb_special_singleton_class(VALUE);
VALUE rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach);
VALUE rb_singleton_class_get(VALUE obj);
void Init_class_hierarchy(void);
int rb_class_has_methods(VALUE c);
void rb_undef_methods_from(VALUE klass, VALUE super);
/* compar.c */
VALUE rb_invcmp(VALUE, VALUE);
/* compile.c */
struct rb_block;
int rb_dvar_defined(ID, const struct rb_block *);
int rb_local_defined(ID, const struct rb_block *);
const char * rb_insns_name(int i);
VALUE rb_insns_name_array(void);
int rb_vm_insn_addr2insn(const void *);
/* complex.c */
VALUE rb_dbl_complex_new_polar_pi(double abs, double ang);
struct rb_thread_struct;
/* cont.c */
VALUE rb_obj_is_fiber(VALUE);
void rb_fiber_reset_root_local_storage(struct rb_thread_struct *);
void ruby_register_rollback_func_for_ensure(VALUE (*ensure_func)(VALUE), VALUE (*rollback_func)(VALUE));
/* debug.c */
PRINTF_ARGS(void ruby_debug_printf(const char*, ...), 1, 2);
/* dir.c */
VALUE rb_dir_getwd_ospath(void);
/* dmyext.c */
void Init_enc(void);
void Init_ext(void);
/* encoding.c */
ID rb_id_encoding(void);
#ifdef RUBY_ENCODING_H
rb_encoding *rb_enc_get_from_index(int index);
rb_encoding *rb_enc_check_str(VALUE str1, VALUE str2);
#endif
int rb_encdb_replicate(const char *alias, const char *orig);
int rb_encdb_alias(const char *alias, const char *orig);
int rb_encdb_dummy(const char *name);
void rb_encdb_declare(const char *name);
void rb_enc_set_base(const char *name, const char *orig);
int rb_enc_set_dummy(int index);
void rb_encdb_set_unicode(int index);
PUREFUNC(int rb_data_is_encoding(VALUE obj));
/* enum.c */
extern VALUE rb_cArithSeq;
VALUE rb_f_send(int argc, VALUE *argv, VALUE recv);
VALUE rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary);
/* error.c */
extern VALUE rb_eEAGAIN;
extern VALUE rb_eEWOULDBLOCK;
extern VALUE rb_eEINPROGRESS;
void rb_report_bug_valist(VALUE file, int line, const char *fmt, va_list args);
VALUE rb_check_backtrace(VALUE);
NORETURN(void rb_async_bug_errno(const char *,int));
const char *rb_builtin_type_name(int t);
const char *rb_builtin_class_name(VALUE x);
PRINTF_ARGS(void rb_sys_warn(const char *fmt, ...), 1, 2);
PRINTF_ARGS(void rb_syserr_warn(int err, const char *fmt, ...), 2, 3);
PRINTF_ARGS(void rb_sys_warning(const char *fmt, ...), 1, 2);
PRINTF_ARGS(void rb_syserr_warning(int err, const char *fmt, ...), 2, 3);
#ifdef RUBY_ENCODING_H
VALUE rb_syntax_error_append(VALUE, VALUE, int, int, rb_encoding*, const char*, va_list);
PRINTF_ARGS(void rb_enc_warn(rb_encoding *enc, const char *fmt, ...), 2, 3);
PRINTF_ARGS(void rb_sys_enc_warn(rb_encoding *enc, const char *fmt, ...), 2, 3);
PRINTF_ARGS(void rb_syserr_enc_warn(int err, rb_encoding *enc, const char *fmt, ...), 3, 4);
PRINTF_ARGS(void rb_enc_warning(rb_encoding *enc, const char *fmt, ...), 2, 3);
PRINTF_ARGS(void rb_sys_enc_warning(rb_encoding *enc, const char *fmt, ...), 2, 3);
PRINTF_ARGS(void rb_syserr_enc_warning(int err, rb_encoding *enc, const char *fmt, ...), 3, 4);
#endif
#define rb_raise_cstr(etype, mesg) \
rb_exc_raise(rb_exc_new_str(etype, rb_str_new_cstr(mesg)))
#define rb_raise_static(etype, mesg) \
rb_exc_raise(rb_exc_new_str(etype, rb_str_new_static(mesg, rb_strlen_lit(mesg))))
VALUE rb_name_err_new(VALUE mesg, VALUE recv, VALUE method);
#define rb_name_err_raise_str(mesg, recv, name) \
rb_exc_raise(rb_name_err_new(mesg, recv, name))
#define rb_name_err_raise(mesg, recv, name) \
rb_name_err_raise_str(rb_fstring_cstr(mesg), (recv), (name))
VALUE rb_nomethod_err_new(VALUE mesg, VALUE recv, VALUE method, VALUE args, int priv);
VALUE rb_key_err_new(VALUE mesg, VALUE recv, VALUE name);
#define rb_key_err_raise(mesg, recv, name) \
rb_exc_raise(rb_key_err_new(mesg, recv, name))
NORETURN(void ruby_deprecated_internal_feature(const char *));
#define DEPRECATED_INTERNAL_FEATURE(func) \
(ruby_deprecated_internal_feature(func), UNREACHABLE)
VALUE rb_warning_warn(VALUE mod, VALUE str);
PRINTF_ARGS(VALUE rb_warning_string(const char *fmt, ...), 1, 2);
/* eval.c */
VALUE rb_refinement_module_get_refined_class(VALUE module);
extern ID ruby_static_id_signo, ruby_static_id_status;
void rb_class_modify_check(VALUE);
#define id_signo ruby_static_id_signo
#define id_status ruby_static_id_status
NORETURN(VALUE rb_f_raise(int argc, VALUE *argv));
/* eval_error.c */
VALUE rb_get_backtrace(VALUE info);
/* eval_jump.c */
void rb_call_end_proc(VALUE data);
void rb_mark_end_proc(void);
/* file.c */
extern const char ruby_null_device[];
VALUE rb_home_dir_of(VALUE user, VALUE result);
VALUE rb_default_home_dir(VALUE result);
VALUE rb_realpath_internal(VALUE basedir, VALUE path, int strict);
VALUE rb_check_realpath(VALUE basedir, VALUE path);
void rb_file_const(const char*, VALUE);
int rb_file_load_ok(const char *);
VALUE rb_file_expand_path_fast(VALUE, VALUE);
VALUE rb_file_expand_path_internal(VALUE, VALUE, int, int, VALUE);
VALUE rb_get_path_check_to_string(VALUE, int);
VALUE rb_get_path_check_convert(VALUE, VALUE, int);
VALUE rb_get_path_check(VALUE, int);
void Init_File(void);
int ruby_is_fd_loadable(int fd);
#ifdef RUBY_FUNCTION_NAME_STRING
# if defined __GNUC__ && __GNUC__ >= 4
# pragma GCC visibility push(default)
# endif
NORETURN(void rb_sys_fail_path_in(const char *func_name, VALUE path));
NORETURN(void rb_syserr_fail_path_in(const char *func_name, int err, VALUE path));
# if defined __GNUC__ && __GNUC__ >= 4
# pragma GCC visibility pop
# endif
# define rb_sys_fail_path(path) rb_sys_fail_path_in(RUBY_FUNCTION_NAME_STRING, path)
# define rb_syserr_fail_path(err, path) rb_syserr_fail_path_in(RUBY_FUNCTION_NAME_STRING, (err), (path))
#else
# define rb_sys_fail_path(path) rb_sys_fail_str(path)
# define rb_syserr_fail_path(err, path) rb_syserr_fail_str((err), (path))
#endif
/* gc.c */
extern VALUE *ruby_initial_gc_stress_ptr;
extern int ruby_disable_gc;
void Init_heap(void);
void *ruby_mimmalloc(size_t size);
void ruby_mimfree(void *ptr);
void rb_objspace_set_event_hook(const rb_event_flag_t event);
#if USE_RGENGC
void rb_gc_writebarrier_remember(VALUE obj);
#else
#define rb_gc_writebarrier_remember(obj) 0
#endif
void ruby_gc_set_params(int safe_level);
void rb_copy_wb_protected_attribute(VALUE dest, VALUE obj);
#if defined(HAVE_MALLOC_USABLE_SIZE) || defined(HAVE_MALLOC_SIZE) || defined(_WIN32)
#define ruby_sized_xrealloc(ptr, new_size, old_size) ruby_xrealloc(ptr, new_size)
#define ruby_sized_xrealloc2(ptr, new_count, element_size, old_count) ruby_xrealloc(ptr, new_count, element_size)
#define ruby_sized_xfree(ptr, size) ruby_xfree(ptr)
#define SIZED_REALLOC_N(var,type,n,old_n) REALLOC_N(var, type, n)
#else
RUBY_SYMBOL_EXPORT_BEGIN
void *ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size) RUBY_ATTR_ALLOC_SIZE((2));
void *ruby_sized_xrealloc2(void *ptr, size_t new_count, size_t element_size, size_t old_count) RUBY_ATTR_ALLOC_SIZE((2, 3));
void ruby_sized_xfree(void *x, size_t size);
RUBY_SYMBOL_EXPORT_END
#define SIZED_REALLOC_N(var,type,n,old_n) ((var)=(type*)ruby_sized_xrealloc((char*)(var), (n) * sizeof(type), (old_n) * sizeof(type)))
#endif
/* optimized version of NEWOBJ() */
#undef NEWOBJF_OF
#undef RB_NEWOBJ_OF
#define RB_NEWOBJ_OF(obj,type,klass,flags) \
type *(obj) = (type*)(((flags) & FL_WB_PROTECTED) ? \
rb_wb_protected_newobj_of(klass, (flags) & ~FL_WB_PROTECTED) : \
rb_wb_unprotected_newobj_of(klass, flags))
#define NEWOBJ_OF(obj,type,klass,flags) RB_NEWOBJ_OF(obj,type,klass,flags)
void *rb_aligned_malloc(size_t, size_t);
void rb_aligned_free(void *);
/* hash.c */
#if RHASH_CONVERT_TABLE_DEBUG
struct st_table *rb_hash_tbl_raw(VALUE hash, const char *file, int line);
#define RHASH_TBL_RAW(h) rb_hash_tbl_raw(h, __FILE__, __LINE__)
#else
struct st_table *rb_hash_tbl_raw(VALUE hash);
#define RHASH_TBL_RAW(h) rb_hash_tbl_raw(h)
#endif
VALUE rb_hash_new_with_size(st_index_t size);
VALUE rb_hash_has_key(VALUE hash, VALUE key);
VALUE rb_hash_default_value(VALUE hash, VALUE key);
VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc);
long rb_objid_hash(st_index_t index);
long rb_dbl_long_hash(double d);
st_table *rb_init_identtable(void);
st_table *rb_init_identtable_with_size(st_index_t size);
VALUE rb_hash_compare_by_id_p(VALUE hash);
VALUE rb_to_hash_type(VALUE obj);
VALUE rb_hash_key_str(VALUE);
VALUE rb_hash_keys(VALUE hash);
VALUE rb_hash_values(VALUE hash);
VALUE rb_hash_rehash(VALUE hash);
VALUE rb_hash_resurrect(VALUE hash);
int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val);
VALUE rb_hash_set_pair(VALUE hash, VALUE pair);
int rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval);
int rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval);
int rb_hash_stlike_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg);
int rb_hash_stlike_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg);
int rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func func, st_data_t arg);
/* inits.c */
void rb_call_inits(void);
/* io.c */
const char *ruby_get_inplace_mode(void);
void ruby_set_inplace_mode(const char *);
ssize_t rb_io_bufread(VALUE io, void *buf, size_t size);
void rb_stdio_set_default_encoding(void);
VALUE rb_io_flush_raw(VALUE, int);
#ifdef RUBY_IO_H
size_t rb_io_memsize(const rb_io_t *);
#endif
int rb_stderr_tty_p(void);
void rb_io_fptr_finalize_internal(void *ptr);
#define rb_io_fptr_finalize rb_io_fptr_finalize_internal
/* load.c */
VALUE rb_get_load_path(void);
VALUE rb_get_expanded_load_path(void);
int rb_require_internal(VALUE fname, int safe);
NORETURN(void rb_load_fail(VALUE, const char*));
/* loadpath.c */
extern const char ruby_exec_prefix[];
extern const char ruby_initial_load_paths[];
/* localeinit.c */
int Init_enc_set_filesystem_encoding(void);
/* math.c */
VALUE rb_math_atan2(VALUE, VALUE);
VALUE rb_math_cos(VALUE);
VALUE rb_math_cosh(VALUE);
VALUE rb_math_exp(VALUE);
VALUE rb_math_hypot(VALUE, VALUE);
VALUE rb_math_log(int argc, const VALUE *argv);
VALUE rb_math_sin(VALUE);
VALUE rb_math_sinh(VALUE);
VALUE rb_math_sqrt(VALUE);
/* mjit.c */
#if USE_MJIT
extern bool mjit_enabled;
VALUE mjit_pause(bool wait_p);
VALUE mjit_resume(void);
void mjit_finish(bool close_handle_p);
#else
#define mjit_enabled 0
static inline VALUE mjit_pause(bool wait_p){ return Qnil; } // unreachable
static inline VALUE mjit_resume(void){ return Qnil; } // unreachable
static inline void mjit_finish(bool close_handle_p){}
#endif
/* newline.c */
void Init_newline(void);
/* numeric.c */
#define FIXNUM_POSITIVE_P(num) ((SIGNED_VALUE)(num) > (SIGNED_VALUE)INT2FIX(0))
#define FIXNUM_NEGATIVE_P(num) ((SIGNED_VALUE)(num) < 0)
#define FIXNUM_ZERO_P(num) ((num) == INT2FIX(0))
#define INT_NEGATIVE_P(x) (FIXNUM_P(x) ? FIXNUM_NEGATIVE_P(x) : BIGNUM_NEGATIVE_P(x))
#define FLOAT_ZERO_P(x) (RFLOAT_VALUE(x) == 0.0)
#ifndef ROUND_DEFAULT
# define ROUND_DEFAULT RUBY_NUM_ROUND_HALF_UP
#endif
enum ruby_num_rounding_mode {
RUBY_NUM_ROUND_HALF_UP,
RUBY_NUM_ROUND_HALF_EVEN,
RUBY_NUM_ROUND_HALF_DOWN,
RUBY_NUM_ROUND_DEFAULT = ROUND_DEFAULT
};
#define ROUND_TO(mode, even, up, down) \
((mode) == RUBY_NUM_ROUND_HALF_EVEN ? even : \
(mode) == RUBY_NUM_ROUND_HALF_UP ? up : down)
#define ROUND_FUNC(mode, name) \
ROUND_TO(mode, name##_half_even, name##_half_up, name##_half_down)
#define ROUND_CALL(mode, name, args) \
ROUND_TO(mode, name##_half_even args, \
name##_half_up args, name##_half_down args)
int rb_num_to_uint(VALUE val, unsigned int *ret);
VALUE ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl);
double ruby_float_step_size(double beg, double end, double unit, int excl);
int ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless);
double ruby_float_mod(double x, double y);
int rb_num_negative_p(VALUE);
VALUE rb_int_succ(VALUE num);
VALUE rb_int_pred(VALUE num);
VALUE rb_int_uminus(VALUE num);
VALUE rb_float_uminus(VALUE num);
VALUE rb_int_plus(VALUE x, VALUE y);
VALUE rb_float_plus(VALUE x, VALUE y);
VALUE rb_int_minus(VALUE x, VALUE y);
VALUE rb_int_mul(VALUE x, VALUE y);
VALUE rb_float_mul(VALUE x, VALUE y);
VALUE rb_float_div(VALUE x, VALUE y);
VALUE rb_int_idiv(VALUE x, VALUE y);
VALUE rb_int_modulo(VALUE x, VALUE y);
VALUE rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode);
VALUE rb_int2str(VALUE num, int base);
VALUE rb_dbl_hash(double d);
VALUE rb_fix_plus(VALUE x, VALUE y);
VALUE rb_fix_aref(VALUE fix, VALUE idx);
VALUE rb_int_gt(VALUE x, VALUE y);
int rb_float_cmp(VALUE x, VALUE y);
VALUE rb_float_gt(VALUE x, VALUE y);
VALUE rb_int_ge(VALUE x, VALUE y);
enum ruby_num_rounding_mode rb_num_get_rounding_option(VALUE opts);
double rb_int_fdiv_double(VALUE x, VALUE y);
VALUE rb_int_pow(VALUE x, VALUE y);
VALUE rb_float_pow(VALUE x, VALUE y);
VALUE rb_int_cmp(VALUE x, VALUE y);
VALUE rb_int_equal(VALUE x, VALUE y);
VALUE rb_int_divmod(VALUE x, VALUE y);
VALUE rb_int_and(VALUE x, VALUE y);
VALUE rb_int_lshift(VALUE x, VALUE y);
VALUE rb_int_div(VALUE x, VALUE y);
VALUE rb_int_abs(VALUE num);
VALUE rb_int_odd_p(VALUE num);
int rb_int_positive_p(VALUE num);
int rb_int_negative_p(VALUE num);
VALUE rb_num_pow(VALUE x, VALUE y);
VALUE rb_float_ceil(VALUE num, int ndigits);
static inline VALUE
rb_num_compare_with_zero(VALUE num, ID mid)
{
VALUE zero = INT2FIX(0);
VALUE r = rb_check_funcall(num, mid, 1, &zero);
if (r == Qundef) {
rb_cmperr(num, zero);
}
return r;
}
static inline int
rb_num_positive_int_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return FIXNUM_POSITIVE_P(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return BIGNUM_POSITIVE_P(num);
}
return RTEST(rb_num_compare_with_zero(num, mid));
}
static inline int
rb_num_negative_int_p(VALUE num)
{
const ID mid = '<';
if (FIXNUM_P(num)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return FIXNUM_NEGATIVE_P(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return BIGNUM_NEGATIVE_P(num);
}
return RTEST(rb_num_compare_with_zero(num, mid));
}
VALUE rb_float_abs(VALUE flt);
VALUE rb_float_equal(VALUE x, VALUE y);
VALUE rb_float_eql(VALUE x, VALUE y);
VALUE rb_flo_div_flo(VALUE x, VALUE y);
#if USE_FLONUM
#define RUBY_BIT_ROTL(v, n) (((v) << (n)) | ((v) >> ((sizeof(v) * 8) - n)))
#define RUBY_BIT_ROTR(v, n) (((v) >> (n)) | ((v) << ((sizeof(v) * 8) - n)))
#endif
static inline double
rb_float_flonum_value(VALUE v)
{
#if USE_FLONUM
if (v != (VALUE)0x8000000000000002) { /* LIKELY */
union {
double d;
VALUE v;
} t;
VALUE b63 = (v >> 63);
/* e: xx1... -> 011... */
/* xx0... -> 100... */
/* ^b63 */
t.v = RUBY_BIT_ROTR((2 - b63) | (v & ~(VALUE)0x03), 3);
return t.d;
}
#endif
return 0.0;
}
static inline double
rb_float_noflonum_value(VALUE v)
{
return ((struct RFloat *)v)->float_value;
}
static inline double
rb_float_value_inline(VALUE v)
{
if (FLONUM_P(v)) {
return rb_float_flonum_value(v);
}
return rb_float_noflonum_value(v);
}
static inline VALUE
rb_float_new_inline(double d)
{
#if USE_FLONUM
union {
double d;
VALUE v;
} t;
int bits;
t.d = d;
bits = (int)((VALUE)(t.v >> 60) & 0x7);
/* bits contains 3 bits of b62..b60. */
/* bits - 3 = */
/* b011 -> b000 */
/* b100 -> b001 */
if (t.v != 0x3000000000000000 /* 1.72723e-77 */ &&
!((bits-3) & ~0x01)) {
return (RUBY_BIT_ROTL(t.v, 3) & ~(VALUE)0x01) | 0x02;
}
else if (t.v == (VALUE)0) {
/* +0.0 */
return 0x8000000000000002;
}
/* out of range */
#endif
return rb_float_new_in_heap(d);
}
#define rb_float_value(v) rb_float_value_inline(v)
#define rb_float_new(d) rb_float_new_inline(d)
/* object.c */
void rb_obj_copy_ivar(VALUE dest, VALUE obj);
CONSTFUNC(VALUE rb_obj_equal(VALUE obj1, VALUE obj2));
CONSTFUNC(VALUE rb_obj_not(VALUE obj));
VALUE rb_class_search_ancestor(VALUE klass, VALUE super);
NORETURN(void rb_undefined_alloc(VALUE klass));
double rb_num_to_dbl(VALUE val);
VALUE rb_obj_dig(int argc, VALUE *argv, VALUE self, VALUE notfound);
VALUE rb_immutable_obj_clone(int, VALUE *, VALUE);
VALUE rb_obj_not_equal(VALUE obj1, VALUE obj2);
VALUE rb_convert_type_with_id(VALUE,int,const char*,ID);
VALUE rb_check_convert_type_with_id(VALUE,int,const char*,ID);
int rb_bool_expected(VALUE, const char *);
struct RBasicRaw {
VALUE flags;
VALUE klass;
};
#define RBASIC_CLEAR_CLASS(obj) memset(&(((struct RBasicRaw *)((VALUE)(obj)))->klass), 0, sizeof(VALUE))
#define RBASIC_SET_CLASS_RAW(obj, cls) memcpy(&((struct RBasicRaw *)((VALUE)(obj)))->klass, &(cls), sizeof(VALUE))
#define RBASIC_SET_CLASS(obj, cls) do { \
VALUE _obj_ = (obj); \
RB_OBJ_WRITE(_obj_, &((struct RBasicRaw *)(_obj_))->klass, cls); \
} while (0)
/* parse.y */
#ifndef USE_SYMBOL_GC
#define USE_SYMBOL_GC 1
#endif
VALUE rb_parser_get_yydebug(VALUE);
VALUE rb_parser_set_yydebug(VALUE, VALUE);
RUBY_SYMBOL_EXPORT_BEGIN
VALUE rb_parser_set_context(VALUE, const struct rb_block *, int);
RUBY_SYMBOL_EXPORT_END
void *rb_parser_load_file(VALUE parser, VALUE name);
int rb_is_const_name(VALUE name);
int rb_is_class_name(VALUE name);
int rb_is_global_name(VALUE name);
int rb_is_instance_name(VALUE name);
int rb_is_attrset_name(VALUE name);
int rb_is_local_name(VALUE name);
int rb_is_method_name(VALUE name);
int rb_is_junk_name(VALUE name);
PUREFUNC(int rb_is_const_sym(VALUE sym));
PUREFUNC(int rb_is_class_sym(VALUE sym));
PUREFUNC(int rb_is_global_sym(VALUE sym));
PUREFUNC(int rb_is_instance_sym(VALUE sym));
PUREFUNC(int rb_is_attrset_sym(VALUE sym));
PUREFUNC(int rb_is_local_sym(VALUE sym));
PUREFUNC(int rb_is_method_sym(VALUE sym));
PUREFUNC(int rb_is_junk_sym(VALUE sym));
ID rb_make_internal_id(void);
void rb_gc_free_dsymbol(VALUE);
ID rb_id_attrget(ID id);
/* proc.c */
VALUE rb_proc_location(VALUE self);
st_index_t rb_hash_proc(st_index_t hash, VALUE proc);
int rb_block_arity(void);
int rb_block_min_max_arity(int *max);
VALUE rb_func_proc_new(rb_block_call_func_t func, VALUE val);
VALUE rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc);
VALUE rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info);
/* process.c */
#define RB_MAX_GROUPS (65536)
struct waitpid_state;
struct rb_execarg {
union {
struct {
VALUE shell_script;
} sh;
struct {
VALUE command_name;
VALUE command_abspath; /* full path string or nil */
VALUE argv_str;
VALUE argv_buf;
} cmd;
} invoke;
VALUE redirect_fds;
VALUE envp_str;
VALUE envp_buf;
VALUE dup2_tmpbuf;
unsigned use_shell : 1;
unsigned pgroup_given : 1;
unsigned umask_given : 1;
unsigned unsetenv_others_given : 1;
unsigned unsetenv_others_do : 1;
unsigned close_others_given : 1;
unsigned close_others_do : 1;
unsigned chdir_given : 1;
unsigned new_pgroup_given : 1;
unsigned new_pgroup_flag : 1;
unsigned uid_given : 1;
unsigned gid_given : 1;
unsigned exception : 1;
unsigned exception_given : 1;
struct waitpid_state *waitpid_state; /* for async process management */
rb_pid_t pgroup_pgid; /* asis(-1), new pgroup(0), specified pgroup (0<V). */
VALUE rlimit_limits; /* Qfalse or [[rtype, softlim, hardlim], ...] */
mode_t umask_mask;
rb_uid_t uid;
rb_gid_t gid;
int close_others_maxhint;
VALUE fd_dup2;
VALUE fd_close;
VALUE fd_open;
VALUE fd_dup2_child;
VALUE env_modification; /* Qfalse or [[k1,v1], ...] */
VALUE path_env;
VALUE chdir_dir;
};
/* argv_str contains extra two elements.
* The beginning one is for /bin/sh used by exec_with_sh.
* The last one for terminating NULL used by execve.
* See rb_exec_fillarg() in process.c. */
#define ARGVSTR2ARGV(argv_str) ((char **)RB_IMEMO_TMPBUF_PTR(argv_str) + 1)
static inline size_t
ARGVSTR2ARGC(VALUE argv_str)
{
size_t i = 0;
char *const *p = ARGVSTR2ARGV(argv_str);
while (p[i++])
;
return i - 1;
}
rb_pid_t rb_fork_ruby(int *status);
void rb_last_status_clear(void);
/* range.c */
#define RANGE_BEG(r) (RSTRUCT(r)->as.ary[0])
#define RANGE_END(r) (RSTRUCT(r)->as.ary[1])
#define RANGE_EXCL(r) (RSTRUCT(r)->as.ary[2])
/* rational.c */
VALUE rb_rational_canonicalize(VALUE x);
VALUE rb_rational_uminus(VALUE self);
VALUE rb_rational_plus(VALUE self, VALUE other);
VALUE rb_rational_mul(VALUE self, VALUE other);
VALUE rb_lcm(VALUE x, VALUE y);
VALUE rb_rational_reciprocal(VALUE x);
VALUE rb_cstr_to_rat(const char *, int);
VALUE rb_rational_abs(VALUE self);
VALUE rb_rational_cmp(VALUE self, VALUE other);
VALUE rb_rational_pow(VALUE self, VALUE other);
VALUE rb_numeric_quo(VALUE x, VALUE y);
VALUE rb_float_numerator(VALUE x);
VALUE rb_float_denominator(VALUE x);
/* re.c */
VALUE rb_reg_compile(VALUE str, int options, const char *sourcefile, int sourceline);
VALUE rb_reg_check_preprocess(VALUE);
long rb_reg_search0(VALUE, VALUE, long, int, int);
VALUE rb_reg_match_p(VALUE re, VALUE str, long pos);
bool rb_reg_start_with_p(VALUE re, VALUE str);
void rb_backref_set_string(VALUE string, long pos, long len);
void rb_match_unbusy(VALUE);
int rb_match_count(VALUE match);
int rb_match_nth_defined(int nth, VALUE match);
VALUE rb_reg_new_ary(VALUE ary, int options);
/* signal.c */
extern int ruby_enable_coredump;
int rb_get_next_signal(void);
/* string.c */
VALUE rb_fstring(VALUE);
VALUE rb_fstring_new(const char *ptr, long len);
#define rb_fstring_lit(str) rb_fstring_new((str), rb_strlen_lit(str))
#define rb_fstring_literal(str) rb_fstring_lit(str)
VALUE rb_fstring_cstr(const char *str);
#ifdef HAVE_BUILTIN___BUILTIN_CONSTANT_P
# define rb_fstring_cstr(str) RB_GNUC_EXTENSION_BLOCK( \
(__builtin_constant_p(str)) ? \
rb_fstring_new((str), (long)strlen(str)) : \
rb_fstring_cstr(str) \
)
#endif
#ifdef RUBY_ENCODING_H
VALUE rb_fstring_enc_new(const char *ptr, long len, rb_encoding *enc);
#define rb_fstring_enc_lit(str, enc) rb_fstring_enc_new((str), rb_strlen_lit(str), (enc))
#define rb_fstring_enc_literal(str, enc) rb_fstring_enc_lit(str, enc)
VALUE rb_fstring_enc_cstr(const char *ptr, rb_encoding *enc);
# ifdef HAVE_BUILTIN___BUILTIN_CONSTANT_P
# define rb_fstring_enc_cstr(str, enc) RB_GNUC_EXTENSION_BLOCK( \
(__builtin_constant_p(str)) ? \
rb_fstring_enc_new((str), (long)strlen(str), (enc)) : \
rb_fstring_enc_cstr(str, enc) \
)
# endif
#endif
int rb_str_buf_cat_escaped_char(VALUE result, unsigned int c, int unicode_p);
int rb_str_symname_p(VALUE);
VALUE rb_str_quote_unprintable(VALUE);
VALUE rb_id_quote_unprintable(ID);
#define QUOTE(str) rb_str_quote_unprintable(str)
#define QUOTE_ID(id) rb_id_quote_unprintable(id)
char *rb_str_fill_terminator(VALUE str, const int termlen);
void rb_str_change_terminator_length(VALUE str, const int oldtermlen, const int termlen);
VALUE rb_str_locktmp_ensure(VALUE str, VALUE (*func)(VALUE), VALUE arg);
VALUE rb_str_chomp_string(VALUE str, VALUE chomp);
#ifdef RUBY_ENCODING_H
VALUE rb_external_str_with_enc(VALUE str, rb_encoding *eenc);
VALUE rb_str_cat_conv_enc_opts(VALUE newstr, long ofs, const char *ptr, long len,
rb_encoding *from, int ecflags, VALUE ecopts);
VALUE rb_enc_str_scrub(rb_encoding *enc, VALUE str, VALUE repl);
VALUE rb_str_initialize(VALUE str, const char *ptr, long len, rb_encoding *enc);
#endif
#define STR_NOEMBED FL_USER1
#define STR_SHARED FL_USER2 /* = ELTS_SHARED */
#define STR_EMBED_P(str) (!FL_TEST_RAW((str), STR_NOEMBED))
#define STR_SHARED_P(s) FL_ALL_RAW((s), STR_NOEMBED|ELTS_SHARED)
#define is_ascii_string(str) (rb_enc_str_coderange(str) == ENC_CODERANGE_7BIT)
#define is_broken_string(str) (rb_enc_str_coderange(str) == ENC_CODERANGE_BROKEN)
size_t rb_str_memsize(VALUE);
VALUE rb_sym_proc_call(ID mid, int argc, const VALUE *argv, VALUE passed_proc);
VALUE rb_sym_to_proc(VALUE sym);
char *rb_str_to_cstr(VALUE str);
VALUE rb_str_eql(VALUE str1, VALUE str2);
VALUE rb_obj_as_string_result(VALUE str, VALUE obj);
const char *ruby_escaped_char(int c);
VALUE rb_str_opt_plus(VALUE, VALUE);
/* expect tail call optimization */
static inline VALUE
rb_str_eql_internal(const VALUE str1, const VALUE str2)
{
const long len = RSTRING_LEN(str1);
const char *ptr1, *ptr2;
if (len != RSTRING_LEN(str2)) return Qfalse;
if (!rb_str_comparable(str1, str2)) return Qfalse;
if ((ptr1 = RSTRING_PTR(str1)) == (ptr2 = RSTRING_PTR(str2)))
return Qtrue;
if (memcmp(ptr1, ptr2, len) == 0)
return Qtrue;
return Qfalse;
}
/* symbol.c */
#ifdef RUBY_ENCODING_H
VALUE rb_sym_intern(const char *ptr, long len, rb_encoding *enc);
VALUE rb_sym_intern_cstr(const char *ptr, rb_encoding *enc);
#ifdef __GNUC__
#define rb_sym_intern_cstr(ptr, enc) __extension__ ( \
{ \
(__builtin_constant_p(ptr)) ? \
rb_sym_intern((ptr), (long)strlen(ptr), (enc)) : \
rb_sym_intern_cstr((ptr), (enc)); \
})
#endif
#endif
VALUE rb_sym_intern_ascii(const char *ptr, long len);
VALUE rb_sym_intern_ascii_cstr(const char *ptr);
#ifdef __GNUC__
#define rb_sym_intern_ascii_cstr(ptr) __extension__ ( \
{ \
(__builtin_constant_p(ptr)) ? \
rb_sym_intern_ascii((ptr), (long)strlen(ptr)) : \
rb_sym_intern_ascii_cstr(ptr); \
})
#endif
VALUE rb_to_symbol_type(VALUE obj);
/* struct.c */
VALUE rb_struct_init_copy(VALUE copy, VALUE s);
VALUE rb_struct_lookup(VALUE s, VALUE idx);
VALUE rb_struct_s_keyword_init(VALUE klass);
/* time.c */
struct timeval rb_time_timeval(VALUE);
/* thread.c */
#define COVERAGE_INDEX_LINES 0
#define COVERAGE_INDEX_BRANCHES 1
#define COVERAGE_TARGET_LINES 1
#define COVERAGE_TARGET_BRANCHES 2
#define COVERAGE_TARGET_METHODS 4
#define COVERAGE_TARGET_ONESHOT_LINES 8
VALUE rb_obj_is_mutex(VALUE obj);
VALUE rb_suppress_tracing(VALUE (*func)(VALUE), VALUE arg);
void rb_thread_execute_interrupts(VALUE th);
VALUE rb_get_coverages(void);
int rb_get_coverage_mode(void);
VALUE rb_default_coverage(int);
VALUE rb_thread_shield_new(void);
VALUE rb_thread_shield_wait(VALUE self);
VALUE rb_thread_shield_release(VALUE self);
VALUE rb_thread_shield_destroy(VALUE self);
int rb_thread_to_be_killed(VALUE thread);
void rb_mutex_allow_trap(VALUE self, int val);
VALUE rb_uninterruptible(VALUE (*b_proc)(VALUE), VALUE data);
VALUE rb_mutex_owned_p(VALUE self);
/* transcode.c */
extern VALUE rb_cEncodingConverter;
#ifdef RUBY_ENCODING_H
size_t rb_econv_memsize(rb_econv_t *);
#endif
/* us_ascii.c */
#ifdef RUBY_ENCODING_H
extern rb_encoding OnigEncodingUS_ASCII;
#endif
/* util.c */
char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve);
char *ruby_hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign, char **rve);
/* utf_8.c */
#ifdef RUBY_ENCODING_H
extern rb_encoding OnigEncodingUTF_8;
#endif
/* variable.c */
#if USE_TRANSIENT_HEAP
#define ROBJECT_TRANSIENT_FLAG FL_USER13
#define ROBJ_TRANSIENT_P(obj) FL_TEST_RAW((obj), ROBJECT_TRANSIENT_FLAG)
#define ROBJ_TRANSIENT_SET(obj) FL_SET_RAW((obj), ROBJECT_TRANSIENT_FLAG)
#define ROBJ_TRANSIENT_UNSET(obj) FL_UNSET_RAW((obj), ROBJECT_TRANSIENT_FLAG)
#else
#define ROBJ_TRANSIENT_P(obj) 0
#define ROBJ_TRANSIENT_SET(obj) ((void)0)
#define ROBJ_TRANSIENT_UNSET(obj) ((void)0)
#endif
void rb_gc_mark_global_tbl(void);
size_t rb_generic_ivar_memsize(VALUE);
VALUE rb_search_class_path(VALUE);
VALUE rb_attr_delete(VALUE, ID);
VALUE rb_ivar_lookup(VALUE obj, ID id, VALUE undef);
void rb_autoload_str(VALUE mod, ID id, VALUE file);
VALUE rb_autoload_at_p(VALUE, ID, int);
void rb_deprecate_constant(VALUE mod, const char *name);
NORETURN(VALUE rb_mod_const_missing(VALUE,VALUE));
rb_gvar_getter_t *rb_gvar_getter_function_of(const struct rb_global_entry *);
rb_gvar_setter_t *rb_gvar_setter_function_of(const struct rb_global_entry *);
bool rb_gvar_is_traced(const struct rb_global_entry *);
/* vm_insnhelper.h */
rb_serial_t rb_next_class_serial(void);
/* vm.c */
VALUE rb_obj_is_thread(VALUE obj);
void rb_vm_mark(void *ptr);
void Init_BareVM(void);
void Init_vm_objects(void);
PUREFUNC(VALUE rb_vm_top_self(void));
void rb_thread_recycle_stack_release(VALUE *);
VALUE *rb_thread_recycle_stack(size_t);
void rb_vm_change_state(void);
void rb_vm_inc_const_missing_count(void);
const void **rb_vm_get_insns_address_table(void);
VALUE rb_source_location(int *pline);
const char *rb_source_location_cstr(int *pline);
MJIT_STATIC void rb_vm_pop_cfunc_frame(void);
int rb_vm_add_root_module(ID id, VALUE module);
void rb_vm_check_redefinition_by_prepend(VALUE klass);
VALUE rb_yield_refine_block(VALUE refinement, VALUE refinements);
MJIT_STATIC VALUE ruby_vm_special_exception_copy(VALUE);
PUREFUNC(st_table *rb_vm_fstring_table(void));
/* vm_dump.c */
void rb_print_backtrace(void);
/* vm_eval.c */
void Init_vm_eval(void);
VALUE rb_current_realfilepath(void);
VALUE rb_check_block_call(VALUE, ID, int, const VALUE *, rb_block_call_func_t, VALUE);
typedef void rb_check_funcall_hook(int, VALUE, ID, int, const VALUE *, VALUE);
VALUE rb_check_funcall_with_hook(VALUE recv, ID mid, int argc, const VALUE *argv,
rb_check_funcall_hook *hook, VALUE arg);
const char *rb_type_str(enum ruby_value_type type);
VALUE rb_check_funcall_default(VALUE, ID, int, const VALUE *, VALUE);
VALUE rb_yield_1(VALUE val);
VALUE rb_yield_force_blockarg(VALUE values);
VALUE rb_lambda_call(VALUE obj, ID mid, int argc, const VALUE *argv,
rb_block_call_func_t bl_proc, int min_argc, int max_argc,
VALUE data2);
/* vm_insnhelper.c */
VALUE rb_equal_opt(VALUE obj1, VALUE obj2);
VALUE rb_eql_opt(VALUE obj1, VALUE obj2);
void Init_vm_stack_canary(void);
/* vm_method.c */
void Init_eval_method(void);
/* miniprelude.c, prelude.c */
void Init_prelude(void);
/* vm_backtrace.c */
void Init_vm_backtrace(void);
VALUE rb_vm_thread_backtrace(int argc, const VALUE *argv, VALUE thval);
VALUE rb_vm_thread_backtrace_locations(int argc, const VALUE *argv, VALUE thval);
VALUE rb_make_backtrace(void);
void rb_backtrace_print_as_bugreport(void);
int rb_backtrace_p(VALUE obj);
VALUE rb_backtrace_to_str_ary(VALUE obj);
VALUE rb_backtrace_to_location_ary(VALUE obj);
void rb_backtrace_each(VALUE (*iter)(VALUE recv, VALUE str), VALUE output);
RUBY_SYMBOL_EXPORT_BEGIN
const char *rb_objspace_data_type_name(VALUE obj);
/* Temporary. This API will be removed (renamed). */
VALUE rb_thread_io_blocking_region(rb_blocking_function_t *func, void *data1, int fd);
/* array.c (export) */
void rb_ary_detransient(VALUE a);
VALUE *rb_ary_ptr_use_start(VALUE ary);
void rb_ary_ptr_use_end(VALUE ary);
/* bignum.c (export) */
VALUE rb_big_mul_normal(VALUE x, VALUE y);
VALUE rb_big_mul_balance(VALUE x, VALUE y);
VALUE rb_big_mul_karatsuba(VALUE x, VALUE y);
VALUE rb_big_mul_toom3(VALUE x, VALUE y);
VALUE rb_big_sq_fast(VALUE x);
VALUE rb_big_divrem_normal(VALUE x, VALUE y);
VALUE rb_big2str_poweroftwo(VALUE x, int base);
VALUE rb_big2str_generic(VALUE x, int base);
VALUE rb_str2big_poweroftwo(VALUE arg, int base, int badcheck);
VALUE rb_str2big_normal(VALUE arg, int base, int badcheck);
VALUE rb_str2big_karatsuba(VALUE arg, int base, int badcheck);
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
VALUE rb_big_mul_gmp(VALUE x, VALUE y);
VALUE rb_big_divrem_gmp(VALUE x, VALUE y);
VALUE rb_big2str_gmp(VALUE x, int base);
VALUE rb_str2big_gmp(VALUE arg, int base, int badcheck);
#endif
enum rb_int_parse_flags {
RB_INT_PARSE_SIGN = 0x01,
RB_INT_PARSE_UNDERSCORE = 0x02,
RB_INT_PARSE_PREFIX = 0x04,
RB_INT_PARSE_ALL = 0x07,
RB_INT_PARSE_DEFAULT = 0x07
};
VALUE rb_int_parse_cstr(const char *str, ssize_t len, char **endp, size_t *ndigits, int base, int flags);
/* enumerator.c (export) */
VALUE rb_arith_seq_new(VALUE obj, VALUE meth, int argc, VALUE const *argv,
rb_enumerator_size_func *size_fn,
VALUE beg, VALUE end, VALUE step, int excl);
/* error.c (export) */
int rb_bug_reporter_add(void (*func)(FILE *, void *), void *data);
NORETURN(void rb_unexpected_type(VALUE,int));
#undef Check_Type
#define Check_Type(v, t) \
(!RB_TYPE_P((VALUE)(v), (t)) || \
((t) == RUBY_T_DATA && RTYPEDDATA_P(v)) ? \
rb_unexpected_type((VALUE)(v), (t)) : (void)0)
static inline int
rb_typeddata_is_instance_of_inline(VALUE obj, const rb_data_type_t *data_type)
{
return RB_TYPE_P(obj, T_DATA) && RTYPEDDATA_P(obj) && (RTYPEDDATA_TYPE(obj) == data_type);
}
#define rb_typeddata_is_instance_of rb_typeddata_is_instance_of_inline
/* file.c (export) */
#if defined HAVE_READLINK && defined RUBY_ENCODING_H
VALUE rb_readlink(VALUE path, rb_encoding *enc);
#endif
#ifdef __APPLE__
VALUE rb_str_normalize_ospath(const char *ptr, long len);
#endif
/* hash.c (export) */
VALUE rb_hash_delete_entry(VALUE hash, VALUE key);
VALUE rb_ident_hash_new(void);
/* io.c (export) */
void rb_maygvl_fd_fix_cloexec(int fd);
int rb_gc_for_fd(int err);
void rb_write_error_str(VALUE mesg);
/* numeric.c (export) */
VALUE rb_int_positive_pow(long x, unsigned long y);
/* object.c (export) */
int rb_opts_exception_p(VALUE opts, int default_value);
/* process.c (export) */
int rb_exec_async_signal_safe(const struct rb_execarg *e, char *errmsg, size_t errmsg_buflen);
rb_pid_t rb_fork_async_signal_safe(int *status, int (*chfunc)(void*, char *, size_t), void *charg, VALUE fds, char *errmsg, size_t errmsg_buflen);
VALUE rb_execarg_new(int argc, const VALUE *argv, int accept_shell, int allow_exc_opt);
struct rb_execarg *rb_execarg_get(VALUE execarg_obj); /* dangerous. needs GC guard. */
int rb_execarg_addopt(VALUE execarg_obj, VALUE key, VALUE val);
void rb_execarg_parent_start(VALUE execarg_obj);
void rb_execarg_parent_end(VALUE execarg_obj);
int rb_execarg_run_options(const struct rb_execarg *e, struct rb_execarg *s, char* errmsg, size_t errmsg_buflen);
VALUE rb_execarg_extract_options(VALUE execarg_obj, VALUE opthash);
void rb_execarg_setenv(VALUE execarg_obj, VALUE env);
/* rational.c (export) */
VALUE rb_gcd(VALUE x, VALUE y);
VALUE rb_gcd_normal(VALUE self, VALUE other);
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
VALUE rb_gcd_gmp(VALUE x, VALUE y);
#endif
/* signal.c (export) */
int rb_grantpt(int fd);
/* string.c (export) */
VALUE rb_str_tmp_frozen_acquire(VALUE str);
void rb_str_tmp_frozen_release(VALUE str, VALUE tmp);
#ifdef RUBY_ENCODING_H
/* internal use */
VALUE rb_setup_fake_str(struct RString *fake_str, const char *name, long len, rb_encoding *enc);
#endif
VALUE rb_str_upto_each(VALUE, VALUE, int, int (*each)(VALUE, VALUE), VALUE);
VALUE rb_str_upto_endless_each(VALUE, int (*each)(VALUE, VALUE), VALUE);
/* thread.c (export) */
int ruby_thread_has_gvl_p(void); /* for ext/fiddle/closure.c */
/* time.c (export) */
void ruby_reset_leap_second_info(void);
/* util.c (export) */
extern const signed char ruby_digit36_to_number_table[];
extern const char ruby_hexdigits[];
extern unsigned long ruby_scan_digits(const char *str, ssize_t len, int base, size_t *retlen, int *overflow);
/* variable.c (export) */
void rb_mark_generic_ivar(VALUE);
void rb_mv_generic_ivar(VALUE src, VALUE dst);
VALUE rb_const_missing(VALUE klass, VALUE name);
int rb_class_ivar_set(VALUE klass, ID vid, VALUE value);
st_table *rb_st_copy(VALUE obj, struct st_table *orig_tbl);
/* gc.c (export) */
VALUE rb_wb_protected_newobj_of(VALUE, VALUE);
VALUE rb_wb_unprotected_newobj_of(VALUE, VALUE);
size_t rb_obj_memsize_of(VALUE);
void rb_gc_verify_internal_consistency(void);
#define RB_OBJ_GC_FLAGS_MAX 6
size_t rb_obj_gc_flags(VALUE, ID[], size_t);
void rb_gc_mark_values(long n, const VALUE *values);
void rb_gc_mark_vm_stack_values(long n, const VALUE *values);
#if IMEMO_DEBUG
VALUE rb_imemo_new_debug(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0, const char *file, int line);
#define rb_imemo_new(type, v1, v2, v3, v0) rb_imemo_new_debug(type, v1, v2, v3, v0, __FILE__, __LINE__)
#else
VALUE rb_imemo_new(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0);
#endif
/* random.c */
int ruby_fill_random_bytes(void *, size_t, int);
RUBY_SYMBOL_EXPORT_END
#define RUBY_DTRACE_CREATE_HOOK(name, arg) \
RUBY_DTRACE_HOOK(name##_CREATE, arg)
#define RUBY_DTRACE_HOOK(name, arg) \
do { \
if (UNLIKELY(RUBY_DTRACE_##name##_ENABLED())) { \
int dtrace_line; \
const char *dtrace_file = rb_source_location_cstr(&dtrace_line); \
if (!dtrace_file) dtrace_file = ""; \
RUBY_DTRACE_##name(arg, dtrace_file, dtrace_line); \
} \
} while (0)
#define RB_OBJ_BUILTIN_TYPE(obj) rb_obj_builtin_type(obj)
#define OBJ_BUILTIN_TYPE(obj) RB_OBJ_BUILTIN_TYPE(obj)
#ifdef __GNUC__
#define rb_obj_builtin_type(obj) \
__extension__({ \
VALUE arg_obj = (obj); \
RB_SPECIAL_CONST_P(arg_obj) ? -1 : \
RB_BUILTIN_TYPE(arg_obj); \
})
#else
static inline int
rb_obj_builtin_type(VALUE obj)
{
return RB_SPECIAL_CONST_P(obj) ? -1 :
RB_BUILTIN_TYPE(obj);
}
#endif
/* A macro for defining a flexible array, like: VALUE ary[FLEX_ARY_LEN]; */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
# define FLEX_ARY_LEN /* VALUE ary[]; */
#elif defined(__GNUC__) && !defined(__STRICT_ANSI__)
# define FLEX_ARY_LEN 0 /* VALUE ary[0]; */
#else
# define FLEX_ARY_LEN 1 /* VALUE ary[1]; */
#endif
/*
* For declaring bitfields out of non-unsigned int types:
* struct date {
* BITFIELD(enum months, month, 4);
* ...
* };
*/
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
# define BITFIELD(type, name, size) type name : size
#else
# define BITFIELD(type, name, size) unsigned int name : size
#endif
#if defined(_MSC_VER)
# define COMPILER_WARNING_PUSH __pragma(warning(push))
# define COMPILER_WARNING_POP __pragma(warning(pop))
# define COMPILER_WARNING_ERROR(flag) __pragma(warning(error: flag)))
# define COMPILER_WARNING_IGNORED(flag) __pragma(warning(suppress: flag)))
#elif defined(__clang__) /* clang 2.6 already had this feature */
# define COMPILER_WARNING_PUSH _Pragma("clang diagnostic push")
# define COMPILER_WARNING_POP _Pragma("clang diagnostic pop")
# define COMPILER_WARNING_SPECIFIER(kind, msg) \
clang diagnostic kind # msg
# define COMPILER_WARNING_ERROR(flag) \
COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(error, flag))
# define COMPILER_WARNING_IGNORED(flag) \
COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(ignored, flag))
#elif GCC_VERSION_SINCE(4, 2, 0)
/* https://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/Diagnostic-Pragmas.html */
# define COMPILER_WARNING_PUSH _Pragma("GCC diagnostic push")
# define COMPILER_WARNING_POP _Pragma("GCC diagnostic pop")
# define COMPILER_WARNING_SPECIFIER(kind, msg) \
GCC diagnostic kind # msg
# define COMPILER_WARNING_ERROR(flag) \
COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(error, flag))
# define COMPILER_WARNING_IGNORED(flag) \
COMPILER_WARNING_PRAGMA(COMPILER_WARNING_SPECIFIER(ignored, flag))
#else /* other compilers to follow? */
# define COMPILER_WARNING_PUSH /* nop */
# define COMPILER_WARNING_POP /* nop */
# define COMPILER_WARNING_ERROR(flag) /* nop */
# define COMPILER_WARNING_IGNORED(flag) /* nop */
#endif
#define COMPILER_WARNING_PRAGMA(str) COMPILER_WARNING_PRAGMA_(str)
#define COMPILER_WARNING_PRAGMA_(str) _Pragma(#str)
#if defined(USE_UNALIGNED_MEMBER_ACCESS) && USE_UNALIGNED_MEMBER_ACCESS && \
(defined(__clang__) || GCC_VERSION_SINCE(9, 0, 0))
# define UNALIGNED_MEMBER_ACCESS(expr) __extension__({ \
COMPILER_WARNING_PUSH; \
COMPILER_WARNING_IGNORED(-Waddress-of-packed-member); \
typeof(expr) unaligned_member_access_result = (expr); \
COMPILER_WARNING_POP; \
unaligned_member_access_result; \
})
#else
# define UNALIGNED_MEMBER_ACCESS(expr) expr
#endif
#define UNALIGNED_MEMBER_PTR(ptr, mem) UNALIGNED_MEMBER_ACCESS(&(ptr)->mem)
#undef RB_OBJ_WRITE
#define RB_OBJ_WRITE(a, slot, b) UNALIGNED_MEMBER_ACCESS(rb_obj_write((VALUE)(a), (VALUE *)(slot), (VALUE)(b), __FILE__, __LINE__))
#if defined(__cplusplus)
#if 0
{ /* satisfy cc-mode */
#endif
} /* extern "C" { */
#endif
#endif /* RUBY_INTERNAL_H */