1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/marshal.c
卜部昌平 50f5a0a8d6 rb_hash_foreach now free from ANYARGS
After 5e86b005c0, I now think ANYARGS is
dangerous and should be extinct.  This commit adds function prototypes
for rb_hash_foreach / st_foreach_safe.  Also fixes some prototype
mismatches.
2019-08-27 15:52:26 +09:00

2340 lines
55 KiB
C

/**********************************************************************
marshal.c -
$Author$
created at: Thu Apr 27 16:30:01 JST 1995
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/io.h"
#include "internal.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "encindex.h"
#include "id_table.h"
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#define BITSPERSHORT (2*CHAR_BIT)
#define SHORTMASK ((1<<BITSPERSHORT)-1)
#define SHORTDN(x) RSHIFT((x),BITSPERSHORT)
#if SIZEOF_SHORT == SIZEOF_BDIGIT
#define SHORTLEN(x) (x)
#else
static size_t
shortlen(size_t len, BDIGIT *ds)
{
BDIGIT num;
int offset = 0;
num = ds[len-1];
while (num) {
num = SHORTDN(num);
offset++;
}
return (len - 1)*SIZEOF_BDIGIT/2 + offset;
}
#define SHORTLEN(x) shortlen((x),d)
#endif
#define MARSHAL_MAJOR 4
#define MARSHAL_MINOR 8
#define TYPE_NIL '0'
#define TYPE_TRUE 'T'
#define TYPE_FALSE 'F'
#define TYPE_FIXNUM 'i'
#define TYPE_EXTENDED 'e'
#define TYPE_UCLASS 'C'
#define TYPE_OBJECT 'o'
#define TYPE_DATA 'd'
#define TYPE_USERDEF 'u'
#define TYPE_USRMARSHAL 'U'
#define TYPE_FLOAT 'f'
#define TYPE_BIGNUM 'l'
#define TYPE_STRING '"'
#define TYPE_REGEXP '/'
#define TYPE_ARRAY '['
#define TYPE_HASH '{'
#define TYPE_HASH_DEF '}'
#define TYPE_STRUCT 'S'
#define TYPE_MODULE_OLD 'M'
#define TYPE_CLASS 'c'
#define TYPE_MODULE 'm'
#define TYPE_SYMBOL ':'
#define TYPE_SYMLINK ';'
#define TYPE_IVAR 'I'
#define TYPE_LINK '@'
static ID s_dump, s_load, s_mdump, s_mload;
static ID s_dump_data, s_load_data, s_alloc, s_call;
static ID s_getbyte, s_read, s_write, s_binmode;
static ID s_encoding_short;
#define name_s_dump "_dump"
#define name_s_load "_load"
#define name_s_mdump "marshal_dump"
#define name_s_mload "marshal_load"
#define name_s_dump_data "_dump_data"
#define name_s_load_data "_load_data"
#define name_s_alloc "_alloc"
#define name_s_call "call"
#define name_s_getbyte "getbyte"
#define name_s_read "read"
#define name_s_write "write"
#define name_s_binmode "binmode"
#define name_s_encoding_short "E"
typedef struct {
VALUE newclass;
VALUE oldclass;
VALUE (*dumper)(VALUE);
VALUE (*loader)(VALUE, VALUE);
} marshal_compat_t;
static st_table *compat_allocator_tbl;
static VALUE compat_allocator_tbl_wrapper;
static VALUE rb_marshal_dump_limited(VALUE obj, VALUE port, int limit);
static VALUE rb_marshal_load_with_proc(VALUE port, VALUE proc);
static int
mark_marshal_compat_i(st_data_t key, st_data_t value, st_data_t _)
{
marshal_compat_t *p = (marshal_compat_t *)value;
rb_gc_mark(p->newclass);
rb_gc_mark(p->oldclass);
return ST_CONTINUE;
}
static void
mark_marshal_compat_t(void *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_marshal_compat_i, 0);
}
static st_table *compat_allocator_table(void);
void
rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE (*dumper)(VALUE), VALUE (*loader)(VALUE, VALUE))
{
marshal_compat_t *compat;
rb_alloc_func_t allocator = rb_get_alloc_func(newclass);
if (!allocator) {
rb_raise(rb_eTypeError, "no allocator");
}
compat = ALLOC(marshal_compat_t);
compat->newclass = Qnil;
compat->oldclass = Qnil;
compat->newclass = newclass;
compat->oldclass = oldclass;
compat->dumper = dumper;
compat->loader = loader;
st_insert(compat_allocator_table(), (st_data_t)allocator, (st_data_t)compat);
}
#define MARSHAL_INFECTION FL_TAINT
STATIC_ASSERT(marshal_infection_is_int, MARSHAL_INFECTION == (int)MARSHAL_INFECTION);
struct dump_arg {
VALUE str, dest;
st_table *symbols;
st_table *data;
st_table *compat_tbl;
st_table *encodings;
int infection;
};
struct dump_call_arg {
VALUE obj;
struct dump_arg *arg;
int limit;
};
static VALUE
check_dump_arg(VALUE ret, struct dump_arg *arg, const char *name)
{
if (!arg->symbols) {
rb_raise(rb_eRuntimeError, "Marshal.dump reentered at %s",
name);
}
return ret;
}
static VALUE
check_userdump_arg(VALUE obj, ID sym, int argc, const VALUE *argv,
struct dump_arg *arg, const char *name)
{
VALUE ret = rb_funcallv(obj, sym, argc, argv);
VALUE klass = CLASS_OF(obj);
if (CLASS_OF(ret) == klass) {
rb_raise(rb_eRuntimeError, "%"PRIsVALUE"#%s returned same class instance",
klass, name);
}
return check_dump_arg(ret, arg, name);
}
#define dump_funcall(arg, obj, sym, argc, argv) \
check_userdump_arg(obj, sym, argc, argv, arg, name_##sym)
#define dump_check_funcall(arg, obj, sym, argc, argv) \
check_dump_arg(rb_check_funcall(obj, sym, argc, argv), arg, name_##sym)
static void clear_dump_arg(struct dump_arg *arg);
static void
mark_dump_arg(void *ptr)
{
struct dump_arg *p = ptr;
if (!p->symbols)
return;
rb_mark_set(p->symbols);
rb_mark_set(p->data);
rb_mark_hash(p->compat_tbl);
rb_gc_mark(p->str);
}
static void
free_dump_arg(void *ptr)
{
clear_dump_arg(ptr);
xfree(ptr);
}
static size_t
memsize_dump_arg(const void *ptr)
{
return sizeof(struct dump_arg);
}
static const rb_data_type_t dump_arg_data = {
"dump_arg",
{mark_dump_arg, free_dump_arg, memsize_dump_arg,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
must_not_be_anonymous(const char *type, VALUE path)
{
char *n = RSTRING_PTR(path);
if (!rb_enc_asciicompat(rb_enc_get(path))) {
/* cannot occur? */
rb_raise(rb_eTypeError, "can't dump non-ascii %s name % "PRIsVALUE,
type, path);
}
if (n[0] == '#') {
rb_raise(rb_eTypeError, "can't dump anonymous %s % "PRIsVALUE,
type, path);
}
return path;
}
static VALUE
class2path(VALUE klass)
{
VALUE path = rb_class_path(klass);
must_not_be_anonymous((RB_TYPE_P(klass, T_CLASS) ? "class" : "module"), path);
if (rb_path_to_class(path) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "% "PRIsVALUE" can't be referred to", path);
}
return path;
}
int ruby_marshal_write_long(long x, char *buf);
static void w_long(long, struct dump_arg*);
static int w_encoding(VALUE encname, struct dump_call_arg *arg);
static VALUE encoding_name(VALUE obj, struct dump_arg *arg);
static void
w_nbyte(const char *s, long n, struct dump_arg *arg)
{
VALUE buf = arg->str;
rb_str_buf_cat(buf, s, n);
RBASIC(buf)->flags |= arg->infection;
if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) {
rb_io_write(arg->dest, buf);
rb_str_resize(buf, 0);
}
}
static void
w_byte(char c, struct dump_arg *arg)
{
w_nbyte(&c, 1, arg);
}
static void
w_bytes(const char *s, long n, struct dump_arg *arg)
{
w_long(n, arg);
w_nbyte(s, n, arg);
}
#define w_cstr(s, arg) w_bytes((s), strlen(s), (arg))
static void
w_short(int x, struct dump_arg *arg)
{
w_byte((char)((x >> 0) & 0xff), arg);
w_byte((char)((x >> 8) & 0xff), arg);
}
static void
w_long(long x, struct dump_arg *arg)
{
char buf[sizeof(long)+1];
int i = ruby_marshal_write_long(x, buf);
if (i < 0) {
rb_raise(rb_eTypeError, "long too big to dump");
}
w_nbyte(buf, i, arg);
}
int
ruby_marshal_write_long(long x, char *buf)
{
int i;
#if SIZEOF_LONG > 4
if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) {
/* big long does not fit in 4 bytes */
return -1;
}
#endif
if (x == 0) {
buf[0] = 0;
return 1;
}
if (0 < x && x < 123) {
buf[0] = (char)(x + 5);
return 1;
}
if (-124 < x && x < 0) {
buf[0] = (char)((x - 5)&0xff);
return 1;
}
for (i=1;i<(int)sizeof(long)+1;i++) {
buf[i] = (char)(x & 0xff);
x = RSHIFT(x,8);
if (x == 0) {
buf[0] = i;
break;
}
if (x == -1) {
buf[0] = -i;
break;
}
}
return i+1;
}
#ifdef DBL_MANT_DIG
#define DECIMAL_MANT (53-16) /* from IEEE754 double precision */
#if DBL_MANT_DIG > 32
#define MANT_BITS 32
#elif DBL_MANT_DIG > 24
#define MANT_BITS 24
#elif DBL_MANT_DIG > 16
#define MANT_BITS 16
#else
#define MANT_BITS 8
#endif
static double
load_mantissa(double d, const char *buf, long len)
{
if (!len) return d;
if (--len > 0 && !*buf++) { /* binary mantissa mark */
int e, s = d < 0, dig = 0;
unsigned long m;
modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d);
do {
m = 0;
switch (len) {
default: m = *buf++ & 0xff; /* fall through */
#if MANT_BITS > 24
case 3: m = (m << 8) | (*buf++ & 0xff); /* fall through */
#endif
#if MANT_BITS > 16
case 2: m = (m << 8) | (*buf++ & 0xff); /* fall through */
#endif
#if MANT_BITS > 8
case 1: m = (m << 8) | (*buf++ & 0xff);
#endif
}
dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS;
d += ldexp((double)m, dig);
} while ((len -= MANT_BITS / 8) > 0);
d = ldexp(d, e - DECIMAL_MANT);
if (s) d = -d;
}
return d;
}
#else
#define load_mantissa(d, buf, len) (d)
#endif
#ifdef DBL_DIG
#define FLOAT_DIG (DBL_DIG+2)
#else
#define FLOAT_DIG 17
#endif
static void
w_float(double d, struct dump_arg *arg)
{
char buf[FLOAT_DIG + (DECIMAL_MANT + 7) / 8 + 10];
if (isinf(d)) {
if (d < 0) w_cstr("-inf", arg);
else w_cstr("inf", arg);
}
else if (isnan(d)) {
w_cstr("nan", arg);
}
else if (d == 0.0) {
if (signbit(d)) w_cstr("-0", arg);
else w_cstr("0", arg);
}
else {
int decpt, sign, digs, len = 0;
char *e, *p = ruby_dtoa(d, 0, 0, &decpt, &sign, &e);
if (sign) buf[len++] = '-';
digs = (int)(e - p);
if (decpt < -3 || decpt > digs) {
buf[len++] = p[0];
if (--digs > 0) buf[len++] = '.';
memcpy(buf + len, p + 1, digs);
len += digs;
len += snprintf(buf + len, sizeof(buf) - len, "e%d", decpt - 1);
}
else if (decpt > 0) {
memcpy(buf + len, p, decpt);
len += decpt;
if ((digs -= decpt) > 0) {
buf[len++] = '.';
memcpy(buf + len, p + decpt, digs);
len += digs;
}
}
else {
buf[len++] = '0';
buf[len++] = '.';
if (decpt) {
memset(buf + len, '0', -decpt);
len -= decpt;
}
memcpy(buf + len, p, digs);
len += digs;
}
xfree(p);
w_bytes(buf, len, arg);
}
}
static void
w_symbol(VALUE sym, struct dump_arg *arg)
{
st_data_t num;
VALUE encname;
if (st_lookup(arg->symbols, sym, &num)) {
w_byte(TYPE_SYMLINK, arg);
w_long((long)num, arg);
}
else {
const VALUE orig_sym = sym;
sym = rb_sym2str(sym);
if (!sym) {
rb_raise(rb_eTypeError, "can't dump anonymous ID %"PRIdVALUE, sym);
}
encname = encoding_name(sym, arg);
if (NIL_P(encname) ||
rb_enc_str_coderange(sym) == ENC_CODERANGE_7BIT) {
encname = Qnil;
}
else {
w_byte(TYPE_IVAR, arg);
}
w_byte(TYPE_SYMBOL, arg);
w_bytes(RSTRING_PTR(sym), RSTRING_LEN(sym), arg);
st_add_direct(arg->symbols, orig_sym, arg->symbols->num_entries);
if (!NIL_P(encname)) {
struct dump_call_arg c_arg;
c_arg.limit = 1;
c_arg.arg = arg;
w_long(1L, arg);
w_encoding(encname, &c_arg);
}
}
}
static void
w_unique(VALUE s, struct dump_arg *arg)
{
must_not_be_anonymous("class", s);
w_symbol(rb_str_intern(s), arg);
}
static void w_object(VALUE,struct dump_arg*,int);
static int
hash_each(VALUE key, VALUE value, VALUE v)
{
struct dump_call_arg *arg = (void *)v;
w_object(key, arg->arg, arg->limit);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
#define SINGLETON_DUMP_UNABLE_P(klass) \
(rb_id_table_size(RCLASS_M_TBL(klass)) > 0 || \
(RCLASS_IV_TBL(klass) && RCLASS_IV_TBL(klass)->num_entries > 1))
static void
w_extended(VALUE klass, struct dump_arg *arg, int check)
{
if (check && FL_TEST(klass, FL_SINGLETON)) {
VALUE origin = RCLASS_ORIGIN(klass);
if (SINGLETON_DUMP_UNABLE_P(klass) ||
(origin != klass && SINGLETON_DUMP_UNABLE_P(origin))) {
rb_raise(rb_eTypeError, "singleton can't be dumped");
}
klass = RCLASS_SUPER(klass);
}
while (BUILTIN_TYPE(klass) == T_ICLASS) {
VALUE path = rb_class_name(RBASIC(klass)->klass);
w_byte(TYPE_EXTENDED, arg);
w_unique(path, arg);
klass = RCLASS_SUPER(klass);
}
}
static void
w_class(char type, VALUE obj, struct dump_arg *arg, int check)
{
VALUE path;
st_data_t real_obj;
VALUE klass;
if (arg->compat_tbl &&
st_lookup(arg->compat_tbl, (st_data_t)obj, &real_obj)) {
obj = (VALUE)real_obj;
}
klass = CLASS_OF(obj);
w_extended(klass, arg, check);
w_byte(type, arg);
path = class2path(rb_class_real(klass));
w_unique(path, arg);
}
static void
w_uclass(VALUE obj, VALUE super, struct dump_arg *arg)
{
VALUE klass = CLASS_OF(obj);
w_extended(klass, arg, TRUE);
klass = rb_class_real(klass);
if (klass != super) {
w_byte(TYPE_UCLASS, arg);
w_unique(class2path(klass), arg);
}
}
#define to_be_skipped_id(id) (id == rb_id_encoding() || id == s_encoding_short || !rb_id2str(id))
struct w_ivar_arg {
struct dump_call_arg *dump;
st_data_t num_ivar;
};
static int
w_obj_each(st_data_t key, st_data_t val, st_data_t a)
{
ID id = (ID)key;
VALUE value = (VALUE)val;
struct w_ivar_arg *ivarg = (struct w_ivar_arg *)a;
struct dump_call_arg *arg = ivarg->dump;
if (to_be_skipped_id(id)) {
if (id == s_encoding_short) {
rb_warn("instance variable `E' on class %"PRIsVALUE" is not dumped",
CLASS_OF(arg->obj));
}
return ST_CONTINUE;
}
if (!ivarg->num_ivar) {
rb_raise(rb_eRuntimeError, "instance variable added to %"PRIsVALUE" instance",
CLASS_OF(arg->obj));
}
--ivarg->num_ivar;
w_symbol(ID2SYM(id), arg->arg);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
static int
obj_count_ivars(st_data_t key, st_data_t val, st_data_t a)
{
ID id = (ID)key;
if (!to_be_skipped_id(id)) ++*(st_index_t *)a;
return ST_CONTINUE;
}
static VALUE
encoding_name(VALUE obj, struct dump_arg *arg)
{
if (rb_enc_capable(obj)) {
int encidx = rb_enc_get_index(obj);
rb_encoding *enc = 0;
st_data_t name;
if (encidx <= 0 || !(enc = rb_enc_from_index(encidx))) {
return Qnil;
}
/* special treatment for US-ASCII and UTF-8 */
if (encidx == rb_usascii_encindex()) {
return Qfalse;
}
else if (encidx == rb_utf8_encindex()) {
return Qtrue;
}
if (arg->encodings ?
!st_lookup(arg->encodings, (st_data_t)rb_enc_name(enc), &name) :
(arg->encodings = st_init_strcasetable(), 1)) {
name = (st_data_t)rb_str_new_cstr(rb_enc_name(enc));
st_insert(arg->encodings, (st_data_t)rb_enc_name(enc), name);
}
return (VALUE)name;
}
else {
return Qnil;
}
}
static int
w_encoding(VALUE encname, struct dump_call_arg *arg)
{
int limit = arg->limit;
if (limit >= 0) ++limit;
switch (encname) {
case Qfalse:
case Qtrue:
w_symbol(ID2SYM(s_encoding_short), arg->arg);
w_object(encname, arg->arg, limit);
return 1;
case Qnil:
return 0;
}
w_symbol(ID2SYM(rb_id_encoding()), arg->arg);
w_object(encname, arg->arg, limit);
return 1;
}
static st_index_t
has_ivars(VALUE obj, VALUE encname, VALUE *ivobj)
{
st_index_t enc = !NIL_P(encname);
st_index_t num = 0;
if (SPECIAL_CONST_P(obj)) goto generic;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
case T_CLASS:
case T_MODULE:
break; /* counted elsewhere */
default:
generic:
rb_ivar_foreach(obj, obj_count_ivars, (st_data_t)&num);
if (num) *ivobj = obj;
}
return num + enc;
}
static void
w_ivar_each(VALUE obj, st_index_t num, struct dump_call_arg *arg)
{
struct w_ivar_arg ivarg = {arg, num};
if (!num) return;
rb_ivar_foreach(obj, w_obj_each, (st_data_t)&ivarg);
if (ivarg.num_ivar) {
rb_raise(rb_eRuntimeError, "instance variable removed from %"PRIsVALUE" instance",
CLASS_OF(arg->obj));
}
}
static void
w_ivar(st_index_t num, VALUE ivobj, VALUE encname, struct dump_call_arg *arg)
{
w_long(num, arg->arg);
num -= w_encoding(encname, arg);
if (ivobj != Qundef) {
w_ivar_each(ivobj, num, arg);
}
}
static void
w_objivar(VALUE obj, struct dump_call_arg *arg)
{
st_data_t num = 0;
rb_ivar_foreach(obj, obj_count_ivars, (st_data_t)&num);
w_long(num, arg->arg);
w_ivar_each(obj, num, arg);
}
static void
w_object(VALUE obj, struct dump_arg *arg, int limit)
{
struct dump_call_arg c_arg;
VALUE ivobj = Qundef;
st_data_t num;
st_index_t hasiv = 0;
VALUE encname = Qnil;
if (limit == 0) {
rb_raise(rb_eArgError, "exceed depth limit");
}
if (limit > 0) limit--;
c_arg.limit = limit;
c_arg.arg = arg;
c_arg.obj = obj;
if (st_lookup(arg->data, obj, &num)) {
w_byte(TYPE_LINK, arg);
w_long((long)num, arg);
return;
}
if (obj == Qnil) {
w_byte(TYPE_NIL, arg);
}
else if (obj == Qtrue) {
w_byte(TYPE_TRUE, arg);
}
else if (obj == Qfalse) {
w_byte(TYPE_FALSE, arg);
}
else if (FIXNUM_P(obj)) {
#if SIZEOF_LONG <= 4
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2INT(obj), arg);
#else
if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) {
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2LONG(obj), arg);
}
else {
w_object(rb_int2big(FIX2LONG(obj)), arg, limit);
}
#endif
}
else if (SYMBOL_P(obj)) {
w_symbol(obj, arg);
}
else if (FLONUM_P(obj)) {
st_add_direct(arg->data, obj, arg->data->num_entries);
w_byte(TYPE_FLOAT, arg);
w_float(RFLOAT_VALUE(obj), arg);
}
else {
VALUE v;
if (!RBASIC_CLASS(obj)) {
rb_raise(rb_eTypeError, "can't dump internal %s",
rb_builtin_type_name(BUILTIN_TYPE(obj)));
}
arg->infection |= (int)FL_TEST(obj, MARSHAL_INFECTION);
if (rb_obj_respond_to(obj, s_mdump, TRUE)) {
st_add_direct(arg->data, obj, arg->data->num_entries);
v = dump_funcall(arg, obj, s_mdump, 0, 0);
w_class(TYPE_USRMARSHAL, obj, arg, FALSE);
w_object(v, arg, limit);
return;
}
if (rb_obj_respond_to(obj, s_dump, TRUE)) {
VALUE ivobj2 = Qundef;
st_index_t hasiv2;
VALUE encname2;
v = INT2NUM(limit);
v = dump_funcall(arg, obj, s_dump, 1, &v);
if (!RB_TYPE_P(v, T_STRING)) {
rb_raise(rb_eTypeError, "_dump() must return string");
}
hasiv = has_ivars(obj, (encname = encoding_name(obj, arg)), &ivobj);
hasiv2 = has_ivars(v, (encname2 = encoding_name(v, arg)), &ivobj2);
if (hasiv2) {
hasiv = hasiv2;
ivobj = ivobj2;
encname = encname2;
}
if (hasiv) w_byte(TYPE_IVAR, arg);
w_class(TYPE_USERDEF, obj, arg, FALSE);
w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg);
if (hasiv) {
w_ivar(hasiv, ivobj, encname, &c_arg);
}
st_add_direct(arg->data, obj, arg->data->num_entries);
return;
}
st_add_direct(arg->data, obj, arg->data->num_entries);
hasiv = has_ivars(obj, (encname = encoding_name(obj, arg)), &ivobj);
{
st_data_t compat_data;
rb_alloc_func_t allocator = rb_get_alloc_func(RBASIC(obj)->klass);
if (st_lookup(compat_allocator_tbl,
(st_data_t)allocator,
&compat_data)) {
marshal_compat_t *compat = (marshal_compat_t*)compat_data;
VALUE real_obj = obj;
obj = compat->dumper(real_obj);
if (!arg->compat_tbl) {
arg->compat_tbl = rb_init_identtable();
}
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
if (obj != real_obj && ivobj == Qundef) hasiv = 0;
}
}
if (hasiv) w_byte(TYPE_IVAR, arg);
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
if (FL_TEST(obj, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton class can't be dumped");
}
w_byte(TYPE_CLASS, arg);
{
VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
RB_GC_GUARD(path);
}
break;
case T_MODULE:
w_byte(TYPE_MODULE, arg);
{
VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
RB_GC_GUARD(path);
}
break;
case T_FLOAT:
w_byte(TYPE_FLOAT, arg);
w_float(RFLOAT_VALUE(obj), arg);
break;
case T_BIGNUM:
w_byte(TYPE_BIGNUM, arg);
{
char sign = BIGNUM_SIGN(obj) ? '+' : '-';
size_t len = BIGNUM_LEN(obj);
size_t slen;
size_t j;
BDIGIT *d = BIGNUM_DIGITS(obj);
slen = SHORTLEN(len);
if (LONG_MAX < slen) {
rb_raise(rb_eTypeError, "too big Bignum can't be dumped");
}
w_byte(sign, arg);
w_long((long)slen, arg);
for (j = 0; j < len; j++) {
#if SIZEOF_BDIGIT > SIZEOF_SHORT
BDIGIT num = *d;
int i;
for (i=0; i<SIZEOF_BDIGIT; i+=SIZEOF_SHORT) {
w_short(num & SHORTMASK, arg);
num = SHORTDN(num);
if (j == len - 1 && num == 0) break;
}
#else
w_short(*d, arg);
#endif
d++;
}
}
break;
case T_STRING:
w_uclass(obj, rb_cString, arg);
w_byte(TYPE_STRING, arg);
w_bytes(RSTRING_PTR(obj), RSTRING_LEN(obj), arg);
break;
case T_REGEXP:
w_uclass(obj, rb_cRegexp, arg);
w_byte(TYPE_REGEXP, arg);
{
int opts = rb_reg_options(obj);
w_bytes(RREGEXP_SRC_PTR(obj), RREGEXP_SRC_LEN(obj), arg);
w_byte((char)opts, arg);
}
break;
case T_ARRAY:
w_uclass(obj, rb_cArray, arg);
w_byte(TYPE_ARRAY, arg);
{
long i, len = RARRAY_LEN(obj);
w_long(len, arg);
for (i=0; i<RARRAY_LEN(obj); i++) {
w_object(RARRAY_AREF(obj, i), arg, limit);
if (len != RARRAY_LEN(obj)) {
rb_raise(rb_eRuntimeError, "array modified during dump");
}
}
}
break;
case T_HASH:
w_uclass(obj, rb_cHash, arg);
if (NIL_P(RHASH_IFNONE(obj))) {
w_byte(TYPE_HASH, arg);
}
else if (FL_TEST(obj, RHASH_PROC_DEFAULT)) {
rb_raise(rb_eTypeError, "can't dump hash with default proc");
}
else {
w_byte(TYPE_HASH_DEF, arg);
}
w_long(rb_hash_size_num(obj), arg);
rb_hash_foreach(obj, hash_each, (st_data_t)&c_arg);
if (!NIL_P(RHASH_IFNONE(obj))) {
w_object(RHASH_IFNONE(obj), arg, limit);
}
break;
case T_STRUCT:
w_class(TYPE_STRUCT, obj, arg, TRUE);
{
long len = RSTRUCT_LEN(obj);
VALUE mem;
long i;
w_long(len, arg);
mem = rb_struct_members(obj);
for (i=0; i<len; i++) {
w_symbol(RARRAY_AREF(mem, i), arg);
w_object(RSTRUCT_GET(obj, i), arg, limit);
}
}
break;
case T_OBJECT:
w_class(TYPE_OBJECT, obj, arg, TRUE);
w_objivar(obj, &c_arg);
break;
case T_DATA:
{
VALUE v;
if (!rb_obj_respond_to(obj, s_dump_data, TRUE)) {
rb_raise(rb_eTypeError,
"no _dump_data is defined for class %"PRIsVALUE,
rb_obj_class(obj));
}
v = dump_funcall(arg, obj, s_dump_data, 0, 0);
w_class(TYPE_DATA, obj, arg, TRUE);
w_object(v, arg, limit);
}
break;
default:
rb_raise(rb_eTypeError, "can't dump %"PRIsVALUE,
rb_obj_class(obj));
break;
}
RB_GC_GUARD(obj);
}
if (hasiv) {
w_ivar(hasiv, ivobj, encname, &c_arg);
}
}
static void
clear_dump_arg(struct dump_arg *arg)
{
if (!arg->symbols) return;
st_free_table(arg->symbols);
arg->symbols = 0;
st_free_table(arg->data);
arg->data = 0;
if (arg->compat_tbl) {
st_free_table(arg->compat_tbl);
arg->compat_tbl = 0;
}
if (arg->encodings) {
st_free_table(arg->encodings);
arg->encodings = 0;
}
}
NORETURN(static inline void io_needed(void));
static inline void
io_needed(void)
{
rb_raise(rb_eTypeError, "instance of IO needed");
}
/*
* call-seq:
* dump( obj [, anIO] , limit=-1 ) -> anIO
*
* Serializes obj and all descendant objects. If anIO is
* specified, the serialized data will be written to it, otherwise the
* data will be returned as a String. If limit is specified, the
* traversal of subobjects will be limited to that depth. If limit is
* negative, no checking of depth will be performed.
*
* class Klass
* def initialize(str)
* @str = str
* end
* def say_hello
* @str
* end
* end
*
* (produces no output)
*
* o = Klass.new("hello\n")
* data = Marshal.dump(o)
* obj = Marshal.load(data)
* obj.say_hello #=> "hello\n"
*
* Marshal can't dump following objects:
* * anonymous Class/Module.
* * objects which are related to system (ex: Dir, File::Stat, IO, File, Socket
* and so on)
* * an instance of MatchData, Data, Method, UnboundMethod, Proc, Thread,
* ThreadGroup, Continuation
* * objects which define singleton methods
*/
static VALUE
marshal_dump(int argc, VALUE *argv)
{
VALUE obj, port, a1, a2;
int limit = -1;
port = Qnil;
rb_scan_args(argc, argv, "12", &obj, &a1, &a2);
if (argc == 3) {
if (!NIL_P(a2)) limit = NUM2INT(a2);
if (NIL_P(a1)) io_needed();
port = a1;
}
else if (argc == 2) {
if (FIXNUM_P(a1)) limit = FIX2INT(a1);
else if (NIL_P(a1)) io_needed();
else port = a1;
}
return rb_marshal_dump_limited(obj, port, limit);
}
VALUE
rb_marshal_dump_limited(VALUE obj, VALUE port, int limit)
{
struct dump_arg *arg;
VALUE wrapper; /* used to avoid memory leak in case of exception */
wrapper = TypedData_Make_Struct(0, struct dump_arg, &dump_arg_data, arg);
arg->dest = 0;
arg->symbols = st_init_numtable();
arg->data = rb_init_identtable();
arg->infection = 0;
arg->compat_tbl = 0;
arg->encodings = 0;
arg->str = rb_str_buf_new(0);
if (!NIL_P(port)) {
if (!rb_respond_to(port, s_write)) {
io_needed();
}
arg->dest = port;
dump_check_funcall(arg, port, s_binmode, 0, 0);
}
else {
port = arg->str;
}
w_byte(MARSHAL_MAJOR, arg);
w_byte(MARSHAL_MINOR, arg);
w_object(obj, arg, limit);
if (arg->dest) {
rb_io_write(arg->dest, arg->str);
rb_str_resize(arg->str, 0);
}
clear_dump_arg(arg);
RB_GC_GUARD(wrapper);
return port;
}
struct load_arg {
VALUE src;
char *buf;
long buflen;
long readable;
long offset;
st_table *symbols;
st_table *data;
VALUE proc;
st_table *compat_tbl;
int infection;
};
static VALUE
check_load_arg(VALUE ret, struct load_arg *arg, const char *name)
{
if (!arg->symbols) {
rb_raise(rb_eRuntimeError, "Marshal.load reentered at %s",
name);
}
return ret;
}
#define load_funcall(arg, obj, sym, argc, argv) \
check_load_arg(rb_funcallv(obj, sym, argc, argv), arg, name_##sym)
static void clear_load_arg(struct load_arg *arg);
static void
mark_load_arg(void *ptr)
{
struct load_arg *p = ptr;
if (!p->symbols)
return;
rb_mark_tbl(p->symbols);
rb_mark_tbl(p->data);
rb_mark_hash(p->compat_tbl);
}
static void
free_load_arg(void *ptr)
{
clear_load_arg(ptr);
xfree(ptr);
}
static size_t
memsize_load_arg(const void *ptr)
{
return sizeof(struct load_arg);
}
static const rb_data_type_t load_arg_data = {
"load_arg",
{mark_load_arg, free_load_arg, memsize_load_arg,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#define r_entry(v, arg) r_entry0((v), (arg)->data->num_entries, (arg))
static VALUE r_entry0(VALUE v, st_index_t num, struct load_arg *arg);
static VALUE r_object(struct load_arg *arg);
static VALUE r_symbol(struct load_arg *arg);
static VALUE path2class(VALUE path);
NORETURN(static void too_short(void));
static void
too_short(void)
{
rb_raise(rb_eArgError, "marshal data too short");
}
static st_index_t
r_prepare(struct load_arg *arg)
{
st_index_t idx = arg->data->num_entries;
st_insert(arg->data, (st_data_t)idx, (st_data_t)Qundef);
return idx;
}
static unsigned char
r_byte1_buffered(struct load_arg *arg)
{
if (arg->buflen == 0) {
long readable = arg->readable < BUFSIZ ? arg->readable : BUFSIZ;
VALUE str, n = LONG2NUM(readable);
str = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(str)) too_short();
StringValue(str);
arg->infection |= (int)FL_TEST(str, MARSHAL_INFECTION);
memcpy(arg->buf, RSTRING_PTR(str), RSTRING_LEN(str));
arg->offset = 0;
arg->buflen = RSTRING_LEN(str);
}
arg->buflen--;
return arg->buf[arg->offset++];
}
static int
r_byte(struct load_arg *arg)
{
int c;
if (RB_TYPE_P(arg->src, T_STRING)) {
if (RSTRING_LEN(arg->src) > arg->offset) {
c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++];
}
else {
too_short();
}
}
else {
if (arg->readable >0 || arg->buflen > 0) {
c = r_byte1_buffered(arg);
}
else {
VALUE v = load_funcall(arg, arg->src, s_getbyte, 0, 0);
if (NIL_P(v)) rb_eof_error();
c = (unsigned char)NUM2CHR(v);
}
}
return c;
}
NORETURN(static void long_toobig(int size));
static void
long_toobig(int size)
{
rb_raise(rb_eTypeError, "long too big for this architecture (size "
STRINGIZE(SIZEOF_LONG)", given %d)", size);
}
static long
r_long(struct load_arg *arg)
{
register long x;
int c = (signed char)r_byte(arg);
long i;
if (c == 0) return 0;
if (c > 0) {
if (4 < c && c < 128) {
return c - 5;
}
if (c > (int)sizeof(long)) long_toobig(c);
x = 0;
for (i=0;i<c;i++) {
x |= (long)r_byte(arg) << (8*i);
}
}
else {
if (-129 < c && c < -4) {
return c + 5;
}
c = -c;
if (c > (int)sizeof(long)) long_toobig(c);
x = -1;
for (i=0;i<c;i++) {
x &= ~((long)0xff << (8*i));
x |= (long)r_byte(arg) << (8*i);
}
}
return x;
}
long
ruby_marshal_read_long(const char **buf, long len)
{
long x;
struct RString src;
struct load_arg arg;
memset(&arg, 0, sizeof(arg));
arg.src = rb_setup_fake_str(&src, *buf, len, 0);
x = r_long(&arg);
*buf += arg.offset;
return x;
}
static VALUE
r_bytes1(long len, struct load_arg *arg)
{
VALUE str, n = LONG2NUM(len);
str = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(str)) too_short();
StringValue(str);
if (RSTRING_LEN(str) != len) too_short();
arg->infection |= (int)FL_TEST(str, MARSHAL_INFECTION);
return str;
}
static VALUE
r_bytes1_buffered(long len, struct load_arg *arg)
{
VALUE str;
if (len <= arg->buflen) {
str = rb_str_new(arg->buf+arg->offset, len);
arg->offset += len;
arg->buflen -= len;
}
else {
long buflen = arg->buflen;
long readable = arg->readable + 1;
long tmp_len, read_len, need_len = len - buflen;
VALUE tmp, n;
readable = readable < BUFSIZ ? readable : BUFSIZ;
read_len = need_len > readable ? need_len : readable;
n = LONG2NUM(read_len);
tmp = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(tmp)) too_short();
StringValue(tmp);
tmp_len = RSTRING_LEN(tmp);
if (tmp_len < need_len) too_short();
arg->infection |= (int)FL_TEST(tmp, MARSHAL_INFECTION);
str = rb_str_new(arg->buf+arg->offset, buflen);
rb_str_cat(str, RSTRING_PTR(tmp), need_len);
if (tmp_len > need_len) {
buflen = tmp_len - need_len;
memcpy(arg->buf, RSTRING_PTR(tmp)+need_len, buflen);
arg->buflen = buflen;
}
else {
arg->buflen = 0;
}
arg->offset = 0;
}
return str;
}
#define r_bytes(arg) r_bytes0(r_long(arg), (arg))
static VALUE
r_bytes0(long len, struct load_arg *arg)
{
VALUE str;
if (len == 0) return rb_str_new(0, 0);
if (RB_TYPE_P(arg->src, T_STRING)) {
if (RSTRING_LEN(arg->src) - arg->offset >= len) {
str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len);
arg->offset += len;
}
else {
too_short();
}
}
else {
if (arg->readable > 0 || arg->buflen > 0) {
str = r_bytes1_buffered(len, arg);
}
else {
str = r_bytes1(len, arg);
}
}
return str;
}
static int
sym2encidx(VALUE sym, VALUE val)
{
static const char name_encoding[8] = "encoding";
const char *p;
long l;
if (rb_enc_get_index(sym) != ENCINDEX_US_ASCII) return -1;
RSTRING_GETMEM(sym, p, l);
if (l <= 0) return -1;
if (l == sizeof(name_encoding) &&
memcmp(p, name_encoding, sizeof(name_encoding)) == 0) {
int idx = rb_enc_find_index(StringValueCStr(val));
return idx;
}
else if (l == 1 && *p == 'E') {
if (val == Qfalse) return rb_usascii_encindex();
else if (val == Qtrue) return rb_utf8_encindex();
/* bogus ignore */
}
return -1;
}
static VALUE
r_symlink(struct load_arg *arg)
{
st_data_t sym;
long num = r_long(arg);
if (!st_lookup(arg->symbols, num, &sym)) {
rb_raise(rb_eArgError, "bad symbol");
}
return (VALUE)sym;
}
static VALUE
r_symreal(struct load_arg *arg, int ivar)
{
VALUE s = r_bytes(arg);
VALUE sym;
int idx = -1;
st_index_t n = arg->symbols->num_entries;
if (rb_enc_str_asciionly_p(s)) rb_enc_associate_index(s, ENCINDEX_US_ASCII);
st_insert(arg->symbols, (st_data_t)n, (st_data_t)s);
if (ivar) {
long num = r_long(arg);
while (num-- > 0) {
sym = r_symbol(arg);
idx = sym2encidx(sym, r_object(arg));
}
}
if (idx > 0) rb_enc_associate_index(s, idx);
return s;
}
static VALUE
r_symbol(struct load_arg *arg)
{
int type, ivar = 0;
again:
switch ((type = r_byte(arg))) {
default:
rb_raise(rb_eArgError, "dump format error for symbol(0x%x)", type);
case TYPE_IVAR:
ivar = 1;
goto again;
case TYPE_SYMBOL:
return r_symreal(arg, ivar);
case TYPE_SYMLINK:
if (ivar) {
rb_raise(rb_eArgError, "dump format error (symlink with encoding)");
}
return r_symlink(arg);
}
}
static VALUE
r_unique(struct load_arg *arg)
{
return r_symbol(arg);
}
static VALUE
r_string(struct load_arg *arg)
{
return r_bytes(arg);
}
static VALUE
r_entry0(VALUE v, st_index_t num, struct load_arg *arg)
{
st_data_t real_obj = (VALUE)Qundef;
if (arg->compat_tbl && st_lookup(arg->compat_tbl, v, &real_obj)) {
st_insert(arg->data, num, (st_data_t)real_obj);
}
else {
st_insert(arg->data, num, (st_data_t)v);
}
if (arg->infection &&
!RB_TYPE_P(v, T_CLASS) && !RB_TYPE_P(v, T_MODULE)) {
OBJ_TAINT(v);
if ((VALUE)real_obj != Qundef)
OBJ_TAINT((VALUE)real_obj);
}
return v;
}
static VALUE
r_fixup_compat(VALUE v, struct load_arg *arg)
{
st_data_t data;
st_data_t key = (st_data_t)v;
if (arg->compat_tbl && st_delete(arg->compat_tbl, &key, &data)) {
VALUE real_obj = (VALUE)data;
rb_alloc_func_t allocator = rb_get_alloc_func(CLASS_OF(real_obj));
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
compat->loader(real_obj, v);
}
v = real_obj;
}
return v;
}
static VALUE
r_post_proc(VALUE v, struct load_arg *arg)
{
if (arg->proc) {
v = load_funcall(arg, arg->proc, s_call, 1, &v);
}
return v;
}
static VALUE
r_leave(VALUE v, struct load_arg *arg)
{
v = r_fixup_compat(v, arg);
v = r_post_proc(v, arg);
return v;
}
static int
copy_ivar_i(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE obj = (VALUE)arg, value = (VALUE)val;
ID vid = (ID)key;
if (!rb_ivar_defined(obj, vid))
rb_ivar_set(obj, vid, value);
return ST_CONTINUE;
}
static VALUE
r_copy_ivar(VALUE v, VALUE data)
{
rb_ivar_foreach(data, copy_ivar_i, (st_data_t)v);
return v;
}
static void
r_ivar(VALUE obj, int *has_encoding, struct load_arg *arg)
{
long len;
len = r_long(arg);
if (len > 0) {
do {
VALUE sym = r_symbol(arg);
VALUE val = r_object(arg);
int idx = sym2encidx(sym, val);
if (idx >= 0) {
if (rb_enc_capable(obj)) {
rb_enc_associate_index(obj, idx);
}
else {
rb_raise(rb_eArgError, "%"PRIsVALUE" is not enc_capable", obj);
}
if (has_encoding) *has_encoding = TRUE;
}
else {
rb_ivar_set(obj, rb_intern_str(sym), val);
}
} while (--len > 0);
}
}
static VALUE
path2class(VALUE path)
{
VALUE v = rb_path_to_class(path);
if (!RB_TYPE_P(v, T_CLASS)) {
rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to class", path);
}
return v;
}
#define path2module(path) must_be_module(rb_path_to_class(path), path)
static VALUE
must_be_module(VALUE v, VALUE path)
{
if (!RB_TYPE_P(v, T_MODULE)) {
rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to module", path);
}
return v;
}
static VALUE
obj_alloc_by_klass(VALUE klass, struct load_arg *arg, VALUE *oldclass)
{
st_data_t data;
rb_alloc_func_t allocator;
allocator = rb_get_alloc_func(klass);
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
VALUE real_obj = rb_obj_alloc(klass);
VALUE obj = rb_obj_alloc(compat->oldclass);
if (oldclass) *oldclass = compat->oldclass;
if (!arg->compat_tbl) {
arg->compat_tbl = rb_init_identtable();
}
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
return obj;
}
return rb_obj_alloc(klass);
}
static VALUE
obj_alloc_by_path(VALUE path, struct load_arg *arg)
{
return obj_alloc_by_klass(path2class(path), arg, 0);
}
static VALUE
append_extmod(VALUE obj, VALUE extmod)
{
long i = RARRAY_LEN(extmod);
while (i > 0) {
VALUE m = RARRAY_AREF(extmod, --i);
rb_extend_object(obj, m);
}
return obj;
}
#define prohibit_ivar(type, str) do { \
if (!ivp || !*ivp) break; \
rb_raise(rb_eTypeError, \
"can't override instance variable of "type" `%"PRIsVALUE"'", \
(str)); \
} while (0)
static VALUE
r_object0(struct load_arg *arg, int *ivp, VALUE extmod)
{
VALUE v = Qnil;
int type = r_byte(arg);
long id;
st_data_t link;
switch (type) {
case TYPE_LINK:
id = r_long(arg);
if (!st_lookup(arg->data, (st_data_t)id, &link)) {
rb_raise(rb_eArgError, "dump format error (unlinked)");
}
v = (VALUE)link;
v = r_post_proc(v, arg);
break;
case TYPE_IVAR:
{
int ivar = TRUE;
v = r_object0(arg, &ivar, extmod);
if (ivar) r_ivar(v, NULL, arg);
}
break;
case TYPE_EXTENDED:
{
VALUE path = r_unique(arg);
VALUE m = rb_path_to_class(path);
if (NIL_P(extmod)) extmod = rb_ary_tmp_new(0);
if (RB_TYPE_P(m, T_CLASS)) { /* prepended */
VALUE c;
v = r_object0(arg, 0, Qnil);
c = CLASS_OF(v);
if (c != m || FL_TEST(c, FL_SINGLETON)) {
rb_raise(rb_eArgError,
"prepended class %"PRIsVALUE" differs from class %"PRIsVALUE,
path, rb_class_name(c));
}
c = rb_singleton_class(v);
while (RARRAY_LEN(extmod) > 0) {
m = rb_ary_pop(extmod);
rb_prepend_module(c, m);
}
}
else {
must_be_module(m, path);
rb_ary_push(extmod, m);
v = r_object0(arg, 0, extmod);
while (RARRAY_LEN(extmod) > 0) {
m = rb_ary_pop(extmod);
rb_extend_object(v, m);
}
}
}
break;
case TYPE_UCLASS:
{
VALUE c = path2class(r_unique(arg));
if (FL_TEST(c, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton can't be loaded");
}
v = r_object0(arg, 0, extmod);
if (rb_special_const_p(v) || RB_TYPE_P(v, T_OBJECT) || RB_TYPE_P(v, T_CLASS)) {
format_error:
rb_raise(rb_eArgError, "dump format error (user class)");
}
if (RB_TYPE_P(v, T_MODULE) || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) {
VALUE tmp = rb_obj_alloc(c);
if (TYPE(v) != TYPE(tmp)) goto format_error;
}
RBASIC_SET_CLASS(v, c);
}
break;
case TYPE_NIL:
v = Qnil;
v = r_leave(v, arg);
break;
case TYPE_TRUE:
v = Qtrue;
v = r_leave(v, arg);
break;
case TYPE_FALSE:
v = Qfalse;
v = r_leave(v, arg);
break;
case TYPE_FIXNUM:
{
long i = r_long(arg);
v = LONG2FIX(i);
}
v = r_leave(v, arg);
break;
case TYPE_FLOAT:
{
double d;
VALUE str = r_bytes(arg);
const char *ptr = RSTRING_PTR(str);
if (strcmp(ptr, "nan") == 0) {
d = nan("");
}
else if (strcmp(ptr, "inf") == 0) {
d = HUGE_VAL;
}
else if (strcmp(ptr, "-inf") == 0) {
d = -HUGE_VAL;
}
else {
char *e;
d = strtod(ptr, &e);
d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr));
}
v = DBL2NUM(d);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_BIGNUM:
{
long len;
VALUE data;
int sign;
sign = r_byte(arg);
len = r_long(arg);
data = r_bytes0(len * 2, arg);
v = rb_integer_unpack(RSTRING_PTR(data), len, 2, 0,
INTEGER_PACK_LITTLE_ENDIAN | (sign == '-' ? INTEGER_PACK_NEGATIVE : 0));
rb_str_resize(data, 0L);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_STRING:
v = r_entry(r_string(arg), arg);
v = r_leave(v, arg);
break;
case TYPE_REGEXP:
{
VALUE str = r_bytes(arg);
int options = r_byte(arg);
int has_encoding = FALSE;
st_index_t idx = r_prepare(arg);
if (ivp) {
r_ivar(str, &has_encoding, arg);
*ivp = FALSE;
}
if (!has_encoding) {
/* 1.8 compatibility; remove escapes undefined in 1.8 */
char *ptr = RSTRING_PTR(str), *dst = ptr, *src = ptr;
long len = RSTRING_LEN(str);
long bs = 0;
for (; len-- > 0; *dst++ = *src++) {
switch (*src) {
case '\\': bs++; break;
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'o': case 'p': case 'q': case 'u': case 'y':
case 'E': case 'F': case 'H': case 'I': case 'J': case 'K':
case 'L': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'X': case 'Y':
if (bs & 1) --dst;
/* fall through */
default: bs = 0; break;
}
}
rb_str_set_len(str, dst - ptr);
}
v = r_entry0(rb_reg_new_str(str, options), idx, arg);
v = r_leave(v, arg);
}
break;
case TYPE_ARRAY:
{
long len = r_long(arg);
v = rb_ary_new2(len);
v = r_entry(v, arg);
arg->readable += len - 1;
while (len--) {
rb_ary_push(v, r_object(arg));
arg->readable--;
}
v = r_leave(v, arg);
arg->readable++;
}
break;
case TYPE_HASH:
case TYPE_HASH_DEF:
{
long len = r_long(arg);
v = rb_hash_new_with_size(len);
v = r_entry(v, arg);
arg->readable += (len - 1) * 2;
while (len--) {
VALUE key = r_object(arg);
VALUE value = r_object(arg);
rb_hash_aset(v, key, value);
arg->readable -= 2;
}
arg->readable += 2;
if (type == TYPE_HASH_DEF) {
RHASH_SET_IFNONE(v, r_object(arg));
}
v = r_leave(v, arg);
}
break;
case TYPE_STRUCT:
{
VALUE mem, values;
long i;
VALUE slot;
st_index_t idx = r_prepare(arg);
VALUE klass = path2class(r_unique(arg));
long len = r_long(arg);
v = rb_obj_alloc(klass);
if (!RB_TYPE_P(v, T_STRUCT)) {
rb_raise(rb_eTypeError, "class %"PRIsVALUE" not a struct", rb_class_name(klass));
}
mem = rb_struct_s_members(klass);
if (RARRAY_LEN(mem) != len) {
rb_raise(rb_eTypeError, "struct %"PRIsVALUE" not compatible (struct size differs)",
rb_class_name(klass));
}
arg->readable += (len - 1) * 2;
v = r_entry0(v, idx, arg);
values = rb_ary_new2(len);
{
VALUE keywords = Qfalse;
if (RTEST(rb_struct_s_keyword_init(klass))) {
keywords = rb_hash_new();
rb_ary_push(values, keywords);
}
for (i=0; i<len; i++) {
VALUE n = rb_sym2str(RARRAY_AREF(mem, i));
slot = r_symbol(arg);
if (!rb_str_equal(n, slot)) {
rb_raise(rb_eTypeError, "struct %"PRIsVALUE" not compatible (:%"PRIsVALUE" for :%"PRIsVALUE")",
rb_class_name(klass),
slot, n);
}
if (keywords) {
rb_hash_aset(keywords, RARRAY_AREF(mem, i), r_object(arg));
}
else {
rb_ary_push(values, r_object(arg));
}
arg->readable -= 2;
}
}
rb_struct_initialize(v, values);
v = r_leave(v, arg);
arg->readable += 2;
}
break;
case TYPE_USERDEF:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE data;
st_data_t d;
if (!rb_obj_respond_to(klass, s_load, TRUE)) {
rb_raise(rb_eTypeError, "class %"PRIsVALUE" needs to have method `_load'",
name);
}
data = r_string(arg);
if (ivp) {
r_ivar(data, NULL, arg);
*ivp = FALSE;
}
v = load_funcall(arg, klass, s_load, 1, &data);
v = r_entry(v, arg);
if (st_lookup(compat_allocator_tbl, (st_data_t)rb_get_alloc_func(klass), &d)) {
marshal_compat_t *compat = (marshal_compat_t*)d;
v = compat->loader(klass, v);
}
v = r_post_proc(v, arg);
}
break;
case TYPE_USRMARSHAL:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE oldclass = 0;
VALUE data;
v = obj_alloc_by_klass(klass, arg, &oldclass);
if (!NIL_P(extmod)) {
/* for the case marshal_load is overridden */
append_extmod(v, extmod);
}
if (!rb_obj_respond_to(v, s_mload, TRUE)) {
rb_raise(rb_eTypeError, "instance of %"PRIsVALUE" needs to have method `marshal_load'",
name);
}
v = r_entry(v, arg);
data = r_object(arg);
load_funcall(arg, v, s_mload, 1, &data);
v = r_fixup_compat(v, arg);
v = r_copy_ivar(v, data);
v = r_post_proc(v, arg);
if (!NIL_P(extmod)) {
if (oldclass) append_extmod(v, extmod);
rb_ary_clear(extmod);
}
}
break;
case TYPE_OBJECT:
{
st_index_t idx = r_prepare(arg);
v = obj_alloc_by_path(r_unique(arg), arg);
if (!RB_TYPE_P(v, T_OBJECT)) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry0(v, idx, arg);
r_ivar(v, NULL, arg);
v = r_leave(v, arg);
}
break;
case TYPE_DATA:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE oldclass = 0;
VALUE r;
v = obj_alloc_by_klass(klass, arg, &oldclass);
if (!RB_TYPE_P(v, T_DATA)) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry(v, arg);
if (!rb_obj_respond_to(v, s_load_data, TRUE)) {
rb_raise(rb_eTypeError,
"class %"PRIsVALUE" needs to have instance method `_load_data'",
name);
}
r = r_object0(arg, 0, extmod);
load_funcall(arg, v, s_load_data, 1, &r);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE_OLD:
{
VALUE str = r_bytes(arg);
v = rb_path_to_class(str);
prohibit_ivar("class/module", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_CLASS:
{
VALUE str = r_bytes(arg);
v = path2class(str);
prohibit_ivar("class", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE:
{
VALUE str = r_bytes(arg);
v = path2module(str);
prohibit_ivar("module", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_SYMBOL:
if (ivp) {
v = r_symreal(arg, *ivp);
*ivp = FALSE;
}
else {
v = r_symreal(arg, 0);
}
v = rb_str_intern(v);
v = r_leave(v, arg);
break;
case TYPE_SYMLINK:
v = rb_str_intern(r_symlink(arg));
break;
default:
rb_raise(rb_eArgError, "dump format error(0x%x)", type);
break;
}
if (v == Qundef) {
rb_raise(rb_eArgError, "dump format error (bad link)");
}
return v;
}
static VALUE
r_object(struct load_arg *arg)
{
return r_object0(arg, 0, Qnil);
}
static void
clear_load_arg(struct load_arg *arg)
{
if (arg->buf) {
xfree(arg->buf);
arg->buf = 0;
}
arg->buflen = 0;
arg->offset = 0;
arg->readable = 0;
if (!arg->symbols) return;
st_free_table(arg->symbols);
arg->symbols = 0;
st_free_table(arg->data);
arg->data = 0;
if (arg->compat_tbl) {
st_free_table(arg->compat_tbl);
arg->compat_tbl = 0;
}
}
/*
* call-seq:
* load( source [, proc] ) -> obj
* restore( source [, proc] ) -> obj
*
* Returns the result of converting the serialized data in source into a
* Ruby object (possibly with associated subordinate objects). source
* may be either an instance of IO or an object that responds to
* to_str. If proc is specified, each object will be passed to the proc, as the object
* is being deserialized.
*
* Never pass untrusted data (including user supplied input) to this method.
* Please see the overview for further details.
*/
static VALUE
marshal_load(int argc, VALUE *argv)
{
VALUE port, proc;
rb_check_arity(argc, 1, 2);
port = argv[0];
proc = argc > 1 ? argv[1] : Qnil;
return rb_marshal_load_with_proc(port, proc);
}
VALUE
rb_marshal_load_with_proc(VALUE port, VALUE proc)
{
int major, minor, infection = 0;
VALUE v;
VALUE wrapper; /* used to avoid memory leak in case of exception */
struct load_arg *arg;
v = rb_check_string_type(port);
if (!NIL_P(v)) {
infection = (int)FL_TEST(port, MARSHAL_INFECTION); /* original taintedness */
port = v;
}
else if (rb_respond_to(port, s_getbyte) && rb_respond_to(port, s_read)) {
rb_check_funcall(port, s_binmode, 0, 0);
infection = (int)FL_TAINT;
}
else {
io_needed();
}
wrapper = TypedData_Make_Struct(0, struct load_arg, &load_arg_data, arg);
arg->infection = infection;
arg->src = port;
arg->offset = 0;
arg->symbols = st_init_numtable();
arg->data = rb_init_identtable();
arg->compat_tbl = 0;
arg->proc = 0;
arg->readable = 0;
if (NIL_P(v))
arg->buf = xmalloc(BUFSIZ);
else
arg->buf = 0;
major = r_byte(arg);
minor = r_byte(arg);
if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) {
clear_load_arg(arg);
rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) {
rb_warn("incompatible marshal file format (can be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (!NIL_P(proc)) arg->proc = proc;
v = r_object(arg);
clear_load_arg(arg);
RB_GC_GUARD(wrapper);
return v;
}
/*
* The marshaling library converts collections of Ruby objects into a
* byte stream, allowing them to be stored outside the currently
* active script. This data may subsequently be read and the original
* objects reconstituted.
*
* Marshaled data has major and minor version numbers stored along
* with the object information. In normal use, marshaling can only
* load data written with the same major version number and an equal
* or lower minor version number. If Ruby's ``verbose'' flag is set
* (normally using -d, -v, -w, or --verbose) the major and minor
* numbers must match exactly. Marshal versioning is independent of
* Ruby's version numbers. You can extract the version by reading the
* first two bytes of marshaled data.
*
* str = Marshal.dump("thing")
* RUBY_VERSION #=> "1.9.0"
* str[0].ord #=> 4
* str[1].ord #=> 8
*
* Some objects cannot be dumped: if the objects to be dumped include
* bindings, procedure or method objects, instances of class IO, or
* singleton objects, a TypeError will be raised.
*
* If your class has special serialization needs (for example, if you
* want to serialize in some specific format), or if it contains
* objects that would otherwise not be serializable, you can implement
* your own serialization strategy.
*
* There are two methods of doing this, your object can define either
* marshal_dump and marshal_load or _dump and _load. marshal_dump will take
* precedence over _dump if both are defined. marshal_dump may result in
* smaller Marshal strings.
*
* == Security considerations
*
* By design, Marshal.load can deserialize almost any class loaded into the
* Ruby process. In many cases this can lead to remote code execution if the
* Marshal data is loaded from an untrusted source.
*
* As a result, Marshal.load is not suitable as a general purpose serialization
* format and you should never unmarshal user supplied input or other untrusted
* data.
*
* If you need to deserialize untrusted data, use JSON or another serialization
* format that is only able to load simple, 'primitive' types such as String,
* Array, Hash, etc. Never allow user input to specify arbitrary types to
* deserialize into.
*
* == marshal_dump and marshal_load
*
* When dumping an object the method marshal_dump will be called.
* marshal_dump must return a result containing the information necessary for
* marshal_load to reconstitute the object. The result can be any object.
*
* When loading an object dumped using marshal_dump the object is first
* allocated then marshal_load is called with the result from marshal_dump.
* marshal_load must recreate the object from the information in the result.
*
* Example:
*
* class MyObj
* def initialize name, version, data
* @name = name
* @version = version
* @data = data
* end
*
* def marshal_dump
* [@name, @version]
* end
*
* def marshal_load array
* @name, @version = array
* end
* end
*
* == _dump and _load
*
* Use _dump and _load when you need to allocate the object you're restoring
* yourself.
*
* When dumping an object the instance method _dump is called with an Integer
* which indicates the maximum depth of objects to dump (a value of -1 implies
* that you should disable depth checking). _dump must return a String
* containing the information necessary to reconstitute the object.
*
* The class method _load should take a String and use it to return an object
* of the same class.
*
* Example:
*
* class MyObj
* def initialize name, version, data
* @name = name
* @version = version
* @data = data
* end
*
* def _dump level
* [@name, @version].join ':'
* end
*
* def self._load args
* new(*args.split(':'))
* end
* end
*
* Since Marshal.dump outputs a string you can have _dump return a Marshal
* string which is Marshal.loaded in _load for complex objects.
*/
void
Init_marshal(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
VALUE rb_mMarshal = rb_define_module("Marshal");
#define set_id(sym) sym = rb_intern_const(name_##sym)
set_id(s_dump);
set_id(s_load);
set_id(s_mdump);
set_id(s_mload);
set_id(s_dump_data);
set_id(s_load_data);
set_id(s_alloc);
set_id(s_call);
set_id(s_getbyte);
set_id(s_read);
set_id(s_write);
set_id(s_binmode);
set_id(s_encoding_short);
rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1);
rb_define_module_function(rb_mMarshal, "load", marshal_load, -1);
rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1);
/* major version */
rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR));
/* minor version */
rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR));
}
static st_table *
compat_allocator_table(void)
{
if (compat_allocator_tbl) return compat_allocator_tbl;
compat_allocator_tbl = st_init_numtable();
#undef RUBY_UNTYPED_DATA_WARNING
#define RUBY_UNTYPED_DATA_WARNING 0
compat_allocator_tbl_wrapper =
Data_Wrap_Struct(0, mark_marshal_compat_t, 0, compat_allocator_tbl);
rb_gc_register_mark_object(compat_allocator_tbl_wrapper);
return compat_allocator_tbl;
}
VALUE
rb_marshal_dump(VALUE obj, VALUE port)
{
return rb_marshal_dump_limited(obj, port, -1);
}
VALUE
rb_marshal_load(VALUE port)
{
return rb_marshal_load_with_proc(port, Qnil);
}