mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 c7e236efc1
			
		
	
	
		c7e236efc1
		
	
	
	
	
		
			
			* complex.c (string_to_c_strict): ditto. * rational.c (string_to_r_strict): ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@21180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			2929 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2929 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   bignum.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Jun 10 00:48:55 JST 1994
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/ruby.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <float.h>
 | |
| #include <ctype.h>
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| #include <assert.h>
 | |
| 
 | |
| VALUE rb_cBignum;
 | |
| 
 | |
| #if defined __MINGW32__
 | |
| #define USHORT _USHORT
 | |
| #endif
 | |
| 
 | |
| #define BDIGITS(x) (RBIGNUM_DIGITS(x))
 | |
| #define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
 | |
| #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
 | |
| #define DIGSPERLONG ((unsigned int)(SIZEOF_LONG/SIZEOF_BDIGITS))
 | |
| #if HAVE_LONG_LONG
 | |
| # define DIGSPERLL ((unsigned int)(SIZEOF_LONG_LONG/SIZEOF_BDIGITS))
 | |
| #endif
 | |
| #define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
 | |
| #define BIGDN(x) RSHIFT(x,BITSPERDIG)
 | |
| #define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
 | |
| #define BDIGMAX ((BDIGIT)-1)
 | |
| 
 | |
| #define BIGZEROP(x) (RBIGNUM_LEN(x) == 0 || \
 | |
| 		     (BDIGITS(x)[0] == 0 && \
 | |
| 		      (RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
 | |
| 
 | |
| static int
 | |
| bigzero_p(VALUE x)
 | |
| {
 | |
|     long i;
 | |
|     for (i = RBIGNUM_LEN(x) - 1; 0 <= i; i--) {
 | |
| 	if (BDIGITS(x)[i]) return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_cmpint(VALUE val, VALUE a, VALUE b)
 | |
| {
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_cmperr(a, b);
 | |
|     }
 | |
|     if (FIXNUM_P(val)) return FIX2INT(val);
 | |
|     if (TYPE(val) == T_BIGNUM) {
 | |
| 	if (BIGZEROP(val)) return 0;
 | |
| 	if (RBIGNUM_SIGN(val)) return 1;
 | |
| 	return -1;
 | |
|     }
 | |
|     if (RTEST(rb_funcall(val, '>', 1, INT2FIX(0)))) return 1;
 | |
|     if (RTEST(rb_funcall(val, '<', 1, INT2FIX(0)))) return -1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define RBIGNUM_SET_LEN(b,l) \
 | |
|   ((RBASIC(b)->flags & RBIGNUM_EMBED_FLAG) ? \
 | |
|    (RBASIC(b)->flags = (RBASIC(b)->flags & ~RBIGNUM_EMBED_LEN_MASK) | \
 | |
|       ((l) << RBIGNUM_EMBED_LEN_SHIFT)) : \
 | |
|    (RBIGNUM(b)->as.heap.len = (l)))
 | |
| 
 | |
| static void
 | |
| rb_big_realloc(VALUE big, long len)
 | |
| {
 | |
|     BDIGIT *ds;
 | |
|     if (RBASIC(big)->flags & RBIGNUM_EMBED_FLAG) {
 | |
| 	if (RBIGNUM_EMBED_LEN_MAX < len) {
 | |
| 	    ds = ALLOC_N(BDIGIT, len);
 | |
| 	    MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, RBIGNUM_EMBED_LEN_MAX);
 | |
| 	    RBIGNUM(big)->as.heap.len = RBIGNUM_LEN(big);
 | |
| 	    RBIGNUM(big)->as.heap.digits = ds;
 | |
| 	    RBASIC(big)->flags &= ~RBIGNUM_EMBED_FLAG;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (len <= RBIGNUM_EMBED_LEN_MAX) {
 | |
| 	    ds = RBIGNUM(big)->as.heap.digits;
 | |
| 	    RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
 | |
| 	    RBIGNUM_SET_LEN(big, len);
 | |
| 	    if (ds) {
 | |
| 		MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len);
 | |
| 		xfree(ds);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (RBIGNUM_LEN(big) == 0) {
 | |
| 		RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_big_resize(VALUE big, long len)
 | |
| {
 | |
|     rb_big_realloc(big, len);
 | |
|     RBIGNUM_SET_LEN(big, len);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bignew_1(VALUE klass, long len, int sign)
 | |
| {
 | |
|     NEWOBJ(big, struct RBignum);
 | |
|     OBJSETUP(big, klass, T_BIGNUM);
 | |
|     RBIGNUM_SET_SIGN(big, sign?1:0);
 | |
|     if (len <= RBIGNUM_EMBED_LEN_MAX) {
 | |
| 	RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
 | |
| 	RBIGNUM_SET_LEN(big, len);
 | |
|     }
 | |
|     else {
 | |
| 	rb_big_resize((VALUE)big, len);
 | |
|     }
 | |
| 
 | |
|     return (VALUE)big;
 | |
| }
 | |
| 
 | |
| #define bignew(len,sign) bignew_1(rb_cBignum,len,sign)
 | |
| 
 | |
| VALUE
 | |
| rb_big_clone(VALUE x)
 | |
| {
 | |
|     VALUE z = bignew_1(CLASS_OF(x), RBIGNUM_LEN(x), RBIGNUM_SIGN(x));
 | |
| 
 | |
|     MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, RBIGNUM_LEN(x));
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* modify a bignum by 2's complement */
 | |
| static void
 | |
| get2comp(VALUE x)
 | |
| {
 | |
|     long i = RBIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
|     BDIGIT_DBL num;
 | |
| 
 | |
|     if (!i) return;
 | |
|     while (i--) ds[i] = ~ds[i];
 | |
|     i = 0; num = 1;
 | |
|     do {
 | |
| 	num += ds[i];
 | |
| 	ds[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     } while (i < RBIGNUM_LEN(x));
 | |
|     if (num != 0) {
 | |
| 	rb_big_resize(x, RBIGNUM_LEN(x)+1);
 | |
| 	ds = BDIGITS(x);
 | |
| 	ds[RBIGNUM_LEN(x)-1] = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_big_2comp(VALUE x)			/* get 2's complement */
 | |
| {
 | |
|     get2comp(x);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigtrunc(VALUE x)
 | |
| {
 | |
|     long len = RBIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| 
 | |
|     if (len == 0) return x;
 | |
|     while (--len && !ds[len]);
 | |
|     rb_big_resize(x, len+1);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigfixize(VALUE x)
 | |
| {
 | |
|     long len = RBIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| 
 | |
|     if (len*SIZEOF_BDIGITS <= sizeof(long)) {
 | |
| 	long num = 0;
 | |
| 	while (len--) {
 | |
| 	    num = BIGUP(num) + ds[len];
 | |
| 	}
 | |
| 	if (num >= 0) {
 | |
| 	    if (RBIGNUM_SIGN(x)) {
 | |
| 		if (POSFIXABLE(num)) return LONG2FIX(num);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		if (NEGFIXABLE(-(long)num)) return LONG2FIX(-(long)num);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bignorm(VALUE x)
 | |
| {
 | |
|     if (!FIXNUM_P(x) && TYPE(x) == T_BIGNUM) {
 | |
| 	x = bigfixize(bigtrunc(x));
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_norm(VALUE x)
 | |
| {
 | |
|     return bignorm(x);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_uint2big(VALUE n)
 | |
| {
 | |
|     BDIGIT_DBL num = n;
 | |
|     long i = 0;
 | |
|     BDIGIT *digits;
 | |
|     VALUE big;
 | |
| 
 | |
|     big = bignew(DIGSPERLONG, 1);
 | |
|     digits = BDIGITS(big);
 | |
|     while (i < DIGSPERLONG) {
 | |
| 	digits[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
| 
 | |
|     i = DIGSPERLONG;
 | |
|     while (--i && !digits[i]) ;
 | |
|     RBIGNUM_SET_LEN(big, i+1);
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int2big(SIGNED_VALUE n)
 | |
| {
 | |
|     long neg = 0;
 | |
|     VALUE big;
 | |
| 
 | |
|     if (n < 0) {
 | |
| 	n = -n;
 | |
| 	neg = 1;
 | |
|     }
 | |
|     big = rb_uint2big(n);
 | |
|     if (neg) {
 | |
| 	RBIGNUM_SET_SIGN(big, 0);
 | |
|     }
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_uint2inum(VALUE n)
 | |
| {
 | |
|     if (POSFIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_uint2big(n);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int2inum(SIGNED_VALUE n)
 | |
| {
 | |
|     if (FIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_int2big(n);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_LONG_LONG
 | |
| 
 | |
| void
 | |
| rb_quad_pack(char *buf, VALUE val)
 | |
| {
 | |
|     LONG_LONG q;
 | |
| 
 | |
|     val = rb_to_int(val);
 | |
|     if (FIXNUM_P(val)) {
 | |
| 	q = FIX2LONG(val);
 | |
|     }
 | |
|     else {
 | |
| 	long len = RBIGNUM_LEN(val);
 | |
| 	BDIGIT *ds;
 | |
| 
 | |
| 	if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) {
 | |
| 	    len = SIZEOF_LONG_LONG/SIZEOF_BDIGITS;
 | |
| 	}
 | |
| 	ds = BDIGITS(val);
 | |
| 	q = 0;
 | |
| 	while (len--) {
 | |
| 	    q = BIGUP(q);
 | |
| 	    q += ds[len];
 | |
| 	}
 | |
| 	if (!RBIGNUM_SIGN(val)) q = -q;
 | |
|     }
 | |
|     memcpy(buf, (char*)&q, SIZEOF_LONG_LONG);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_quad_unpack(const char *buf, int sign)
 | |
| {
 | |
|     unsigned LONG_LONG q;
 | |
|     long neg = 0;
 | |
|     long i;
 | |
|     BDIGIT *digits;
 | |
|     VALUE big;
 | |
| 
 | |
|     memcpy(&q, buf, SIZEOF_LONG_LONG);
 | |
|     if (sign) {
 | |
| 	if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q);
 | |
| 	if ((LONG_LONG)q < 0) {
 | |
| 	    q = -(LONG_LONG)q;
 | |
| 	    neg = 1;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (POSFIXABLE(q)) return LONG2FIX(q);
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     big = bignew(DIGSPERLL, 1);
 | |
|     digits = BDIGITS(big);
 | |
|     while (i < DIGSPERLL) {
 | |
| 	digits[i++] = BIGLO(q);
 | |
| 	q = BIGDN(q);
 | |
|     }
 | |
| 
 | |
|     i = DIGSPERLL;
 | |
|     while (i-- && !digits[i]) ;
 | |
|     RBIGNUM_SET_LEN(big, i+1);
 | |
| 
 | |
|     if (neg) {
 | |
| 	RBIGNUM_SET_SIGN(big, 0);
 | |
|     }
 | |
|     return bignorm(big);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define QUAD_SIZE 8
 | |
| 
 | |
| void
 | |
| rb_quad_pack(char *buf, VALUE val)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     memset(buf, 0, QUAD_SIZE);
 | |
|     val = rb_to_int(val);
 | |
|     if (FIXNUM_P(val)) {
 | |
| 	val = rb_int2big(FIX2LONG(val));
 | |
|     }
 | |
|     len = RBIGNUM_LEN(val) * SIZEOF_BDIGITS;
 | |
|     if (len > QUAD_SIZE) {
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `quad int'");
 | |
|     }
 | |
|     memcpy(buf, (char*)BDIGITS(val), len);
 | |
|     if (!RBIGNUM_SIGN(val)) {
 | |
| 	len = QUAD_SIZE;
 | |
| 	while (len--) {
 | |
| 	    *buf = ~*buf;
 | |
| 	    buf++;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define BNEG(b) (RSHIFT(((BDIGIT*)b)[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0)
 | |
| 
 | |
| VALUE
 | |
| rb_quad_unpack(const char *buf, int sign)
 | |
| {
 | |
|     VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1);
 | |
| 
 | |
|     memcpy((char*)BDIGITS(big), buf, QUAD_SIZE);
 | |
|     if (sign && BNEG(buf)) {
 | |
| 	long len = QUAD_SIZE;
 | |
| 	char *tmp = (char*)BDIGITS(big);
 | |
| 
 | |
| 	RBIGNUM_SET_SIGN(big, 0);
 | |
| 	while (len--) {
 | |
| 	    *tmp = ~*tmp;
 | |
| 	    tmp++;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return bignorm(big);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| VALUE
 | |
| rb_cstr_to_inum(const char *str, int base, int badcheck)
 | |
| {
 | |
|     const char *s = str;
 | |
|     char *end;
 | |
|     char sign = 1, nondigit = 0;
 | |
|     int c;
 | |
|     BDIGIT_DBL num;
 | |
|     long len, blen = 1;
 | |
|     long i;
 | |
|     VALUE z;
 | |
|     BDIGIT *zds;
 | |
| 
 | |
| #define conv_digit(c) \
 | |
|     (!ISASCII(c) ? -1 : \
 | |
|      ISDIGIT(c) ? ((c) - '0') : \
 | |
|      ISLOWER(c) ? ((c) - 'a' + 10) : \
 | |
|      ISUPPER(c) ? ((c) - 'A' + 10) : \
 | |
|      -1)
 | |
| 
 | |
|     if (!str) {
 | |
| 	if (badcheck) goto bad;
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     while (ISSPACE(*str)) str++;
 | |
| 
 | |
|     if (str[0] == '+') {
 | |
| 	str++;
 | |
|     }
 | |
|     else if (str[0] == '-') {
 | |
| 	str++;
 | |
| 	sign = 0;
 | |
|     }
 | |
|     if (str[0] == '+' || str[0] == '-') {
 | |
| 	if (badcheck) goto bad;
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     if (base <= 0) {
 | |
| 	if (str[0] == '0') {
 | |
| 	    switch (str[1]) {
 | |
| 	      case 'x': case 'X':
 | |
| 		base = 16;
 | |
| 		break;
 | |
| 	      case 'b': case 'B':
 | |
| 		base = 2;
 | |
| 		break;
 | |
| 	      case 'o': case 'O':
 | |
| 		base = 8;
 | |
| 		break;
 | |
| 	      case 'd': case 'D':
 | |
| 		base = 10;
 | |
| 		break;
 | |
| 	      default:
 | |
| 		base = 8;
 | |
| 	    }
 | |
| 	}
 | |
| 	else if (base < -1) {
 | |
| 	    base = -base;
 | |
| 	}
 | |
| 	else {
 | |
| 	    base = 10;
 | |
| 	}
 | |
|     }
 | |
|     switch (base) {
 | |
|       case 2:
 | |
| 	len = 1;
 | |
| 	if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) {
 | |
| 	    str += 2;
 | |
| 	}
 | |
| 	break;
 | |
|       case 3:
 | |
| 	len = 2;
 | |
| 	break;
 | |
|       case 8:
 | |
| 	if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) {
 | |
| 	    str += 2;
 | |
| 	}
 | |
|       case 4: case 5: case 6: case 7:
 | |
| 	len = 3;
 | |
| 	break;
 | |
|       case 10:
 | |
| 	if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) {
 | |
| 	    str += 2;
 | |
| 	}
 | |
|       case 9: case 11: case 12: case 13: case 14: case 15:
 | |
| 	len = 4;
 | |
| 	break;
 | |
|       case 16:
 | |
| 	len = 4;
 | |
| 	if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) {
 | |
| 	    str += 2;
 | |
| 	}
 | |
| 	break;
 | |
|       default:
 | |
| 	if (base < 2 || 36 < base) {
 | |
| 	    rb_raise(rb_eArgError, "invalid radix %d", base);
 | |
| 	}
 | |
| 	if (base <= 32) {
 | |
| 	    len = 5;
 | |
| 	}
 | |
| 	else {
 | |
| 	    len = 6;
 | |
| 	}
 | |
| 	break;
 | |
|     }
 | |
|     if (*str == '0') {		/* squeeze preceding 0s */
 | |
| 	int us = 0;
 | |
| 	while ((c = *++str) == '0' || c == '_') {
 | |
| 	    if (c == '_') {
 | |
| 		if (++us >= 2)
 | |
| 		    break;
 | |
| 	    } else
 | |
| 		us = 0;
 | |
| 	}
 | |
| 	if (!(c = *str) || ISSPACE(c)) --str;
 | |
|     }
 | |
|     c = *str;
 | |
|     c = conv_digit(c);
 | |
|     if (c < 0 || c >= base) {
 | |
| 	if (badcheck) goto bad;
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     len *= strlen(str)*sizeof(char);
 | |
| 
 | |
|     if (len <= (sizeof(long)*CHAR_BIT)) {
 | |
| 	unsigned long val = STRTOUL(str, &end, base);
 | |
| 
 | |
| 	if (str < end && *end == '_') goto bigparse;
 | |
| 	if (badcheck) {
 | |
| 	    if (end == str) goto bad; /* no number */
 | |
| 	    while (*end && ISSPACE(*end)) end++;
 | |
| 	    if (*end) goto bad;	      /* trailing garbage */
 | |
| 	}
 | |
| 
 | |
| 	if (POSFIXABLE(val)) {
 | |
| 	    if (sign) return LONG2FIX(val);
 | |
| 	    else {
 | |
| 		long result = -(long)val;
 | |
| 		return LONG2FIX(result);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    VALUE big = rb_uint2big(val);
 | |
| 	    RBIGNUM_SET_SIGN(big, sign);
 | |
| 	    return bignorm(big);
 | |
| 	}
 | |
|     }
 | |
|   bigparse:
 | |
|     len = (len/BITSPERDIG)+1;
 | |
|     if (badcheck && *str == '_') goto bad;
 | |
| 
 | |
|     z = bignew(len, sign);
 | |
|     zds = BDIGITS(z);
 | |
|     for (i=len;i--;) zds[i]=0;
 | |
|     while ((c = *str++) != 0) {
 | |
| 	if (c == '_') {
 | |
| 	    if (nondigit) {
 | |
| 		if (badcheck) goto bad;
 | |
| 		break;
 | |
| 	    }
 | |
| 	    nondigit = c;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	else if ((c = conv_digit(c)) < 0) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	if (c >= base) break;
 | |
| 	nondigit = 0;
 | |
| 	i = 0;
 | |
| 	num = c;
 | |
| 	for (;;) {
 | |
| 	    while (i<blen) {
 | |
| 		num += (BDIGIT_DBL)zds[i]*base;
 | |
| 		zds[i++] = BIGLO(num);
 | |
| 		num = BIGDN(num);
 | |
| 	    }
 | |
| 	    if (num) {
 | |
| 		blen++;
 | |
| 		continue;
 | |
| 	    }
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
|     if (badcheck) {
 | |
| 	str--;
 | |
| 	if (s+1 < str && str[-1] == '_') goto bad;
 | |
| 	while (*str && ISSPACE(*str)) str++;
 | |
| 	if (*str) {
 | |
| 	  bad:
 | |
| 	    rb_invalid_str(s, "Integer()");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str_to_inum(VALUE str, int base, int badcheck)
 | |
| {
 | |
|     char *s;
 | |
|     long len;
 | |
| 
 | |
|     StringValue(str);
 | |
|     if (badcheck) {
 | |
| 	s = StringValueCStr(str);
 | |
|     }
 | |
|     else {
 | |
| 	s = RSTRING_PTR(str);
 | |
|     }
 | |
|     if (s) {
 | |
| 	len = RSTRING_LEN(str);
 | |
| 	if (s[len]) {		/* no sentinel somehow */
 | |
| 	    char *p = ALLOCA_N(char, len+1);
 | |
| 
 | |
| 	    MEMCPY(p, s, char, len);
 | |
| 	    p[len] = '\0';
 | |
| 	    s = p;
 | |
| 	}
 | |
|     }
 | |
|     return rb_cstr_to_inum(s, base, badcheck);
 | |
| }
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| static VALUE
 | |
| rb_ull2big(unsigned LONG_LONG n)
 | |
| {
 | |
|     BDIGIT_DBL num = n;
 | |
|     long i = 0;
 | |
|     BDIGIT *digits;
 | |
|     VALUE big;
 | |
| 
 | |
|     big = bignew(DIGSPERLL, 1);
 | |
|     digits = BDIGITS(big);
 | |
|     while (i < DIGSPERLL) {
 | |
| 	digits[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
| 
 | |
|     i = DIGSPERLL;
 | |
|     while (i-- && !digits[i]) ;
 | |
|     RBIGNUM_SET_LEN(big, i+1);
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ll2big(LONG_LONG n)
 | |
| {
 | |
|     long neg = 0;
 | |
|     VALUE big;
 | |
| 
 | |
|     if (n < 0) {
 | |
| 	n = -n;
 | |
| 	neg = 1;
 | |
|     }
 | |
|     big = rb_ull2big(n);
 | |
|     if (neg) {
 | |
| 	RBIGNUM_SET_SIGN(big, 0);
 | |
|     }
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ull2inum(unsigned LONG_LONG n)
 | |
| {
 | |
|     if (POSFIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_ull2big(n);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ll2inum(LONG_LONG n)
 | |
| {
 | |
|     if (FIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_ll2big(n);
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| VALUE
 | |
| rb_cstr2inum(const char *str, int base)
 | |
| {
 | |
|     return rb_cstr_to_inum(str, base, base==0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str2inum(VALUE str, int base)
 | |
| {
 | |
|     return rb_str_to_inum(str, base, base==0);
 | |
| }
 | |
| 
 | |
| const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz";
 | |
| 
 | |
| static VALUE bigsqr(VALUE x);
 | |
| static void bigdivmod(VALUE x, VALUE y, VALUE *divp, VALUE *modp);
 | |
| 
 | |
| #define POW2_P(x) (((x)&((x)-1))==0)
 | |
| 
 | |
| static inline int
 | |
| ones(register unsigned long x)
 | |
| {
 | |
| #if SIZEOF_LONG == 8
 | |
| # define MASK_55 0x5555555555555555UL
 | |
| # define MASK_33 0x3333333333333333UL
 | |
| # define MASK_0f 0x0f0f0f0f0f0f0f0fUL
 | |
| #else
 | |
| # define MASK_55 0x55555555UL
 | |
| # define MASK_33 0x33333333UL
 | |
| # define MASK_0f 0x0f0f0f0fUL
 | |
| #endif
 | |
|     x -= (x >> 1) & MASK_55;
 | |
|     x = ((x >> 2) & MASK_33) + (x & MASK_33);
 | |
|     x = ((x >> 4) + x) & MASK_0f;
 | |
|     x += (x >> 8);
 | |
|     x += (x >> 16);
 | |
| #if SIZEOF_LONG == 8
 | |
|     x += (x >> 32);
 | |
| #endif
 | |
|     return (int)(x & 0x7f);
 | |
| #undef MASK_0f
 | |
| #undef MASK_33
 | |
| #undef MASK_55
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| next_pow2(register unsigned long x)
 | |
| {
 | |
|     x |= x >> 1;
 | |
|     x |= x >> 2;
 | |
|     x |= x >> 4;
 | |
|     x |= x >> 8;
 | |
|     x |= x >> 16;
 | |
| #if SIZEOF_LONG == 8
 | |
|     x |= x >> 32;
 | |
| #endif
 | |
|     return x + 1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| floor_log2(register unsigned long x)
 | |
| {
 | |
|     x |= x >> 1;
 | |
|     x |= x >> 2;
 | |
|     x |= x >> 4;
 | |
|     x |= x >> 8;
 | |
|     x |= x >> 16;
 | |
| #if SIZEOF_LONG == 8
 | |
|     x |= x >> 32;
 | |
| #endif
 | |
|     return (int)ones(x) - 1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| ceil_log2(register unsigned long x)
 | |
| {
 | |
|     return floor_log2(x) + !POW2_P(x);
 | |
| }
 | |
| 
 | |
| #define LOG2_KARATSUBA_DIGITS 7
 | |
| #define KARATSUBA_DIGITS (1L<<LOG2_KARATSUBA_DIGITS)
 | |
| #define MAX_BIG2STR_TABLE_ENTRIES 64
 | |
| 
 | |
| static VALUE big2str_power_cache[35][MAX_BIG2STR_TABLE_ENTRIES];
 | |
| 
 | |
| static void
 | |
| power_cache_init(void)
 | |
| {
 | |
|     int i, j;
 | |
|     for (i = 0; i < 35; ++i) {
 | |
| 	for (j = 0; j < MAX_BIG2STR_TABLE_ENTRIES; ++j) {
 | |
| 	    big2str_power_cache[i][j] = Qnil;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| power_cache_get_power0(int base, int i)
 | |
| {
 | |
|     if (NIL_P(big2str_power_cache[base - 2][i])) {
 | |
| 	big2str_power_cache[base - 2][i] =
 | |
| 	    i == 0 ? rb_big_pow(rb_int2big(base), INT2FIX(KARATSUBA_DIGITS))
 | |
| 		   : bigsqr(power_cache_get_power0(base, i - 1));
 | |
| 	rb_gc_register_mark_object(big2str_power_cache[base - 2][i]);
 | |
|     }
 | |
|     return big2str_power_cache[base - 2][i];
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| power_cache_get_power(int base, long n1, long* m1)
 | |
| {
 | |
|     long i, j, m;
 | |
|     VALUE t;
 | |
| 
 | |
|     if (n1 <= KARATSUBA_DIGITS)
 | |
| 	rb_bug("n1 > KARATSUBA_DIGITS");
 | |
| 
 | |
|     m = ceil_log2(n1);
 | |
|     if (m1) *m1 = 1 << m;
 | |
|     i = m - LOG2_KARATSUBA_DIGITS;
 | |
|     if (i >= MAX_BIG2STR_TABLE_ENTRIES)
 | |
| 	i = MAX_BIG2STR_TABLE_ENTRIES - 1;
 | |
|     t = power_cache_get_power0(base, i);
 | |
| 
 | |
|     j = KARATSUBA_DIGITS*(1 << i);
 | |
|     while (n1 > j) {
 | |
| 	t = bigsqr(t);
 | |
| 	j *= 2;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| /* big2str_muraken_find_n1
 | |
|  *
 | |
|  * Let a natural number x is given by:
 | |
|  * x = 2^0 * x_0 + 2^1 * x_1 + ... + 2^(B*n_0 - 1) * x_{B*n_0 - 1},
 | |
|  * where B is BITSPERDIG (i.e. BDIGITS*CHAR_BIT) and n_0 is
 | |
|  * RBIGNUM_LEN(x).
 | |
|  *
 | |
|  * Now, we assume n_1 = min_n \{ n | 2^(B*n_0/2) <= b_1^(n_1) \}, so
 | |
|  * it is realized that 2^(B*n_0) <= {b_1}^{2*n_1}, where b_1 is a
 | |
|  * given radix number. And then, we have n_1 <= (B*n_0) /
 | |
|  * (2*log_2(b_1)), therefore n_1 is given by ceil((B*n_0) /
 | |
|  * (2*log_2(b_1))).
 | |
|  */
 | |
| static long
 | |
| big2str_find_n1(VALUE x, int base)
 | |
| {
 | |
|     static const double log_2[] = {
 | |
| 	1.0,              1.58496250072116, 2.0,
 | |
| 	2.32192809488736, 2.58496250072116, 2.8073549220576,
 | |
| 	3.0,              3.16992500144231, 3.32192809488736,
 | |
| 	3.4594316186373,  3.58496250072116, 3.70043971814109,
 | |
| 	3.8073549220576,  3.90689059560852, 4.0,
 | |
| 	4.08746284125034, 4.16992500144231, 4.24792751344359,
 | |
| 	4.32192809488736, 4.39231742277876, 4.4594316186373,
 | |
| 	4.52356195605701, 4.58496250072116, 4.64385618977472,
 | |
| 	4.70043971814109, 4.75488750216347, 4.8073549220576,
 | |
| 	4.85798099512757, 4.90689059560852, 4.95419631038688,
 | |
| 	5.0,              5.04439411935845, 5.08746284125034,
 | |
| 	5.12928301694497, 5.16992500144231
 | |
|     };
 | |
|     long bits;
 | |
| 
 | |
|     if (base < 2 || 36 < base)
 | |
| 	rb_bug("invalid radix %d", base);
 | |
| 
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	bits = (SIZEOF_LONG*CHAR_BIT - 1)/2 + 1;
 | |
|     }
 | |
|     else if (BIGZEROP(x)) {
 | |
| 	return 0;
 | |
|     }
 | |
|     else if (RBIGNUM_LEN(x) >= LONG_MAX/BITSPERDIG) {
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
 | |
|     }
 | |
|     else {
 | |
| 	bits = BITSPERDIG*RBIGNUM_LEN(x);
 | |
|     }
 | |
| 
 | |
|     return (long)ceil(bits/log_2[base - 2]);
 | |
| }
 | |
| 
 | |
| static long
 | |
| big2str_orig(VALUE x, int base, char* ptr, long len, long hbase, int trim)
 | |
| {
 | |
|     long i = RBIGNUM_LEN(x), j = len;
 | |
|     BDIGIT* ds = BDIGITS(x);
 | |
| 
 | |
|     while (i && j > 0) {
 | |
| 	long k = i;
 | |
| 	BDIGIT_DBL num = 0;
 | |
| 
 | |
| 	while (k--) {               /* x / hbase */
 | |
| 	    num = BIGUP(num) + ds[k];
 | |
| 	    ds[k] = (BDIGIT)(num / hbase);
 | |
| 	    num %= hbase;
 | |
| 	}
 | |
| 	if (trim && ds[i-1] == 0) i--;
 | |
| 	k = SIZEOF_BDIGITS;
 | |
| 	while (k--) {
 | |
| 	    ptr[--j] = ruby_digitmap[num % base];
 | |
| 	    num /= base;
 | |
| 	    if (j <= 0) break;
 | |
| 	    if (trim && i == 0 && num == 0) break;
 | |
| 	}
 | |
|     }
 | |
|     if (trim) {
 | |
| 	while (j < len && ptr[j] == '0') j++;
 | |
| 	MEMMOVE(ptr, ptr + j, char, len - j);
 | |
| 	len -= j;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| static long
 | |
| big2str_karatsuba(VALUE x, int base, char* ptr,
 | |
| 		  long n1, long len, long hbase, int trim)
 | |
| {
 | |
|     long lh, ll, m1;
 | |
|     VALUE b, q, r;
 | |
| 
 | |
|     if (BIGZEROP(x)) {
 | |
| 	if (trim) return 0;
 | |
| 	else {
 | |
| 	    memset(ptr, '0', len);
 | |
| 	    return len;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (n1 <= KARATSUBA_DIGITS) {
 | |
| 	return big2str_orig(x, base, ptr, len, hbase, trim);
 | |
|     }
 | |
| 
 | |
|     b = power_cache_get_power(base, n1, &m1);
 | |
|     bigdivmod(x, b, &q, &r);
 | |
|     lh = big2str_karatsuba(q, base, ptr, (len - m1)/2,
 | |
| 			   len - m1, hbase, trim);
 | |
|     rb_big_resize(q, 0);
 | |
|     ll = big2str_karatsuba(r, base, ptr + lh, m1/2,
 | |
| 			   m1, hbase, !lh && trim);
 | |
|     rb_big_resize(r, 0);
 | |
| 
 | |
|     return lh + ll;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str0(VALUE x, int base, int trim)
 | |
| {
 | |
|     int off;
 | |
|     VALUE ss, xx;
 | |
|     long n1, n2, len, hbase;
 | |
|     char* ptr;
 | |
| 
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return rb_fix2str(x, base);
 | |
|     }
 | |
|     if (BIGZEROP(x)) {
 | |
| 	return rb_usascii_str_new2("0");
 | |
|     }
 | |
| 
 | |
|     if (base < 2 || 36 < base)
 | |
| 	rb_raise(rb_eArgError, "invalid radix %d", base);
 | |
| 
 | |
|     n2 = big2str_find_n1(x, base);
 | |
|     n1 = (n2 + 1) / 2;
 | |
|     ss = rb_usascii_str_new(0, n2 + 1); /* plus one for sign */
 | |
|     ptr = RSTRING_PTR(ss);
 | |
|     ptr[0] = RBIGNUM_SIGN(x) ? '+' : '-';
 | |
| 
 | |
|     hbase = base*base;
 | |
| #if SIZEOF_BDIGITS > 2
 | |
|     hbase *= hbase;
 | |
| #endif
 | |
|     off = !(trim && RBIGNUM_SIGN(x)); /* erase plus sign if trim */
 | |
|     xx = rb_big_clone(x);
 | |
|     RBIGNUM_SET_SIGN(xx, 1);
 | |
|     if (n1 <= KARATSUBA_DIGITS) {
 | |
| 	len = off + big2str_orig(xx, base, ptr + off, n2, hbase, trim);
 | |
|     }
 | |
|     else {
 | |
| 	len = off + big2str_karatsuba(xx, base, ptr + off, n1,
 | |
| 				      n2, hbase, trim);
 | |
|     }
 | |
|     rb_big_resize(xx, 0);
 | |
| 
 | |
|     ptr[len] = '\0';
 | |
|     rb_str_resize(ss, len);
 | |
| 
 | |
|     return ss;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str(VALUE x, int base)
 | |
| {
 | |
|     return rb_big2str0(x, base, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.to_s(base=10)   =>  string
 | |
|  *
 | |
|  *  Returns a string containing the representation of <i>big</i> radix
 | |
|  *  <i>base</i> (2 through 36).
 | |
|  *
 | |
|  *     12345654321.to_s         #=> "12345654321"
 | |
|  *     12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
 | |
|  *     12345654321.to_s(8)      #=> "133766736061"
 | |
|  *     12345654321.to_s(16)     #=> "2dfdbbc31"
 | |
|  *     78546939656932.to_s(36)  #=> "rubyrules"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_to_s(int argc, VALUE *argv, VALUE x)
 | |
| {
 | |
|     int base;
 | |
| 
 | |
|     if (argc == 0) base = 10;
 | |
|     else {
 | |
| 	VALUE b;
 | |
| 
 | |
| 	rb_scan_args(argc, argv, "01", &b);
 | |
| 	base = NUM2INT(b);
 | |
|     }
 | |
|     return rb_big2str(x, base);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big2ulong(VALUE x, const char *type, int check)
 | |
| {
 | |
|     long len = RBIGNUM_LEN(x);
 | |
|     BDIGIT_DBL num;
 | |
|     BDIGIT *ds;
 | |
| 
 | |
|     if (len > DIGSPERLONG) {
 | |
| 	if (check)
 | |
| 	    rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
 | |
| 	len = DIGSPERLONG;
 | |
|     }
 | |
|     ds = BDIGITS(x);
 | |
|     num = 0;
 | |
|     while (len--) {
 | |
| 	num = BIGUP(num);
 | |
| 	num += ds[len];
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2ulong_pack(VALUE x)
 | |
| {
 | |
|     VALUE num = big2ulong(x, "unsigned long", Qfalse);
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	return -num;
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2ulong(VALUE x)
 | |
| {
 | |
|     VALUE num = big2ulong(x, "unsigned long", Qtrue);
 | |
| 
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	if ((SIGNED_VALUE)num < 0) {
 | |
| 	    rb_raise(rb_eRangeError, "bignum out of range of unsigned long");
 | |
| 	}
 | |
| 	return -num;
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| SIGNED_VALUE
 | |
| rb_big2long(VALUE x)
 | |
| {
 | |
|     VALUE num = big2ulong(x, "long", Qtrue);
 | |
| 
 | |
|     if ((SIGNED_VALUE)num < 0 &&
 | |
| 	(RBIGNUM_SIGN(x) || (SIGNED_VALUE)num != LONG_MIN)) {
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `long'");
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) return -(SIGNED_VALUE)num;
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| static unsigned LONG_LONG
 | |
| big2ull(VALUE x, const char *type)
 | |
| {
 | |
|     long len = RBIGNUM_LEN(x);
 | |
|     BDIGIT_DBL num;
 | |
|     BDIGIT *ds;
 | |
| 
 | |
|     if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
 | |
|     ds = BDIGITS(x);
 | |
|     num = 0;
 | |
|     while (len--) {
 | |
| 	num = BIGUP(num);
 | |
| 	num += ds[len];
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned LONG_LONG
 | |
| rb_big2ull(VALUE x)
 | |
| {
 | |
|     unsigned LONG_LONG num = big2ull(x, "unsigned long long");
 | |
| 
 | |
|     if (!RBIGNUM_SIGN(x)) return -num;
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| LONG_LONG
 | |
| rb_big2ll(VALUE x)
 | |
| {
 | |
|     unsigned LONG_LONG num = big2ull(x, "long long");
 | |
| 
 | |
|     if ((LONG_LONG)num < 0 && (RBIGNUM_SIGN(x)
 | |
| 			       || (LONG_LONG)num != LLONG_MIN)) {
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `long long'");
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) return -(LONG_LONG)num;
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| static VALUE
 | |
| dbl2big(double d)
 | |
| {
 | |
|     long i = 0;
 | |
|     BDIGIT c;
 | |
|     BDIGIT *digits;
 | |
|     VALUE z;
 | |
|     double u = (d < 0)?-d:d;
 | |
| 
 | |
|     if (isinf(d)) {
 | |
| 	rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity");
 | |
|     }
 | |
|     if (isnan(d)) {
 | |
| 	rb_raise(rb_eFloatDomainError, "NaN");
 | |
|     }
 | |
| 
 | |
|     while (!POSFIXABLE(u) || 0 != (long)u) {
 | |
| 	u /= (double)(BIGRAD);
 | |
| 	i++;
 | |
|     }
 | |
|     z = bignew(i, d>=0);
 | |
|     digits = BDIGITS(z);
 | |
|     while (i--) {
 | |
| 	u *= BIGRAD;
 | |
| 	c = (BDIGIT)u;
 | |
| 	u -= c;
 | |
| 	digits[i] = c;
 | |
|     }
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_dbl2big(double d)
 | |
| {
 | |
|     return bignorm(dbl2big(d));
 | |
| }
 | |
| 
 | |
| static int
 | |
| nlz(BDIGIT x)
 | |
| {
 | |
|     BDIGIT y;
 | |
|     int n = BITSPERDIG;
 | |
| #if BITSPERDIG > 64
 | |
|     y = x >> 64; if (y) {n -= 64; x = y;}
 | |
| #endif
 | |
| #if BITSPERDIG > 32
 | |
|     y = x >> 32; if (y) {n -= 32; x = y;}
 | |
| #endif
 | |
| #if BITSPERDIG > 16
 | |
|     y = x >> 16; if (y) {n -= 16; x = y;}
 | |
| #endif
 | |
|     y = x >>  8; if (y) {n -=  8; x = y;}
 | |
|     y = x >>  4; if (y) {n -=  4; x = y;}
 | |
|     y = x >>  2; if (y) {n -=  2; x = y;}
 | |
|     y = x >>  1; if (y) {return n - 2;}
 | |
|     return n - x;
 | |
| }
 | |
| 
 | |
| static double
 | |
| big2dbl(VALUE x)
 | |
| {
 | |
|     double d = 0.0;
 | |
|     long i = RBIGNUM_LEN(x), lo = 0, bits;
 | |
|     BDIGIT *ds = BDIGITS(x), dl;
 | |
| 
 | |
|     if (i) {
 | |
| 	bits = i * BITSPERDIG - nlz(ds[i-1]);
 | |
| 	if (bits > DBL_MANT_DIG+DBL_MAX_EXP) {
 | |
| 	    d = HUGE_VAL;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (bits > DBL_MANT_DIG+1)
 | |
| 		lo = (bits -= DBL_MANT_DIG+1) / BITSPERDIG;
 | |
| 	    else
 | |
| 		bits = 0;
 | |
| 	    while (--i > lo) {
 | |
| 		d = ds[i] + BIGRAD*d;
 | |
| 	    }
 | |
| 	    dl = ds[i];
 | |
| 	    if (bits && (dl & (1UL << (bits %= BITSPERDIG)))) {
 | |
| 		int carry = dl & ~(~0UL << bits);
 | |
| 		if (!carry) {
 | |
| 		    while (i-- > 0) {
 | |
| 			if ((carry = ds[i]) != 0) break;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (carry) {
 | |
| 		    dl &= ~0UL << bits;
 | |
| 		    dl += 1UL << bits;
 | |
| 		    if (!dl) d += 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	    d = dl + BIGRAD*d;
 | |
| 	    if (lo) d = ldexp(d, lo * BITSPERDIG);
 | |
| 	}
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) d = -d;
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_big2dbl(VALUE x)
 | |
| {
 | |
|     double d = big2dbl(x);
 | |
| 
 | |
|     if (isinf(d)) {
 | |
| 	rb_warning("Bignum out of Float range");
 | |
| 	d = HUGE_VAL;
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.to_f -> float
 | |
|  *
 | |
|  *  Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
 | |
|  *  fit in a <code>Float</code>, the result is infinity.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_to_f(VALUE x)
 | |
| {
 | |
|     return DBL2NUM(rb_big2dbl(x));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big <=> numeric   => -1, 0, +1
 | |
|  *
 | |
|  *  Comparison---Returns -1, 0, or +1 depending on whether <i>big</i> is
 | |
|  *  less than, equal to, or greater than <i>numeric</i>. This is the
 | |
|  *  basis for the tests in <code>Comparable</code>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     long xlen = RBIGNUM_LEN(x);
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	return rb_dbl_cmp(rb_big2dbl(x), RFLOAT_VALUE(y));
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
 | |
|     }
 | |
| 
 | |
|     if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1);
 | |
|     if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1);
 | |
|     if (xlen < RBIGNUM_LEN(y))
 | |
| 	return (RBIGNUM_SIGN(x)) ? INT2FIX(-1) : INT2FIX(1);
 | |
|     if (xlen > RBIGNUM_LEN(y))
 | |
| 	return (RBIGNUM_SIGN(x)) ? INT2FIX(1) : INT2FIX(-1);
 | |
| 
 | |
|     while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen]));
 | |
|     if (-1 == xlen) return INT2FIX(0);
 | |
|     return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ?
 | |
| 	(RBIGNUM_SIGN(x) ? INT2FIX(1) : INT2FIX(-1)) :
 | |
| 	    (RBIGNUM_SIGN(x) ? INT2FIX(-1) : INT2FIX(1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big == obj  => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> only if <i>obj</i> has the same value
 | |
|  *  as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
 | |
|  *  requires <i>obj</i> to be a <code>Bignum</code>.
 | |
|  *
 | |
|  *     68719476736 == 68719476736.0   #=> true
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_eq(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	{
 | |
| 	    volatile double a, b;
 | |
| 
 | |
| 	    a = RFLOAT_VALUE(y);
 | |
| 	    if (isnan(a)) return Qfalse;
 | |
| 	    b = rb_big2dbl(x);
 | |
| 	    return (a == b)?Qtrue:Qfalse;
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_equal(y, x);
 | |
|     }
 | |
|     if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
 | |
|     if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
 | |
|     if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.eql?(obj)   => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> only if <i>obj</i> is a
 | |
|  *  <code>Bignum</code> with the same value as <i>big</i>. Contrast this
 | |
|  *  with <code>Bignum#==</code>, which performs type conversions.
 | |
|  *
 | |
|  *     68719476736.eql?(68719476736.0)   #=> false
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (TYPE(y) != T_BIGNUM) return Qfalse;
 | |
|     if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
 | |
|     if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
 | |
|     if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    -big   =>  other_big
 | |
|  *
 | |
|  * Unary minus (returns a new Bignum whose value is 0-big)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_uminus(VALUE x)
 | |
| {
 | |
|     VALUE z = rb_big_clone(x);
 | |
| 
 | |
|     RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     ~big  =>  integer
 | |
|  *
 | |
|  * Inverts the bits in big. As Bignums are conceptually infinite
 | |
|  * length, the result acts as if it had an infinite number of one
 | |
|  * bits to the left. In hex representations, this is displayed
 | |
|  * as two periods to the left of the digits.
 | |
|  *
 | |
|  *   sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_neg(VALUE x)
 | |
| {
 | |
|     VALUE z = rb_big_clone(x);
 | |
|     BDIGIT *ds;
 | |
|     long i;
 | |
| 
 | |
|     if (!RBIGNUM_SIGN(x)) get2comp(z);
 | |
|     ds = BDIGITS(z);
 | |
|     i = RBIGNUM_LEN(x);
 | |
|     if (!i) return INT2FIX(~(SIGNED_VALUE)0);
 | |
|     while (i--) {
 | |
| 	ds[i] = ~ds[i];
 | |
|     }
 | |
|     RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(z));
 | |
|     if (RBIGNUM_SIGN(x)) get2comp(z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bigsub_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
 | |
| {
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0, num = 0; i < yn; i++) {
 | |
| 	num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     while (num && i < xn) {
 | |
| 	num += xds[i];
 | |
| 	zds[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     while (i < xn) {
 | |
| 	zds[i] = xds[i];
 | |
| 	i++;
 | |
|     }
 | |
|     assert(i <= zn);
 | |
|     while (i < zn) {
 | |
| 	zds[i++] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigsub(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z = 0;
 | |
|     long i = RBIGNUM_LEN(x);
 | |
| 
 | |
|     /* if x is larger than y, swap */
 | |
|     if (RBIGNUM_LEN(x) < RBIGNUM_LEN(y)) {
 | |
| 	z = x; x = y; y = z;	/* swap x y */
 | |
|     }
 | |
|     else if (RBIGNUM_LEN(x) == RBIGNUM_LEN(y)) {
 | |
| 	while (i > 0) {
 | |
| 	    i--;
 | |
| 	    if (BDIGITS(x)[i] > BDIGITS(y)[i]) {
 | |
| 		break;
 | |
| 	    }
 | |
| 	    if (BDIGITS(x)[i] < BDIGITS(y)[i]) {
 | |
| 		z = x; x = y; y = z;	/* swap x y */
 | |
| 		break;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     z = bignew(RBIGNUM_LEN(x), z==0);
 | |
|     bigsub_core(BDIGITS(x), RBIGNUM_LEN(x),
 | |
| 		BDIGITS(y), RBIGNUM_LEN(y),
 | |
| 		BDIGITS(z), RBIGNUM_LEN(z));
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bigadd_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
 | |
| {
 | |
|     BDIGIT_DBL num = 0;
 | |
|     long i;
 | |
| 
 | |
|     if (xn > yn) {
 | |
| 	BDIGIT *tds;
 | |
| 	tds = xds; xds = yds; yds = tds;
 | |
| 	i = xn; xn = yn; yn = i;
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     while (i < xn) {
 | |
| 	num += (BDIGIT_DBL)xds[i] + yds[i];
 | |
| 	zds[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     while (num && i < yn) {
 | |
| 	num += yds[i];
 | |
| 	zds[i++] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     while (i < yn) {
 | |
| 	zds[i] = yds[i];
 | |
| 	i++;
 | |
|     }
 | |
|     if (num) zds[i++] = (BDIGIT)num;
 | |
|     assert(i <= zn);
 | |
|     while (i < zn) {
 | |
| 	zds[i++] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigadd(VALUE x, VALUE y, int sign)
 | |
| {
 | |
|     VALUE z;
 | |
|     long len;
 | |
| 
 | |
|     sign = (sign == RBIGNUM_SIGN(y));
 | |
|     if (RBIGNUM_SIGN(x) != sign) {
 | |
| 	if (sign) return bigsub(y, x);
 | |
| 	return bigsub(x, y);
 | |
|     }
 | |
| 
 | |
|     if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
 | |
| 	len = RBIGNUM_LEN(x) + 1;
 | |
|     }
 | |
|     else {
 | |
| 	len = RBIGNUM_LEN(y) + 1;
 | |
|     }
 | |
|     z = bignew(len, sign);
 | |
| 
 | |
|     bigadd_core(BDIGITS(x), RBIGNUM_LEN(x),
 | |
| 		BDIGITS(y), RBIGNUM_LEN(y),
 | |
| 		BDIGITS(z), RBIGNUM_LEN(z));
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big + other  => Numeric
 | |
|  *
 | |
|  *  Adds big and other, returning the result.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	/* fall through */
 | |
|       case T_BIGNUM:
 | |
| 	return bignorm(bigadd(x, y, 1));
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big - other  => Numeric
 | |
|  *
 | |
|  *  Subtracts other from big, returning the result.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	/* fall through */
 | |
|       case T_BIGNUM:
 | |
| 	return bignorm(bigadd(x, y, 0));
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static long
 | |
| big_real_len(VALUE x)
 | |
| {
 | |
|     long i = RBIGNUM_LEN(x);
 | |
|     while (--i && !BDIGITS(x)[i]);
 | |
|     return i + 1;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigmul1_normal(VALUE x, VALUE y)
 | |
| {
 | |
|     long i, j;
 | |
|     BDIGIT_DBL n = 0;
 | |
|     VALUE z = bignew(RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
 | |
|     BDIGIT *zds;
 | |
| 
 | |
|     j = RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1;
 | |
|     zds = BDIGITS(z);
 | |
|     while (j--) zds[j] = 0;
 | |
|     for (i = 0; i < RBIGNUM_LEN(x); i++) {
 | |
| 	BDIGIT_DBL dd;
 | |
| 	dd = BDIGITS(x)[i];
 | |
| 	if (dd == 0) continue;
 | |
| 	n = 0;
 | |
| 	for (j = 0; j < RBIGNUM_LEN(y); j++) {
 | |
| 	    BDIGIT_DBL ee = n + (BDIGIT_DBL)dd * BDIGITS(y)[j];
 | |
| 	    n = zds[i + j] + ee;
 | |
| 	    if (ee) zds[i + j] = BIGLO(n);
 | |
| 	    n = BIGDN(n);
 | |
| 	}
 | |
| 	if (n) {
 | |
| 	    zds[i + j] = n;
 | |
| 	}
 | |
|     }
 | |
|     rb_thread_check_ints();
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE bigmul0(VALUE x, VALUE y);
 | |
| 
 | |
| /* balancing multiplication by slicing larger argument */
 | |
| static VALUE
 | |
| bigmul1_balance(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z, t1, t2;
 | |
|     long i, xn, yn, r, n;
 | |
| 
 | |
|     xn = RBIGNUM_LEN(x);
 | |
|     yn = RBIGNUM_LEN(y);
 | |
|     assert(2 * xn <= yn);
 | |
| 
 | |
|     z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
 | |
|     t1 = bignew(xn, 1);
 | |
| 
 | |
|     for (i = 0; i < xn + yn; i++) BDIGITS(z)[i] = 0;
 | |
| 
 | |
|     n = 0;
 | |
|     while (yn > 0) {
 | |
| 	r = xn > yn ? yn : xn;
 | |
| 	MEMCPY(BDIGITS(t1), BDIGITS(y) + n, BDIGIT, r);
 | |
| 	RBIGNUM_SET_LEN(t1, r);
 | |
| 	t2 = bigmul0(x, t1);
 | |
| 	bigadd_core(BDIGITS(z) + n, RBIGNUM_LEN(z) - n,
 | |
| 		    BDIGITS(t2), big_real_len(t2),
 | |
| 		    BDIGITS(z) + n, RBIGNUM_LEN(z) - n);
 | |
| 	yn -= r;
 | |
| 	n += r;
 | |
|     }
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* split a bignum into high and low bignums */
 | |
| static void
 | |
| big_split(VALUE v, long n, VALUE *ph, VALUE *pl)
 | |
| {
 | |
|     long hn, ln;
 | |
|     VALUE h, l;
 | |
| 
 | |
|     ln = RBIGNUM_LEN(v) > n ? n : RBIGNUM_LEN(v);
 | |
|     hn = RBIGNUM_LEN(v) - ln;
 | |
| 
 | |
|     while (--hn && !BDIGITS(v)[hn + ln]);
 | |
|     h = bignew(hn += 2, 1);
 | |
|     MEMCPY(BDIGITS(h), BDIGITS(v) + ln, BDIGIT, hn);
 | |
|     BDIGITS(h)[hn - 1] = 0;
 | |
| 
 | |
|     while (--ln && !BDIGITS(v)[ln]);
 | |
|     l = bignew(ln += 2, 1);
 | |
|     MEMCPY(BDIGITS(l), BDIGITS(v), BDIGIT, ln);
 | |
|     BDIGITS(l)[ln - 1] = 0;
 | |
| 
 | |
|     *pl = l;
 | |
|     *ph = h;
 | |
| }
 | |
| 
 | |
| /* multiplication by karatsuba method */
 | |
| static VALUE
 | |
| bigmul1_karatsuba(VALUE x, VALUE y)
 | |
| {
 | |
|     long i, n, xn, yn, t1n, t2n;
 | |
|     VALUE xh, xl, yh, yl, z, t1, t2;
 | |
|     BDIGIT *zds;
 | |
| 
 | |
|     xn = RBIGNUM_LEN(x);
 | |
|     yn = RBIGNUM_LEN(y);
 | |
|     n = yn / 2;
 | |
|     big_split(x, n, &xh, &xl);
 | |
|     if (x == y) {
 | |
| 	yh = xh; yl = xl;
 | |
|     }
 | |
|     else big_split(y, n, &yh, &yl);
 | |
| 
 | |
|     /* x = xh * b + xl
 | |
|      * y = yh * b + yl
 | |
|      *
 | |
|      * Karatsuba method:
 | |
|      *   x * y = z2 * b^2 + z1 * b + z0
 | |
|      *   where
 | |
|      *     z2 = xh * yh
 | |
|      *     z0 = xl * yl
 | |
|      *     z1 = (xh + xl) * (yh + yl) - z2 - z0
 | |
|      *
 | |
|      *  ref: http://en.wikipedia.org/wiki/Karatsuba_algorithm
 | |
|      */
 | |
| 
 | |
|     /* allocate a result bignum */
 | |
|     z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     /* t1 <- xh * yh */
 | |
|     t1 = bigmul0(xh, yh);
 | |
|     t1n = big_real_len(t1);
 | |
| 
 | |
|     /* copy t1 into high bytes of the result (z2) */
 | |
|     MEMCPY(zds + 2 * n, BDIGITS(t1), BDIGIT, t1n);
 | |
|     for (i = 2 * n + t1n; i < xn + yn; i++) zds[i] = 0;
 | |
| 
 | |
|     if (!BIGZEROP(xl) && !BIGZEROP(yl)) {
 | |
| 	/* t2 <- xl * yl */
 | |
|     	t2 = bigmul0(xl, yl);
 | |
|     	t2n = big_real_len(t2);
 | |
| 
 | |
| 	/* copy t2 into low bytes of the result (z0) */
 | |
| 	MEMCPY(zds, BDIGITS(t2), BDIGIT, t2n);
 | |
| 	for (i = t2n; i < 2 * n; i++) zds[i] = 0;
 | |
| 
 | |
| 	/* subtract t2 from middle bytes of the result (z1) */
 | |
| 	i = xn + yn - n;
 | |
| 	bigsub_core(zds + n, i, BDIGITS(t2), t2n, zds + n, i);
 | |
|     }
 | |
|     else {
 | |
| 	/* copy 0 into low bytes of the result (z0) */
 | |
| 	for (i = 0; i < 2 * n; i++) zds[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* subtract t1 from middle bytes of the result (z1) */
 | |
|     i = xn + yn - n;
 | |
|     bigsub_core(zds + n, i, BDIGITS(t1), t1n, zds + n, i);
 | |
| 
 | |
|     /* xh <- xh + xl */
 | |
|     if (RBIGNUM_LEN(xl) > RBIGNUM_LEN(xh)) {
 | |
| 	t1 = xl; xl = xh; xh = t1;
 | |
|     }
 | |
|     bigadd_core(BDIGITS(xh), RBIGNUM_LEN(xh),
 | |
| 		BDIGITS(xl), RBIGNUM_LEN(xl), 
 | |
| 		BDIGITS(xh), RBIGNUM_LEN(xh));
 | |
| 
 | |
|     /* yh <- yh + yl */
 | |
|     if (x != y) {
 | |
| 	if (RBIGNUM_LEN(yl) > RBIGNUM_LEN(yh)) {
 | |
| 	    t1 = yl; yl = yh; yh = t1;
 | |
| 	}
 | |
| 	bigadd_core(BDIGITS(yh), RBIGNUM_LEN(yh),
 | |
| 		    BDIGITS(yl), RBIGNUM_LEN(yl), 
 | |
| 		    BDIGITS(yh), RBIGNUM_LEN(yh));
 | |
|     }
 | |
|     else yh = xh;
 | |
| 
 | |
|     /* t1 <- xh * yh */
 | |
|     t1 = bigmul0(xh, yh);
 | |
| 
 | |
|     /* add t1 to middle bytes of the result (z1) */
 | |
|     bigadd_core(zds + n, i, BDIGITS(t1), big_real_len(t1), zds + n, i);
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* efficient squaring (2 times faster than normal multiplication)
 | |
|  * ref: Handbook of Applied Cryptography, Algorithm 14.16
 | |
|  *      http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | |
|  */
 | |
| static VALUE
 | |
| bigsqr_fast(VALUE x)
 | |
| {
 | |
|     long len = RBIGNUM_LEN(x), i, j;
 | |
|     VALUE z = bignew(2 * len + 1, 1);
 | |
|     BDIGIT *xds = BDIGITS(x), *zds = BDIGITS(z);
 | |
|     BDIGIT_DBL c, v, w;
 | |
| 
 | |
|     for (i = 2 * len + 1; i--; ) zds[i] = 0;
 | |
|     for (i = 0; i < len; i++) {
 | |
| 	v = (BDIGIT_DBL)xds[i];
 | |
| 	if (!v) continue;
 | |
| 	c = (BDIGIT_DBL)zds[i + i] + v * v;
 | |
| 	zds[i + i] = BIGLO(c);
 | |
| 	c = BIGDN(c);
 | |
| 	v *= 2;
 | |
| 	for (j = i + 1; j < len; j++) {
 | |
| 	    w = (BDIGIT_DBL)xds[j];
 | |
| 	    c += (BDIGIT_DBL)zds[i + j] + BIGLO(v) * w;
 | |
| 	    zds[i + j] = BIGLO(c);
 | |
| 	    c = BIGDN(c);
 | |
| 	    if (BIGDN(v)) c += w;
 | |
| 	}
 | |
| 	if (c) {
 | |
| 	    c += (BDIGIT_DBL)zds[i + len];
 | |
| 	    zds[i + len] = BIGLO(c);
 | |
| 	    c = BIGDN(c);
 | |
| 	}
 | |
| 	if (c) zds[i + len + 1] += c;
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| #define KARATSUBA_MUL_DIGITS 70
 | |
| 
 | |
| 
 | |
| /* determine whether a bignum is sparse or not by random sampling */
 | |
| static inline VALUE
 | |
| big_sparse_p(VALUE x)
 | |
| {
 | |
|     long c = 0, n = RBIGNUM_LEN(x);
 | |
|     unsigned long rb_rand_internal(unsigned long i);
 | |
| 
 | |
|     if (          BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
 | |
|     if (c <= 1 && BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
 | |
|     if (c <= 1 && BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
 | |
| 
 | |
|     return (c <= 1) ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static void
 | |
| dump_bignum(VALUE x)
 | |
| {
 | |
|     long i;
 | |
|     printf("0x0");
 | |
|     for (i = RBIGNUM_LEN(x); i--; ) {
 | |
|     	printf("_%08x", BDIGITS(x)[i]);
 | |
|     }
 | |
|     puts("");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| bigmul0(VALUE x, VALUE y)
 | |
| {
 | |
|     long xn, yn;
 | |
| 
 | |
|     xn = RBIGNUM_LEN(x);
 | |
|     yn = RBIGNUM_LEN(y);
 | |
| 
 | |
|     /* make sure that y is longer than x */
 | |
|     if (xn > yn) {
 | |
| 	VALUE t;
 | |
| 	long tn;
 | |
| 	t = x; x = y; y = t;
 | |
| 	tn = xn; xn = yn; yn = tn;
 | |
|     }
 | |
|     assert(xn <= yn);
 | |
| 
 | |
|     /* normal multiplication when x is small */
 | |
|     if (xn < KARATSUBA_MUL_DIGITS) {
 | |
|       normal:
 | |
| 	if (x == y) return bigsqr_fast(x);
 | |
|     	return bigmul1_normal(x, y);
 | |
|     }
 | |
| 
 | |
|     /* normal multiplication when x or y is a sparse bignum */
 | |
|     if (big_sparse_p(x)) goto normal;
 | |
|     if (big_sparse_p(y)) return bigmul1_normal(y, x);
 | |
| 
 | |
|     /* balance multiplication by slicing y when x is much smaller than y */
 | |
|     if (2 * xn <= yn) return bigmul1_balance(x, y);
 | |
| 
 | |
|     /* multiplication by karatsuba method */
 | |
|     return bigmul1_karatsuba(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big * other  => Numeric
 | |
|  *
 | |
|  *  Multiplies big and other, returning the result.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| 
 | |
|     return bignorm(bigmul0(x, y));
 | |
| }
 | |
| 
 | |
| struct big_div_struct {
 | |
|     long nx, ny;
 | |
|     BDIGIT *yds, *zds;
 | |
|     VALUE stop;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| bigdivrem1(void *ptr)
 | |
| {
 | |
|     struct big_div_struct *bds = (struct big_div_struct*)ptr;
 | |
|     long nx = bds->nx, ny = bds->ny;
 | |
|     long i, j, nyzero;
 | |
|     BDIGIT *yds = bds->yds, *zds = bds->zds;
 | |
|     BDIGIT_DBL t2;
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
|     BDIGIT q;
 | |
| 
 | |
|     j = nx==ny?nx+1:nx;
 | |
|     for (nyzero = 0; !yds[nyzero]; nyzero++);
 | |
|     do {
 | |
| 	if (bds->stop) return Qnil;
 | |
| 	if (zds[j] ==  yds[ny-1]) q = BIGRAD-1;
 | |
| 	else q = (BDIGIT)((BIGUP(zds[j]) + zds[j-1])/yds[ny-1]);
 | |
| 	if (q) {
 | |
|            i = nyzero; num = 0; t2 = 0;
 | |
| 	    do {			/* multiply and subtract */
 | |
| 		BDIGIT_DBL ee;
 | |
| 		t2 += (BDIGIT_DBL)yds[i] * q;
 | |
| 		ee = num - BIGLO(t2);
 | |
| 		num = (BDIGIT_DBL)zds[j - ny + i] + ee;
 | |
| 		if (ee) zds[j - ny + i] = BIGLO(num);
 | |
| 		num = BIGDN(num);
 | |
| 		t2 = BIGDN(t2);
 | |
| 	    } while (++i < ny);
 | |
| 	    num += zds[j - ny + i] - t2;/* borrow from high digit; don't update */
 | |
| 	    while (num) {		/* "add back" required */
 | |
| 		i = 0; num = 0; q--;
 | |
| 		do {
 | |
| 		    BDIGIT_DBL ee = num + yds[i];
 | |
| 		    num = (BDIGIT_DBL)zds[j - ny + i] + ee;
 | |
| 		    if (ee) zds[j - ny + i] = BIGLO(num);
 | |
| 		    num = BIGDN(num);
 | |
| 		} while (++i < ny);
 | |
| 		num--;
 | |
| 	    }
 | |
| 	}
 | |
| 	zds[j] = q;
 | |
|     } while (--j >= ny);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_big_stop(void *ptr)
 | |
| {
 | |
|     VALUE *stop = (VALUE*)ptr;
 | |
|     *stop = Qtrue;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigdivrem(VALUE x, VALUE y, VALUE *divp, VALUE *modp)
 | |
| {
 | |
|     struct big_div_struct bds;
 | |
|     long nx = RBIGNUM_LEN(x), ny = RBIGNUM_LEN(y);
 | |
|     long i, j;
 | |
|     volatile VALUE yy, z;
 | |
|     BDIGIT *xds, *yds, *zds, *tds;
 | |
|     BDIGIT_DBL t2;
 | |
|     BDIGIT dd, q;
 | |
| 
 | |
|     if (BIGZEROP(y)) rb_num_zerodiv();
 | |
|     yds = BDIGITS(y);
 | |
|     if (nx < ny || (nx == ny && BDIGITS(x)[nx - 1] < BDIGITS(y)[ny - 1])) {
 | |
| 	if (divp) *divp = rb_int2big(0);
 | |
| 	if (modp) *modp = x;
 | |
| 	return Qnil;
 | |
|     }
 | |
|     xds = BDIGITS(x);
 | |
|     if (ny == 1) {
 | |
| 	dd = yds[0];
 | |
| 	z = rb_big_clone(x);
 | |
| 	zds = BDIGITS(z);
 | |
| 	t2 = 0; i = nx;
 | |
| 	while (i--) {
 | |
| 	    t2 = BIGUP(t2) + zds[i];
 | |
| 	    zds[i] = (BDIGIT)(t2 / dd);
 | |
| 	    t2 %= dd;
 | |
| 	}
 | |
| 	RBIGNUM_SET_SIGN(z, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
 | |
| 	if (modp) {
 | |
| 	    *modp = rb_uint2big((VALUE)t2);
 | |
| 	    RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x));
 | |
| 	}
 | |
| 	if (divp) *divp = z;
 | |
| 	return Qnil;
 | |
|     }
 | |
|     z = bignew(nx==ny?nx+2:nx+1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
 | |
|     zds = BDIGITS(z);
 | |
|     if (nx==ny) zds[nx+1] = 0;
 | |
|     while (!yds[ny-1]) ny--;
 | |
| 
 | |
|     dd = 0;
 | |
|     q = yds[ny-1];
 | |
|     while ((q & (1UL<<(BITSPERDIG-1))) == 0) {
 | |
| 	q <<= 1UL;
 | |
| 	dd++;
 | |
|     }
 | |
|     if (dd) {
 | |
| 	yy = rb_big_clone(y);
 | |
| 	tds = BDIGITS(yy);
 | |
| 	j = 0;
 | |
| 	t2 = 0;
 | |
| 	while (j<ny) {
 | |
| 	    t2 += (BDIGIT_DBL)yds[j]<<dd;
 | |
| 	    tds[j++] = BIGLO(t2);
 | |
| 	    t2 = BIGDN(t2);
 | |
| 	}
 | |
| 	yds = tds;
 | |
| 	j = 0;
 | |
| 	t2 = 0;
 | |
| 	while (j<nx) {
 | |
| 	    t2 += (BDIGIT_DBL)xds[j]<<dd;
 | |
| 	    zds[j++] = BIGLO(t2);
 | |
| 	    t2 = BIGDN(t2);
 | |
| 	}
 | |
| 	zds[j] = (BDIGIT)t2;
 | |
|     }
 | |
|     else {
 | |
| 	zds[nx] = 0;
 | |
| 	j = nx;
 | |
| 	while (j--) zds[j] = xds[j];
 | |
|     }
 | |
| 
 | |
|     bds.nx = nx;
 | |
|     bds.ny = ny;
 | |
|     bds.zds = zds;
 | |
|     bds.yds = yds;
 | |
|     bds.stop = Qfalse;
 | |
|     if (RBIGNUM_LEN(x) > 10000 || RBIGNUM_LEN(y) > 10000) {
 | |
| 	rb_thread_blocking_region(bigdivrem1, &bds, rb_big_stop, &bds.stop);
 | |
|     }
 | |
|     else {
 | |
| 	bigdivrem1(&bds);
 | |
|     }
 | |
| 
 | |
|     if (divp) {			/* move quotient down in z */
 | |
| 	*divp = rb_big_clone(z);
 | |
| 	zds = BDIGITS(*divp);
 | |
| 	j = (nx==ny ? nx+2 : nx+1) - ny;
 | |
| 	for (i = 0;i < j;i++) zds[i] = zds[i+ny];
 | |
| 	if (!zds[i-1]) i--;
 | |
| 	RBIGNUM_SET_LEN(*divp, i);
 | |
|     }
 | |
|     if (modp) {			/* normalize remainder */
 | |
| 	*modp = rb_big_clone(z);
 | |
| 	zds = BDIGITS(*modp);
 | |
| 	while (--ny && !zds[ny]); ++ny;
 | |
| 	if (dd) {
 | |
| 	    t2 = 0; i = ny;
 | |
| 	    while(i--) {
 | |
| 		t2 = (t2 | zds[i]) >> dd;
 | |
| 		q = zds[i];
 | |
| 		zds[i] = BIGLO(t2);
 | |
| 		t2 = BIGUP(q);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (!zds[ny-1]) ny--;
 | |
| 	RBIGNUM_SET_LEN(*modp, ny);
 | |
| 	RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x));
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bigdivmod(VALUE x, VALUE y, VALUE *divp, VALUE *modp)
 | |
| {
 | |
|     VALUE mod;
 | |
| 
 | |
|     bigdivrem(x, y, divp, &mod);
 | |
|     if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y) && !BIGZEROP(mod)) {
 | |
| 	if (divp) *divp = bigadd(*divp, rb_int2big(1), 0);
 | |
| 	if (modp) *modp = bigadd(mod, y, 1);
 | |
|     }
 | |
|     else if (modp) {
 | |
| 	*modp = mod;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| rb_big_divide(VALUE x, VALUE y, ID op)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	{
 | |
| 	    double div = rb_big2dbl(x) / RFLOAT_VALUE(y);
 | |
| 	    if (op == '/') {
 | |
| 		return DBL2NUM(div);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		return rb_dbl2big(div);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, op);
 | |
|     }
 | |
|     bigdivmod(x, y, &z, 0);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big / other     => Numeric
 | |
|  *
 | |
|  *  Divides big by other, returning the result.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_div(VALUE x, VALUE y)
 | |
| {
 | |
|   return rb_big_divide(x, y, '/');
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|   return rb_big_divide(x, y, rb_intern("div"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big % other         => Numeric
 | |
|  *     big.modulo(other)   => Numeric
 | |
|  *
 | |
|  *  Returns big modulo other. See Numeric.divmod for more
 | |
|  *  information.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_modulo(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
|     bigdivmod(x, y, 0, &z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.remainder(numeric)    => number
 | |
|  *
 | |
|  *  Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
 | |
|  *
 | |
|  *     -1234567890987654321.remainder(13731)      #=> -6966
 | |
|  *     -1234567890987654321.remainder(13731.24)   #=> -9906.22531493148
 | |
|  */
 | |
| static VALUE
 | |
| rb_big_remainder(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("remainder"));
 | |
|     }
 | |
|     bigdivrem(x, y, 0, &z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.divmod(numeric)   => array
 | |
|  *
 | |
|  *  See <code>Numeric#divmod</code>.
 | |
|  *
 | |
|  */
 | |
| VALUE
 | |
| rb_big_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE div, mod;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
 | |
|     }
 | |
|     bigdivmod(x, y, &div, &mod);
 | |
| 
 | |
|     return rb_assoc_new(bignorm(div), bignorm(mod));
 | |
| }
 | |
| 
 | |
| static int
 | |
| bdigbitsize(BDIGIT x)
 | |
| {
 | |
|     int size = 1;
 | |
|     int nb = BITSPERDIG / 2;
 | |
|     BDIGIT bits = (~0 << nb);
 | |
| 
 | |
|     if (!x) return 0;
 | |
|     while (x > 1) {
 | |
| 	if (x & bits) {
 | |
| 	    size += nb;
 | |
| 	    x >>= nb;
 | |
| 	}
 | |
| 	x &= ~bits;
 | |
| 	nb /= 2;
 | |
| 	bits >>= nb;
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| static VALUE big_lshift(VALUE, unsigned long);
 | |
| static VALUE big_rshift(VALUE, unsigned long);
 | |
| 
 | |
| static VALUE big_shift(VALUE x, int n)
 | |
| {
 | |
|     if (n < 0)
 | |
| 	return big_lshift(x, (unsigned int)-n);
 | |
|     else if (n > 0)
 | |
| 	return big_rshift(x, (unsigned int)n);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|   *     big.fdiv(numeric) -> float
 | |
|  *
 | |
|  *  Returns the floating point result of dividing <i>big</i> by
 | |
|  *  <i>numeric</i>.
 | |
|  *
 | |
|  *     -1234567890987654321.fdiv(13731)      #=> -89910996357705.5
 | |
|  *     -1234567890987654321.fdiv(13731.24)   #=> -89909424858035.7
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     double dx = big2dbl(x);
 | |
|     double dy;
 | |
| 
 | |
|     if (isinf(dx)) {
 | |
| #define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
 | |
| 	VALUE z;
 | |
| 	int ex, ey;
 | |
| 
 | |
| 	ex = (RBIGNUM_LEN(bigtrunc(x)) - 1) * BITSPERDIG;
 | |
| 	ex += bdigbitsize(BDIGITS(x)[RBIGNUM_LEN(x) - 1]);
 | |
| 	ex -= 2 * DBL_BIGDIG * BITSPERDIG;
 | |
| 	if (ex) x = big_shift(x, ex);
 | |
| 
 | |
| 	switch (TYPE(y)) {
 | |
| 	  case T_FIXNUM:
 | |
| 	    y = rb_int2big(FIX2LONG(y));
 | |
| 	  case T_BIGNUM: {
 | |
| 	    ey = (RBIGNUM_LEN(bigtrunc(y)) - 1) * BITSPERDIG;
 | |
| 	    ey += bdigbitsize(BDIGITS(y)[RBIGNUM_LEN(y) - 1]);
 | |
| 	    ey -= DBL_BIGDIG * BITSPERDIG;
 | |
| 	    if (ey) y = big_shift(y, ey);
 | |
| 	  bignum:
 | |
| 	    bigdivrem(x, y, &z, 0);
 | |
| 	    return DBL2NUM(ldexp(big2dbl(z), ex - ey));
 | |
| 	  }
 | |
| 	  case T_FLOAT:
 | |
| 	    if (isnan(RFLOAT_VALUE(y))) return y;
 | |
| 	    y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &ey), DBL_MANT_DIG));
 | |
| 	    ey -= DBL_MANT_DIG;
 | |
| 	    goto bignum;
 | |
| 	}
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	dy = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	dy = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	dy = RFLOAT_VALUE(y);
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
 | |
|     }
 | |
|     return DBL2NUM(dx / dy);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigsqr(VALUE x)
 | |
| {
 | |
|     return bigtrunc(bigmul0(x, x));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big ** exponent   => numeric
 | |
|  *
 | |
|  *  Raises _big_ to the _exponent_ power (which may be an integer, float,
 | |
|  *  or anything that will coerce to a number). The result may be
 | |
|  *  a Fixnum, Bignum, or Float
 | |
|  *
 | |
|  *    123456789 ** 2      #=> 15241578750190521
 | |
|  *    123456789 ** 1.2    #=> 5126464716.09932
 | |
|  *    123456789 ** -2     #=> 6.5610001194102e-17
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     double d;
 | |
|     SIGNED_VALUE yy;
 | |
| 
 | |
|     if (y == INT2FIX(0)) return INT2FIX(1);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FLOAT:
 | |
| 	d = RFLOAT_VALUE(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	rb_warn("in a**b, b may be too big");
 | |
| 	d = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FIXNUM:
 | |
| 	yy = FIX2LONG(y);
 | |
| 
 | |
| 	if (yy < 0)
 | |
| 	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
 | |
| 	else {
 | |
| 	    VALUE z = 0;
 | |
| 	    SIGNED_VALUE mask;
 | |
| 	    const long BIGLEN_LIMIT = 1024*1024 / SIZEOF_BDIGITS;
 | |
| 
 | |
| 	    if ((RBIGNUM_LEN(x) > BIGLEN_LIMIT) ||
 | |
| 		(RBIGNUM_LEN(x) > BIGLEN_LIMIT / yy)) {
 | |
| 		rb_warn("in a**b, b may be too big");
 | |
| 		d = (double)yy;
 | |
| 		break;
 | |
| 	    }
 | |
| 	    for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
 | |
| 		if (z) z = bigsqr(z);
 | |
| 		if (yy & mask) {
 | |
| 		    z = z ? bigtrunc(bigmul0(z, x)) : x;
 | |
| 		}
 | |
| 	    }
 | |
| 	    return bignorm(z);
 | |
| 	}
 | |
| 	/* NOTREACHED */
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("**"));
 | |
|     }
 | |
|     return DBL2NUM(pow(rb_big2dbl(x), d));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bit_coerce(VALUE x)
 | |
| {
 | |
|     while (!FIXNUM_P(x) && TYPE(x) != T_BIGNUM) {
 | |
| 	if (TYPE(x) == T_FLOAT) {
 | |
| 	    rb_raise(rb_eTypeError, "can't convert Float into Integer");
 | |
| 	}
 | |
| 	x = rb_to_int(x);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     big & numeric   =>  integer
 | |
|  *
 | |
|  * Performs bitwise +and+ between _big_ and _numeric_.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_and(VALUE xx, VALUE yy)
 | |
| {
 | |
|     volatile VALUE x, y, z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, l1, l2;
 | |
|     char sign;
 | |
| 
 | |
|     x = xx;
 | |
|     y = bit_coerce(yy);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(y)) {
 | |
| 	y = rb_big_clone(y);
 | |
| 	get2comp(y);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	x = rb_big_clone(x);
 | |
| 	get2comp(x);
 | |
|     }
 | |
|     if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
 | |
| 	l1 = RBIGNUM_LEN(y);
 | |
| 	l2 = RBIGNUM_LEN(x);
 | |
| 	ds1 = BDIGITS(y);
 | |
| 	ds2 = BDIGITS(x);
 | |
| 	sign = RBIGNUM_SIGN(y);
 | |
|     }
 | |
|     else {
 | |
| 	l1 = RBIGNUM_LEN(x);
 | |
| 	l2 = RBIGNUM_LEN(y);
 | |
| 	ds1 = BDIGITS(x);
 | |
| 	ds2 = BDIGITS(y);
 | |
| 	sign = RBIGNUM_SIGN(x);
 | |
|     }
 | |
|     z = bignew(l2, RBIGNUM_SIGN(x) || RBIGNUM_SIGN(y));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<l1; i++) {
 | |
| 	zds[i] = ds1[i] & ds2[i];
 | |
|     }
 | |
|     for (; i<l2; i++) {
 | |
| 	zds[i] = sign?0:ds2[i];
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(z)) get2comp(z);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     big | numeric   =>  integer
 | |
|  *
 | |
|  * Performs bitwise +or+ between _big_ and _numeric_.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_or(VALUE xx, VALUE yy)
 | |
| {
 | |
|     volatile VALUE x, y, z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, l1, l2;
 | |
|     char sign;
 | |
| 
 | |
|     x = xx;
 | |
|     y = bit_coerce(yy);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
| 
 | |
|     if (!RBIGNUM_SIGN(y)) {
 | |
| 	y = rb_big_clone(y);
 | |
| 	get2comp(y);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	x = rb_big_clone(x);
 | |
| 	get2comp(x);
 | |
|     }
 | |
|     if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
 | |
| 	l1 = RBIGNUM_LEN(y);
 | |
| 	l2 = RBIGNUM_LEN(x);
 | |
| 	ds1 = BDIGITS(y);
 | |
| 	ds2 = BDIGITS(x);
 | |
| 	sign = RBIGNUM_SIGN(y);
 | |
|     }
 | |
|     else {
 | |
| 	l1 = RBIGNUM_LEN(x);
 | |
| 	l2 = RBIGNUM_LEN(y);
 | |
| 	ds1 = BDIGITS(x);
 | |
| 	ds2 = BDIGITS(y);
 | |
| 	sign = RBIGNUM_SIGN(x);
 | |
|     }
 | |
|     z = bignew(l2, RBIGNUM_SIGN(x) && RBIGNUM_SIGN(y));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<l1; i++) {
 | |
| 	zds[i] = ds1[i] | ds2[i];
 | |
|     }
 | |
|     for (; i<l2; i++) {
 | |
| 	zds[i] = sign?ds2[i]:(BIGRAD-1);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(z)) get2comp(z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     big ^ numeric   =>  integer
 | |
|  *
 | |
|  * Performs bitwise +exclusive or+ between _big_ and _numeric_.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_xor(VALUE xx, VALUE yy)
 | |
| {
 | |
|     volatile VALUE x, y;
 | |
|     VALUE z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, l1, l2;
 | |
|     char sign;
 | |
| 
 | |
|     x = xx;
 | |
|     y = bit_coerce(yy);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
| 
 | |
|     if (!RBIGNUM_SIGN(y)) {
 | |
| 	y = rb_big_clone(y);
 | |
| 	get2comp(y);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	x = rb_big_clone(x);
 | |
| 	get2comp(x);
 | |
|     }
 | |
|     if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
 | |
| 	l1 = RBIGNUM_LEN(y);
 | |
| 	l2 = RBIGNUM_LEN(x);
 | |
| 	ds1 = BDIGITS(y);
 | |
| 	ds2 = BDIGITS(x);
 | |
| 	sign = RBIGNUM_SIGN(y);
 | |
|     }
 | |
|     else {
 | |
| 	l1 = RBIGNUM_LEN(x);
 | |
| 	l2 = RBIGNUM_LEN(y);
 | |
| 	ds1 = BDIGITS(x);
 | |
| 	ds2 = BDIGITS(y);
 | |
| 	sign = RBIGNUM_SIGN(x);
 | |
|     }
 | |
|     RBIGNUM_SET_SIGN(x, RBIGNUM_SIGN(x)?1:0);
 | |
|     RBIGNUM_SET_SIGN(y, RBIGNUM_SIGN(y)?1:0);
 | |
|     z = bignew(l2, !(RBIGNUM_SIGN(x) ^ RBIGNUM_SIGN(y)));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<l1; i++) {
 | |
| 	zds[i] = ds1[i] ^ ds2[i];
 | |
|     }
 | |
|     for (; i<l2; i++) {
 | |
| 	zds[i] = sign?ds2[i]:~ds2[i];
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(z)) get2comp(z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| check_shiftdown(VALUE y, VALUE x)
 | |
| {
 | |
|     if (!RBIGNUM_LEN(x)) return INT2FIX(0);
 | |
|     if (RBIGNUM_LEN(y) > SIZEOF_LONG / SIZEOF_BDIGITS) {
 | |
| 	return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(-1);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     big << numeric   =>  integer
 | |
|  *
 | |
|  * Shifts big left _numeric_ positions (right if _numeric_ is negative).
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_lshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long shift;
 | |
|     int neg = 0;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(y)) {
 | |
| 	    shift = FIX2LONG(y);
 | |
| 	    if (shift < 0) {
 | |
| 		neg = 1;
 | |
| 		shift = -shift;
 | |
| 	    }
 | |
| 	    break;
 | |
| 	}
 | |
| 	else if (TYPE(y) == T_BIGNUM) {
 | |
| 	    if (!RBIGNUM_SIGN(y)) {
 | |
| 		VALUE t = check_shiftdown(y, x);
 | |
| 		if (!NIL_P(t)) return t;
 | |
| 		neg = 1;
 | |
| 	    }
 | |
| 	    shift = big2ulong(y, "long", Qtrue);
 | |
| 	    break;
 | |
| 	}
 | |
| 	y = rb_to_int(y);
 | |
|     }
 | |
| 
 | |
|     if (neg) return big_rshift(x, shift);
 | |
|     return big_lshift(x, shift);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_lshift(VALUE x, unsigned long shift)
 | |
| {
 | |
|     BDIGIT *xds, *zds;
 | |
|     long s1 = shift/BITSPERDIG;
 | |
|     int s2 = shift%BITSPERDIG;
 | |
|     VALUE z;
 | |
|     BDIGIT_DBL num = 0;
 | |
|     long len, i;
 | |
| 
 | |
|     len = RBIGNUM_LEN(x);
 | |
|     z = bignew(len+s1+1, RBIGNUM_SIGN(x));
 | |
|     zds = BDIGITS(z);
 | |
|     for (i=0; i<s1; i++) {
 | |
| 	*zds++ = 0;
 | |
|     }
 | |
|     xds = BDIGITS(x);
 | |
|     for (i=0; i<len; i++) {
 | |
| 	num = num | (BDIGIT_DBL)*xds++<<s2;
 | |
| 	*zds++ = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     *zds = BIGLO(num);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *     big >> numeric   =>  integer
 | |
|  *
 | |
|  * Shifts big right _numeric_ positions (left if _numeric_ is negative).
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_rshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long shift;
 | |
|     int neg = 0;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(y)) {
 | |
| 	    shift = FIX2LONG(y);
 | |
| 	    if (shift < 0) {
 | |
| 		neg = 1;
 | |
| 		shift = -shift;
 | |
| 	    }
 | |
| 	    break;
 | |
| 	}
 | |
| 	else if (TYPE(y) == T_BIGNUM) {
 | |
| 	    if (RBIGNUM_SIGN(y)) {
 | |
| 		VALUE t = check_shiftdown(y, x);
 | |
| 		if (!NIL_P(t)) return t;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		neg = 1;
 | |
| 	    }
 | |
| 	    shift = big2ulong(y, "long", Qtrue);
 | |
| 	    break;
 | |
| 	}
 | |
| 	y = rb_to_int(y);
 | |
|     }
 | |
| 
 | |
|     if (neg) return big_lshift(x, shift);
 | |
|     return big_rshift(x, shift);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_rshift(VALUE x, unsigned long shift)
 | |
| {
 | |
|     BDIGIT *xds, *zds;
 | |
|     long s1 = shift/BITSPERDIG;
 | |
|     int s2 = shift%BITSPERDIG;
 | |
|     VALUE z;
 | |
|     BDIGIT_DBL num = 0;
 | |
|     long i, j;
 | |
|     volatile VALUE save_x;
 | |
| 
 | |
|     if (s1 > RBIGNUM_LEN(x)) {
 | |
| 	if (RBIGNUM_SIGN(x))
 | |
| 	    return INT2FIX(0);
 | |
| 	else
 | |
| 	    return INT2FIX(-1);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	save_x = x = rb_big_clone(x);
 | |
| 	get2comp(x);
 | |
|     }
 | |
|     xds = BDIGITS(x);
 | |
|     i = RBIGNUM_LEN(x); j = i - s1;
 | |
|     if (j == 0) {
 | |
| 	if (RBIGNUM_SIGN(x)) return INT2FIX(0);
 | |
| 	else return INT2FIX(-1);
 | |
|     }
 | |
|     z = bignew(j, RBIGNUM_SIGN(x));
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	num = ((BDIGIT_DBL)~0) << BITSPERDIG;
 | |
|     }
 | |
|     zds = BDIGITS(z);
 | |
|     while (i--, j--) {
 | |
| 	num = (num | xds[i]) >> s2;
 | |
| 	zds[j] = BIGLO(num);
 | |
| 	num = BIGUP(xds[i]);
 | |
|     }
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	get2comp(z);
 | |
|     }
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big[n] -> 0, 1
 | |
|  *
 | |
|  *  Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
 | |
|  *  representation of <i>big</i>, where <i>big</i>[0] is the least
 | |
|  *  significant bit.
 | |
|  *
 | |
|  *     a = 9**15
 | |
|  *     50.downto(0) do |n|
 | |
|  *       print a[n]
 | |
|  *     end
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     000101110110100000111000011110010100111100010111001
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_aref(VALUE x, VALUE y)
 | |
| {
 | |
|     BDIGIT *xds;
 | |
|     BDIGIT_DBL num;
 | |
|     VALUE shift;
 | |
|     long i, s1, s2;
 | |
| 
 | |
|     if (TYPE(y) == T_BIGNUM) {
 | |
| 	if (!RBIGNUM_SIGN(y))
 | |
| 	    return INT2FIX(0);
 | |
| 	if (RBIGNUM_LEN(bigtrunc(y)) > DIGSPERLONG) {
 | |
| 	  out_of_range:
 | |
| 	    return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
 | |
| 	}
 | |
| 	shift = big2ulong(y, "long", Qfalse);
 | |
|     }
 | |
|     else {
 | |
| 	i = NUM2LONG(y);
 | |
| 	if (i < 0) return INT2FIX(0);
 | |
| 	shift = (VALUE)i;
 | |
|     }
 | |
|     s1 = shift/BITSPERDIG;
 | |
|     s2 = shift%BITSPERDIG;
 | |
| 
 | |
|     if (s1 >= RBIGNUM_LEN(x)) goto out_of_range;
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	xds = BDIGITS(x);
 | |
| 	i = 0; num = 1;
 | |
| 	while (num += ~xds[i], ++i <= s1) {
 | |
| 	    num = BIGDN(num);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	num = BDIGITS(x)[s1];
 | |
|     }
 | |
|     if (num & ((BDIGIT_DBL)1<<s2))
 | |
| 	return INT2FIX(1);
 | |
|     return INT2FIX(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   big.hash   => fixnum
 | |
|  *
 | |
|  * Compute a hash based on the value of _big_.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_hash(VALUE x)
 | |
| {
 | |
|     int hash;
 | |
| 
 | |
|     hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x);
 | |
|     return INT2FIX(hash);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MISSING: documentation
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return rb_assoc_new(rb_int2big(FIX2LONG(y)), x);
 | |
|     }
 | |
|     else if (TYPE(y) == T_BIGNUM) {
 | |
|        return rb_assoc_new(y, x);
 | |
|     }
 | |
|     else {
 | |
| 	rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
 | |
| 		 rb_obj_classname(y));
 | |
|     }
 | |
|     /* not reached */
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.abs -> aBignum
 | |
|  *
 | |
|  *  Returns the absolute value of <i>big</i>.
 | |
|  *
 | |
|  *     -1234567890987654321.abs   #=> 1234567890987654321
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_abs(VALUE x)
 | |
| {
 | |
|     if (!RBIGNUM_SIGN(x)) {
 | |
| 	x = rb_big_clone(x);
 | |
| 	RBIGNUM_SET_SIGN(x, 1);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.size -> integer
 | |
|  *
 | |
|  *  Returns the number of bytes in the machine representation of
 | |
|  *  <i>big</i>.
 | |
|  *
 | |
|  *     (256**10 - 1).size   #=> 12
 | |
|  *     (256**20 - 1).size   #=> 20
 | |
|  *     (256**40 - 1).size   #=> 40
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_size(VALUE big)
 | |
| {
 | |
|     return LONG2FIX(RBIGNUM_LEN(big)*SIZEOF_BDIGITS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.odd? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>big</i> is an odd number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_odd_p(VALUE num)
 | |
| {
 | |
|     if (BDIGITS(num)[0] & 1) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big.even? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>big</i> is an even number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_big_even_p(VALUE num)
 | |
| {
 | |
|     if (BDIGITS(num)[0] & 1) {
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Bignum objects hold integers outside the range of
 | |
|  *  Fixnum. Bignum objects are created
 | |
|  *  automatically when integer calculations would otherwise overflow a
 | |
|  *  Fixnum. When a calculation involving
 | |
|  *  Bignum objects returns a result that will fit in a
 | |
|  *  Fixnum, the result is automatically converted.
 | |
|  *
 | |
|  *  For the purposes of the bitwise operations and <code>[]</code>, a
 | |
|  *  Bignum is treated as if it were an infinite-length
 | |
|  *  bitstring with 2's complement representation.
 | |
|  *
 | |
|  *  While Fixnum values are immediate, Bignum
 | |
|  *  objects are not---assignment and parameter passing work with
 | |
|  *  references to objects, not the objects themselves.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Bignum(void)
 | |
| {
 | |
|     rb_cBignum = rb_define_class("Bignum", rb_cInteger);
 | |
| 
 | |
|     rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1);
 | |
|     rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1);
 | |
|     rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0);
 | |
|     rb_define_method(rb_cBignum, "+", rb_big_plus, 1);
 | |
|     rb_define_method(rb_cBignum, "-", rb_big_minus, 1);
 | |
|     rb_define_method(rb_cBignum, "*", rb_big_mul, 1);
 | |
|     rb_define_method(rb_cBignum, "/", rb_big_div, 1);
 | |
|     rb_define_method(rb_cBignum, "%", rb_big_modulo, 1);
 | |
|     rb_define_method(rb_cBignum, "div", rb_big_idiv, 1);
 | |
|     rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1);
 | |
|     rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1);
 | |
|     rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1);
 | |
|     rb_define_method(rb_cBignum, "fdiv", rb_big_fdiv, 1);
 | |
|     rb_define_method(rb_cBignum, "**", rb_big_pow, 1);
 | |
|     rb_define_method(rb_cBignum, "&", rb_big_and, 1);
 | |
|     rb_define_method(rb_cBignum, "|", rb_big_or, 1);
 | |
|     rb_define_method(rb_cBignum, "^", rb_big_xor, 1);
 | |
|     rb_define_method(rb_cBignum, "~", rb_big_neg, 0);
 | |
|     rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1);
 | |
|     rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1);
 | |
|     rb_define_method(rb_cBignum, "[]", rb_big_aref, 1);
 | |
| 
 | |
|     rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1);
 | |
|     rb_define_method(rb_cBignum, "==", rb_big_eq, 1);
 | |
|     rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1);
 | |
|     rb_define_method(rb_cBignum, "hash", rb_big_hash, 0);
 | |
|     rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0);
 | |
|     rb_define_method(rb_cBignum, "abs", rb_big_abs, 0);
 | |
|     rb_define_method(rb_cBignum, "magnitude", rb_big_abs, 0);
 | |
|     rb_define_method(rb_cBignum, "size", rb_big_size, 0);
 | |
|     rb_define_method(rb_cBignum, "odd?", rb_big_odd_p, 0);
 | |
|     rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0);
 | |
| 
 | |
|     power_cache_init();
 | |
| }
 |