mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
eb9bc2d265
[ruby-dev:30954] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@24142 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
1014 lines
26 KiB
C
1014 lines
26 KiB
C
/**********************************************************************
|
|
|
|
random.c -
|
|
|
|
$Author$
|
|
created at: Fri Dec 24 16:39:21 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
**********************************************************************/
|
|
|
|
/*
|
|
This is based on trimmed version of MT19937. To get the original version,
|
|
contact <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>.
|
|
|
|
The original copyright notice follows.
|
|
|
|
A C-program for MT19937, with initialization improved 2002/2/10.
|
|
Coded by Takuji Nishimura and Makoto Matsumoto.
|
|
This is a faster version by taking Shawn Cokus's optimization,
|
|
Matthe Bellew's simplification, Isaku Wada's real version.
|
|
|
|
Before using, initialize the state by using init_genrand(mt, seed)
|
|
or init_by_array(mt, init_key, key_length).
|
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of its contributors may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
Any feedback is very welcome.
|
|
http://www.math.keio.ac.jp/matumoto/emt.html
|
|
email: matumoto@math.keio.ac.jp
|
|
*/
|
|
|
|
#include <limits.h>
|
|
typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1];
|
|
|
|
/* Period parameters */
|
|
#define N 624
|
|
#define M 397
|
|
#define MATRIX_A 0x9908b0dfU /* constant vector a */
|
|
#define UMASK 0x80000000U /* most significant w-r bits */
|
|
#define LMASK 0x7fffffffU /* least significant r bits */
|
|
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
|
|
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1U ? MATRIX_A : 0U))
|
|
|
|
enum {MT_MAX_STATE = N};
|
|
|
|
struct MT {
|
|
/* assume int is enough to store 32bits */
|
|
unsigned int state[N]; /* the array for the state vector */
|
|
unsigned int *next;
|
|
int left;
|
|
};
|
|
|
|
#define genrand_initialized(mt) ((mt)->next != 0)
|
|
#define uninit_genrand(mt) ((mt)->next = 0)
|
|
|
|
/* initializes state[N] with a seed */
|
|
static void
|
|
init_genrand(struct MT *mt, unsigned int s)
|
|
{
|
|
int j;
|
|
mt->state[0] = s & 0xffffffffU;
|
|
for (j=1; j<N; j++) {
|
|
mt->state[j] = (1812433253U * (mt->state[j-1] ^ (mt->state[j-1] >> 30)) + j);
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous versions, MSBs of the seed affect */
|
|
/* only MSBs of the array state[]. */
|
|
/* 2002/01/09 modified by Makoto Matsumoto */
|
|
mt->state[j] &= 0xffffffff; /* for >32 bit machines */
|
|
}
|
|
mt->left = 1;
|
|
mt->next = mt->state + N - 1;
|
|
}
|
|
|
|
/* initialize by an array with array-length */
|
|
/* init_key is the array for initializing keys */
|
|
/* key_length is its length */
|
|
/* slight change for C++, 2004/2/26 */
|
|
static void
|
|
init_by_array(struct MT *mt, unsigned int init_key[], int key_length)
|
|
{
|
|
int i, j, k;
|
|
init_genrand(mt, 19650218U);
|
|
i=1; j=0;
|
|
k = (N>key_length ? N : key_length);
|
|
for (; k; k--) {
|
|
mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1664525U))
|
|
+ init_key[j] + j; /* non linear */
|
|
mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
|
|
i++; j++;
|
|
if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
|
|
if (j>=key_length) j=0;
|
|
}
|
|
for (k=N-1; k; k--) {
|
|
mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1566083941U))
|
|
- i; /* non linear */
|
|
mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
|
|
i++;
|
|
if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
|
|
}
|
|
|
|
mt->state[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
|
|
}
|
|
|
|
static void
|
|
next_state(struct MT *mt)
|
|
{
|
|
unsigned int *p = mt->state;
|
|
int j;
|
|
|
|
/* if init_genrand() has not been called, */
|
|
/* a default initial seed is used */
|
|
if (!genrand_initialized(mt)) init_genrand(mt, 5489U);
|
|
|
|
mt->left = N;
|
|
mt->next = mt->state;
|
|
|
|
for (j=N-M+1; --j; p++)
|
|
*p = p[M] ^ TWIST(p[0], p[1]);
|
|
|
|
for (j=M; --j; p++)
|
|
*p = p[M-N] ^ TWIST(p[0], p[1]);
|
|
|
|
*p = p[M-N] ^ TWIST(p[0], mt->state[0]);
|
|
}
|
|
|
|
/* generates a random number on [0,0xffffffff]-interval */
|
|
static unsigned int
|
|
genrand_int32(struct MT *mt)
|
|
{
|
|
unsigned int y;
|
|
|
|
if (--mt->left <= 0) next_state(mt);
|
|
y = *mt->next++;
|
|
|
|
/* Tempering */
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9d2c5680;
|
|
y ^= (y << 15) & 0xefc60000;
|
|
y ^= (y >> 18);
|
|
|
|
return y;
|
|
}
|
|
|
|
/* generates a random number on [0,1) with 53-bit resolution*/
|
|
static double
|
|
genrand_real(struct MT *mt)
|
|
{
|
|
unsigned int a = genrand_int32(mt)>>5, b = genrand_int32(mt)>>6;
|
|
return(a*67108864.0+b)*(1.0/9007199254740992.0);
|
|
}
|
|
/* These real versions are due to Isaku Wada, 2002/01/09 added */
|
|
|
|
#undef N
|
|
#undef M
|
|
|
|
/* These real versions are due to Isaku Wada, 2002/01/09 added */
|
|
|
|
#include "ruby/ruby.h"
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
typedef struct {
|
|
VALUE seed;
|
|
struct MT mt;
|
|
} rb_random_t;
|
|
|
|
#define DEFAULT_SEED_CNT 4
|
|
|
|
struct Random {
|
|
rb_random_t rnd;
|
|
unsigned int initial[DEFAULT_SEED_CNT];
|
|
};
|
|
|
|
static struct Random default_rand;
|
|
|
|
unsigned long
|
|
rb_genrand_int32(void)
|
|
{
|
|
return genrand_int32(&default_rand.rnd.mt);
|
|
}
|
|
|
|
double
|
|
rb_genrand_real(void)
|
|
{
|
|
return genrand_real(&default_rand.rnd.mt);
|
|
}
|
|
|
|
#define BDIGITS(x) (RBIGNUM_DIGITS(x))
|
|
#define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
|
|
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
|
|
#define DIGSPERINT (SIZEOF_LONG/SIZEOF_BDIGITS)
|
|
#define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
|
|
#define BIGDN(x) RSHIFT(x,BITSPERDIG)
|
|
#define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
|
|
#define BDIGMAX ((BDIGIT)-1)
|
|
|
|
#define roomof(n, m) (int)(((n)+(m)-1) / (m))
|
|
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
|
|
#define SIZEOF_INT32 (31/CHAR_BIT + 1)
|
|
|
|
VALUE rb_cRandom;
|
|
#define id_minus '-'
|
|
#define id_plus '+'
|
|
|
|
static VALUE random_seed(void);
|
|
|
|
/* :nodoc: */
|
|
static void
|
|
random_mark(void *ptr)
|
|
{
|
|
rb_gc_mark(((rb_random_t *)ptr)->seed);
|
|
}
|
|
|
|
#define random_free RUBY_TYPED_DEFAULT_FREE
|
|
|
|
static size_t
|
|
random_memsize(void *ptr)
|
|
{
|
|
return ptr ? sizeof(rb_random_t) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t random_data_type = {
|
|
"random",
|
|
random_mark,
|
|
random_free,
|
|
random_memsize,
|
|
};
|
|
|
|
static rb_random_t *
|
|
get_rnd(VALUE obj)
|
|
{
|
|
rb_random_t *ptr;
|
|
TypedData_Get_Struct(obj, rb_random_t, &random_data_type, ptr);
|
|
return ptr;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
random_alloc(VALUE klass)
|
|
{
|
|
rb_random_t *rnd;
|
|
VALUE obj = TypedData_Make_Struct(rb_cRandom, rb_random_t, &random_data_type, rnd);
|
|
rnd->seed = INT2FIX(0);
|
|
return obj;
|
|
}
|
|
|
|
static void
|
|
dump_mt(const struct MT *mt, const char *s)
|
|
{
|
|
int i, n = mt->next - mt->state;
|
|
static FILE *f;
|
|
if (!f) f = fopen("rand.data", "w");
|
|
fprintf(f, "%s\nleft=%d\n", s, mt->left);
|
|
for (i = 0; i < MT_MAX_STATE; ++i) {
|
|
fprintf(f, " %s %u\n", i == n ? "*" : " ", mt->state[i]);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rand_init(struct MT *mt, VALUE vseed)
|
|
{
|
|
volatile VALUE seed;
|
|
long blen = 0;
|
|
int i, j, len;
|
|
unsigned int buf0[SIZEOF_LONG / SIZEOF_INT32 * 4], *buf = buf0;
|
|
|
|
seed = rb_to_int(vseed);
|
|
switch (TYPE(seed)) {
|
|
case T_FIXNUM:
|
|
len = 1;
|
|
buf[0] = (unsigned int)(FIX2ULONG(seed) & 0xffffffff);
|
|
#if SIZEOF_LONG > SIZEOF_INT32
|
|
if ((buf[1] = (unsigned int)(FIX2ULONG(seed) >> 32)) != 0) ++len;
|
|
#endif
|
|
break;
|
|
case T_BIGNUM:
|
|
blen = RBIGNUM_LEN(seed);
|
|
if (blen == 0) {
|
|
len = 1;
|
|
}
|
|
else if (blen > MT_MAX_STATE * SIZEOF_INT32 / SIZEOF_BDIGITS) {
|
|
blen = (len = MT_MAX_STATE) * SIZEOF_INT32 / SIZEOF_BDIGITS;
|
|
len = roomof(len, SIZEOF_INT32);
|
|
}
|
|
else {
|
|
len = roomof((int)blen * SIZEOF_BDIGITS, SIZEOF_INT32);
|
|
}
|
|
/* allocate ints for init_by_array */
|
|
if (len > numberof(buf0)) buf = ALLOC_N(unsigned int, len);
|
|
memset(buf, 0, len * sizeof(*buf));
|
|
len = 0;
|
|
for (i = (int)(blen-1); 0 <= i; i--) {
|
|
j = i * SIZEOF_BDIGITS / SIZEOF_INT32;
|
|
#if SIZEOF_BDIGITS < SIZEOF_INT32
|
|
buf[j] <<= SIZEOF_BDIGITS * CHAR_BIT;
|
|
#endif
|
|
buf[j] |= RBIGNUM_DIGITS(seed)[i];
|
|
if (!len && buf[j]) len = j;
|
|
}
|
|
++len;
|
|
break;
|
|
default:
|
|
rb_raise(rb_eTypeError, "failed to convert %s into Integer",
|
|
rb_obj_classname(vseed));
|
|
}
|
|
if (len <= 1) {
|
|
init_genrand(mt, buf[0]);
|
|
}
|
|
else {
|
|
if (buf[len-1] == 1) /* remove leading-zero-guard */
|
|
len--;
|
|
init_by_array(mt, buf, len);
|
|
}
|
|
if (buf != buf0) xfree(buf);
|
|
return seed;
|
|
}
|
|
|
|
/*
|
|
* call-seq: Random.new([seed]) -> prng
|
|
*
|
|
* Creates new Mersenne Twister based pseudorandom number generator with
|
|
* seed. When the argument seed is omitted, the generator is initialized
|
|
* with Random.seed.
|
|
*
|
|
* The argument seed is used to ensure repeatable sequences of random numbers
|
|
* between different runs of the program.
|
|
*
|
|
* prng = Random.new(1234)
|
|
* [ prng.rand, prng.rand ] #=> [0.191519450378892, 0.622108771039832]
|
|
* [ prng.integer(10), prng.integer(1000) ] #=> [4, 664]
|
|
* prng = Random.new(1234)
|
|
* [ prng.rand, prng.rand ] #=> [0.191519450378892, 0.622108771039832]
|
|
*/
|
|
static VALUE
|
|
random_init(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE vseed;
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
|
|
if (argc == 0) {
|
|
vseed = random_seed();
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "01", &vseed);
|
|
}
|
|
rnd->seed = rand_init(&rnd->mt, vseed);
|
|
dump_mt(&rnd->mt, "random_init");
|
|
return obj;
|
|
}
|
|
|
|
#define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * sizeof(int))
|
|
|
|
static void
|
|
fill_random_seed(unsigned int seed[DEFAULT_SEED_CNT])
|
|
{
|
|
static int n = 0;
|
|
struct timeval tv;
|
|
#ifdef S_ISCHR
|
|
int fd;
|
|
struct stat statbuf;
|
|
#endif
|
|
|
|
memset(seed, 0, DEFAULT_SEED_LEN);
|
|
|
|
#ifdef S_ISCHR
|
|
if ((fd = open("/dev/urandom", O_RDONLY
|
|
#ifdef O_NONBLOCK
|
|
|O_NONBLOCK
|
|
#endif
|
|
#ifdef O_NOCTTY
|
|
|O_NOCTTY
|
|
#endif
|
|
#ifdef O_NOFOLLOW
|
|
|O_NOFOLLOW
|
|
#endif
|
|
)) >= 0) {
|
|
if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
|
|
(void)read(fd, seed, DEFAULT_SEED_LEN);
|
|
}
|
|
close(fd);
|
|
}
|
|
#endif
|
|
|
|
gettimeofday(&tv, 0);
|
|
seed[0] ^= tv.tv_usec;
|
|
seed[1] ^= (unsigned int)tv.tv_sec;
|
|
#if SIZEOF_TIME_T > SIZEOF_INT
|
|
seed[0] ^= (unsigned int)(tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
|
|
#endif
|
|
seed[2] ^= getpid() ^ (n++ << 16);
|
|
seed[3] ^= (unsigned int)(VALUE)&seed;
|
|
#if SIZEOF_VOIDP > SIZEOF_INT
|
|
seed[2] ^= (unsigned int)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
|
|
#endif
|
|
}
|
|
|
|
static VALUE
|
|
make_seed_value(const void *ptr)
|
|
{
|
|
BDIGIT *digits;
|
|
NEWOBJ(big, struct RBignum);
|
|
OBJSETUP(big, rb_cBignum, T_BIGNUM);
|
|
|
|
RBIGNUM_SET_SIGN(big, 1);
|
|
rb_big_resize((VALUE)big, DEFAULT_SEED_LEN / SIZEOF_BDIGITS + 1);
|
|
digits = RBIGNUM_DIGITS(big);
|
|
|
|
MEMCPY(digits, ptr, char, DEFAULT_SEED_LEN);
|
|
|
|
/* set leading-zero-guard if need. */
|
|
digits[RBIGNUM_LEN(big)-1] = digits[RBIGNUM_LEN(big)-2] <= 1 ? 1 : 0;
|
|
|
|
return rb_big_norm((VALUE)big);
|
|
}
|
|
|
|
/*
|
|
* call-seq: Random.seed -> integer
|
|
*
|
|
* Returns arbitrary value for seed.
|
|
*/
|
|
static VALUE
|
|
random_seed(void)
|
|
{
|
|
unsigned int buf[DEFAULT_SEED_CNT];
|
|
fill_random_seed(buf);
|
|
return make_seed_value(buf);
|
|
}
|
|
|
|
/*
|
|
* call-seq: prng.seed -> integer
|
|
*
|
|
* Returns the seed of the generator.
|
|
*/
|
|
static VALUE
|
|
random_get_seed(VALUE obj)
|
|
{
|
|
return get_rnd(obj)->seed;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
random_copy(VALUE obj, VALUE orig)
|
|
{
|
|
rb_random_t *rnd1 = get_rnd(obj);
|
|
rb_random_t *rnd2 = get_rnd(orig);
|
|
struct MT *mt = &rnd1->mt;
|
|
|
|
*rnd1 = *rnd2;
|
|
mt->next = mt->state + numberof(mt->state) - mt->left + 1;
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
mt_state(const struct MT *mt)
|
|
{
|
|
VALUE bigo = rb_big_new(sizeof(mt->state) / sizeof(BDIGIT), 1);
|
|
BDIGIT *d = RBIGNUM_DIGITS(bigo);
|
|
int i;
|
|
|
|
for (i = 0; i < numberof(mt->state); ++i) {
|
|
unsigned int x = mt->state[i];
|
|
#if SIZEOF_BDIGITS < SIZEOF_INT32
|
|
int j;
|
|
for (j = 0; j < SIZEOF_INT32 / SIZEOF_BDIGITS; ++j) {
|
|
*d++ = BIGLO(x);
|
|
x = BIGDN(x);
|
|
}
|
|
#else
|
|
*d++ = (BDIGIT)x;
|
|
#endif
|
|
}
|
|
return rb_big_norm(bigo);
|
|
}
|
|
|
|
static VALUE
|
|
random_state(VALUE obj)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
return mt_state(&rnd->mt);
|
|
}
|
|
|
|
static VALUE
|
|
random_s_state(VALUE klass)
|
|
{
|
|
return mt_state(&default_rand.rnd.mt);
|
|
}
|
|
|
|
static VALUE
|
|
random_left(VALUE obj)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
return INT2FIX(rnd->mt.left);
|
|
}
|
|
|
|
static VALUE
|
|
random_s_left(VALUE klass)
|
|
{
|
|
return INT2FIX(default_rand.rnd.mt.left);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
random_dump(VALUE obj)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
VALUE dump = rb_ary_new2(3);
|
|
|
|
rb_ary_push(dump, mt_state(&rnd->mt));
|
|
rb_ary_push(dump, INT2FIX(rnd->mt.left));
|
|
rb_ary_push(dump, rnd->seed);
|
|
|
|
return dump;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
random_load(VALUE obj, VALUE dump)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
struct MT *mt = &rnd->mt;
|
|
VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
|
|
VALUE *ary;
|
|
unsigned long x;
|
|
|
|
Check_Type(dump, T_ARRAY);
|
|
ary = RARRAY_PTR(dump);
|
|
switch (RARRAY_LEN(dump)) {
|
|
case 3:
|
|
seed = ary[2];
|
|
case 2:
|
|
left = ary[1];
|
|
case 1:
|
|
state = ary[0];
|
|
break;
|
|
default:
|
|
rb_raise(rb_eArgError, "wrong dump data");
|
|
}
|
|
memset(mt->state, 0, sizeof(mt->state));
|
|
if (FIXNUM_P(state)) {
|
|
x = FIX2ULONG(state);
|
|
mt->state[0] = (unsigned int)x;
|
|
#if SIZEOF_LONG / SIZEOF_INT >= 2
|
|
mt->state[1] = (unsigned int)(x >> CHAR_BIT * SIZEOF_BDIGITS);
|
|
#endif
|
|
#if SIZEOF_LONG / SIZEOF_INT >= 3
|
|
mt->state[2] = (unsigned int)(x >> 2 * CHAR_BIT * SIZEOF_BDIGITS);
|
|
#endif
|
|
#if SIZEOF_LONG / SIZEOF_INT >= 4
|
|
mt->state[3] = (unsigned int)(x >> 3 * CHAR_BIT * SIZEOF_BDIGITS);
|
|
#endif
|
|
}
|
|
else {
|
|
BDIGIT *d;
|
|
long len;
|
|
Check_Type(state, T_BIGNUM);
|
|
len = RBIGNUM_LEN(state);
|
|
if (len > roomof(sizeof(mt->state), SIZEOF_BDIGITS)) {
|
|
len = roomof(sizeof(mt->state), SIZEOF_BDIGITS);
|
|
}
|
|
#if SIZEOF_BDIGITS < SIZEOF_INT
|
|
else if (len % DIGSPERINT) {
|
|
d = RBIGNUM_DIGITS(state) + len;
|
|
# if DIGSPERINT == 2
|
|
--len;
|
|
x = *--d;
|
|
# else
|
|
x = 0;
|
|
do {
|
|
x = (x << CHAR_BIT * SIZEOF_BDIGITS) | *--d;
|
|
} while (--len % DIGSPERINT);
|
|
# endif
|
|
mt->state[len / DIGSPERINT] = (unsigned int)x;
|
|
}
|
|
#endif
|
|
if (len > 0) {
|
|
d = BDIGITS(state) + len;
|
|
do {
|
|
--len;
|
|
x = *--d;
|
|
# if DIGSPERINT == 2
|
|
--len;
|
|
x = (x << CHAR_BIT * SIZEOF_BDIGITS) | *--d;
|
|
# elif SIZEOF_BDIGITS < SIZEOF_INT
|
|
do {
|
|
x = (x << CHAR_BIT * SIZEOF_BDIGITS) | *--d;
|
|
} while (--len % DIGSPERINT);
|
|
#endif
|
|
mt->state[len / DIGSPERINT] = (unsigned int)x;
|
|
} while (len > 0);
|
|
}
|
|
}
|
|
x = NUM2ULONG(left);
|
|
if (x > numberof(mt->state)) {
|
|
rb_raise(rb_eArgError, "wrong value");
|
|
}
|
|
mt->left = (unsigned int)x;
|
|
mt->next = mt->state + numberof(mt->state) - x + 1;
|
|
rnd->seed = rb_to_int(seed);
|
|
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* srand(number=0) => old_seed
|
|
*
|
|
* Seeds the pseudorandom number generator to the value of
|
|
* <i>number</i>. If <i>number</i> is omitted
|
|
* or zero, seeds the generator using a combination of the time, the
|
|
* process id, and a sequence number. (This is also the behavior if
|
|
* <code>Kernel::rand</code> is called without previously calling
|
|
* <code>srand</code>, but without the sequence.) By setting the seed
|
|
* to a known value, scripts can be made deterministic during testing.
|
|
* The previous seed value is returned. Also see <code>Kernel::rand</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_f_srand(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE seed, old;
|
|
|
|
rb_secure(4);
|
|
if (argc == 0) {
|
|
seed = random_seed();
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "01", &seed);
|
|
}
|
|
old = default_rand.rnd.seed;
|
|
default_rand.rnd.seed = rand_init(&default_rand.rnd.mt, seed);
|
|
dump_mt(&default_rand.rnd.mt, "srand");
|
|
|
|
return old;
|
|
}
|
|
|
|
static unsigned long
|
|
make_mask(unsigned long x)
|
|
{
|
|
x = x | x >> 1;
|
|
x = x | x >> 2;
|
|
x = x | x >> 4;
|
|
x = x | x >> 8;
|
|
x = x | x >> 16;
|
|
#if 4 < SIZEOF_LONG
|
|
x = x | x >> 32;
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
static unsigned long
|
|
limited_rand(struct MT *mt, unsigned long limit)
|
|
{
|
|
unsigned long mask = make_mask(limit);
|
|
int i;
|
|
unsigned long val;
|
|
|
|
retry:
|
|
val = 0;
|
|
for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
|
|
if ((mask >> (i * 32)) & 0xffffffff) {
|
|
val |= (unsigned long)genrand_int32(mt) << (i * 32);
|
|
val &= mask;
|
|
if (limit < val)
|
|
goto retry;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static VALUE
|
|
limited_big_rand(struct MT *mt, struct RBignum *limit)
|
|
{
|
|
unsigned long mask, lim, rnd;
|
|
struct RBignum *val;
|
|
long i, len;
|
|
int boundary;
|
|
|
|
len = (RBIGNUM_LEN(limit) * SIZEOF_BDIGITS + 3) / 4;
|
|
val = (struct RBignum *)rb_big_clone((VALUE)limit);
|
|
RBIGNUM_SET_SIGN(val, 1);
|
|
#if SIZEOF_BDIGITS == 2
|
|
# define BIG_GET32(big,i) \
|
|
(RBIGNUM_DIGITS(big)[(i)*2] | \
|
|
((i)*2+1 < RBIGNUM_LEN(big) ? \
|
|
(RBIGNUM_DIGITS(big)[(i)*2+1] << 16) : \
|
|
0))
|
|
# define BIG_SET32(big,i,d) \
|
|
((RBIGNUM_DIGITS(big)[(i)*2] = (d) & 0xffff), \
|
|
((i)*2+1 < RBIGNUM_LEN(big) ? \
|
|
(RBIGNUM_DIGITS(big)[(i)*2+1] = (d) >> 16) : \
|
|
0))
|
|
#else
|
|
/* SIZEOF_BDIGITS == 4 */
|
|
# define BIG_GET32(big,i) (RBIGNUM_DIGITS(big)[i])
|
|
# define BIG_SET32(big,i,d) (RBIGNUM_DIGITS(big)[i] = (d))
|
|
#endif
|
|
retry:
|
|
mask = 0;
|
|
boundary = 1;
|
|
for (i = len-1; 0 <= i; i--) {
|
|
lim = BIG_GET32(limit, i);
|
|
mask = mask ? 0xffffffff : make_mask(lim);
|
|
if (mask) {
|
|
rnd = genrand_int32(mt) & mask;
|
|
if (boundary) {
|
|
if (lim < rnd)
|
|
goto retry;
|
|
if (rnd < lim)
|
|
boundary = 0;
|
|
}
|
|
}
|
|
else {
|
|
rnd = 0;
|
|
}
|
|
BIG_SET32(val, i, (BDIGIT)rnd);
|
|
}
|
|
return rb_big_norm((VALUE)val);
|
|
}
|
|
|
|
unsigned long
|
|
rb_rand_internal(unsigned long i)
|
|
{
|
|
struct MT *mt = &default_rand.rnd.mt;
|
|
if (!genrand_initialized(mt)) {
|
|
rand_init(mt, random_seed());
|
|
}
|
|
return limited_rand(mt, i);
|
|
}
|
|
|
|
/*
|
|
* call-seq: prng.bytes(size) -> prng
|
|
*
|
|
* Returns a random binary string. The argument size specified the length of
|
|
* the result string.
|
|
*/
|
|
static VALUE
|
|
random_bytes(VALUE obj, VALUE len)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
long n = FIX2LONG(rb_to_int(len));
|
|
VALUE bytes = rb_str_new(0, n);
|
|
char *ptr = RSTRING_PTR(bytes);
|
|
unsigned int r, i;
|
|
|
|
for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
|
|
r = genrand_int32(&rnd->mt);
|
|
i = SIZEOF_INT32;
|
|
do {
|
|
*ptr++ = (char)r;
|
|
r >>= CHAR_BIT;
|
|
} while (--i);
|
|
}
|
|
if (n > 0) {
|
|
r = genrand_int32(&rnd->mt);
|
|
do {
|
|
*ptr++ = (char)r;
|
|
r >>= CHAR_BIT;
|
|
} while (--n);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
static VALUE
|
|
range_values(VALUE vmax, VALUE *begp)
|
|
{
|
|
VALUE end, r, one = INT2FIX(1);
|
|
int excl;
|
|
|
|
if (!rb_range_values(vmax, begp, &end, &excl)) return Qfalse;
|
|
if (!rb_respond_to(end, id_minus)) return Qfalse;
|
|
r = rb_funcall2(end, id_minus, 1, begp);
|
|
if (NIL_P(r)) return Qfalse;
|
|
if (!excl && rb_respond_to(r, id_plus)) {
|
|
r = rb_funcall2(r, id_plus, 1, &one);
|
|
if (NIL_P(r)) return Qfalse;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static inline VALUE
|
|
add_to_begin(VALUE beg, VALUE offset)
|
|
{
|
|
if (beg == Qundef) return offset;
|
|
return rb_funcall2(beg, id_plus, 1, &offset);
|
|
}
|
|
|
|
static VALUE
|
|
rand_int(struct MT *mt, VALUE vmax)
|
|
{
|
|
if (FIXNUM_P(vmax)) {
|
|
long max = FIX2LONG(vmax);
|
|
unsigned long r;
|
|
if (!max) return Qnil;
|
|
r = limited_rand(mt, (unsigned long)(max < 0 ? -max : max) - 1);
|
|
return ULONG2NUM(r);
|
|
}
|
|
else {
|
|
struct RBignum *limit = (struct RBignum *)vmax;
|
|
if (rb_bigzero_p(vmax)) return Qnil;
|
|
if (!RBIGNUM_SIGN(limit)) {
|
|
limit = (struct RBignum *)rb_big_clone(vmax);
|
|
RBIGNUM_SET_SIGN(limit, 1);
|
|
}
|
|
limit = (struct RBignum *)rb_big_minus((VALUE)limit, INT2FIX(1));
|
|
if (FIXNUM_P((VALUE)limit)) {
|
|
if (FIX2LONG((VALUE)limit) == -1)
|
|
return Qnil;
|
|
return LONG2NUM(limited_rand(mt, FIX2LONG((VALUE)limit)));
|
|
}
|
|
return limited_big_rand(mt, limit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq: prng.int(limit) -> integer
|
|
*
|
|
* When the argument is an +Integer+ or a +Bignum+, it returns a
|
|
* random integer greater than or equal to zero and less than the
|
|
* argument. Unlike Random#rand, when the argument is a negative
|
|
* integer or zero, it raises an ArgumentError.
|
|
*
|
|
* When the argument _limit_ is a +Range+, it returns a random
|
|
* integer from integers where range.member?(integer) == true.
|
|
* prng.int(5..9) # => one of [5, 6, 7, 8, 9]
|
|
* prng.int(5...9) # => one of [5, 6, 7, 8]
|
|
*
|
|
* +begin+/+end+ of the range have to have subtruct and add methods.
|
|
*
|
|
* Otherwise, it raises an ArgumentError.
|
|
*/
|
|
static VALUE
|
|
random_int(VALUE obj, VALUE vmax)
|
|
{
|
|
VALUE v, beg = Qundef;
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
|
|
v = rb_check_to_integer(vmax, "to_int");
|
|
if (NIL_P(v)) {
|
|
/* range like object support */
|
|
if (!(v = range_values(vmax, &beg))) {
|
|
beg = Qundef;
|
|
NUM2LONG(vmax);
|
|
}
|
|
}
|
|
v = rand_int(&rnd->mt, v);
|
|
if (NIL_P(v)) v = INT2FIX(0);
|
|
return add_to_begin(beg, v);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prng.float -> float
|
|
* prng.float([max=1.0]) -> float
|
|
*
|
|
* Returns a random floating point number between 0.0 and _max_,
|
|
* including 0.0 and excluding _max_.
|
|
*/
|
|
static VALUE
|
|
random_float(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
rb_random_t *rnd = get_rnd(obj);
|
|
VALUE vmax, beg = Qundef;
|
|
double max = 0, r;
|
|
|
|
switch (argc) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
vmax = argv[0];
|
|
if (TYPE(vmax) == T_FLOAT ||
|
|
!NIL_P(vmax = rb_to_float(vmax)) ||
|
|
(vmax = range_values(vmax, &beg)) != Qfalse) {
|
|
max = RFLOAT_VALUE(vmax);
|
|
}
|
|
else {
|
|
beg = Qundef;
|
|
Check_Type(argv[0], T_FLOAT);
|
|
}
|
|
break;
|
|
default:
|
|
rb_scan_args(argc, argv, "01", 0);
|
|
break;
|
|
}
|
|
r = genrand_real(&rnd->mt);
|
|
if (argc) r *= max;
|
|
return add_to_begin(beg, rb_float_new(r));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rand(max=0) => number
|
|
*
|
|
* Converts <i>max</i> to an integer using max1 =
|
|
* max<code>.to_i.abs</code>. If the result is zero, returns a
|
|
* pseudorandom floating point number greater than or equal to 0.0 and
|
|
* less than 1.0. Otherwise, returns a pseudorandom integer greater
|
|
* than or equal to zero and less than max1. <code>Kernel::srand</code>
|
|
* may be used to ensure repeatable sequences of random numbers between
|
|
* different runs of the program. Ruby currently uses a modified
|
|
* Mersenne Twister with a period of 2**19937-1.
|
|
*
|
|
* srand 1234 #=> 0
|
|
* [ rand, rand ] #=> [0.191519450163469, 0.49766366626136]
|
|
* [ rand(10), rand(1000) ] #=> [6, 817]
|
|
* srand 1234 #=> 1234
|
|
* [ rand, rand ] #=> [0.191519450163469, 0.49766366626136]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_f_rand(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE vmax, r;
|
|
struct MT *mt = &default_rand.rnd.mt;
|
|
|
|
if (!genrand_initialized(mt)) {
|
|
rand_init(mt, random_seed());
|
|
}
|
|
if (argc == 0) goto zero_arg;
|
|
rb_scan_args(argc, argv, "01", &vmax);
|
|
if (NIL_P(vmax)) goto zero_arg;
|
|
vmax = rb_to_int(vmax);
|
|
if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax))) {
|
|
zero_arg:
|
|
return DBL2NUM(genrand_real(mt));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void
|
|
Init_RandomSeed(void)
|
|
{
|
|
fill_random_seed(default_rand.initial);
|
|
init_by_array(&default_rand.rnd.mt, default_rand.initial, DEFAULT_SEED_CNT);
|
|
}
|
|
|
|
static void
|
|
Init_RandomSeed2(void)
|
|
{
|
|
default_rand.rnd.seed = make_seed_value(default_rand.initial);
|
|
memset(default_rand.initial, 0, DEFAULT_SEED_LEN);
|
|
}
|
|
|
|
void
|
|
rb_reset_random_seed(void)
|
|
{
|
|
uninit_genrand(&default_rand.rnd.mt);
|
|
default_rand.rnd.seed = INT2FIX(0);
|
|
}
|
|
|
|
void
|
|
Init_Random(void)
|
|
{
|
|
Init_RandomSeed2();
|
|
rb_define_global_function("srand", rb_f_srand, -1);
|
|
rb_define_global_function("rand", rb_f_rand, -1);
|
|
rb_global_variable(&default_rand.rnd.seed);
|
|
|
|
rb_cRandom = rb_define_class("Random", rb_cObject);
|
|
rb_define_alloc_func(rb_cRandom, random_alloc);
|
|
rb_define_method(rb_cRandom, "initialize", random_init, -1);
|
|
rb_define_method(rb_cRandom, "int", random_int, 1);
|
|
rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
|
|
rb_define_method(rb_cRandom, "float", random_float, -1);
|
|
rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
|
|
rb_define_method(rb_cRandom, "initialize_copy", random_copy, 1);
|
|
rb_define_method(rb_cRandom, "marshal_dump", random_dump, 0);
|
|
rb_define_method(rb_cRandom, "marshal_load", random_load, 1);
|
|
rb_define_method(rb_cRandom, "state", random_state, 0);
|
|
rb_define_method(rb_cRandom, "left", random_left, 0);
|
|
|
|
rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
|
|
rb_define_singleton_method(rb_cRandom, "rand", rb_f_rand, -1);
|
|
rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
|
|
rb_define_singleton_method(rb_cRandom, "state", random_s_state, 0);
|
|
rb_define_singleton_method(rb_cRandom, "left", random_s_left, 0);
|
|
}
|