mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 e398e64ad7
			
		
	
	
		e398e64ad7
		
	
	
	
	
		
			
			[Feature #10070][ruby-dev:48433] Patch by @gogotanaka git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50591 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			2171 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			2171 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
| # encoding: utf-8
 | |
| #
 | |
| # = matrix.rb
 | |
| #
 | |
| # An implementation of Matrix and Vector classes.
 | |
| #
 | |
| # See classes Matrix and Vector for documentation.
 | |
| #
 | |
| # Current Maintainer:: Marc-André Lafortune
 | |
| # Original Author:: Keiju ISHITSUKA
 | |
| # Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
 | |
| ##
 | |
| 
 | |
| require "e2mmap.rb"
 | |
| 
 | |
| module ExceptionForMatrix # :nodoc:
 | |
|   extend Exception2MessageMapper
 | |
|   def_e2message(TypeError, "wrong argument type %s (expected %s)")
 | |
|   def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
 | |
| 
 | |
|   def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
 | |
|   def_exception("ErrNotRegular", "Not Regular Matrix")
 | |
|   def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
 | |
|   def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
 | |
| end
 | |
| 
 | |
| #
 | |
| # The +Matrix+ class represents a mathematical matrix. It provides methods for creating
 | |
| # matrices, operating on them arithmetically and algebraically,
 | |
| # and determining their mathematical properties (trace, rank, inverse, determinant).
 | |
| #
 | |
| # == Method Catalogue
 | |
| #
 | |
| # To create a matrix:
 | |
| # * Matrix[*rows]
 | |
| # * Matrix.[](*rows)
 | |
| # * Matrix.rows(rows, copy = true)
 | |
| # * Matrix.columns(columns)
 | |
| # * Matrix.build(row_count, column_count, &block)
 | |
| # * Matrix.diagonal(*values)
 | |
| # * Matrix.scalar(n, value)
 | |
| # * Matrix.identity(n)
 | |
| # * Matrix.unit(n)
 | |
| # * Matrix.I(n)
 | |
| # * Matrix.zero(n)
 | |
| # * Matrix.row_vector(row)
 | |
| # * Matrix.column_vector(column)
 | |
| # * Matrix.empty(row_count, column_count)
 | |
| # * Matrix.hstack(*matrices)
 | |
| # * Matrix.vstack(*matrices)
 | |
| #
 | |
| # To access Matrix elements/columns/rows/submatrices/properties:
 | |
| # * #[](i, j)
 | |
| # * #row_count (row_size)
 | |
| # * #column_count (column_size)
 | |
| # * #row(i)
 | |
| # * #column(j)
 | |
| # * #collect
 | |
| # * #map
 | |
| # * #each
 | |
| # * #each_with_index
 | |
| # * #find_index
 | |
| # * #minor(*param)
 | |
| # * #first_minor(row, column)
 | |
| # * #cofactor(row, column)
 | |
| # * #adjugate
 | |
| # * #laplace_expansion(row_or_column: num)
 | |
| # * #cofactor_expansion(row_or_column: num)
 | |
| #
 | |
| # Properties of a matrix:
 | |
| # * #diagonal?
 | |
| # * #empty?
 | |
| # * #hermitian?
 | |
| # * #lower_triangular?
 | |
| # * #normal?
 | |
| # * #orthogonal?
 | |
| # * #permutation?
 | |
| # * #real?
 | |
| # * #regular?
 | |
| # * #singular?
 | |
| # * #square?
 | |
| # * #symmetric?
 | |
| # * #unitary?
 | |
| # * #upper_triangular?
 | |
| # * #zero?
 | |
| #
 | |
| # Matrix arithmetic:
 | |
| # * #*(m)
 | |
| # * #+(m)
 | |
| # * #-(m)
 | |
| # * #/(m)
 | |
| # * #inverse
 | |
| # * #inv
 | |
| # * #**
 | |
| # * #+@
 | |
| # * #-@
 | |
| #
 | |
| # Matrix functions:
 | |
| # * #determinant
 | |
| # * #det
 | |
| # * #hstack(*matrices)
 | |
| # * #rank
 | |
| # * #round
 | |
| # * #trace
 | |
| # * #tr
 | |
| # * #transpose
 | |
| # * #t
 | |
| # * #vstack(*matrices)
 | |
| #
 | |
| # Matrix decompositions:
 | |
| # * #eigen
 | |
| # * #eigensystem
 | |
| # * #lup
 | |
| # * #lup_decomposition
 | |
| #
 | |
| # Complex arithmetic:
 | |
| # * conj
 | |
| # * conjugate
 | |
| # * imag
 | |
| # * imaginary
 | |
| # * real
 | |
| # * rect
 | |
| # * rectangular
 | |
| #
 | |
| # Conversion to other data types:
 | |
| # * #coerce(other)
 | |
| # * #row_vectors
 | |
| # * #column_vectors
 | |
| # * #to_a
 | |
| #
 | |
| # String representations:
 | |
| # * #to_s
 | |
| # * #inspect
 | |
| #
 | |
| class Matrix
 | |
|   include Enumerable
 | |
|   include ExceptionForMatrix
 | |
|   autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
 | |
|   autoload :LUPDecomposition, "matrix/lup_decomposition"
 | |
| 
 | |
|   # instance creations
 | |
|   private_class_method :new
 | |
|   attr_reader :rows
 | |
|   protected :rows
 | |
| 
 | |
|   #
 | |
|   # Creates a matrix where each argument is a row.
 | |
|   #   Matrix[ [25, 93], [-1, 66] ]
 | |
|   #      =>  25 93
 | |
|   #          -1 66
 | |
|   #
 | |
|   def Matrix.[](*rows)
 | |
|     rows(rows, false)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a matrix where +rows+ is an array of arrays, each of which is a row
 | |
|   # of the matrix.  If the optional argument +copy+ is false, use the given
 | |
|   # arrays as the internal structure of the matrix without copying.
 | |
|   #   Matrix.rows([[25, 93], [-1, 66]])
 | |
|   #      =>  25 93
 | |
|   #          -1 66
 | |
|   #
 | |
|   def Matrix.rows(rows, copy = true)
 | |
|     rows = convert_to_array(rows, copy)
 | |
|     rows.map! do |row|
 | |
|       convert_to_array(row, copy)
 | |
|     end
 | |
|     size = (rows[0] || []).size
 | |
|     rows.each do |row|
 | |
|       raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
 | |
|     end
 | |
|     new rows, size
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a matrix using +columns+ as an array of column vectors.
 | |
|   #   Matrix.columns([[25, 93], [-1, 66]])
 | |
|   #      =>  25 -1
 | |
|   #          93 66
 | |
|   #
 | |
|   def Matrix.columns(columns)
 | |
|     rows(columns, false).transpose
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a matrix of size +row_count+ x +column_count+.
 | |
|   # It fills the values by calling the given block,
 | |
|   # passing the current row and column.
 | |
|   # Returns an enumerator if no block is given.
 | |
|   #
 | |
|   #   m = Matrix.build(2, 4) {|row, col| col - row }
 | |
|   #     => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
 | |
|   #   m = Matrix.build(3) { rand }
 | |
|   #     => a 3x3 matrix with random elements
 | |
|   #
 | |
|   def Matrix.build(row_count, column_count = row_count)
 | |
|     row_count = CoercionHelper.coerce_to_int(row_count)
 | |
|     column_count = CoercionHelper.coerce_to_int(column_count)
 | |
|     raise ArgumentError if row_count < 0 || column_count < 0
 | |
|     return to_enum :build, row_count, column_count unless block_given?
 | |
|     rows = Array.new(row_count) do |i|
 | |
|       Array.new(column_count) do |j|
 | |
|         yield i, j
 | |
|       end
 | |
|     end
 | |
|     new rows, column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a matrix where the diagonal elements are composed of +values+.
 | |
|   #   Matrix.diagonal(9, 5, -3)
 | |
|   #     =>  9  0  0
 | |
|   #         0  5  0
 | |
|   #         0  0 -3
 | |
|   #
 | |
|   def Matrix.diagonal(*values)
 | |
|     size = values.size
 | |
|     return Matrix.empty if size == 0
 | |
|     rows = Array.new(size) {|j|
 | |
|       row = Array.new(size, 0)
 | |
|       row[j] = values[j]
 | |
|       row
 | |
|     }
 | |
|     new rows
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
 | |
|   # +value+.
 | |
|   #   Matrix.scalar(2, 5)
 | |
|   #     => 5 0
 | |
|   #        0 5
 | |
|   #
 | |
|   def Matrix.scalar(n, value)
 | |
|     diagonal(*Array.new(n, value))
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates an +n+ by +n+ identity matrix.
 | |
|   #   Matrix.identity(2)
 | |
|   #     => 1 0
 | |
|   #        0 1
 | |
|   #
 | |
|   def Matrix.identity(n)
 | |
|     scalar(n, 1)
 | |
|   end
 | |
|   class << Matrix
 | |
|     alias unit identity
 | |
|     alias I identity
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a zero matrix.
 | |
|   #   Matrix.zero(2)
 | |
|   #     => 0 0
 | |
|   #        0 0
 | |
|   #
 | |
|   def Matrix.zero(row_count, column_count = row_count)
 | |
|     rows = Array.new(row_count){Array.new(column_count, 0)}
 | |
|     new rows, column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a single-row matrix where the values of that row are as given in
 | |
|   # +row+.
 | |
|   #   Matrix.row_vector([4,5,6])
 | |
|   #     => 4 5 6
 | |
|   #
 | |
|   def Matrix.row_vector(row)
 | |
|     row = convert_to_array(row)
 | |
|     new [row]
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a single-column matrix where the values of that column are as given
 | |
|   # in +column+.
 | |
|   #   Matrix.column_vector([4,5,6])
 | |
|   #     => 4
 | |
|   #        5
 | |
|   #        6
 | |
|   #
 | |
|   def Matrix.column_vector(column)
 | |
|     column = convert_to_array(column)
 | |
|     new [column].transpose, 1
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a empty matrix of +row_count+ x +column_count+.
 | |
|   # At least one of +row_count+ or +column_count+ must be 0.
 | |
|   #
 | |
|   #   m = Matrix.empty(2, 0)
 | |
|   #   m == Matrix[ [], [] ]
 | |
|   #     => true
 | |
|   #   n = Matrix.empty(0, 3)
 | |
|   #   n == Matrix.columns([ [], [], [] ])
 | |
|   #     => true
 | |
|   #   m * n
 | |
|   #     => Matrix[[0, 0, 0], [0, 0, 0]]
 | |
|   #
 | |
|   def Matrix.empty(row_count = 0, column_count = 0)
 | |
|     raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
 | |
|     raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
 | |
| 
 | |
|     new([[]]*row_count, column_count)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Create a matrix by stacking matrices vertically
 | |
|   #
 | |
|   #   x = Matrix[[1, 2], [3, 4]]
 | |
|   #   y = Matrix[[5, 6], [7, 8]]
 | |
|   #   Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
 | |
|   #
 | |
|   def Matrix.vstack(x, *matrices)
 | |
|     raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
 | |
|     result = x.send(:rows).map(&:dup)
 | |
|     matrices.each do |m|
 | |
|       raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
 | |
|       if m.column_count != x.column_count
 | |
|         raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
 | |
|       end
 | |
|       result.concat(m.send(:rows))
 | |
|     end
 | |
|     new result, x.column_count
 | |
|   end
 | |
| 
 | |
| 
 | |
|   #
 | |
|   # Create a matrix by stacking matrices horizontally
 | |
|   #
 | |
|   #   x = Matrix[[1, 2], [3, 4]]
 | |
|   #   y = Matrix[[5, 6], [7, 8]]
 | |
|   #   Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
 | |
|   #
 | |
|   def Matrix.hstack(x, *matrices)
 | |
|     raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
 | |
|     result = x.send(:rows).map(&:dup)
 | |
|     total_column_count = x.column_count
 | |
|     matrices.each do |m|
 | |
|       raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
 | |
|       if m.row_count != x.row_count
 | |
|         raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
 | |
|       end
 | |
|       result.each_with_index do |row, i|
 | |
|         row.concat m.send(:rows)[i]
 | |
|       end
 | |
|       total_column_count += m.column_count
 | |
|     end
 | |
|     new result, total_column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
 | |
|   #
 | |
|   def initialize(rows, column_count = rows[0].size)
 | |
|     # No checking is done at this point. rows must be an Array of Arrays.
 | |
|     # column_count must be the size of the first row, if there is one,
 | |
|     # otherwise it *must* be specified and can be any integer >= 0
 | |
|     @rows = rows
 | |
|     @column_count = column_count
 | |
|   end
 | |
| 
 | |
|   def new_matrix(rows, column_count = rows[0].size) # :nodoc:
 | |
|     self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
 | |
|   end
 | |
|   private :new_matrix
 | |
| 
 | |
|   #
 | |
|   # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
 | |
|   #
 | |
|   def [](i, j)
 | |
|     @rows.fetch(i){return nil}[j]
 | |
|   end
 | |
|   alias element []
 | |
|   alias component []
 | |
| 
 | |
|   def []=(i, j, v)
 | |
|     @rows[i][j] = v
 | |
|   end
 | |
|   alias set_element []=
 | |
|   alias set_component []=
 | |
|   private :[]=, :set_element, :set_component
 | |
| 
 | |
|   #
 | |
|   # Returns the number of rows.
 | |
|   #
 | |
|   def row_count
 | |
|     @rows.size
 | |
|   end
 | |
| 
 | |
|   alias_method :row_size, :row_count
 | |
|   #
 | |
|   # Returns the number of columns.
 | |
|   #
 | |
|   attr_reader :column_count
 | |
|   alias_method :column_size, :column_count
 | |
| 
 | |
|   #
 | |
|   # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
 | |
|   # an array).  When a block is given, the elements of that vector are iterated.
 | |
|   #
 | |
|   def row(i, &block) # :yield: e
 | |
|     if block_given?
 | |
|       @rows.fetch(i){return self}.each(&block)
 | |
|       self
 | |
|     else
 | |
|       Vector.elements(@rows.fetch(i){return nil})
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns column vector number +j+ of the matrix as a Vector (starting at 0
 | |
|   # like an array).  When a block is given, the elements of that vector are
 | |
|   # iterated.
 | |
|   #
 | |
|   def column(j) # :yield: e
 | |
|     if block_given?
 | |
|       return self if j >= column_count || j < -column_count
 | |
|       row_count.times do |i|
 | |
|         yield @rows[i][j]
 | |
|       end
 | |
|       self
 | |
|     else
 | |
|       return nil if j >= column_count || j < -column_count
 | |
|       col = Array.new(row_count) {|i|
 | |
|         @rows[i][j]
 | |
|       }
 | |
|       Vector.elements(col, false)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a matrix that is the result of iteration of the given block over all
 | |
|   # elements of the matrix.
 | |
|   #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
 | |
|   #     => 1  4
 | |
|   #        9 16
 | |
|   #
 | |
|   def collect(&block) # :yield: e
 | |
|     return to_enum(:collect) unless block_given?
 | |
|     rows = @rows.collect{|row| row.collect(&block)}
 | |
|     new_matrix rows, column_count
 | |
|   end
 | |
|   alias map collect
 | |
| 
 | |
|   #
 | |
|   # Yields all elements of the matrix, starting with those of the first row,
 | |
|   # or returns an Enumerator if no block given.
 | |
|   # Elements can be restricted by passing an argument:
 | |
|   # * :all (default): yields all elements
 | |
|   # * :diagonal: yields only elements on the diagonal
 | |
|   # * :off_diagonal: yields all elements except on the diagonal
 | |
|   # * :lower: yields only elements on or below the diagonal
 | |
|   # * :strict_lower: yields only elements below the diagonal
 | |
|   # * :strict_upper: yields only elements above the diagonal
 | |
|   # * :upper: yields only elements on or above the diagonal
 | |
|   #
 | |
|   #   Matrix[ [1,2], [3,4] ].each { |e| puts e }
 | |
|   #     # => prints the numbers 1 to 4
 | |
|   #   Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
 | |
|   #
 | |
|   def each(which = :all) # :yield: e
 | |
|     return to_enum :each, which unless block_given?
 | |
|     last = column_count - 1
 | |
|     case which
 | |
|     when :all
 | |
|       block = Proc.new
 | |
|       @rows.each do |row|
 | |
|         row.each(&block)
 | |
|       end
 | |
|     when :diagonal
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         yield row.fetch(row_index){return self}
 | |
|       end
 | |
|     when :off_diagonal
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         column_count.times do |col_index|
 | |
|           yield row[col_index] unless row_index == col_index
 | |
|         end
 | |
|       end
 | |
|     when :lower
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         0.upto([row_index, last].min) do |col_index|
 | |
|           yield row[col_index]
 | |
|         end
 | |
|       end
 | |
|     when :strict_lower
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         [row_index, column_count].min.times do |col_index|
 | |
|           yield row[col_index]
 | |
|         end
 | |
|       end
 | |
|     when :strict_upper
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         (row_index+1).upto(last) do |col_index|
 | |
|           yield row[col_index]
 | |
|         end
 | |
|       end
 | |
|     when :upper
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         row_index.upto(last) do |col_index|
 | |
|           yield row[col_index]
 | |
|         end
 | |
|       end
 | |
|     else
 | |
|       raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
 | |
|     end
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Same as #each, but the row index and column index in addition to the element
 | |
|   #
 | |
|   #   Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
 | |
|   #     puts "#{e} at #{row}, #{col}"
 | |
|   #   end
 | |
|   #     # => Prints:
 | |
|   #     #    1 at 0, 0
 | |
|   #     #    2 at 0, 1
 | |
|   #     #    3 at 1, 0
 | |
|   #     #    4 at 1, 1
 | |
|   #
 | |
|   def each_with_index(which = :all) # :yield: e, row, column
 | |
|     return to_enum :each_with_index, which unless block_given?
 | |
|     last = column_count - 1
 | |
|     case which
 | |
|     when :all
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         row.each_with_index do |e, col_index|
 | |
|           yield e, row_index, col_index
 | |
|         end
 | |
|       end
 | |
|     when :diagonal
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         yield row.fetch(row_index){return self}, row_index, row_index
 | |
|       end
 | |
|     when :off_diagonal
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         column_count.times do |col_index|
 | |
|           yield row[col_index], row_index, col_index unless row_index == col_index
 | |
|         end
 | |
|       end
 | |
|     when :lower
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         0.upto([row_index, last].min) do |col_index|
 | |
|           yield row[col_index], row_index, col_index
 | |
|         end
 | |
|       end
 | |
|     when :strict_lower
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         [row_index, column_count].min.times do |col_index|
 | |
|           yield row[col_index], row_index, col_index
 | |
|         end
 | |
|       end
 | |
|     when :strict_upper
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         (row_index+1).upto(last) do |col_index|
 | |
|           yield row[col_index], row_index, col_index
 | |
|         end
 | |
|       end
 | |
|     when :upper
 | |
|       @rows.each_with_index do |row, row_index|
 | |
|         row_index.upto(last) do |col_index|
 | |
|           yield row[col_index], row_index, col_index
 | |
|         end
 | |
|       end
 | |
|     else
 | |
|       raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
 | |
|     end
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
 | |
|   #
 | |
|   # :call-seq:
 | |
|   #   index(value, selector = :all) -> [row, column]
 | |
|   #   index(selector = :all){ block } -> [row, column]
 | |
|   #   index(selector = :all) -> an_enumerator
 | |
|   #
 | |
|   # The index method is specialized to return the index as [row, column]
 | |
|   # It also accepts an optional +selector+ argument, see #each for details.
 | |
|   #
 | |
|   #   Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
 | |
|   #   Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
 | |
|   #
 | |
|   def index(*args)
 | |
|     raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
 | |
|     which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
 | |
|     return to_enum :find_index, which, *args unless block_given? || args.size == 1
 | |
|     if args.size == 1
 | |
|       value = args.first
 | |
|       each_with_index(which) do |e, row_index, col_index|
 | |
|         return row_index, col_index if e == value
 | |
|       end
 | |
|     else
 | |
|       each_with_index(which) do |e, row_index, col_index|
 | |
|         return row_index, col_index if yield e
 | |
|       end
 | |
|     end
 | |
|     nil
 | |
|   end
 | |
|   alias_method :find_index, :index
 | |
| 
 | |
|   #
 | |
|   # Returns a section of the matrix.  The parameters are either:
 | |
|   # *  start_row, nrows, start_col, ncols; OR
 | |
|   # *  row_range, col_range
 | |
|   #
 | |
|   #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
 | |
|   #     => 9 0 0
 | |
|   #        0 5 0
 | |
|   #
 | |
|   # Like Array#[], negative indices count backward from the end of the
 | |
|   # row or column (-1 is the last element). Returns nil if the starting
 | |
|   # row or column is greater than row_count or column_count respectively.
 | |
|   #
 | |
|   def minor(*param)
 | |
|     case param.size
 | |
|     when 2
 | |
|       row_range, col_range = param
 | |
|       from_row = row_range.first
 | |
|       from_row += row_count if from_row < 0
 | |
|       to_row = row_range.end
 | |
|       to_row += row_count if to_row < 0
 | |
|       to_row += 1 unless row_range.exclude_end?
 | |
|       size_row = to_row - from_row
 | |
| 
 | |
|       from_col = col_range.first
 | |
|       from_col += column_count if from_col < 0
 | |
|       to_col = col_range.end
 | |
|       to_col += column_count if to_col < 0
 | |
|       to_col += 1 unless col_range.exclude_end?
 | |
|       size_col = to_col - from_col
 | |
|     when 4
 | |
|       from_row, size_row, from_col, size_col = param
 | |
|       return nil if size_row < 0 || size_col < 0
 | |
|       from_row += row_count if from_row < 0
 | |
|       from_col += column_count if from_col < 0
 | |
|     else
 | |
|       raise ArgumentError, param.inspect
 | |
|     end
 | |
| 
 | |
|     return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
 | |
|     rows = @rows[from_row, size_row].collect{|row|
 | |
|       row[from_col, size_col]
 | |
|     }
 | |
|     new_matrix rows, [column_count - from_col, size_col].min
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the submatrix obtained by deleting the specified row and column.
 | |
|   #
 | |
|   #   Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
 | |
|   #     => 9 0 0
 | |
|   #        0 0 0
 | |
|   #        0 0 4
 | |
|   #
 | |
|   def first_minor(row, column)
 | |
|     raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
 | |
| 
 | |
|     unless 0 <= row && row < row_count
 | |
|       raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
 | |
|     end
 | |
| 
 | |
|     unless 0 <= column && column < column_count
 | |
|       raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
 | |
|     end
 | |
| 
 | |
|     arrays = to_a
 | |
|     arrays.delete_at(row)
 | |
|     arrays.each do |array|
 | |
|       array.delete_at(column)
 | |
|     end
 | |
| 
 | |
|     new_matrix arrays, column_count - 1
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the (row, column) cofactor which is obtained by multiplying
 | |
|   # the first minor by (-1)**(row + column).
 | |
|   #
 | |
|   #   Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
 | |
|   #     => -108
 | |
|   #
 | |
|   def cofactor(row, column)
 | |
|     raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
| 
 | |
|     det_of_minor = first_minor(row, column).determinant
 | |
|     det_of_minor * (-1) ** (row + column)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the adjugate of the matrix.
 | |
|   #
 | |
|   #   Matrix[ [7,6],[3,9] ].adjugate
 | |
|   #     => 9 -6
 | |
|   #        -3 7
 | |
|   #
 | |
|   def adjugate
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     Matrix.build(row_count, column_count) do |row, column|
 | |
|       cofactor(column, row)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the Laplace expansion along given row or column.
 | |
|   #
 | |
|   #    Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
 | |
|   #     => 45
 | |
|   #
 | |
|   #    Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
 | |
|   #     => Vector[3, -2]
 | |
|   #
 | |
|   #
 | |
|   def laplace_expansion(row: nil, column: nil)
 | |
|     num = row || column
 | |
| 
 | |
|     if !num || (row && column)
 | |
|       raise ArgumentError, "exactly one the row or column arguments must be specified"
 | |
|     end
 | |
| 
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
 | |
| 
 | |
|     unless 0 <= num && num < row_count
 | |
|       raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
 | |
|     end
 | |
| 
 | |
|     send(row ? :row : :column, num).map.with_index { |e, k|
 | |
|       e * cofactor(*(row ? [num, k] : [k,num]))
 | |
|     }.inject(:+)
 | |
|   end
 | |
|   alias_method :cofactor_expansion, :laplace_expansion
 | |
| 
 | |
| 
 | |
|   #--
 | |
|   # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a diagonal matrix.
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def diagonal?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     each(:off_diagonal).all?(&:zero?)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is an empty matrix, i.e. if the number of rows
 | |
|   # or the number of columns is 0.
 | |
|   #
 | |
|   def empty?
 | |
|     column_count == 0 || row_count == 0
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is an hermitian matrix.
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def hermitian?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     each_with_index(:upper).all? do |e, row, col|
 | |
|       e == rows[col][row].conj
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a lower triangular matrix.
 | |
|   #
 | |
|   def lower_triangular?
 | |
|     each(:strict_upper).all?(&:zero?)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a normal matrix.
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def normal?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     rows.each_with_index do |row_i, i|
 | |
|       rows.each_with_index do |row_j, j|
 | |
|         s = 0
 | |
|         rows.each_with_index do |row_k, k|
 | |
|           s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
 | |
|         end
 | |
|         return false unless s == 0
 | |
|       end
 | |
|     end
 | |
|     true
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is an orthogonal matrix
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def orthogonal?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     rows.each_with_index do |row, i|
 | |
|       column_count.times do |j|
 | |
|         s = 0
 | |
|         row_count.times do |k|
 | |
|           s += row[k] * rows[k][j]
 | |
|         end
 | |
|         return false unless s == (i == j ? 1 : 0)
 | |
|       end
 | |
|     end
 | |
|     true
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a permutation matrix
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def permutation?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     cols = Array.new(column_count)
 | |
|     rows.each_with_index do |row, i|
 | |
|       found = false
 | |
|       row.each_with_index do |e, j|
 | |
|         if e == 1
 | |
|           return false if found || cols[j]
 | |
|           found = cols[j] = true
 | |
|         elsif e != 0
 | |
|           return false
 | |
|         end
 | |
|       end
 | |
|       return false unless found
 | |
|     end
 | |
|     true
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if all entries of the matrix are real.
 | |
|   #
 | |
|   def real?
 | |
|     all?(&:real?)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a regular (i.e. non-singular) matrix.
 | |
|   #
 | |
|   def regular?
 | |
|     not singular?
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a singular matrix.
 | |
|   #
 | |
|   def singular?
 | |
|     determinant == 0
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a square matrix.
 | |
|   #
 | |
|   def square?
 | |
|     column_count == row_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a symmetric matrix.
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def symmetric?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     each_with_index(:strict_upper) do |e, row, col|
 | |
|       return false if e != rows[col][row]
 | |
|     end
 | |
|     true
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a unitary matrix
 | |
|   # Raises an error if matrix is not square.
 | |
|   #
 | |
|   def unitary?
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     rows.each_with_index do |row, i|
 | |
|       column_count.times do |j|
 | |
|         s = 0
 | |
|         row_count.times do |k|
 | |
|           s += row[k].conj * rows[k][j]
 | |
|         end
 | |
|         return false unless s == (i == j ? 1 : 0)
 | |
|       end
 | |
|     end
 | |
|     true
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is an upper triangular matrix.
 | |
|   #
 | |
|   def upper_triangular?
 | |
|     each(:strict_lower).all?(&:zero?)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a matrix with only zero elements
 | |
|   #
 | |
|   def zero?
 | |
|     all?(&:zero?)
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if and only if the two matrices contain equal elements.
 | |
|   #
 | |
|   def ==(other)
 | |
|     return false unless Matrix === other &&
 | |
|                         column_count == other.column_count # necessary for empty matrices
 | |
|     rows == other.rows
 | |
|   end
 | |
| 
 | |
|   def eql?(other)
 | |
|     return false unless Matrix === other &&
 | |
|                         column_count == other.column_count # necessary for empty matrices
 | |
|     rows.eql? other.rows
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a clone of the matrix, so that the contents of each do not reference
 | |
|   # identical objects.
 | |
|   # There should be no good reason to do this since Matrices are immutable.
 | |
|   #
 | |
|   def clone
 | |
|     new_matrix @rows.map(&:dup), column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a hash-code for the matrix.
 | |
|   #
 | |
|   def hash
 | |
|     @rows.hash
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Matrix multiplication.
 | |
|   #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
 | |
|   #     => 2 4
 | |
|   #        6 8
 | |
|   #
 | |
|   def *(m) # m is matrix or vector or number
 | |
|     case(m)
 | |
|     when Numeric
 | |
|       rows = @rows.collect {|row|
 | |
|         row.collect {|e| e * m }
 | |
|       }
 | |
|       return new_matrix rows, column_count
 | |
|     when Vector
 | |
|       m = self.class.column_vector(m)
 | |
|       r = self * m
 | |
|       return r.column(0)
 | |
|     when Matrix
 | |
|       Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
 | |
| 
 | |
|       rows = Array.new(row_count) {|i|
 | |
|         Array.new(m.column_count) {|j|
 | |
|           (0 ... column_count).inject(0) do |vij, k|
 | |
|             vij + self[i, k] * m[k, j]
 | |
|           end
 | |
|         }
 | |
|       }
 | |
|       return new_matrix rows, m.column_count
 | |
|     else
 | |
|       return apply_through_coercion(m, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Matrix addition.
 | |
|   #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
 | |
|   #     =>  6  0
 | |
|   #        -4 12
 | |
|   #
 | |
|   def +(m)
 | |
|     case m
 | |
|     when Numeric
 | |
|       Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
 | |
|     when Vector
 | |
|       m = self.class.column_vector(m)
 | |
|     when Matrix
 | |
|     else
 | |
|       return apply_through_coercion(m, __method__)
 | |
|     end
 | |
| 
 | |
|     Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
 | |
| 
 | |
|     rows = Array.new(row_count) {|i|
 | |
|       Array.new(column_count) {|j|
 | |
|         self[i, j] + m[i, j]
 | |
|       }
 | |
|     }
 | |
|     new_matrix rows, column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Matrix subtraction.
 | |
|   #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
 | |
|   #     => -8  2
 | |
|   #         8  1
 | |
|   #
 | |
|   def -(m)
 | |
|     case m
 | |
|     when Numeric
 | |
|       Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
 | |
|     when Vector
 | |
|       m = self.class.column_vector(m)
 | |
|     when Matrix
 | |
|     else
 | |
|       return apply_through_coercion(m, __method__)
 | |
|     end
 | |
| 
 | |
|     Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
 | |
| 
 | |
|     rows = Array.new(row_count) {|i|
 | |
|       Array.new(column_count) {|j|
 | |
|         self[i, j] - m[i, j]
 | |
|       }
 | |
|     }
 | |
|     new_matrix rows, column_count
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Matrix division (multiplication by the inverse).
 | |
|   #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
 | |
|   #     => -7  1
 | |
|   #        -3 -6
 | |
|   #
 | |
|   def /(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       rows = @rows.collect {|row|
 | |
|         row.collect {|e| e / other }
 | |
|       }
 | |
|       return new_matrix rows, column_count
 | |
|     when Matrix
 | |
|       return self * other.inverse
 | |
|     else
 | |
|       return apply_through_coercion(other, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the inverse of the matrix.
 | |
|   #   Matrix[[-1, -1], [0, -1]].inverse
 | |
|   #     => -1  1
 | |
|   #         0 -1
 | |
|   #
 | |
|   def inverse
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     self.class.I(row_count).send(:inverse_from, self)
 | |
|   end
 | |
|   alias inv inverse
 | |
| 
 | |
|   def inverse_from(src) # :nodoc:
 | |
|     last = row_count - 1
 | |
|     a = src.to_a
 | |
| 
 | |
|     0.upto(last) do |k|
 | |
|       i = k
 | |
|       akk = a[k][k].abs
 | |
|       (k+1).upto(last) do |j|
 | |
|         v = a[j][k].abs
 | |
|         if v > akk
 | |
|           i = j
 | |
|           akk = v
 | |
|         end
 | |
|       end
 | |
|       Matrix.Raise ErrNotRegular if akk == 0
 | |
|       if i != k
 | |
|         a[i], a[k] = a[k], a[i]
 | |
|         @rows[i], @rows[k] = @rows[k], @rows[i]
 | |
|       end
 | |
|       akk = a[k][k]
 | |
| 
 | |
|       0.upto(last) do |ii|
 | |
|         next if ii == k
 | |
|         q = a[ii][k].quo(akk)
 | |
|         a[ii][k] = 0
 | |
| 
 | |
|         (k + 1).upto(last) do |j|
 | |
|           a[ii][j] -= a[k][j] * q
 | |
|         end
 | |
|         0.upto(last) do |j|
 | |
|           @rows[ii][j] -= @rows[k][j] * q
 | |
|         end
 | |
|       end
 | |
| 
 | |
|       (k+1).upto(last) do |j|
 | |
|         a[k][j] = a[k][j].quo(akk)
 | |
|       end
 | |
|       0.upto(last) do |j|
 | |
|         @rows[k][j] = @rows[k][j].quo(akk)
 | |
|       end
 | |
|     end
 | |
|     self
 | |
|   end
 | |
|   private :inverse_from
 | |
| 
 | |
|   #
 | |
|   # Matrix exponentiation.
 | |
|   # Equivalent to multiplying the matrix by itself N times.
 | |
|   # Non integer exponents will be handled by diagonalizing the matrix.
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]] ** 2
 | |
|   #     => 67 96
 | |
|   #        48 99
 | |
|   #
 | |
|   def ** (other)
 | |
|     case other
 | |
|     when Integer
 | |
|       x = self
 | |
|       if other <= 0
 | |
|         x = self.inverse
 | |
|         return self.class.identity(self.column_count) if other == 0
 | |
|         other = -other
 | |
|       end
 | |
|       z = nil
 | |
|       loop do
 | |
|         z = z ? z * x : x if other[0] == 1
 | |
|         return z if (other >>= 1).zero?
 | |
|         x *= x
 | |
|       end
 | |
|     when Numeric
 | |
|       v, d, v_inv = eigensystem
 | |
|       v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
 | |
|     else
 | |
|       Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   def +@
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   def -@
 | |
|     collect {|e| -e }
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns the determinant of the matrix.
 | |
|   #
 | |
|   # Beware that using Float values can yield erroneous results
 | |
|   # because of their lack of precision.
 | |
|   # Consider using exact types like Rational or BigDecimal instead.
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].determinant
 | |
|   #     => 45
 | |
|   #
 | |
|   def determinant
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     m = @rows
 | |
|     case row_count
 | |
|       # Up to 4x4, give result using Laplacian expansion by minors.
 | |
|       # This will typically be faster, as well as giving good results
 | |
|       # in case of Floats
 | |
|     when 0
 | |
|       +1
 | |
|     when 1
 | |
|       + m[0][0]
 | |
|     when 2
 | |
|       + m[0][0] * m[1][1] - m[0][1] * m[1][0]
 | |
|     when 3
 | |
|       m0, m1, m2 = m
 | |
|       + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
 | |
|       - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
 | |
|       + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
 | |
|     when 4
 | |
|       m0, m1, m2, m3 = m
 | |
|       + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
 | |
|       - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
 | |
|       + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
 | |
|       - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
 | |
|       + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
 | |
|       - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
 | |
|       + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
 | |
|       - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
 | |
|       + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
 | |
|       - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
 | |
|       + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
 | |
|       - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
 | |
|     else
 | |
|       # For bigger matrices, use an efficient and general algorithm.
 | |
|       # Currently, we use the Gauss-Bareiss algorithm
 | |
|       determinant_bareiss
 | |
|     end
 | |
|   end
 | |
|   alias_method :det, :determinant
 | |
| 
 | |
|   #
 | |
|   # Private. Use Matrix#determinant
 | |
|   #
 | |
|   # Returns the determinant of the matrix, using
 | |
|   # Bareiss' multistep integer-preserving gaussian elimination.
 | |
|   # It has the same computational cost order O(n^3) as standard Gaussian elimination.
 | |
|   # Intermediate results are fraction free and of lower complexity.
 | |
|   # A matrix of Integers will have thus intermediate results that are also Integers,
 | |
|   # with smaller bignums (if any), while a matrix of Float will usually have
 | |
|   # intermediate results with better precision.
 | |
|   #
 | |
|   def determinant_bareiss
 | |
|     size = row_count
 | |
|     last = size - 1
 | |
|     a = to_a
 | |
|     no_pivot = Proc.new{ return 0 }
 | |
|     sign = +1
 | |
|     pivot = 1
 | |
|     size.times do |k|
 | |
|       previous_pivot = pivot
 | |
|       if (pivot = a[k][k]) == 0
 | |
|         switch = (k+1 ... size).find(no_pivot) {|row|
 | |
|           a[row][k] != 0
 | |
|         }
 | |
|         a[switch], a[k] = a[k], a[switch]
 | |
|         pivot = a[k][k]
 | |
|         sign = -sign
 | |
|       end
 | |
|       (k+1).upto(last) do |i|
 | |
|         ai = a[i]
 | |
|         (k+1).upto(last) do |j|
 | |
|           ai[j] =  (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
 | |
|         end
 | |
|       end
 | |
|     end
 | |
|     sign * pivot
 | |
|   end
 | |
|   private :determinant_bareiss
 | |
| 
 | |
|   #
 | |
|   # deprecated; use Matrix#determinant
 | |
|   #
 | |
|   def determinant_e
 | |
|     warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
 | |
|     determinant
 | |
|   end
 | |
|   alias det_e determinant_e
 | |
| 
 | |
|   #
 | |
|   # Returns a new matrix resulting by stacking horizontally
 | |
|   # the receiver with the given matrices
 | |
|   #
 | |
|   #   x = Matrix[[1, 2], [3, 4]]
 | |
|   #   y = Matrix[[5, 6], [7, 8]]
 | |
|   #   x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
 | |
|   #
 | |
|   def hstack(*matrices)
 | |
|     self.class.hstack(self, *matrices)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the rank of the matrix.
 | |
|   # Beware that using Float values can yield erroneous results
 | |
|   # because of their lack of precision.
 | |
|   # Consider using exact types like Rational or BigDecimal instead.
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].rank
 | |
|   #     => 2
 | |
|   #
 | |
|   def rank
 | |
|     # We currently use Bareiss' multistep integer-preserving gaussian elimination
 | |
|     # (see comments on determinant)
 | |
|     a = to_a
 | |
|     last_column = column_count - 1
 | |
|     last_row = row_count - 1
 | |
|     pivot_row = 0
 | |
|     previous_pivot = 1
 | |
|     0.upto(last_column) do |k|
 | |
|       switch_row = (pivot_row .. last_row).find {|row|
 | |
|         a[row][k] != 0
 | |
|       }
 | |
|       if switch_row
 | |
|         a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
 | |
|         pivot = a[pivot_row][k]
 | |
|         (pivot_row+1).upto(last_row) do |i|
 | |
|            ai = a[i]
 | |
|            (k+1).upto(last_column) do |j|
 | |
|              ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
 | |
|            end
 | |
|          end
 | |
|         pivot_row += 1
 | |
|         previous_pivot = pivot
 | |
|       end
 | |
|     end
 | |
|     pivot_row
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # deprecated; use Matrix#rank
 | |
|   #
 | |
|   def rank_e
 | |
|     warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
 | |
|     rank
 | |
|   end
 | |
| 
 | |
|   # Returns a matrix with entries rounded to the given precision
 | |
|   # (see Float#round)
 | |
|   #
 | |
|   def round(ndigits=0)
 | |
|     map{|e| e.round(ndigits)}
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the trace (sum of diagonal elements) of the matrix.
 | |
|   #   Matrix[[7,6], [3,9]].trace
 | |
|   #     => 16
 | |
|   #
 | |
|   def trace
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     (0...column_count).inject(0) do |tr, i|
 | |
|       tr + @rows[i][i]
 | |
|     end
 | |
|   end
 | |
|   alias tr trace
 | |
| 
 | |
|   #
 | |
|   # Returns the transpose of the matrix.
 | |
|   #   Matrix[[1,2], [3,4], [5,6]]
 | |
|   #     => 1 2
 | |
|   #        3 4
 | |
|   #        5 6
 | |
|   #   Matrix[[1,2], [3,4], [5,6]].transpose
 | |
|   #     => 1 3 5
 | |
|   #        2 4 6
 | |
|   #
 | |
|   def transpose
 | |
|     return self.class.empty(column_count, 0) if row_count.zero?
 | |
|     new_matrix @rows.transpose, row_count
 | |
|   end
 | |
|   alias t transpose
 | |
| 
 | |
|   #
 | |
|   # Returns a new matrix resulting by stacking vertically
 | |
|   # the receiver with the given matrices
 | |
|   #
 | |
|   #   x = Matrix[[1, 2], [3, 4]]
 | |
|   #   y = Matrix[[5, 6], [7, 8]]
 | |
|   #   x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
 | |
|   #
 | |
|   def vstack(*matrices)
 | |
|     self.class.vstack(self, *matrices)
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
 | |
|   #   m = Matrix[[1, 2], [3, 4]]
 | |
|   #   v, d, v_inv = m.eigensystem
 | |
|   #   d.diagonal? # => true
 | |
|   #   v.inv == v_inv # => true
 | |
|   #   (v * d * v_inv).round(5) == m # => true
 | |
|   #
 | |
|   def eigensystem
 | |
|     EigenvalueDecomposition.new(self)
 | |
|   end
 | |
|   alias eigen eigensystem
 | |
| 
 | |
|   #
 | |
|   # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
 | |
|   #   a = Matrix[[1, 2], [3, 4]]
 | |
|   #   l, u, p = a.lup
 | |
|   #   l.lower_triangular? # => true
 | |
|   #   u.upper_triangular? # => true
 | |
|   #   p.permutation?      # => true
 | |
|   #   l * u == p * a      # => true
 | |
|   #   a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
 | |
|   #
 | |
|   def lup
 | |
|     LUPDecomposition.new(self)
 | |
|   end
 | |
|   alias lup_decomposition lup
 | |
| 
 | |
|   #--
 | |
|   # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns the conjugate of the matrix.
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | |
|   #     => 1+2i   i  0
 | |
|   #           1   2  3
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
 | |
|   #     => 1-2i  -i  0
 | |
|   #           1   2  3
 | |
|   #
 | |
|   def conjugate
 | |
|     collect(&:conjugate)
 | |
|   end
 | |
|   alias conj conjugate
 | |
| 
 | |
|   #
 | |
|   # Returns the imaginary part of the matrix.
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | |
|   #     => 1+2i  i  0
 | |
|   #           1  2  3
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
 | |
|   #     =>   2i  i  0
 | |
|   #           0  0  0
 | |
|   #
 | |
|   def imaginary
 | |
|     collect(&:imaginary)
 | |
|   end
 | |
|   alias imag imaginary
 | |
| 
 | |
|   #
 | |
|   # Returns the real part of the matrix.
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | |
|   #     => 1+2i  i  0
 | |
|   #           1  2  3
 | |
|   #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
 | |
|   #     =>    1  0  0
 | |
|   #           1  2  3
 | |
|   #
 | |
|   def real
 | |
|     collect(&:real)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an array containing matrices corresponding to the real and imaginary
 | |
|   # parts of the matrix
 | |
|   #
 | |
|   # m.rect == [m.real, m.imag]  # ==> true for all matrices m
 | |
|   #
 | |
|   def rect
 | |
|     [real, imag]
 | |
|   end
 | |
|   alias rectangular rect
 | |
| 
 | |
|   #--
 | |
|   # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # The coerce method provides support for Ruby type coercion.
 | |
|   # This coercion mechanism is used by Ruby to handle mixed-type
 | |
|   # numeric operations: it is intended to find a compatible common
 | |
|   # type between the two operands of the operator.
 | |
|   # See also Numeric#coerce.
 | |
|   #
 | |
|   def coerce(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       return Scalar.new(other), self
 | |
|     else
 | |
|       raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an array of the row vectors of the matrix.  See Vector.
 | |
|   #
 | |
|   def row_vectors
 | |
|     Array.new(row_count) {|i|
 | |
|       row(i)
 | |
|     }
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an array of the column vectors of the matrix.  See Vector.
 | |
|   #
 | |
|   def column_vectors
 | |
|     Array.new(column_count) {|i|
 | |
|       column(i)
 | |
|     }
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an array of arrays that describe the rows of the matrix.
 | |
|   #
 | |
|   def to_a
 | |
|     @rows.collect(&:dup)
 | |
|   end
 | |
| 
 | |
|   def elements_to_f
 | |
|     warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
 | |
|     map(&:to_f)
 | |
|   end
 | |
| 
 | |
|   def elements_to_i
 | |
|     warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
 | |
|     map(&:to_i)
 | |
|   end
 | |
| 
 | |
|   def elements_to_r
 | |
|     warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
 | |
|     map(&:to_r)
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Overrides Object#to_s
 | |
|   #
 | |
|   def to_s
 | |
|     if empty?
 | |
|       "#{self.class}.empty(#{row_count}, #{column_count})"
 | |
|     else
 | |
|       "#{self.class}[" + @rows.collect{|row|
 | |
|         "[" + row.collect{|e| e.to_s}.join(", ") + "]"
 | |
|       }.join(", ")+"]"
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Overrides Object#inspect
 | |
|   #
 | |
|   def inspect
 | |
|     if empty?
 | |
|       "#{self.class}.empty(#{row_count}, #{column_count})"
 | |
|     else
 | |
|       "#{self.class}#{@rows.inspect}"
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   # Private helper modules
 | |
| 
 | |
|   module ConversionHelper # :nodoc:
 | |
|     #
 | |
|     # Converts the obj to an Array. If copy is set to true
 | |
|     # a copy of obj will be made if necessary.
 | |
|     #
 | |
|     def convert_to_array(obj, copy = false) # :nodoc:
 | |
|       case obj
 | |
|       when Array
 | |
|         copy ? obj.dup : obj
 | |
|       when Vector
 | |
|         obj.to_a
 | |
|       else
 | |
|         begin
 | |
|           converted = obj.to_ary
 | |
|         rescue Exception => e
 | |
|           raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
 | |
|         end
 | |
|         raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
 | |
|         converted
 | |
|       end
 | |
|     end
 | |
|     private :convert_to_array
 | |
|   end
 | |
| 
 | |
|   extend ConversionHelper
 | |
| 
 | |
|   module CoercionHelper # :nodoc:
 | |
|     #
 | |
|     # Applies the operator +oper+ with argument +obj+
 | |
|     # through coercion of +obj+
 | |
|     #
 | |
|     def apply_through_coercion(obj, oper)
 | |
|       coercion = obj.coerce(self)
 | |
|       raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
 | |
|       coercion[0].public_send(oper, coercion[1])
 | |
|     rescue
 | |
|       raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
 | |
|     end
 | |
|     private :apply_through_coercion
 | |
| 
 | |
|     #
 | |
|     # Helper method to coerce a value into a specific class.
 | |
|     # Raises a TypeError if the coercion fails or the returned value
 | |
|     # is not of the right class.
 | |
|     # (from Rubinius)
 | |
|     #
 | |
|     def self.coerce_to(obj, cls, meth) # :nodoc:
 | |
|       return obj if obj.kind_of?(cls)
 | |
| 
 | |
|       begin
 | |
|         ret = obj.__send__(meth)
 | |
|       rescue Exception => e
 | |
|         raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
 | |
|                          "(#{e.message})"
 | |
|       end
 | |
|       raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
 | |
|       ret
 | |
|     end
 | |
| 
 | |
|     def self.coerce_to_int(obj)
 | |
|       coerce_to(obj, Integer, :to_int)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   include CoercionHelper
 | |
| 
 | |
|   # Private CLASS
 | |
| 
 | |
|   class Scalar < Numeric # :nodoc:
 | |
|     include ExceptionForMatrix
 | |
|     include CoercionHelper
 | |
| 
 | |
|     def initialize(value)
 | |
|       @value = value
 | |
|     end
 | |
| 
 | |
|     # ARITHMETIC
 | |
|     def +(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value + other)
 | |
|       when Vector, Matrix
 | |
|         Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
 | |
|       else
 | |
|         apply_through_coercion(other, __method__)
 | |
|       end
 | |
|     end
 | |
| 
 | |
|     def -(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value - other)
 | |
|       when Vector, Matrix
 | |
|         Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
 | |
|       else
 | |
|         apply_through_coercion(other, __method__)
 | |
|       end
 | |
|     end
 | |
| 
 | |
|     def *(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value * other)
 | |
|       when Vector, Matrix
 | |
|         other.collect{|e| @value * e}
 | |
|       else
 | |
|         apply_through_coercion(other, __method__)
 | |
|       end
 | |
|     end
 | |
| 
 | |
|     def / (other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value / other)
 | |
|       when Vector
 | |
|         Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
 | |
|       when Matrix
 | |
|         self * other.inverse
 | |
|       else
 | |
|         apply_through_coercion(other, __method__)
 | |
|       end
 | |
|     end
 | |
| 
 | |
|     def ** (other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value ** other)
 | |
|       when Vector
 | |
|         Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
 | |
|       when Matrix
 | |
|         #other.powered_by(self)
 | |
|         Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
 | |
|       else
 | |
|         apply_through_coercion(other, __method__)
 | |
|       end
 | |
|     end
 | |
|   end
 | |
| 
 | |
| end
 | |
| 
 | |
| 
 | |
| #
 | |
| # The +Vector+ class represents a mathematical vector, which is useful in its own right, and
 | |
| # also constitutes a row or column of a Matrix.
 | |
| #
 | |
| # == Method Catalogue
 | |
| #
 | |
| # To create a Vector:
 | |
| # * Vector.[](*array)
 | |
| # * Vector.elements(array, copy = true)
 | |
| # * Vector.basis(size: n, index: k)
 | |
| #
 | |
| # To access elements:
 | |
| # * #[](i)
 | |
| #
 | |
| # To enumerate the elements:
 | |
| # * #each2(v)
 | |
| # * #collect2(v)
 | |
| #
 | |
| # Properties of vectors:
 | |
| # * #angle_with(v)
 | |
| # * Vector.independent?(*vs)
 | |
| # * #independent?(*vs)
 | |
| #
 | |
| # Vector arithmetic:
 | |
| # * #*(x) "is matrix or number"
 | |
| # * #+(v)
 | |
| # * #-(v)
 | |
| # * #/(v)
 | |
| # * #+@
 | |
| # * #-@
 | |
| #
 | |
| # Vector functions:
 | |
| # * #inner_product(v), dot(v)
 | |
| # * #cross_product(v), cross(v)
 | |
| # * #collect
 | |
| # * #magnitude
 | |
| # * #map
 | |
| # * #map2(v)
 | |
| # * #norm
 | |
| # * #normalize
 | |
| # * #r
 | |
| # * #round
 | |
| # * #size
 | |
| #
 | |
| # Conversion to other data types:
 | |
| # * #covector
 | |
| # * #to_a
 | |
| # * #coerce(other)
 | |
| #
 | |
| # String representations:
 | |
| # * #to_s
 | |
| # * #inspect
 | |
| #
 | |
| class Vector
 | |
|   include ExceptionForMatrix
 | |
|   include Enumerable
 | |
|   include Matrix::CoercionHelper
 | |
|   extend Matrix::ConversionHelper
 | |
|   #INSTANCE CREATION
 | |
| 
 | |
|   private_class_method :new
 | |
|   attr_reader :elements
 | |
|   protected :elements
 | |
| 
 | |
|   #
 | |
|   # Creates a Vector from a list of elements.
 | |
|   #   Vector[7, 4, ...]
 | |
|   #
 | |
|   def Vector.[](*array)
 | |
|     new convert_to_array(array, false)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates a vector from an Array.  The optional second argument specifies
 | |
|   # whether the array itself or a copy is used internally.
 | |
|   #
 | |
|   def Vector.elements(array, copy = true)
 | |
|     new convert_to_array(array, copy)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a standard basis +n+-vector, where k is the index.
 | |
|   #
 | |
|   #    Vector.basis(size:, index:) # => Vector[0, 1, 0]
 | |
|   #
 | |
|   def Vector.basis(size:, index:)
 | |
|     raise ArgumentError, "invalid size (#{size} for 1..)" if size < 1
 | |
|     raise ArgumentError, "invalid index (#{index} for 0...#{size})" unless 0 <= index && index < size
 | |
|     array = Array.new(size, 0)
 | |
|     array[index] = 1
 | |
|     new convert_to_array(array, false)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector.new is private; use Vector[] or Vector.elements to create.
 | |
|   #
 | |
|   def initialize(array)
 | |
|     # No checking is done at this point.
 | |
|     @elements = array
 | |
|   end
 | |
| 
 | |
|   # ACCESSING
 | |
| 
 | |
|   #
 | |
|   # Returns element number +i+ (starting at zero) of the vector.
 | |
|   #
 | |
|   def [](i)
 | |
|     @elements[i]
 | |
|   end
 | |
|   alias element []
 | |
|   alias component []
 | |
| 
 | |
|   def []=(i, v)
 | |
|     @elements[i]= v
 | |
|   end
 | |
|   alias set_element []=
 | |
|   alias set_component []=
 | |
|   private :[]=, :set_element, :set_component
 | |
| 
 | |
|   # Returns a vector with entries rounded to the given precision
 | |
|   # (see Float#round)
 | |
|   #
 | |
|   def round(ndigits=0)
 | |
|     map{|e| e.round(ndigits)}
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the number of elements in the vector.
 | |
|   #
 | |
|   def size
 | |
|     @elements.size
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Iterate over the elements of this vector
 | |
|   #
 | |
|   def each(&block)
 | |
|     return to_enum(:each) unless block_given?
 | |
|     @elements.each(&block)
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Iterate over the elements of this vector and +v+ in conjunction.
 | |
|   #
 | |
|   def each2(v) # :yield: e1, e2
 | |
|     raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     return to_enum(:each2, v) unless block_given?
 | |
|     size.times do |i|
 | |
|       yield @elements[i], v[i]
 | |
|     end
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Collects (as in Enumerable#collect) over the elements of this vector and +v+
 | |
|   # in conjunction.
 | |
|   #
 | |
|   def collect2(v) # :yield: e1, e2
 | |
|     raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     return to_enum(:collect2, v) unless block_given?
 | |
|     Array.new(size) do |i|
 | |
|       yield @elements[i], v[i]
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # PROPERTIES -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ iff all of vectors are linearly independent.
 | |
|   #
 | |
|   #   Vector.independent?(Vector[1,0], Vector[0,1])
 | |
|   #     => true
 | |
|   #
 | |
|   #   Vector.independent?(Vector[1,2], Vector[2,4])
 | |
|   #     => false
 | |
|   #
 | |
|   def Vector.independent?(*vs)
 | |
|     vs.each do |v|
 | |
|       raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector)
 | |
|       Vector.Raise ErrDimensionMismatch unless v.size == vs.first.size
 | |
|     end
 | |
|     return false if vs.count > vs.first.size
 | |
|     Matrix[*vs].rank.eql?(vs.count)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ iff all of vectors are linearly independent.
 | |
|   #
 | |
|   #   Vector[1,0].independent?(Vector[0,1])
 | |
|   #     => true
 | |
|   #
 | |
|   #   Vector[1,2].independent?(Vector[2,4])
 | |
|   #     => false
 | |
|   #
 | |
|   def independent?(*vs)
 | |
|     self.class.independent?(self, *vs)
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ iff the two vectors have the same elements in the same order.
 | |
|   #
 | |
|   def ==(other)
 | |
|     return false unless Vector === other
 | |
|     @elements == other.elements
 | |
|   end
 | |
| 
 | |
|   def eql?(other)
 | |
|     return false unless Vector === other
 | |
|     @elements.eql? other.elements
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a copy of the vector.
 | |
|   #
 | |
|   def clone
 | |
|     self.class.elements(@elements)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns a hash-code for the vector.
 | |
|   #
 | |
|   def hash
 | |
|     @elements.hash
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Multiplies the vector by +x+, where +x+ is a number or a matrix.
 | |
|   #
 | |
|   def *(x)
 | |
|     case x
 | |
|     when Numeric
 | |
|       els = @elements.collect{|e| e * x}
 | |
|       self.class.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) * x
 | |
|     when Vector
 | |
|       Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
 | |
|     else
 | |
|       apply_through_coercion(x, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector addition.
 | |
|   #
 | |
|   def +(v)
 | |
|     case v
 | |
|     when Vector
 | |
|       Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|       els = collect2(v) {|v1, v2|
 | |
|         v1 + v2
 | |
|       }
 | |
|       self.class.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) + v
 | |
|     else
 | |
|       apply_through_coercion(v, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector subtraction.
 | |
|   #
 | |
|   def -(v)
 | |
|     case v
 | |
|     when Vector
 | |
|       Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|       els = collect2(v) {|v1, v2|
 | |
|         v1 - v2
 | |
|       }
 | |
|       self.class.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) - v
 | |
|     else
 | |
|       apply_through_coercion(v, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector division.
 | |
|   #
 | |
|   def /(x)
 | |
|     case x
 | |
|     when Numeric
 | |
|       els = @elements.collect{|e| e / x}
 | |
|       self.class.elements(els, false)
 | |
|     when Matrix, Vector
 | |
|       Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
 | |
|     else
 | |
|       apply_through_coercion(x, __method__)
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   def +@
 | |
|     self
 | |
|   end
 | |
| 
 | |
|   def -@
 | |
|     collect {|e| -e }
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns the inner product of this vector with the other.
 | |
|   #   Vector[4,7].inner_product Vector[10,1]  => 47
 | |
|   #
 | |
|   def inner_product(v)
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
| 
 | |
|     p = 0
 | |
|     each2(v) {|v1, v2|
 | |
|       p += v1 * v2.conj
 | |
|     }
 | |
|     p
 | |
|   end
 | |
|   alias_method :dot, :inner_product
 | |
| 
 | |
|   #
 | |
|   # Returns the cross product of this vector with the others.
 | |
|   #   Vector[1, 0, 0].cross_product Vector[0, 1, 0]   => Vector[0, 0, 1]
 | |
|   #
 | |
|   # It is generalized to other dimensions to return a vector perpendicular
 | |
|   # to the arguments.
 | |
|   #   Vector[1, 2].cross_product # => Vector[-2, 1]
 | |
|   #   Vector[1, 0, 0, 0].cross_product(
 | |
|   #      Vector[0, 1, 0, 0],
 | |
|   #      Vector[0, 0, 1, 0]
 | |
|   #   )  #=> Vector[0, 0, 0, 1]
 | |
|   #
 | |
|   def cross_product(*vs)
 | |
|     raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2
 | |
|     raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2
 | |
|     vs.each do |v|
 | |
|       raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector
 | |
|       Vector.Raise ErrDimensionMismatch unless v.size == size
 | |
|     end
 | |
|     case size
 | |
|     when 2
 | |
|       Vector[-@elements[1], @elements[0]]
 | |
|     when 3
 | |
|       v = vs[0]
 | |
|       Vector[ v[2]*@elements[1] - v[1]*@elements[2],
 | |
|         v[0]*@elements[2] - v[2]*@elements[0],
 | |
|         v[1]*@elements[0] - v[0]*@elements[1] ]
 | |
|     else
 | |
|       rows = self, *vs, Array.new(size) {|i| Vector.basis(size: size, index: i) }
 | |
|       Matrix.rows(rows).laplace_expansion(row: size - 1)
 | |
|     end
 | |
|   end
 | |
|   alias_method :cross, :cross_product
 | |
| 
 | |
|   #
 | |
|   # Like Array#collect.
 | |
|   #
 | |
|   def collect(&block) # :yield: e
 | |
|     return to_enum(:collect) unless block_given?
 | |
|     els = @elements.collect(&block)
 | |
|     self.class.elements(els, false)
 | |
|   end
 | |
|   alias map collect
 | |
| 
 | |
|   #
 | |
|   # Returns the modulus (Pythagorean distance) of the vector.
 | |
|   #   Vector[5,8,2].r => 9.643650761
 | |
|   #
 | |
|   def magnitude
 | |
|     Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
 | |
|   end
 | |
|   alias r magnitude
 | |
|   alias norm magnitude
 | |
| 
 | |
|   #
 | |
|   # Like Vector#collect2, but returns a Vector instead of an Array.
 | |
|   #
 | |
|   def map2(v, &block) # :yield: e1, e2
 | |
|     return to_enum(:map2, v) unless block_given?
 | |
|     els = collect2(v, &block)
 | |
|     self.class.elements(els, false)
 | |
|   end
 | |
| 
 | |
|   class ZeroVectorError < StandardError
 | |
|   end
 | |
|   #
 | |
|   # Returns a new vector with the same direction but with norm 1.
 | |
|   #   v = Vector[5,8,2].normalize
 | |
|   #   # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
 | |
|   #   v.norm => 1.0
 | |
|   #
 | |
|   def normalize
 | |
|     n = magnitude
 | |
|     raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
 | |
|     self / n
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an angle with another vector. Result is within the [0...Math::PI].
 | |
|   #   Vector[1,0].angle_with(Vector[0,1])
 | |
|   #   # => Math::PI / 2
 | |
|   #
 | |
|   def angle_with(v)
 | |
|     raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector)
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     prod = magnitude * v.magnitude
 | |
|     raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0
 | |
| 
 | |
|     Math.acos( inner_product(v) / prod )
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # CONVERTING
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Creates a single-row matrix from this vector.
 | |
|   #
 | |
|   def covector
 | |
|     Matrix.row_vector(self)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the elements of the vector in an array.
 | |
|   #
 | |
|   def to_a
 | |
|     @elements.dup
 | |
|   end
 | |
| 
 | |
|   def elements_to_f
 | |
|     warn "#{caller(1)[0]}: warning: Vector#elements_to_f is deprecated"
 | |
|     map(&:to_f)
 | |
|   end
 | |
| 
 | |
|   def elements_to_i
 | |
|     warn "#{caller(1)[0]}: warning: Vector#elements_to_i is deprecated"
 | |
|     map(&:to_i)
 | |
|   end
 | |
| 
 | |
|   def elements_to_r
 | |
|     warn "#{caller(1)[0]}: warning: Vector#elements_to_r is deprecated"
 | |
|     map(&:to_r)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # The coerce method provides support for Ruby type coercion.
 | |
|   # This coercion mechanism is used by Ruby to handle mixed-type
 | |
|   # numeric operations: it is intended to find a compatible common
 | |
|   # type between the two operands of the operator.
 | |
|   # See also Numeric#coerce.
 | |
|   #
 | |
|   def coerce(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       return Matrix::Scalar.new(other), self
 | |
|     else
 | |
|       raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Overrides Object#to_s
 | |
|   #
 | |
|   def to_s
 | |
|     "Vector[" + @elements.join(", ") + "]"
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Overrides Object#inspect
 | |
|   #
 | |
|   def inspect
 | |
|     "Vector" + @elements.inspect
 | |
|   end
 | |
| end
 |