mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	* configure.in: do not use buggy tgamma() of mingw. * missing/tgamma.c (tgamma): merge fix for inifity from ruby_tgamma. since msvcr120.dll and later have tgamma, this implementation will not be used. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			97 lines
		
	
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* tgamma.c  - public domain implementation of function tgamma(3m)
 | 
						|
 | 
						|
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
 | 
						|
            (New Algorithm handbook in C language) (Gijyutsu hyouron
 | 
						|
            sha, Tokyo, 1991) [in Japanese]
 | 
						|
            http://oku.edu.mie-u.ac.jp/~okumura/algo/
 | 
						|
*/
 | 
						|
 | 
						|
/***********************************************************
 | 
						|
    gamma.c -- Gamma function
 | 
						|
***********************************************************/
 | 
						|
#include "ruby/config.h"
 | 
						|
#include "ruby/missing.h"
 | 
						|
#include <math.h>
 | 
						|
#include <errno.h>
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
# include <float.h>
 | 
						|
# if !defined __MINGW32__ || defined __NO_ISOCEXT
 | 
						|
#  ifndef isnan
 | 
						|
#   define isnan(x) _isnan(x)
 | 
						|
#  endif
 | 
						|
#  ifndef isinf
 | 
						|
#   define isinf(x) (!_finite(x) && !_isnan(x))
 | 
						|
#  endif
 | 
						|
#  ifndef finite
 | 
						|
#   define finite(x) _finite(x)
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef HAVE_LGAMMA_R
 | 
						|
 | 
						|
#include <errno.h>
 | 
						|
#define PI      3.14159265358979324  /* $\pi$ */
 | 
						|
#define LOG_2PI 1.83787706640934548  /* $\log 2\pi$ */
 | 
						|
#define N       8
 | 
						|
 | 
						|
#define B0  1                 /* Bernoulli numbers */
 | 
						|
#define B1  (-1.0 / 2.0)
 | 
						|
#define B2  ( 1.0 / 6.0)
 | 
						|
#define B4  (-1.0 / 30.0)
 | 
						|
#define B6  ( 1.0 / 42.0)
 | 
						|
#define B8  (-1.0 / 30.0)
 | 
						|
#define B10 ( 5.0 / 66.0)
 | 
						|
#define B12 (-691.0 / 2730.0)
 | 
						|
#define B14 ( 7.0 / 6.0)
 | 
						|
#define B16 (-3617.0 / 510.0)
 | 
						|
 | 
						|
static double
 | 
						|
loggamma(double x)  /* the natural logarithm of the Gamma function. */
 | 
						|
{
 | 
						|
    double v, w;
 | 
						|
 | 
						|
    v = 1;
 | 
						|
    while (x < N) {  v *= x;  x++;  }
 | 
						|
    w = 1 / (x * x);
 | 
						|
    return ((((((((B16 / (16 * 15))  * w + (B14 / (14 * 13))) * w
 | 
						|
                + (B12 / (12 * 11))) * w + (B10 / (10 *  9))) * w
 | 
						|
                + (B8  / ( 8 *  7))) * w + (B6  / ( 6 *  5))) * w
 | 
						|
                + (B4  / ( 4 *  3))) * w + (B2  / ( 2 *  1))) / x
 | 
						|
                + 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
double tgamma(double x)  /* Gamma function */
 | 
						|
{
 | 
						|
    int sign;
 | 
						|
    if (x == 0.0) { /* Pole Error */
 | 
						|
        errno = ERANGE;
 | 
						|
        return 1/x < 0 ? -HUGE_VAL : HUGE_VAL;
 | 
						|
    }
 | 
						|
    if (isinf(x)) {
 | 
						|
        if (x < 0) goto domain_error;
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    if (x < 0) {
 | 
						|
        static double zero = 0.0;
 | 
						|
        double i, f;
 | 
						|
        f = modf(-x, &i);
 | 
						|
        if (f == 0.0) { /* Domain Error */
 | 
						|
          domain_error:
 | 
						|
            errno = EDOM;
 | 
						|
            return zero/zero;
 | 
						|
        }
 | 
						|
#ifndef HAVE_LGAMMA_R
 | 
						|
        sign = (fmod(i, 2.0) != 0.0) ? 1 : -1;
 | 
						|
        return sign * PI / (sin(PI * f) * exp(loggamma(1 - x)));
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#ifndef HAVE_LGAMMA_R
 | 
						|
    return exp(loggamma(x));
 | 
						|
#else
 | 
						|
    x = lgamma_r(x, &sign);
 | 
						|
    return sign * exp(x);
 | 
						|
#endif
 | 
						|
}
 |