1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/thread_pthread.ci
ko1 84f8da1157 * thread.c (rb_thread_stop_timer_thread(), rb_thread_reset_timer_thread(),
rb_thread_start_timer_thread()): added.
* thread_pthread.ci: add a native_thread_join() and move
  rb_thread_reset_timer_thread() definition to thread.c.
* thread_win32.ci: ditto
* process.c: fix before_exec(), after_exec() to stop timer thread
  (and restart timer thread if exec failed).  and fix to reset
  timer thread information when forked child process starts
  (to fix [ruby-core:09822]).



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@11509 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-01-07 09:47:52 +00:00

450 lines
10 KiB
C

/* -*-c-*- */
/**********************************************************************
thread_pthread.ci -
$Author$
$Date$
Copyright (C) 2004-2006 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#define native_mutex_initialize(lock) do { \
pthread_mutex_t _lock = PTHREAD_MUTEX_INITIALIZER; \
((*lock) = _lock); \
} while (0)
#define native_cleanup_push pthread_cleanup_push
#define native_cleanup_pop pthread_cleanup_pop
#define native_thread_yield() sched_yield()
static void yarv_add_signal_thread_list(yarv_thread_t *th);
static void yarv_remove_signal_thread_list(yarv_thread_t *th);
static yarv_thread_lock_t signal_thread_list_lock;
static void
null_func()
{
}
static void
Init_native_thread()
{
GET_THREAD()->thread_id = pthread_self();
native_mutex_initialize(&signal_thread_list_lock);
posix_signal(SIGVTALRM, null_func);
}
NOINLINE(static int
thread_start_func_2(yarv_thread_t *th, VALUE *stack_start));
void static thread_cleanup_func(void *th_ptr);
static yarv_thread_t *register_cached_thread_and_wait(void);
#define USE_THREAD_CACHE 0
static void *
thread_start_func_1(void *th_ptr)
{
#if USE_THREAD_CACHE
thread_start:
#endif
{
yarv_thread_t *th = th_ptr;
VALUE stack_start;
/* ignore self and klass */
native_cleanup_push(thread_cleanup_func, th);
/* run */
thread_start_func_2(th, &stack_start);
/* cleanup */
thread_cleanup_func(th);
native_cleanup_pop(0);
}
#if USE_THREAD_CACHE
if (1) {
/* cache thread */
yarv_thread_t *th;
if ((th = register_cached_thread_and_wait()) != 0) {
th_ptr = (void *)th;
th->thread_id = pthread_self();
goto thread_start;
}
}
#endif
return 0;
}
void rb_thread_create_control_thread(void);
static pthread_mutex_t thread_cache_lock = PTHREAD_MUTEX_INITIALIZER;
struct cached_thread_entry {
volatile yarv_thread_t **th_area;
pthread_cond_t *cond;
struct cached_thread_entry *next;
};
struct cached_thread_entry *cached_thread_root;
static yarv_thread_t *
register_cached_thread_and_wait(void)
{
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile yarv_thread_t *th_area = 0;
struct cached_thread_entry *entry =
(struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));
struct timeval tv;
struct timespec ts;
gettimeofday(&tv, 0);
ts.tv_sec = tv.tv_sec + 60;
ts.tv_nsec = tv.tv_usec * 1000;
pthread_mutex_lock(&thread_cache_lock);
{
entry->th_area = &th_area;
entry->cond = &cond;
entry->next = cached_thread_root;
cached_thread_root = entry;
pthread_cond_timedwait(&cond, &thread_cache_lock, &ts);
{
struct cached_thread_entry *e = cached_thread_root;
struct cached_thread_entry *prev = cached_thread_root;
while (e) {
if (e == entry) {
if (prev == cached_thread_root) {
cached_thread_root = e->next;
}
else {
prev->next = e->next;
}
break;
}
prev = e;
e = e->next;
}
}
free(entry);
pthread_cond_destroy(&cond);
}
pthread_mutex_unlock(&thread_cache_lock);
return (yarv_thread_t *)th_area;
}
static int
use_cached_thread(yarv_thread_t *th)
{
int result = 0;
#if USE_THREAD_CACHE
struct cached_thread_entry *entry;
if (cached_thread_root) {
pthread_mutex_lock(&thread_cache_lock);
entry = cached_thread_root;
{
if (cached_thread_root) {
cached_thread_root = entry->next;
*entry->th_area = th;
result = 1;
}
}
if (result) {
pthread_cond_signal(entry->cond);
}
pthread_mutex_unlock(&thread_cache_lock);
}
#endif
return result;
}
static int
native_thread_create(yarv_thread_t *th)
{
int err = 0;
if (use_cached_thread(th)) {
thread_debug("create (use cahced thread): %p\n", th);
}
else {
pthread_attr_t attr;
size_t stack_size = 512 * 1024 - sizeof(int); /* 512KB */
#ifdef PTHREAD_STACK_MIN
if (stack_size < PTHREAD_STACK_MIN) {
stack_size = PTHREAD_STACK_MIN * 2;
}
#endif
thread_debug("create: %p, stack size: %ld\n", th, stack_size);
pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
pthread_attr_setstacksize(&attr, stack_size);
#endif
pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th);
if (err != 0) {
th->status = THREAD_KILLED;
rb_raise(rb_eThreadError, "can't create Thread (%d)", err);
}
}
return err;
}
static void
native_thread_join(pthread_t th)
{
int err = pthread_join(th, 0);
if (err) {
rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
}
}
static void
native_thread_apply_priority(yarv_thread_t *th)
{
struct sched_param sp;
int policy;
int priority = 0 - th->priority;
int max, min;
pthread_getschedparam(th->thread_id, &policy, &sp);
max = sched_get_priority_max(policy);
min = sched_get_priority_min(policy);
if (min < priority) {
priority = max;
}
else if (max > priority) {
priority = min;
}
sp.sched_priority = priority;
pthread_setschedparam(th->thread_id, policy, &sp);
}
static void
interrupt_using_pthread_cond_signal(yarv_thread_t *th)
{
thread_debug("interrupt_using_pthread_cond_signal (%p)\n", th);
pthread_cond_signal(&th->native_thread_data.sleep_cond);
}
static void
native_thread_send_interrupt_signal(yarv_thread_t *th)
{
thread_debug("native_thread_send_interrupt_signal (%p)\n", th->thread_id);
if (th) {
pthread_kill(th->thread_id, SIGVTALRM);
}
}
static void
native_sleep(yarv_thread_t *th, struct timeval *tv)
{
int prev_status = th->status;
struct timespec ts;
struct timeval tvn;
if (tv) {
gettimeofday(&tvn, NULL);
ts.tv_sec = tvn.tv_sec + tv->tv_sec;
ts.tv_nsec = (tvn.tv_usec + tv->tv_usec) * 1000;
if (ts.tv_nsec >= 1000000000){
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
}
th->status = THREAD_STOPPED;
pthread_cond_init(&th->native_thread_data.sleep_cond, 0);
thread_debug("native_sleep %d\n", tv ? tv->tv_sec : -1);
GVL_UNLOCK_BEGIN();
{
pthread_mutex_lock(&th->interrupt_lock);
if (th->interrupt_flag) {
/* interrupted. return immediate */
thread_debug("native_sleep: interrupted before sleep\n");
}
else {
th->interrupt_function = interrupt_using_pthread_cond_signal;
if (tv == 0) {
thread_debug("native_sleep: pthread_cond_wait start\n");
pthread_cond_wait(&th->native_thread_data.sleep_cond,
&th->interrupt_lock);
thread_debug("native_sleep: pthread_cond_wait end\n");
}
else {
int r;
thread_debug("native_sleep: pthread_cond_timedwait start (%d, %d)\n",
ts.tv_sec, ts.tv_nsec);
r = pthread_cond_timedwait(&th->native_thread_data.sleep_cond,
&th->interrupt_lock, &ts);
thread_debug("native_sleep: pthread_cond_timedwait end (%d)\n", r);
}
th->interrupt_function = 0;
}
pthread_mutex_unlock(&th->interrupt_lock);
th->status = prev_status;
}
GVL_UNLOCK_END();
thread_debug("native_sleep done\n");
}
static void
native_thread_interrupt(yarv_thread_t *th)
{
yarv_add_signal_thread_list(th);
}
struct yarv_signal_thread_list {
yarv_thread_t *th;
struct yarv_signal_thread_list *prev;
struct yarv_signal_thread_list *next;
};
static struct yarv_signal_thread_list signal_thread_list_anchor = {
0, 0, 0,
};
#define FGLOCK(lock, body) do { \
native_mutex_lock(lock); \
{ \
body; \
} \
native_mutex_unlock(lock); \
} while (0)
static void
print_signal_list(char *str)
{
struct yarv_signal_thread_list *list =
signal_thread_list_anchor.next;
thread_debug("list (%s)> ", str);
while(list){
thread_debug("%p (%p), ", list->th, list->th->thread_id);
list = list->next;
}
thread_debug("\n");
}
static void
yarv_add_signal_thread_list(yarv_thread_t *th)
{
if (!th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct yarv_signal_thread_list *list =
malloc(sizeof(struct yarv_signal_thread_list));
if (list == 0) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(1);
}
list->th = th;
list->prev = &signal_thread_list_anchor;
list->next = signal_thread_list_anchor.next;
if (list->next) {
list->next->prev = list;
}
signal_thread_list_anchor.next = list;
th->native_thread_data.signal_thread_list = list;
});
}
}
static void
yarv_remove_signal_thread_list(yarv_thread_t *th)
{
if (th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct yarv_signal_thread_list *list =
(struct yarv_signal_thread_list *)
th->native_thread_data.signal_thread_list;
list->prev->next = list->next;
if (list->next) {
list->next->prev = list->prev;
}
th->native_thread_data.signal_thread_list = 0;
list->th = 0;
free(list);
});
}
else {
/* */
}
}
static pthread_t timer_thread_id;
static void timer_thread_function(void);
static void *
thread_timer(void *dummy)
{
while (system_working) {
#ifdef HAVE_NANOSLEEP
struct timespec req, rem;
req.tv_sec = 0;
req.tv_nsec = 10 * 1000 * 1000; /* 10 ms */
nanosleep(&req, &rem);
#else
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 10000; /* 10 ms */
select(0, NULL, NULL, NULL, &tv);
#endif
if (signal_thread_list_anchor.next) {
FGLOCK(&signal_thread_list_lock, {
struct yarv_signal_thread_list *list;
list = signal_thread_list_anchor.next;
while (list) {
native_thread_send_interrupt_signal(list->th);
list = list->next;
}
});
}
timer_thread_function();
}
return NULL;
}
static void
rb_thread_create_timer_thread(void)
{
rb_enable_interrupt();
if (!timer_thread_id) {
pthread_attr_t attr;
int err;
pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
#endif
err = pthread_create(&timer_thread_id, &attr, thread_timer, 0);
if (err != 0) {
rb_bug("rb_thread_create_timer_thread: return non-zero (%d)", err);
}
}
rb_disable_interrupt(); /* only timer thread recieve signal */
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */