mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	if pthread_create() failed. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@53375 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1738 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1738 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* -*-c-*- */
 | 
						|
/**********************************************************************
 | 
						|
 | 
						|
  thread_pthread.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
 | 
						|
  Copyright (C) 2004-2007 Koichi Sasada
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
 | 
						|
 | 
						|
#include "gc.h"
 | 
						|
 | 
						|
#ifdef HAVE_SYS_RESOURCE_H
 | 
						|
#include <sys/resource.h>
 | 
						|
#endif
 | 
						|
#ifdef HAVE_THR_STKSEGMENT
 | 
						|
#include <thread.h>
 | 
						|
#endif
 | 
						|
#if HAVE_FCNTL_H
 | 
						|
#include <fcntl.h>
 | 
						|
#elif HAVE_SYS_FCNTL_H
 | 
						|
#include <sys/fcntl.h>
 | 
						|
#endif
 | 
						|
#ifdef HAVE_SYS_PRCTL_H
 | 
						|
#include <sys/prctl.h>
 | 
						|
#endif
 | 
						|
#if defined(__native_client__) && defined(NACL_NEWLIB)
 | 
						|
# include "nacl/select.h"
 | 
						|
#endif
 | 
						|
#if defined(HAVE_SYS_TIME_H)
 | 
						|
#include <sys/time.h>
 | 
						|
#endif
 | 
						|
#if defined(__HAIKU__)
 | 
						|
#include <kernel/OS.h>
 | 
						|
#endif
 | 
						|
 | 
						|
static void native_mutex_lock(rb_nativethread_lock_t *lock);
 | 
						|
static void native_mutex_unlock(rb_nativethread_lock_t *lock);
 | 
						|
static int native_mutex_trylock(rb_nativethread_lock_t *lock);
 | 
						|
static void native_mutex_initialize(rb_nativethread_lock_t *lock);
 | 
						|
static void native_mutex_destroy(rb_nativethread_lock_t *lock);
 | 
						|
static void native_cond_signal(rb_nativethread_cond_t *cond);
 | 
						|
static void native_cond_broadcast(rb_nativethread_cond_t *cond);
 | 
						|
static void native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex);
 | 
						|
static void native_cond_initialize(rb_nativethread_cond_t *cond, int flags);
 | 
						|
static void native_cond_destroy(rb_nativethread_cond_t *cond);
 | 
						|
static void rb_thread_wakeup_timer_thread_low(void);
 | 
						|
static struct {
 | 
						|
    pthread_t id;
 | 
						|
    int created;
 | 
						|
} timer_thread;
 | 
						|
#define TIMER_THREAD_CREATED_P() (timer_thread.created != 0)
 | 
						|
 | 
						|
#define RB_CONDATTR_CLOCK_MONOTONIC 1
 | 
						|
 | 
						|
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCKID_T) && \
 | 
						|
    defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && \
 | 
						|
    defined(HAVE_CLOCK_GETTIME) && defined(HAVE_PTHREAD_CONDATTR_INIT)
 | 
						|
#define USE_MONOTONIC_COND 1
 | 
						|
#else
 | 
						|
#define USE_MONOTONIC_COND 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HAVE_POLL) && defined(HAVE_FCNTL) && defined(F_GETFL) && defined(F_SETFL) && defined(O_NONBLOCK) && !defined(__native_client__)
 | 
						|
/* The timer thread sleeps while only one Ruby thread is running. */
 | 
						|
# define USE_SLEEPY_TIMER_THREAD 1
 | 
						|
#else
 | 
						|
# define USE_SLEEPY_TIMER_THREAD 0
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
gvl_acquire_common(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    if (vm->gvl.acquired) {
 | 
						|
 | 
						|
	vm->gvl.waiting++;
 | 
						|
	if (vm->gvl.waiting == 1) {
 | 
						|
	    /*
 | 
						|
	     * Wake up timer thread iff timer thread is slept.
 | 
						|
	     * When timer thread is polling mode, we don't want to
 | 
						|
	     * make confusing timer thread interval time.
 | 
						|
	     */
 | 
						|
	    rb_thread_wakeup_timer_thread_low();
 | 
						|
	}
 | 
						|
 | 
						|
	while (vm->gvl.acquired) {
 | 
						|
	    native_cond_wait(&vm->gvl.cond, &vm->gvl.lock);
 | 
						|
	}
 | 
						|
 | 
						|
	vm->gvl.waiting--;
 | 
						|
 | 
						|
	if (vm->gvl.need_yield) {
 | 
						|
	    vm->gvl.need_yield = 0;
 | 
						|
	    native_cond_signal(&vm->gvl.switch_cond);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    vm->gvl.acquired = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_acquire(rb_vm_t *vm, rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_mutex_lock(&vm->gvl.lock);
 | 
						|
    gvl_acquire_common(vm);
 | 
						|
    native_mutex_unlock(&vm->gvl.lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_release_common(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    vm->gvl.acquired = 0;
 | 
						|
    if (vm->gvl.waiting > 0)
 | 
						|
	native_cond_signal(&vm->gvl.cond);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_release(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    native_mutex_lock(&vm->gvl.lock);
 | 
						|
    gvl_release_common(vm);
 | 
						|
    native_mutex_unlock(&vm->gvl.lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_yield(rb_vm_t *vm, rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_mutex_lock(&vm->gvl.lock);
 | 
						|
 | 
						|
    gvl_release_common(vm);
 | 
						|
 | 
						|
    /* An another thread is processing GVL yield. */
 | 
						|
    if (UNLIKELY(vm->gvl.wait_yield)) {
 | 
						|
	while (vm->gvl.wait_yield)
 | 
						|
	    native_cond_wait(&vm->gvl.switch_wait_cond, &vm->gvl.lock);
 | 
						|
	goto acquire;
 | 
						|
    }
 | 
						|
 | 
						|
    if (vm->gvl.waiting > 0) {
 | 
						|
	/* Wait until another thread task take GVL. */
 | 
						|
	vm->gvl.need_yield = 1;
 | 
						|
	vm->gvl.wait_yield = 1;
 | 
						|
	while (vm->gvl.need_yield)
 | 
						|
	    native_cond_wait(&vm->gvl.switch_cond, &vm->gvl.lock);
 | 
						|
	vm->gvl.wait_yield = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	native_mutex_unlock(&vm->gvl.lock);
 | 
						|
	sched_yield();
 | 
						|
	native_mutex_lock(&vm->gvl.lock);
 | 
						|
    }
 | 
						|
 | 
						|
    native_cond_broadcast(&vm->gvl.switch_wait_cond);
 | 
						|
  acquire:
 | 
						|
    gvl_acquire_common(vm);
 | 
						|
    native_mutex_unlock(&vm->gvl.lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_init(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    native_mutex_initialize(&vm->gvl.lock);
 | 
						|
    native_cond_initialize(&vm->gvl.cond, RB_CONDATTR_CLOCK_MONOTONIC);
 | 
						|
    native_cond_initialize(&vm->gvl.switch_cond, RB_CONDATTR_CLOCK_MONOTONIC);
 | 
						|
    native_cond_initialize(&vm->gvl.switch_wait_cond, RB_CONDATTR_CLOCK_MONOTONIC);
 | 
						|
    vm->gvl.acquired = 0;
 | 
						|
    vm->gvl.waiting = 0;
 | 
						|
    vm->gvl.need_yield = 0;
 | 
						|
    vm->gvl.wait_yield = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_destroy(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    native_cond_destroy(&vm->gvl.switch_wait_cond);
 | 
						|
    native_cond_destroy(&vm->gvl.switch_cond);
 | 
						|
    native_cond_destroy(&vm->gvl.cond);
 | 
						|
    native_mutex_destroy(&vm->gvl.lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_atfork(rb_vm_t *vm)
 | 
						|
{
 | 
						|
    gvl_init(vm);
 | 
						|
    gvl_acquire(vm, GET_THREAD());
 | 
						|
}
 | 
						|
 | 
						|
#define NATIVE_MUTEX_LOCK_DEBUG 0
 | 
						|
 | 
						|
static void
 | 
						|
mutex_debug(const char *msg, void *lock)
 | 
						|
{
 | 
						|
    if (NATIVE_MUTEX_LOCK_DEBUG) {
 | 
						|
	int r;
 | 
						|
	static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER;
 | 
						|
 | 
						|
	if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
 | 
						|
	fprintf(stdout, "%s: %p\n", msg, lock);
 | 
						|
	if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_mutex_lock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("lock", lock);
 | 
						|
    if ((r = pthread_mutex_lock(lock)) != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_lock", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_mutex_unlock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("unlock", lock);
 | 
						|
    if ((r = pthread_mutex_unlock(lock)) != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_unlock", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
native_mutex_trylock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("trylock", lock);
 | 
						|
    if ((r = pthread_mutex_trylock(lock)) != 0) {
 | 
						|
	if (r == EBUSY) {
 | 
						|
	    return EBUSY;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    rb_bug_errno("pthread_mutex_trylock", r);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_mutex_initialize(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r = pthread_mutex_init(lock, 0);
 | 
						|
    mutex_debug("init", lock);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_init", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_mutex_destroy(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r = pthread_mutex_destroy(lock);
 | 
						|
    mutex_debug("destroy", lock);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_destroy", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_initialize(rb_nativethread_cond_t *cond, int flags)
 | 
						|
{
 | 
						|
#ifdef HAVE_PTHREAD_COND_INIT
 | 
						|
    int r;
 | 
						|
# if USE_MONOTONIC_COND
 | 
						|
    pthread_condattr_t attr;
 | 
						|
 | 
						|
    pthread_condattr_init(&attr);
 | 
						|
 | 
						|
    cond->clockid = CLOCK_REALTIME;
 | 
						|
    if (flags & RB_CONDATTR_CLOCK_MONOTONIC) {
 | 
						|
	r = pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
 | 
						|
	if (r == 0) {
 | 
						|
	    cond->clockid = CLOCK_MONOTONIC;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    r = pthread_cond_init(&cond->cond, &attr);
 | 
						|
    pthread_condattr_destroy(&attr);
 | 
						|
# else
 | 
						|
    r = pthread_cond_init(&cond->cond, NULL);
 | 
						|
# endif
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_init", r);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_destroy(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
#ifdef HAVE_PTHREAD_COND_INIT
 | 
						|
    int r = pthread_cond_destroy(&cond->cond);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_destroy", r);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return
 | 
						|
 * EAGAIN after retrying 8192 times.  You can see them in the following page:
 | 
						|
 *
 | 
						|
 * http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c
 | 
						|
 *
 | 
						|
 * The following native_cond_signal and native_cond_broadcast functions
 | 
						|
 * need to retrying until pthread functions don't return EAGAIN.
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_signal(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    do {
 | 
						|
	r = pthread_cond_signal(&cond->cond);
 | 
						|
    } while (r == EAGAIN);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_signal", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_broadcast(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    do {
 | 
						|
	r = pthread_cond_broadcast(&cond->cond);
 | 
						|
    } while (r == EAGAIN);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("native_cond_broadcast", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_wait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex)
 | 
						|
{
 | 
						|
    int r = pthread_cond_wait(&cond->cond, mutex);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_wait", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *ts)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    /*
 | 
						|
     * An old Linux may return EINTR. Even though POSIX says
 | 
						|
     *   "These functions shall not return an error code of [EINTR]".
 | 
						|
     *   http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
 | 
						|
     * Let's hide it from arch generic code.
 | 
						|
     */
 | 
						|
    do {
 | 
						|
	r = pthread_cond_timedwait(&cond->cond, mutex, ts);
 | 
						|
    } while (r == EINTR);
 | 
						|
 | 
						|
    if (r != 0 && r != ETIMEDOUT) {
 | 
						|
	rb_bug_errno("pthread_cond_timedwait", r);
 | 
						|
    }
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static struct timespec
 | 
						|
native_cond_timeout(rb_nativethread_cond_t *cond, struct timespec timeout_rel)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    struct timeval tv;
 | 
						|
    struct timespec timeout;
 | 
						|
    struct timespec now;
 | 
						|
 | 
						|
#if USE_MONOTONIC_COND
 | 
						|
    if (cond->clockid == CLOCK_MONOTONIC) {
 | 
						|
	ret = clock_gettime(cond->clockid, &now);
 | 
						|
	if (ret != 0)
 | 
						|
	    rb_sys_fail("clock_gettime()");
 | 
						|
	goto out;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cond->clockid != CLOCK_REALTIME)
 | 
						|
	rb_bug("unsupported clockid %"PRIdVALUE, (SIGNED_VALUE)cond->clockid);
 | 
						|
#endif
 | 
						|
 | 
						|
    ret = gettimeofday(&tv, 0);
 | 
						|
    if (ret != 0)
 | 
						|
	rb_sys_fail(0);
 | 
						|
    now.tv_sec = tv.tv_sec;
 | 
						|
    now.tv_nsec = tv.tv_usec * 1000;
 | 
						|
 | 
						|
#if USE_MONOTONIC_COND
 | 
						|
  out:
 | 
						|
#endif
 | 
						|
    timeout.tv_sec = now.tv_sec;
 | 
						|
    timeout.tv_nsec = now.tv_nsec;
 | 
						|
    timeout.tv_sec += timeout_rel.tv_sec;
 | 
						|
    timeout.tv_nsec += timeout_rel.tv_nsec;
 | 
						|
 | 
						|
    if (timeout.tv_nsec >= 1000*1000*1000) {
 | 
						|
	timeout.tv_sec++;
 | 
						|
	timeout.tv_nsec -= 1000*1000*1000;
 | 
						|
    }
 | 
						|
 | 
						|
    if (timeout.tv_sec < now.tv_sec)
 | 
						|
	timeout.tv_sec = TIMET_MAX;
 | 
						|
 | 
						|
    return timeout;
 | 
						|
}
 | 
						|
 | 
						|
#define native_cleanup_push pthread_cleanup_push
 | 
						|
#define native_cleanup_pop  pthread_cleanup_pop
 | 
						|
#ifdef HAVE_SCHED_YIELD
 | 
						|
#define native_thread_yield() (void)sched_yield()
 | 
						|
#else
 | 
						|
#define native_thread_yield() ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(SIGVTALRM) && !defined(__CYGWIN__)
 | 
						|
#define USE_UBF_LIST 1
 | 
						|
static rb_nativethread_lock_t ubf_list_lock;
 | 
						|
#endif
 | 
						|
 | 
						|
static pthread_key_t ruby_native_thread_key;
 | 
						|
 | 
						|
static void
 | 
						|
null_func(int i)
 | 
						|
{
 | 
						|
    /* null */
 | 
						|
}
 | 
						|
 | 
						|
static rb_thread_t *
 | 
						|
ruby_thread_from_native(void)
 | 
						|
{
 | 
						|
    return pthread_getspecific(ruby_native_thread_key);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ruby_thread_set_native(rb_thread_t *th)
 | 
						|
{
 | 
						|
    return pthread_setspecific(ruby_native_thread_key, th) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static void native_thread_init(rb_thread_t *th);
 | 
						|
 | 
						|
void
 | 
						|
Init_native_thread(void)
 | 
						|
{
 | 
						|
    rb_thread_t *th = GET_THREAD();
 | 
						|
 | 
						|
    pthread_key_create(&ruby_native_thread_key, NULL);
 | 
						|
    th->thread_id = pthread_self();
 | 
						|
    fill_thread_id_str(th);
 | 
						|
    native_thread_init(th);
 | 
						|
#ifdef USE_UBF_LIST
 | 
						|
    native_mutex_initialize(&ubf_list_lock);
 | 
						|
#endif
 | 
						|
#ifndef __native_client__
 | 
						|
    posix_signal(SIGVTALRM, null_func);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_init(rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_thread_data_t *nd = &th->native_thread_data;
 | 
						|
 | 
						|
#ifdef USE_UBF_LIST
 | 
						|
    list_node_init(&nd->ubf_list);
 | 
						|
#endif
 | 
						|
    native_cond_initialize(&nd->sleep_cond, RB_CONDATTR_CLOCK_MONOTONIC);
 | 
						|
    ruby_thread_set_native(th);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_destroy(rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_cond_destroy(&th->native_thread_data.sleep_cond);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef USE_THREAD_CACHE
 | 
						|
#define USE_THREAD_CACHE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
static rb_thread_t *register_cached_thread_and_wait(void);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#undef MAINSTACKADDR_AVAILABLE
 | 
						|
#define MAINSTACKADDR_AVAILABLE 1
 | 
						|
void *pthread_get_stackaddr_np(pthread_t);
 | 
						|
size_t pthread_get_stacksize_np(pthread_t);
 | 
						|
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined HAVE_PTHREAD_GETTHRDS_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined __HAIKU__
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined __ia64 && defined _HPUX_SOURCE
 | 
						|
#include <sys/dyntune.h>
 | 
						|
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
 | 
						|
/*
 | 
						|
 * Do not lower the thread's stack to PTHREAD_STACK_MIN,
 | 
						|
 * otherwise one would receive a 'sendsig: useracc failed.'
 | 
						|
 * and a coredump.
 | 
						|
 */
 | 
						|
#undef PTHREAD_STACK_MIN
 | 
						|
 | 
						|
#define HAVE_PTHREAD_ATTR_GET_NP 1
 | 
						|
#undef HAVE_PTHREAD_ATTR_GETSTACK
 | 
						|
 | 
						|
/*
 | 
						|
 * As the PTHREAD_STACK_MIN is undefined and
 | 
						|
 * no one touches the default stacksize,
 | 
						|
 * it is just fine to use the default.
 | 
						|
 */
 | 
						|
#define pthread_attr_get_np(thid, attr) 0
 | 
						|
 | 
						|
/*
 | 
						|
 * Using value of sp is very rough... To make it more real,
 | 
						|
 * addr would need to be aligned to vps_pagesize.
 | 
						|
 * The vps_pagesize is 'Default user page size (kBytes)'
 | 
						|
 * and could be retrieved by gettune().
 | 
						|
 */
 | 
						|
static int
 | 
						|
hpux_attr_getstackaddr(const pthread_attr_t *attr, void **addr)
 | 
						|
{
 | 
						|
    static uint64_t pagesize;
 | 
						|
    size_t size;
 | 
						|
 | 
						|
    if (!pagesize) {
 | 
						|
	if (gettune("vps_pagesize", &pagesize)) {
 | 
						|
	    pagesize = 16;
 | 
						|
	}
 | 
						|
	pagesize *= 1024;
 | 
						|
    }
 | 
						|
    pthread_attr_getstacksize(attr, &size);
 | 
						|
    *addr = (void *)((size_t)((char *)_Asm_get_sp() - size) & ~(pagesize - 1));
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#define pthread_attr_getstackaddr(attr, addr) hpux_attr_getstackaddr(attr, addr)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef MAINSTACKADDR_AVAILABLE
 | 
						|
# ifdef STACKADDR_AVAILABLE
 | 
						|
#   define MAINSTACKADDR_AVAILABLE 1
 | 
						|
# else
 | 
						|
#   define MAINSTACKADDR_AVAILABLE 0
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
#if MAINSTACKADDR_AVAILABLE && !defined(get_main_stack)
 | 
						|
# define get_main_stack(addr, size) get_stack(addr, size)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
/*
 | 
						|
 * Get the initial address and size of current thread's stack
 | 
						|
 */
 | 
						|
static int
 | 
						|
get_stack(void **addr, size_t *size)
 | 
						|
{
 | 
						|
#define CHECK_ERR(expr)				\
 | 
						|
    {int err = (expr); if (err) return err;}
 | 
						|
#ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */
 | 
						|
    pthread_attr_t attr;
 | 
						|
    size_t guard = 0;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
    CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
 | 
						|
    CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
# else
 | 
						|
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
 | 
						|
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
 | 
						|
# endif
 | 
						|
    CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
 | 
						|
    *size -= guard;
 | 
						|
    pthread_attr_destroy(&attr);
 | 
						|
#elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */
 | 
						|
    pthread_attr_t attr;
 | 
						|
    CHECK_ERR(pthread_attr_init(&attr));
 | 
						|
    CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
 | 
						|
    CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
 | 
						|
# else
 | 
						|
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
 | 
						|
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
 | 
						|
# endif
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
    pthread_attr_destroy(&attr);
 | 
						|
#elif (defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP) /* MacOS X */
 | 
						|
    pthread_t th = pthread_self();
 | 
						|
    *addr = pthread_get_stackaddr_np(th);
 | 
						|
    *size = pthread_get_stacksize_np(th);
 | 
						|
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
 | 
						|
    stack_t stk;
 | 
						|
# if defined HAVE_THR_STKSEGMENT /* Solaris */
 | 
						|
    CHECK_ERR(thr_stksegment(&stk));
 | 
						|
# else /* OpenBSD */
 | 
						|
    CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
 | 
						|
# endif
 | 
						|
    *addr = stk.ss_sp;
 | 
						|
    *size = stk.ss_size;
 | 
						|
#elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */
 | 
						|
    pthread_t th = pthread_self();
 | 
						|
    struct __pthrdsinfo thinfo;
 | 
						|
    char reg[256];
 | 
						|
    int regsiz=sizeof(reg);
 | 
						|
    CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL,
 | 
						|
				   &thinfo, sizeof(thinfo),
 | 
						|
				   ®, ®siz));
 | 
						|
    *addr = thinfo.__pi_stackaddr;
 | 
						|
    *size = thinfo.__pi_stacksize;
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
#elif defined __HAIKU__
 | 
						|
    thread_info info;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
    CHECK_ERR(get_thread_info(find_thread(NULL), &info));
 | 
						|
    *addr = info.stack_base;
 | 
						|
    *size = (uintptr_t)info.stack_end - (uintptr_t)info.stack_base;
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
#else
 | 
						|
#error STACKADDR_AVAILABLE is defined but not implemented.
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
#undef CHECK_ERR
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct {
 | 
						|
    rb_nativethread_id_t id;
 | 
						|
    size_t stack_maxsize;
 | 
						|
    VALUE *stack_start;
 | 
						|
#ifdef __ia64
 | 
						|
    VALUE *register_stack_start;
 | 
						|
#endif
 | 
						|
} native_main_thread;
 | 
						|
 | 
						|
#ifdef STACK_END_ADDRESS
 | 
						|
extern void *STACK_END_ADDRESS;
 | 
						|
#endif
 | 
						|
 | 
						|
enum {
 | 
						|
    RUBY_STACK_SPACE_LIMIT = 1024 * 1024, /* 1024KB */
 | 
						|
    RUBY_STACK_SPACE_RATIO = 5
 | 
						|
};
 | 
						|
 | 
						|
static size_t
 | 
						|
space_size(size_t stack_size)
 | 
						|
{
 | 
						|
    size_t space_size = stack_size / RUBY_STACK_SPACE_RATIO;
 | 
						|
    if (space_size > RUBY_STACK_SPACE_LIMIT) {
 | 
						|
	return RUBY_STACK_SPACE_LIMIT;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return space_size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __linux__
 | 
						|
static __attribute__((noinline)) void
 | 
						|
reserve_stack(volatile char *limit, size_t size)
 | 
						|
{
 | 
						|
# ifdef C_ALLOCA
 | 
						|
#   error needs alloca()
 | 
						|
# endif
 | 
						|
    struct rlimit rl;
 | 
						|
    volatile char buf[0x100];
 | 
						|
    enum {stack_check_margin = 0x1000}; /* for -fstack-check */
 | 
						|
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
    if (!getrlimit(RLIMIT_STACK, &rl) && rl.rlim_cur == RLIM_INFINITY)
 | 
						|
	return;
 | 
						|
 | 
						|
    if (size < stack_check_margin) return;
 | 
						|
    size -= stack_check_margin;
 | 
						|
 | 
						|
    size -= sizeof(buf); /* margin */
 | 
						|
    if (IS_STACK_DIR_UPPER()) {
 | 
						|
	const volatile char *end = buf + sizeof(buf);
 | 
						|
	limit += size;
 | 
						|
	if (limit > end) {
 | 
						|
	    size = limit - end;
 | 
						|
	    limit = alloca(size);
 | 
						|
	    limit[stack_check_margin+size-1] = 0;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	limit -= size;
 | 
						|
	if (buf > limit) {
 | 
						|
	    limit = alloca(buf - limit);
 | 
						|
	    limit[0] = 0; /* ensure alloca is called */
 | 
						|
	    limit -= stack_check_margin;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#else
 | 
						|
# define reserve_stack(limit, size) ((void)(limit), (void)(size))
 | 
						|
#endif
 | 
						|
 | 
						|
#undef ruby_init_stack
 | 
						|
/* Set stack bottom of Ruby implementation.
 | 
						|
 *
 | 
						|
 * You must call this function before any heap allocation by Ruby implementation.
 | 
						|
 * Or GC will break living objects */
 | 
						|
void
 | 
						|
ruby_init_stack(volatile VALUE *addr
 | 
						|
#ifdef __ia64
 | 
						|
    , void *bsp
 | 
						|
#endif
 | 
						|
    )
 | 
						|
{
 | 
						|
    native_main_thread.id = pthread_self();
 | 
						|
#if MAINSTACKADDR_AVAILABLE
 | 
						|
    if (native_main_thread.stack_maxsize) return;
 | 
						|
    {
 | 
						|
	void* stackaddr;
 | 
						|
	size_t size;
 | 
						|
	if (get_main_stack(&stackaddr, &size) == 0) {
 | 
						|
	    native_main_thread.stack_maxsize = size;
 | 
						|
	    native_main_thread.stack_start = stackaddr;
 | 
						|
	    reserve_stack(stackaddr, size);
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef STACK_END_ADDRESS
 | 
						|
    native_main_thread.stack_start = STACK_END_ADDRESS;
 | 
						|
#else
 | 
						|
    if (!native_main_thread.stack_start ||
 | 
						|
        STACK_UPPER((VALUE *)(void *)&addr,
 | 
						|
                    native_main_thread.stack_start > addr,
 | 
						|
                    native_main_thread.stack_start < addr)) {
 | 
						|
        native_main_thread.stack_start = (VALUE *)addr;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef __ia64
 | 
						|
    if (!native_main_thread.register_stack_start ||
 | 
						|
        (VALUE*)bsp < native_main_thread.register_stack_start) {
 | 
						|
        native_main_thread.register_stack_start = (VALUE*)bsp;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    {
 | 
						|
#if defined(HAVE_GETRLIMIT)
 | 
						|
#if defined(PTHREAD_STACK_DEFAULT)
 | 
						|
# if PTHREAD_STACK_DEFAULT < RUBY_STACK_SPACE*5
 | 
						|
#  error "PTHREAD_STACK_DEFAULT is too small"
 | 
						|
# endif
 | 
						|
	size_t size = PTHREAD_STACK_DEFAULT;
 | 
						|
#else
 | 
						|
	size_t size = RUBY_VM_THREAD_VM_STACK_SIZE;
 | 
						|
#endif
 | 
						|
	size_t space;
 | 
						|
	int pagesize = getpagesize();
 | 
						|
	struct rlimit rlim;
 | 
						|
        STACK_GROW_DIR_DETECTION;
 | 
						|
	if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
 | 
						|
	    size = (size_t)rlim.rlim_cur;
 | 
						|
	}
 | 
						|
	addr = native_main_thread.stack_start;
 | 
						|
	if (IS_STACK_DIR_UPPER()) {
 | 
						|
	    space = ((size_t)((char *)addr + size) / pagesize) * pagesize - (size_t)addr;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    space = (size_t)addr - ((size_t)((char *)addr - size) / pagesize + 1) * pagesize;
 | 
						|
	}
 | 
						|
	native_main_thread.stack_maxsize = space;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    /* If addr is out of range of main-thread stack range estimation,  */
 | 
						|
    /* it should be on co-routine (alternative stack). [Feature #2294] */
 | 
						|
    {
 | 
						|
	void *start, *end;
 | 
						|
	STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
	if (IS_STACK_DIR_UPPER()) {
 | 
						|
	    start = native_main_thread.stack_start;
 | 
						|
	    end = (char *)native_main_thread.stack_start + native_main_thread.stack_maxsize;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    start = (char *)native_main_thread.stack_start - native_main_thread.stack_maxsize;
 | 
						|
	    end = native_main_thread.stack_start;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((void *)addr < start || (void *)addr > end) {
 | 
						|
	    /* out of range */
 | 
						|
	    native_main_thread.stack_start = (VALUE *)addr;
 | 
						|
	    native_main_thread.stack_maxsize = 0; /* unknown */
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define CHECK_ERR(expr) \
 | 
						|
    {int err = (expr); if (err) {rb_bug_errno(#expr, err);}}
 | 
						|
 | 
						|
static int
 | 
						|
native_thread_init_stack(rb_thread_t *th)
 | 
						|
{
 | 
						|
    rb_nativethread_id_t curr = pthread_self();
 | 
						|
 | 
						|
    if (pthread_equal(curr, native_main_thread.id)) {
 | 
						|
	th->machine.stack_start = native_main_thread.stack_start;
 | 
						|
	th->machine.stack_maxsize = native_main_thread.stack_maxsize;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
	void *start;
 | 
						|
	size_t size;
 | 
						|
 | 
						|
	if (get_stack(&start, &size) == 0) {
 | 
						|
	    th->machine.stack_start = start;
 | 
						|
	    th->machine.stack_maxsize = size;
 | 
						|
	}
 | 
						|
#elif defined get_stack_of
 | 
						|
	if (!th->machine.stack_maxsize) {
 | 
						|
	    native_mutex_lock(&th->interrupt_lock);
 | 
						|
	    native_mutex_unlock(&th->interrupt_lock);
 | 
						|
	}
 | 
						|
#else
 | 
						|
	rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#ifdef __ia64
 | 
						|
    th->machine.register_stack_start = native_main_thread.register_stack_start;
 | 
						|
    th->machine.stack_maxsize /= 2;
 | 
						|
    th->machine.register_stack_maxsize = th->machine.stack_maxsize;
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __CYGWIN__
 | 
						|
#define USE_NATIVE_THREAD_INIT 1
 | 
						|
#endif
 | 
						|
 | 
						|
static void *
 | 
						|
thread_start_func_1(void *th_ptr)
 | 
						|
{
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
  thread_start:
 | 
						|
#endif
 | 
						|
    {
 | 
						|
	rb_thread_t *th = th_ptr;
 | 
						|
#if !defined USE_NATIVE_THREAD_INIT
 | 
						|
	VALUE stack_start;
 | 
						|
#endif
 | 
						|
 | 
						|
	fill_thread_id_str(th);
 | 
						|
#if defined USE_NATIVE_THREAD_INIT
 | 
						|
	native_thread_init_stack(th);
 | 
						|
#endif
 | 
						|
	native_thread_init(th);
 | 
						|
	/* run */
 | 
						|
#if defined USE_NATIVE_THREAD_INIT
 | 
						|
	thread_start_func_2(th, th->machine.stack_start, rb_ia64_bsp());
 | 
						|
#else
 | 
						|
	thread_start_func_2(th, &stack_start, rb_ia64_bsp());
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
    if (1) {
 | 
						|
	/* cache thread */
 | 
						|
	rb_thread_t *th;
 | 
						|
	if ((th = register_cached_thread_and_wait()) != 0) {
 | 
						|
	    th_ptr = (void *)th;
 | 
						|
	    th->thread_id = pthread_self();
 | 
						|
	    goto thread_start;
 | 
						|
	}
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct cached_thread_entry {
 | 
						|
    volatile rb_thread_t **th_area;
 | 
						|
    rb_nativethread_cond_t *cond;
 | 
						|
    struct cached_thread_entry *next;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
static rb_nativethread_lock_t thread_cache_lock = RB_NATIVETHREAD_LOCK_INIT;
 | 
						|
struct cached_thread_entry *cached_thread_root;
 | 
						|
 | 
						|
static rb_thread_t *
 | 
						|
register_cached_thread_and_wait(void)
 | 
						|
{
 | 
						|
    rb_nativethread_cond_t cond = RB_NATIVETHREAD_COND_INIT;
 | 
						|
    volatile rb_thread_t *th_area = 0;
 | 
						|
    struct timeval tv;
 | 
						|
    struct timespec ts;
 | 
						|
    struct cached_thread_entry *entry =
 | 
						|
      (struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));
 | 
						|
 | 
						|
    if (entry == 0) {
 | 
						|
	return 0; /* failed -> terminate thread immediately */
 | 
						|
    }
 | 
						|
 | 
						|
    gettimeofday(&tv, 0);
 | 
						|
    ts.tv_sec = tv.tv_sec + 60;
 | 
						|
    ts.tv_nsec = tv.tv_usec * 1000;
 | 
						|
 | 
						|
    native_mutex_lock(&thread_cache_lock);
 | 
						|
    {
 | 
						|
	entry->th_area = &th_area;
 | 
						|
	entry->cond = &cond;
 | 
						|
	entry->next = cached_thread_root;
 | 
						|
	cached_thread_root = entry;
 | 
						|
 | 
						|
	native_cond_timedwait(&cond, &thread_cache_lock, &ts);
 | 
						|
 | 
						|
	{
 | 
						|
	    struct cached_thread_entry *e, **prev = &cached_thread_root;
 | 
						|
 | 
						|
	    while ((e = *prev) != 0) {
 | 
						|
		if (e == entry) {
 | 
						|
		    *prev = e->next;
 | 
						|
		    break;
 | 
						|
		}
 | 
						|
		prev = &e->next;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	free(entry); /* ok */
 | 
						|
	native_cond_destroy(&cond);
 | 
						|
    }
 | 
						|
    native_mutex_unlock(&thread_cache_lock);
 | 
						|
 | 
						|
    return (rb_thread_t *)th_area;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
use_cached_thread(rb_thread_t *th)
 | 
						|
{
 | 
						|
    int result = 0;
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
    struct cached_thread_entry *entry;
 | 
						|
 | 
						|
    if (cached_thread_root) {
 | 
						|
	native_mutex_lock(&thread_cache_lock);
 | 
						|
	entry = cached_thread_root;
 | 
						|
	{
 | 
						|
	    if (cached_thread_root) {
 | 
						|
		cached_thread_root = entry->next;
 | 
						|
		*entry->th_area = th;
 | 
						|
		result = 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (result) {
 | 
						|
	    native_cond_signal(entry->cond);
 | 
						|
	}
 | 
						|
	native_mutex_unlock(&thread_cache_lock);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_thread_create(rb_thread_t *th)
 | 
						|
{
 | 
						|
    int err = 0;
 | 
						|
 | 
						|
    if (use_cached_thread(th)) {
 | 
						|
	thread_debug("create (use cached thread): %p\n", (void *)th);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#ifdef HAVE_PTHREAD_ATTR_INIT
 | 
						|
	pthread_attr_t attr;
 | 
						|
	pthread_attr_t *const attrp = &attr;
 | 
						|
#else
 | 
						|
	pthread_attr_t *const attrp = NULL;
 | 
						|
#endif
 | 
						|
	const size_t stack_size = th->vm->default_params.thread_machine_stack_size;
 | 
						|
	const size_t space = space_size(stack_size);
 | 
						|
 | 
						|
        th->machine.stack_maxsize = stack_size - space;
 | 
						|
#ifdef __ia64
 | 
						|
        th->machine.stack_maxsize /= 2;
 | 
						|
        th->machine.register_stack_maxsize = th->machine.stack_maxsize;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_PTHREAD_ATTR_INIT
 | 
						|
	CHECK_ERR(pthread_attr_init(&attr));
 | 
						|
 | 
						|
# ifdef PTHREAD_STACK_MIN
 | 
						|
	thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
 | 
						|
	CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
 | 
						|
# endif
 | 
						|
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
 | 
						|
	CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
 | 
						|
# endif
 | 
						|
	CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
 | 
						|
#endif
 | 
						|
#ifdef get_stack_of
 | 
						|
	native_mutex_lock(&th->interrupt_lock);
 | 
						|
#endif
 | 
						|
	err = pthread_create(&th->thread_id, attrp, thread_start_func_1, th);
 | 
						|
#ifdef get_stack_of
 | 
						|
	if (!err) {
 | 
						|
	    get_stack_of(th->thread_id,
 | 
						|
			 &th->machine.stack_start,
 | 
						|
			 &th->machine.stack_maxsize);
 | 
						|
	}
 | 
						|
	native_mutex_unlock(&th->interrupt_lock);
 | 
						|
#endif
 | 
						|
	thread_debug("create: %p (%d)\n", (void *)th, err);
 | 
						|
	/* should be done in the created thread */
 | 
						|
	fill_thread_id_str(th);
 | 
						|
#ifdef HAVE_PTHREAD_ATTR_INIT
 | 
						|
	CHECK_ERR(pthread_attr_destroy(&attr));
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return err;
 | 
						|
}
 | 
						|
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
static void
 | 
						|
native_thread_join(pthread_t th)
 | 
						|
{
 | 
						|
    int err = pthread_join(th, 0);
 | 
						|
    if (err) {
 | 
						|
	rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if USE_NATIVE_THREAD_PRIORITY
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_apply_priority(rb_thread_t *th)
 | 
						|
{
 | 
						|
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
 | 
						|
    struct sched_param sp;
 | 
						|
    int policy;
 | 
						|
    int priority = 0 - th->priority;
 | 
						|
    int max, min;
 | 
						|
    pthread_getschedparam(th->thread_id, &policy, &sp);
 | 
						|
    max = sched_get_priority_max(policy);
 | 
						|
    min = sched_get_priority_min(policy);
 | 
						|
 | 
						|
    if (min > priority) {
 | 
						|
	priority = min;
 | 
						|
    }
 | 
						|
    else if (max < priority) {
 | 
						|
	priority = max;
 | 
						|
    }
 | 
						|
 | 
						|
    sp.sched_priority = priority;
 | 
						|
    pthread_setschedparam(th->thread_id, policy, &sp);
 | 
						|
#else
 | 
						|
    /* not touched */
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif /* USE_NATIVE_THREAD_PRIORITY */
 | 
						|
 | 
						|
static int
 | 
						|
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
 | 
						|
{
 | 
						|
    return rb_fd_select(n, readfds, writefds, exceptfds, timeout);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_pthread_cond_signal(void *ptr)
 | 
						|
{
 | 
						|
    rb_thread_t *th = (rb_thread_t *)ptr;
 | 
						|
    thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
 | 
						|
    native_cond_signal(&th->native_thread_data.sleep_cond);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_sleep(rb_thread_t *th, struct timeval *timeout_tv)
 | 
						|
{
 | 
						|
    struct timespec timeout;
 | 
						|
    rb_nativethread_lock_t *lock = &th->interrupt_lock;
 | 
						|
    rb_nativethread_cond_t *cond = &th->native_thread_data.sleep_cond;
 | 
						|
 | 
						|
    if (timeout_tv) {
 | 
						|
	struct timespec timeout_rel;
 | 
						|
 | 
						|
	timeout_rel.tv_sec = timeout_tv->tv_sec;
 | 
						|
	timeout_rel.tv_nsec = timeout_tv->tv_usec * 1000;
 | 
						|
 | 
						|
	/* Solaris cond_timedwait() return EINVAL if an argument is greater than
 | 
						|
	 * current_time + 100,000,000.  So cut up to 100,000,000.  This is
 | 
						|
	 * considered as a kind of spurious wakeup.  The caller to native_sleep
 | 
						|
	 * should care about spurious wakeup.
 | 
						|
	 *
 | 
						|
	 * See also [Bug #1341] [ruby-core:29702]
 | 
						|
	 * http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html
 | 
						|
	 */
 | 
						|
	if (timeout_rel.tv_sec > 100000000) {
 | 
						|
	    timeout_rel.tv_sec = 100000000;
 | 
						|
	    timeout_rel.tv_nsec = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	timeout = native_cond_timeout(cond, timeout_rel);
 | 
						|
    }
 | 
						|
 | 
						|
    GVL_UNLOCK_BEGIN();
 | 
						|
    {
 | 
						|
	native_mutex_lock(lock);
 | 
						|
	th->unblock.func = ubf_pthread_cond_signal;
 | 
						|
	th->unblock.arg = th;
 | 
						|
 | 
						|
	if (RUBY_VM_INTERRUPTED(th)) {
 | 
						|
	    /* interrupted.  return immediate */
 | 
						|
	    thread_debug("native_sleep: interrupted before sleep\n");
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    if (!timeout_tv)
 | 
						|
		native_cond_wait(cond, lock);
 | 
						|
	    else
 | 
						|
		native_cond_timedwait(cond, lock, &timeout);
 | 
						|
	}
 | 
						|
	th->unblock.func = 0;
 | 
						|
	th->unblock.arg = 0;
 | 
						|
 | 
						|
	native_mutex_unlock(lock);
 | 
						|
    }
 | 
						|
    GVL_UNLOCK_END();
 | 
						|
 | 
						|
    thread_debug("native_sleep done\n");
 | 
						|
}
 | 
						|
 | 
						|
#ifdef USE_UBF_LIST
 | 
						|
static LIST_HEAD(ubf_list_head);
 | 
						|
 | 
						|
/* The thread 'th' is registered to be trying unblock. */
 | 
						|
static void
 | 
						|
register_ubf_list(rb_thread_t *th)
 | 
						|
{
 | 
						|
    struct list_node *node = &th->native_thread_data.ubf_list;
 | 
						|
 | 
						|
    if (list_empty((struct list_head*)node)) {
 | 
						|
	native_mutex_lock(&ubf_list_lock);
 | 
						|
	list_add(&ubf_list_head, node);
 | 
						|
	native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* The thread 'th' is unblocked. It no longer need to be registered. */
 | 
						|
static void
 | 
						|
unregister_ubf_list(rb_thread_t *th)
 | 
						|
{
 | 
						|
    struct list_node *node = &th->native_thread_data.ubf_list;
 | 
						|
 | 
						|
    if (!list_empty((struct list_head*)node)) {
 | 
						|
	native_mutex_lock(&ubf_list_lock);
 | 
						|
	list_del_init(node);
 | 
						|
	native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * send a signal to intent that a target thread return from blocking syscall.
 | 
						|
 * Maybe any signal is ok, but we chose SIGVTALRM.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ubf_wakeup_thread(rb_thread_t *th)
 | 
						|
{
 | 
						|
    thread_debug("thread_wait_queue_wakeup (%"PRI_THREAD_ID")\n", thread_id_str(th));
 | 
						|
    if (th)
 | 
						|
	pthread_kill(th->thread_id, SIGVTALRM);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_select(void *ptr)
 | 
						|
{
 | 
						|
    rb_thread_t *th = (rb_thread_t *)ptr;
 | 
						|
    register_ubf_list(th);
 | 
						|
 | 
						|
    /*
 | 
						|
     * ubf_wakeup_thread() doesn't guarantee to wake up a target thread.
 | 
						|
     * Therefore, we repeatedly call ubf_wakeup_thread() until a target thread
 | 
						|
     * exit from ubf function.
 | 
						|
     * In the other hands, we shouldn't call rb_thread_wakeup_timer_thread()
 | 
						|
     * if running on timer thread because it may make endless wakeups.
 | 
						|
     */
 | 
						|
    if (!pthread_equal(pthread_self(), timer_thread.id))
 | 
						|
	rb_thread_wakeup_timer_thread();
 | 
						|
    ubf_wakeup_thread(th);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ubf_threads_empty(void)
 | 
						|
{
 | 
						|
    return list_empty(&ubf_list_head);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_wakeup_all_threads(void)
 | 
						|
{
 | 
						|
    rb_thread_t *th;
 | 
						|
 | 
						|
    if (!ubf_threads_empty()) {
 | 
						|
	native_mutex_lock(&ubf_list_lock);
 | 
						|
	list_for_each(&ubf_list_head, th,
 | 
						|
		      native_thread_data.ubf_list) {
 | 
						|
	    ubf_wakeup_thread(th);
 | 
						|
	}
 | 
						|
	native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else /* USE_UBF_LIST */
 | 
						|
#define register_ubf_list(th) (void)(th)
 | 
						|
#define unregister_ubf_list(th) (void)(th)
 | 
						|
#define ubf_select 0
 | 
						|
static void ubf_wakeup_all_threads(void) { return; }
 | 
						|
static int ubf_threads_empty(void) { return 1; }
 | 
						|
#endif /* USE_UBF_LIST */
 | 
						|
 | 
						|
#define TT_DEBUG 0
 | 
						|
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
 | 
						|
 | 
						|
/* 100ms.  10ms is too small for user level thread scheduling
 | 
						|
 * on recent Linux (tested on 2.6.35)
 | 
						|
 */
 | 
						|
#define TIME_QUANTUM_USEC (100 * 1000)
 | 
						|
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
static struct {
 | 
						|
    /*
 | 
						|
     * Read end of each pipe is closed inside timer thread for shutdown
 | 
						|
     * Write ends are closed by a normal Ruby thread during shutdown
 | 
						|
     */
 | 
						|
    int normal[2];
 | 
						|
    int low[2];
 | 
						|
 | 
						|
    /* volatile for signal handler use: */
 | 
						|
    volatile rb_pid_t owner_process;
 | 
						|
    rb_atomic_t writing;
 | 
						|
} timer_thread_pipe = {
 | 
						|
    {-1, -1},
 | 
						|
    {-1, -1}, /* low priority */
 | 
						|
};
 | 
						|
 | 
						|
NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd));
 | 
						|
static void
 | 
						|
async_bug_fd(const char *mesg, int errno_arg, int fd)
 | 
						|
{
 | 
						|
    char buff[64];
 | 
						|
    size_t n = strlcpy(buff, mesg, sizeof(buff));
 | 
						|
    if (n < sizeof(buff)-3) {
 | 
						|
	ruby_snprintf(buff, sizeof(buff)-n, "(%d)", fd);
 | 
						|
    }
 | 
						|
    rb_async_bug_errno(buff, errno_arg);
 | 
						|
}
 | 
						|
 | 
						|
/* only use signal-safe system calls here */
 | 
						|
static void
 | 
						|
rb_thread_wakeup_timer_thread_fd(volatile int *fdp)
 | 
						|
{
 | 
						|
    ssize_t result;
 | 
						|
    int fd = *fdp; /* access fdp exactly once here and do not reread fdp */
 | 
						|
 | 
						|
    /* already opened */
 | 
						|
    if (fd >= 0 && timer_thread_pipe.owner_process == getpid()) {
 | 
						|
	static const char buff[1] = {'!'};
 | 
						|
      retry:
 | 
						|
	if ((result = write(fd, buff, 1)) <= 0) {
 | 
						|
	    int e = errno;
 | 
						|
	    switch (e) {
 | 
						|
	      case EINTR: goto retry;
 | 
						|
	      case EAGAIN:
 | 
						|
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
 | 
						|
	      case EWOULDBLOCK:
 | 
						|
#endif
 | 
						|
		break;
 | 
						|
	      default:
 | 
						|
		async_bug_fd("rb_thread_wakeup_timer_thread: write", e, fd);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n");
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	/* ignore wakeup */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_thread_wakeup_timer_thread(void)
 | 
						|
{
 | 
						|
    /* must be safe inside sighandler, so no mutex */
 | 
						|
    ATOMIC_INC(timer_thread_pipe.writing);
 | 
						|
    rb_thread_wakeup_timer_thread_fd(&timer_thread_pipe.normal[1]);
 | 
						|
    ATOMIC_DEC(timer_thread_pipe.writing);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
rb_thread_wakeup_timer_thread_low(void)
 | 
						|
{
 | 
						|
    ATOMIC_INC(timer_thread_pipe.writing);
 | 
						|
    rb_thread_wakeup_timer_thread_fd(&timer_thread_pipe.low[1]);
 | 
						|
    ATOMIC_DEC(timer_thread_pipe.writing);
 | 
						|
}
 | 
						|
 | 
						|
/* VM-dependent API is not available for this function */
 | 
						|
static void
 | 
						|
consume_communication_pipe(int fd)
 | 
						|
{
 | 
						|
#define CCP_READ_BUFF_SIZE 1024
 | 
						|
    /* buffer can be shared because no one refers to them. */
 | 
						|
    static char buff[CCP_READ_BUFF_SIZE];
 | 
						|
    ssize_t result;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
	result = read(fd, buff, sizeof(buff));
 | 
						|
	if (result == 0) {
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
	else if (result < 0) {
 | 
						|
	    int e = errno;
 | 
						|
	    switch (e) {
 | 
						|
	      case EINTR:
 | 
						|
		continue; /* retry */
 | 
						|
	      case EAGAIN:
 | 
						|
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
 | 
						|
	      case EWOULDBLOCK:
 | 
						|
#endif
 | 
						|
		return;
 | 
						|
	      default:
 | 
						|
		async_bug_fd("consume_communication_pipe: read", e, fd);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define CLOSE_INVALIDATE(expr) \
 | 
						|
    close_invalidate(&timer_thread_pipe.expr,"close_invalidate: "#expr)
 | 
						|
static void
 | 
						|
close_invalidate(volatile int *fdp, const char *msg)
 | 
						|
{
 | 
						|
    int fd = *fdp; /* access fdp exactly once here and do not reread fdp */
 | 
						|
 | 
						|
    *fdp = -1;
 | 
						|
    if (close(fd) < 0) {
 | 
						|
	async_bug_fd(msg, errno, fd);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
set_nonblock(int fd)
 | 
						|
{
 | 
						|
    int oflags;
 | 
						|
    int err;
 | 
						|
 | 
						|
    oflags = fcntl(fd, F_GETFL);
 | 
						|
    if (oflags == -1)
 | 
						|
	rb_sys_fail(0);
 | 
						|
    oflags |= O_NONBLOCK;
 | 
						|
    err = fcntl(fd, F_SETFL, oflags);
 | 
						|
    if (err == -1)
 | 
						|
	rb_sys_fail(0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
setup_communication_pipe_internal(int pipes[2])
 | 
						|
{
 | 
						|
    int err;
 | 
						|
 | 
						|
    err = rb_cloexec_pipe(pipes);
 | 
						|
    if (err != 0) {
 | 
						|
	rb_warn("Failed to create communication pipe for timer thread: %s",
 | 
						|
	        strerror(errno));
 | 
						|
	return -1;
 | 
						|
    }
 | 
						|
    rb_update_max_fd(pipes[0]);
 | 
						|
    rb_update_max_fd(pipes[1]);
 | 
						|
    set_nonblock(pipes[0]);
 | 
						|
    set_nonblock(pipes[1]);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* communication pipe with timer thread and signal handler */
 | 
						|
static int
 | 
						|
setup_communication_pipe(void)
 | 
						|
{
 | 
						|
    VM_ASSERT(timer_thread_pipe.owner_process == 0);
 | 
						|
    VM_ASSERT(timer_thread_pipe.normal[0] == -1);
 | 
						|
    VM_ASSERT(timer_thread_pipe.normal[1] == -1);
 | 
						|
    VM_ASSERT(timer_thread_pipe.low[0] == -1);
 | 
						|
    VM_ASSERT(timer_thread_pipe.low[1] == -1);
 | 
						|
 | 
						|
    if (setup_communication_pipe_internal(timer_thread_pipe.normal) < 0) {
 | 
						|
	return errno;
 | 
						|
    }
 | 
						|
    if (setup_communication_pipe_internal(timer_thread_pipe.low) < 0) {
 | 
						|
	int e = errno;
 | 
						|
	CLOSE_INVALIDATE(normal[0]);
 | 
						|
	CLOSE_INVALIDATE(normal[1]);
 | 
						|
	return e;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Let the timer thread sleep a while.
 | 
						|
 *
 | 
						|
 * The timer thread sleeps until woken up by rb_thread_wakeup_timer_thread() if only one Ruby thread is running.
 | 
						|
 * @pre the calling context is in the timer thread.
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
timer_thread_sleep(rb_global_vm_lock_t* gvl)
 | 
						|
{
 | 
						|
    int result;
 | 
						|
    int need_polling;
 | 
						|
    struct pollfd pollfds[2];
 | 
						|
 | 
						|
    pollfds[0].fd = timer_thread_pipe.normal[0];
 | 
						|
    pollfds[0].events = POLLIN;
 | 
						|
    pollfds[1].fd = timer_thread_pipe.low[0];
 | 
						|
    pollfds[1].events = POLLIN;
 | 
						|
 | 
						|
    need_polling = !ubf_threads_empty();
 | 
						|
 | 
						|
    if (gvl->waiting > 0 || need_polling) {
 | 
						|
	/* polling (TIME_QUANTUM_USEC usec) */
 | 
						|
	result = poll(pollfds, 1, TIME_QUANTUM_USEC/1000);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	/* wait (infinite) */
 | 
						|
	result = poll(pollfds, numberof(pollfds), -1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (result == 0) {
 | 
						|
	/* maybe timeout */
 | 
						|
    }
 | 
						|
    else if (result > 0) {
 | 
						|
	consume_communication_pipe(timer_thread_pipe.normal[0]);
 | 
						|
	consume_communication_pipe(timer_thread_pipe.low[0]);
 | 
						|
    }
 | 
						|
    else { /* result < 0 */
 | 
						|
	int e = errno;
 | 
						|
	switch (e) {
 | 
						|
	  case EBADF:
 | 
						|
	  case EINVAL:
 | 
						|
	  case ENOMEM: /* from Linux man */
 | 
						|
	  case EFAULT: /* from FreeBSD man */
 | 
						|
	    rb_async_bug_errno("thread_timer: select", e);
 | 
						|
	  default:
 | 
						|
	    /* ignore */;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else /* USE_SLEEPY_TIMER_THREAD */
 | 
						|
# define PER_NANO 1000000000
 | 
						|
void rb_thread_wakeup_timer_thread(void) {}
 | 
						|
static void rb_thread_wakeup_timer_thread_low(void) {}
 | 
						|
 | 
						|
static rb_nativethread_lock_t timer_thread_lock;
 | 
						|
static rb_nativethread_cond_t timer_thread_cond;
 | 
						|
 | 
						|
static inline void
 | 
						|
timer_thread_sleep(rb_global_vm_lock_t* unused)
 | 
						|
{
 | 
						|
    struct timespec ts;
 | 
						|
    ts.tv_sec = 0;
 | 
						|
    ts.tv_nsec = TIME_QUANTUM_USEC * 1000;
 | 
						|
    ts = native_cond_timeout(&timer_thread_cond, ts);
 | 
						|
 | 
						|
    native_cond_timedwait(&timer_thread_cond, &timer_thread_lock, &ts);
 | 
						|
}
 | 
						|
#endif /* USE_SLEEPY_TIMER_THREAD */
 | 
						|
 | 
						|
#if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME)
 | 
						|
# define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name)
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
native_set_thread_name(rb_thread_t *th)
 | 
						|
{
 | 
						|
#ifdef SET_CURRENT_THREAD_NAME
 | 
						|
    if (!th->first_func && th->first_proc) {
 | 
						|
	VALUE loc = rb_proc_location(th->first_proc);
 | 
						|
	if (!NIL_P(loc)) {
 | 
						|
	    const VALUE *ptr = RARRAY_CONST_PTR(loc); /* [ String, Fixnum ] */
 | 
						|
	    char *name, *p;
 | 
						|
	    char buf[16];
 | 
						|
	    size_t len;
 | 
						|
	    int n;
 | 
						|
 | 
						|
	    name = RSTRING_PTR(ptr[0]);
 | 
						|
	    p = strrchr(name, '/'); /* show only the basename of the path. */
 | 
						|
	    if (p && p[1])
 | 
						|
		name = p + 1;
 | 
						|
 | 
						|
	    n = snprintf(buf, sizeof(buf), "%s:%d", name, NUM2INT(ptr[1]));
 | 
						|
	    rb_gc_force_recycle(loc); /* acts as a GC guard, too */
 | 
						|
 | 
						|
	    len = (size_t)n;
 | 
						|
	    if (len >= sizeof(buf)) {
 | 
						|
		buf[sizeof(buf)-2] = '*';
 | 
						|
		buf[sizeof(buf)-1] = '\0';
 | 
						|
	    }
 | 
						|
	    SET_CURRENT_THREAD_NAME(buf);
 | 
						|
	}
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
thread_timer(void *p)
 | 
						|
{
 | 
						|
    rb_global_vm_lock_t *gvl = (rb_global_vm_lock_t *)p;
 | 
						|
 | 
						|
    if (TT_DEBUG) WRITE_CONST(2, "start timer thread\n");
 | 
						|
 | 
						|
#ifdef SET_CURRENT_THREAD_NAME
 | 
						|
    SET_CURRENT_THREAD_NAME("ruby-timer-thr");
 | 
						|
#endif
 | 
						|
 | 
						|
#if !USE_SLEEPY_TIMER_THREAD
 | 
						|
    native_mutex_initialize(&timer_thread_lock);
 | 
						|
    native_cond_initialize(&timer_thread_cond, RB_CONDATTR_CLOCK_MONOTONIC);
 | 
						|
    native_mutex_lock(&timer_thread_lock);
 | 
						|
#endif
 | 
						|
    while (system_working > 0) {
 | 
						|
 | 
						|
	/* timer function */
 | 
						|
	ubf_wakeup_all_threads();
 | 
						|
	timer_thread_function(0);
 | 
						|
 | 
						|
	if (TT_DEBUG) WRITE_CONST(2, "tick\n");
 | 
						|
 | 
						|
        /* wait */
 | 
						|
	timer_thread_sleep(gvl);
 | 
						|
    }
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
    CLOSE_INVALIDATE(normal[0]);
 | 
						|
    CLOSE_INVALIDATE(low[0]);
 | 
						|
#else
 | 
						|
    native_mutex_unlock(&timer_thread_lock);
 | 
						|
    native_cond_destroy(&timer_thread_cond);
 | 
						|
    native_mutex_destroy(&timer_thread_lock);
 | 
						|
#endif
 | 
						|
 | 
						|
    if (TT_DEBUG) WRITE_CONST(2, "finish timer thread\n");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
rb_thread_create_timer_thread(void)
 | 
						|
{
 | 
						|
    if (!timer_thread.created) {
 | 
						|
	int err;
 | 
						|
#ifdef HAVE_PTHREAD_ATTR_INIT
 | 
						|
	pthread_attr_t attr;
 | 
						|
 | 
						|
	err = pthread_attr_init(&attr);
 | 
						|
	if (err != 0) {
 | 
						|
	    rb_warn("pthread_attr_init failed for timer: %s, scheduling broken",
 | 
						|
		    strerror(err));
 | 
						|
	    return;
 | 
						|
        }
 | 
						|
# ifdef PTHREAD_STACK_MIN
 | 
						|
	{
 | 
						|
	    const size_t min_size = (4096 * 4);
 | 
						|
	    /* Allocate the machine stack for the timer thread
 | 
						|
	     * at least 16KB (4 pages).  FreeBSD 8.2 AMD64 causes
 | 
						|
	     * machine stack overflow only with PTHREAD_STACK_MIN.
 | 
						|
	     */
 | 
						|
	    size_t stack_size = PTHREAD_STACK_MIN; /* may be dynamic, get only once */
 | 
						|
	    if (stack_size < min_size) stack_size = min_size;
 | 
						|
	    if (THREAD_DEBUG) stack_size += BUFSIZ;
 | 
						|
	    pthread_attr_setstacksize(&attr, stack_size);
 | 
						|
	}
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
	err = setup_communication_pipe();
 | 
						|
	if (err != 0) {
 | 
						|
	    rb_warn("pipe creation failed for timer: %s, scheduling broken",
 | 
						|
		    strerror(err));
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
#endif /* USE_SLEEPY_TIMER_THREAD */
 | 
						|
 | 
						|
	/* create timer thread */
 | 
						|
	if (timer_thread.created) {
 | 
						|
	    rb_bug("rb_thread_create_timer_thread: Timer thread was already created\n");
 | 
						|
	}
 | 
						|
#ifdef HAVE_PTHREAD_ATTR_INIT
 | 
						|
	err = pthread_create(&timer_thread.id, &attr, thread_timer, &GET_VM()->gvl);
 | 
						|
	pthread_attr_destroy(&attr);
 | 
						|
#else
 | 
						|
	err = pthread_create(&timer_thread.id, NULL, thread_timer, &GET_VM()->gvl);
 | 
						|
#endif
 | 
						|
	if (err != 0) {
 | 
						|
	    rb_warn("pthread_create failed for timer: %s, scheduling broken",
 | 
						|
		    strerror(err));
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
	    CLOSE_INVALIDATE(normal[0]);
 | 
						|
	    CLOSE_INVALIDATE(normal[1]);
 | 
						|
	    CLOSE_INVALIDATE(low[0]);
 | 
						|
	    CLOSE_INVALIDATE(low[1]);
 | 
						|
#endif
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* validate pipe on this process */
 | 
						|
	timer_thread_pipe.owner_process = getpid();
 | 
						|
	timer_thread.created = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_stop_timer_thread(void)
 | 
						|
{
 | 
						|
    int stopped;
 | 
						|
    stopped = --system_working <= 0;
 | 
						|
 | 
						|
    if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
    if (stopped) {
 | 
						|
	/* prevent wakeups from signal handler ASAP */
 | 
						|
	timer_thread_pipe.owner_process = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * however, the above was not enough: the FD may already be
 | 
						|
	 * captured and in the middle of a write while we are running,
 | 
						|
	 * so wait for that to finish:
 | 
						|
	 */
 | 
						|
	while (ATOMIC_CAS(timer_thread_pipe.writing, (rb_atomic_t)0, 0)) {
 | 
						|
	    native_thread_yield();
 | 
						|
	}
 | 
						|
 | 
						|
	/* stop writing ends of pipes so timer thread notices EOF */
 | 
						|
	CLOSE_INVALIDATE(normal[1]);
 | 
						|
	CLOSE_INVALIDATE(low[1]);
 | 
						|
 | 
						|
	/* timer thread will stop looping when system_working <= 0: */
 | 
						|
	native_thread_join(timer_thread.id);
 | 
						|
 | 
						|
	/* timer thread will close the read end on exit: */
 | 
						|
	VM_ASSERT(timer_thread_pipe.normal[0] == -1);
 | 
						|
	VM_ASSERT(timer_thread_pipe.low[0] == -1);
 | 
						|
 | 
						|
	if (TT_DEBUG) fprintf(stderr, "joined timer thread\n");
 | 
						|
	timer_thread.created = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return stopped;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_reset_timer_thread(void)
 | 
						|
{
 | 
						|
    if (TT_DEBUG)  fprintf(stderr, "reset timer thread\n");
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_SIGALTSTACK
 | 
						|
int
 | 
						|
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
 | 
						|
{
 | 
						|
    void *base;
 | 
						|
    size_t size;
 | 
						|
    const size_t water_mark = 1024 * 1024;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
    if (get_stack(&base, &size) == 0) {
 | 
						|
# ifdef __APPLE__
 | 
						|
	if (pthread_equal(th->thread_id, native_main_thread.id)) {
 | 
						|
	    struct rlimit rlim;
 | 
						|
	    if (getrlimit(RLIMIT_STACK, &rlim) == 0 && rlim.rlim_cur > size) {
 | 
						|
		size = (size_t)rlim.rlim_cur;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
# endif
 | 
						|
	base = (char *)base + STACK_DIR_UPPER(+size, -size);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    if (th) {
 | 
						|
	size = th->machine.stack_maxsize;
 | 
						|
	base = (char *)th->machine.stack_start - STACK_DIR_UPPER(0, size);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    size /= RUBY_STACK_SPACE_RATIO;
 | 
						|
    if (size > water_mark) size = water_mark;
 | 
						|
    if (IS_STACK_DIR_UPPER()) {
 | 
						|
	if (size > ~(size_t)base+1) size = ~(size_t)base+1;
 | 
						|
	if (addr > base && addr <= (void *)((char *)base + size)) return 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	if (size > (size_t)base) size = (size_t)base;
 | 
						|
	if (addr > (void *)((char *)base - size) && addr <= base) return 1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int
 | 
						|
rb_reserved_fd_p(int fd)
 | 
						|
{
 | 
						|
#if USE_SLEEPY_TIMER_THREAD
 | 
						|
    if ((fd == timer_thread_pipe.normal[0] ||
 | 
						|
	 fd == timer_thread_pipe.normal[1] ||
 | 
						|
	 fd == timer_thread_pipe.low[0] ||
 | 
						|
	 fd == timer_thread_pipe.low[1]) &&
 | 
						|
	timer_thread_pipe.owner_process == getpid()) { /* async-signal-safe */
 | 
						|
	return 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
rb_nativethread_id_t
 | 
						|
rb_nativethread_self(void)
 | 
						|
{
 | 
						|
    return pthread_self();
 | 
						|
}
 | 
						|
 | 
						|
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */
 |