1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/gc.c
matz 224e59c6f8 matz
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@791 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2000-06-28 08:31:35 +00:00

1251 lines
24 KiB
C

/**********************************************************************
gc.c -
$Author$
$Date$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2000 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "rubysig.h"
#include "st.h"
#include "node.h"
#include "env.h"
#include "re.h"
#include <stdio.h>
#include <setjmp.h>
void re_free_registers _((struct re_registers*));
void rb_io_fptr_finalize _((struct OpenFile*));
#ifndef setjmp
#ifdef HAVE__SETJMP
#define setjmp(env) _setjmp(env)
#define longjmp(env,val) _longjmp(env,val)
#endif
#endif
#ifdef C_ALLOCA
#ifndef alloca
void *alloca();
#endif
#endif
static void run_final();
#ifndef GC_MALLOC_LIMIT
#if defined(MSDOS) || defined(__human68k__)
#define GC_MALLOC_LIMIT 100000
#else
#define GC_MALLOC_LIMIT 400000
#endif
#endif
static unsigned long malloc_memories = 0;
static unsigned long alloc_objects = 0;
static void
mem_error(mesg)
char *mesg;
{
if (rb_safe_level() >= 4) {
rb_raise(rb_eNoMemError, mesg);
}
rb_fatal(mesg);
}
void *
ruby_xmalloc(size)
size_t size;
{
void *mem;
if (size < 0) {
rb_raise(rb_eNoMemError, "negative allocation size (or too big)");
}
if (size == 0) size = 1;
malloc_memories += size;
if (malloc_memories > GC_MALLOC_LIMIT) {
rb_gc();
}
mem = malloc(size);
if (!mem) {
rb_gc();
mem = malloc(size);
if (!mem) {
if (size >= 10 * 1024 * 1024) {
rb_raise(rb_eNoMemError, "tryed to allocate too big memory");
}
mem_error("failed to allocate memory");
}
}
return mem;
}
void *
ruby_xcalloc(n, size)
size_t n, size;
{
void *mem;
mem = xmalloc(n * size);
memset(mem, 0, n * size);
return mem;
}
void *
ruby_xrealloc(ptr, size)
void *ptr;
size_t size;
{
void *mem;
if (size < 0) {
rb_raise(rb_eArgError, "negative re-allocation size");
}
if (!ptr) return xmalloc(size);
if (size == 0) size = 1;
malloc_memories += size;
mem = realloc(ptr, size);
if (!mem) {
rb_gc();
mem = realloc(ptr, size);
if (!mem)
if (size >= 10 * 1024 * 1024) {
rb_raise(rb_eNoMemError, "tryed to re-allocate too big memory");
}
mem_error("failed to allocate memory(realloc)");
}
return mem;
}
void
ruby_xfree(x)
void *x;
{
if (x) free(x);
}
extern int ruby_in_compile;
static int dont_gc;
static int during_gc;
static int need_call_final = 0;
static VALUE
gc_enable()
{
int old = dont_gc;
dont_gc = Qfalse;
return old;
}
static VALUE
gc_disable()
{
int old = dont_gc;
dont_gc = Qtrue;
return old;
}
VALUE rb_mGC;
static struct gc_list {
VALUE *varptr;
struct gc_list *next;
} *Global_List = 0;
void
rb_gc_register_address(addr)
VALUE *addr;
{
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = Global_List;
tmp->varptr = addr;
Global_List = tmp;
}
void
rb_gc_unregister_address(addr)
VALUE *addr;
{
struct gc_list *tmp = Global_List;
if (tmp->varptr == addr) {
Global_List = tmp->next;
free(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
free(t);
break;
}
tmp = tmp->next;
}
}
void
rb_global_variable(var)
VALUE *var;
{
rb_gc_register_address(var);
}
typedef struct RVALUE {
union {
struct {
unsigned long flag; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RVarmap varmap;
struct SCOPE scope;
} as;
} RVALUE;
static RVALUE *freelist = 0;
#define HEAPS_INCREMENT 10
static RVALUE **heaps;
static int heaps_length = 0;
static int heaps_used = 0;
#define HEAP_SLOTS 10000
#define FREE_MIN 4096
static RVALUE *himem, *lomem;
static void
add_heap()
{
RVALUE *p, *pend;
if (heaps_used == heaps_length) {
/* Realloc heaps */
heaps_length += HEAPS_INCREMENT;
heaps = (heaps_used>0)?
(RVALUE**)realloc(heaps, heaps_length*sizeof(RVALUE*)):
(RVALUE**)malloc(heaps_length*sizeof(RVALUE*));
if (heaps == 0) mem_error("heaps: can't alloc memory");
}
p = heaps[heaps_used++] = (RVALUE*)malloc(sizeof(RVALUE)*HEAP_SLOTS);
if (p == 0) mem_error("add_heap: can't alloc memory");
pend = p + HEAP_SLOTS;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
while (p < pend) {
p->as.free.flag = 0;
p->as.free.next = freelist;
freelist = p;
p++;
}
}
#define RANY(o) ((RVALUE*)(o))
VALUE
rb_newobj()
{
VALUE obj;
if (freelist) {
retry:
obj = (VALUE)freelist;
freelist = freelist->as.free.next;
alloc_objects++;
return obj;
}
if (dont_gc || during_gc || rb_prohibit_interrupt) add_heap();
else rb_gc();
goto retry;
}
VALUE
rb_data_object_alloc(klass, datap, dmark, dfree)
VALUE klass;
void *datap;
RUBY_DATA_FUNC dmark;
RUBY_DATA_FUNC dfree;
{
NEWOBJ(data, struct RData);
OBJSETUP(data, klass, T_DATA);
data->data = datap;
data->dfree = dfree;
data->dmark = dmark;
return (VALUE)data;
}
extern st_table *rb_class_tbl;
VALUE *rb_gc_stack_start = 0;
#if defined(__GNUC__) && __GNUC__ >= 2
__inline__
#endif
static int
is_pointer_to_heap(ptr)
void *ptr;
{
register RVALUE *p = RANY(ptr);
register RVALUE *heap_org;
register long i;
if (p < lomem || p > himem) return Qfalse;
/* check if p looks like a pointer */
for (i=0; i < heaps_used; i++) {
heap_org = heaps[i];
if (heap_org <= p && p < heap_org + HEAP_SLOTS
&& ((((char*)p)-((char*)heap_org))%sizeof(RVALUE)) == 0)
return Qtrue;
}
return Qfalse;
}
static void
mark_locations_array(x, n)
register VALUE *x;
register long n;
{
while (n--) {
if (is_pointer_to_heap(*x)) {
rb_gc_mark(*x);
}
x++;
}
}
void
rb_gc_mark_locations(start, end)
VALUE *start, *end;
{
VALUE *tmp;
long n;
if (start > end) {
tmp = start;
start = end;
end = tmp;
}
n = end - start + 1;
mark_locations_array(start,n);
}
static int
mark_entry(key, value)
ID key;
VALUE value;
{
rb_gc_mark(value);
return ST_CONTINUE;
}
void
rb_mark_tbl(tbl)
st_table *tbl;
{
if (!tbl) return;
st_foreach(tbl, mark_entry, 0);
}
static int
mark_hashentry(key, value)
VALUE key;
VALUE value;
{
rb_gc_mark(key);
rb_gc_mark(value);
return ST_CONTINUE;
}
void
rb_mark_hash(tbl)
st_table *tbl;
{
if (!tbl) return;
st_foreach(tbl, mark_hashentry, 0);
}
void
rb_gc_mark_maybe(obj)
void *obj;
{
if (is_pointer_to_heap(obj)) {
rb_gc_mark(obj);
}
}
void
rb_gc_mark(ptr)
void *ptr;
{
register RVALUE *obj = RANY(ptr);
Top:
if (FIXNUM_P(obj)) return; /* fixnum not marked */
if (rb_special_const_p((VALUE)obj)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
if (obj->as.basic.flags & FL_MARK) return; /* already marked */
obj->as.basic.flags |= FL_MARK;
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar((VALUE)obj);
}
switch (obj->as.basic.flags & T_MASK) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_CREF:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
rb_gc_mark(obj->as.node.u2.node);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_EVSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_FBODY:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
rb_gc_mark(obj->as.node.u1.node);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_NEWLINE:
obj = RANY(obj->as.node.u3.node);
goto Top;
case NODE_WHILE: /* 1,2 */
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
rb_gc_mark(obj->as.node.u1.node);
/* fall through */
case NODE_METHOD: /* 2 */
case NODE_NOT:
case NODE_GASGN:
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_CASGN:
case NODE_MODULE:
case NODE_COLON3:
case NODE_OPT_N:
obj = RANY(obj->as.node.u2.node);
goto Top;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_YIELD:
case NODE_COLON2:
case NODE_ARGS:
obj = RANY(obj->as.node.u1.node);
goto Top;
case NODE_SCOPE: /* 2,3 */
case NODE_CLASS:
case NODE_BLOCK_PASS:
rb_gc_mark(obj->as.node.u3.node);
obj = RANY(obj->as.node.u2.node);
goto Top;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_CFUNC:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_BREAK:
case NODE_NEXT:
case NODE_REDO:
case NODE_RETRY:
case NODE_UNDEF:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ATTRSET:
case NODE_BLOCK_ARG:
case NODE_POSTEXE:
break;
#ifdef C_ALLOCA
case NODE_ALLOCA:
mark_locations_array((VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
obj = RANY(obj->as.node.u2.node);
goto Top;
#endif
default:
if (is_pointer_to_heap(obj->as.node.u1.node)) {
rb_gc_mark(obj->as.node.u1.node);
}
if (is_pointer_to_heap(obj->as.node.u2.node)) {
rb_gc_mark(obj->as.node.u2.node);
}
if (is_pointer_to_heap(obj->as.node.u3.node)) {
obj = RANY(obj->as.node.u3.node);
goto Top;
}
}
return; /* no need to mark class. */
}
rb_gc_mark(obj->as.basic.klass);
switch (obj->as.basic.flags & T_MASK) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
rb_gc_mark(obj->as.klass.super);
rb_mark_tbl(obj->as.klass.m_tbl);
rb_mark_tbl(obj->as.klass.iv_tbl);
break;
case T_ARRAY:
{
int i, len = obj->as.array.len;
VALUE *ptr = obj->as.array.ptr;
for (i=0; i < len; i++)
rb_gc_mark(*ptr++);
}
break;
case T_HASH:
rb_mark_hash(obj->as.hash.tbl);
rb_gc_mark(obj->as.hash.ifnone);
break;
case T_STRING:
if (obj->as.string.orig) {
obj = RANY(obj->as.string.orig);
goto Top;
}
break;
case T_DATA:
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
break;
case T_OBJECT:
rb_mark_tbl(obj->as.object.iv_tbl);
break;
case T_FILE:
case T_REGEXP:
case T_FLOAT:
case T_BIGNUM:
break;
case T_MATCH:
if (obj->as.match.str) {
obj = RANY(obj->as.match.str);
goto Top;
}
break;
case T_VARMAP:
rb_gc_mark(obj->as.varmap.val);
obj = RANY(obj->as.varmap.next);
goto Top;
break;
case T_SCOPE:
if (obj->as.scope.local_vars &&
obj->as.scope.flag != SCOPE_ALLOCA) {
int n = obj->as.scope.local_tbl[0]+1;
VALUE *vars = &obj->as.scope.local_vars[-1];
while (n--) {
rb_gc_mark(*vars);
vars++;
}
}
break;
case T_STRUCT:
{
int i, len = obj->as.rstruct.len;
VALUE *ptr = obj->as.rstruct.ptr;
for (i=0; i < len; i++)
rb_gc_mark(*ptr++);
}
break;
default:
rb_bug("rb_gc_mark(): unknown data type 0x%x(0x%x) %s",
obj->as.basic.flags & T_MASK, obj,
is_pointer_to_heap(obj)?"corrupted object":"non object");
}
}
#define MIN_FREE_OBJ 512
static void obj_free _((VALUE));
static void
gc_sweep()
{
RVALUE *p, *pend, *final_list;
int freed = 0;
int i, used = heaps_used;
if (ruby_in_compile) {
/* sould not reclaim nodes during compilation */
for (i = 0; i < used; i++) {
p = heaps[i]; pend = p + HEAP_SLOTS;
while (p < pend) {
if (!(p->as.basic.flags&FL_MARK) && BUILTIN_TYPE(p) == T_NODE)
rb_gc_mark(p);
p++;
}
}
}
freelist = 0;
final_list = 0;
for (i = 0; i < used; i++) {
int n = 0;
p = heaps[i]; pend = p + HEAP_SLOTS;
while (p < pend) {
if (!(p->as.basic.flags & FL_MARK)) {
if (p->as.basic.flags) {
obj_free((VALUE)p);
}
if (need_call_final && FL_TEST(p, FL_FINALIZE)) {
p->as.free.flag = FL_MARK; /* remain marked */
p->as.free.next = final_list;
final_list = p;
}
else {
p->as.free.flag = 0;
p->as.free.next = freelist;
freelist = p;
}
n++;
}
else if (RBASIC(p)->flags == FL_MARK) {
/* objects to be finalized */
/* do notning remain marked */
}
else {
RBASIC(p)->flags &= ~FL_MARK;
}
p++;
}
freed += n;
}
if (freed < FREE_MIN) {
add_heap();
}
during_gc = 0;
/* clear finalization list */
if (need_call_final) {
RVALUE *tmp;
for (p = final_list; p; p = tmp) {
tmp = p->as.free.next;
run_final((VALUE)p);
p->as.free.flag = 0;
p->as.free.next = freelist;
freelist = p;
}
}
}
void
rb_gc_force_recycle(p)
VALUE p;
{
RANY(p)->as.free.flag = 0;
RANY(p)->as.free.next = freelist;
freelist = RANY(p);
}
static void
obj_free(obj)
VALUE obj;
{
switch (RANY(obj)->as.basic.flags & T_MASK) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
}
switch (RANY(obj)->as.basic.flags & T_MASK) {
case T_OBJECT:
if (RANY(obj)->as.object.iv_tbl) {
st_free_table(RANY(obj)->as.object.iv_tbl);
}
break;
case T_MODULE:
case T_CLASS:
rb_clear_cache();
st_free_table(RANY(obj)->as.klass.m_tbl);
if (RANY(obj)->as.object.iv_tbl) {
st_free_table(RANY(obj)->as.object.iv_tbl);
}
break;
case T_STRING:
#define STR_NO_ORIG FL_USER3 /* copied from string.c */
if (!RANY(obj)->as.string.orig || FL_TEST(obj, STR_NO_ORIG))
free(RANY(obj)->as.string.ptr);
break;
case T_ARRAY:
if (RANY(obj)->as.array.ptr) free(RANY(obj)->as.array.ptr);
break;
case T_HASH:
if (RANY(obj)->as.hash.tbl)
st_free_table(RANY(obj)->as.hash.tbl);
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) re_free_pattern(RANY(obj)->as.regexp.ptr);
if (RANY(obj)->as.regexp.str) free(RANY(obj)->as.regexp.str);
break;
case T_DATA:
if (DATA_PTR(obj)) {
if ((long)RANY(obj)->as.data.dfree == -1) {
free(DATA_PTR(obj));
}
else if (RANY(obj)->as.data.dfree) {
(*RANY(obj)->as.data.dfree)(DATA_PTR(obj));
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.regs) {
re_free_registers(RANY(obj)->as.match.regs);
free(RANY(obj)->as.match.regs);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
rb_io_fptr_finalize(RANY(obj)->as.file.fptr);
free(RANY(obj)->as.file.fptr);
}
break;
case T_ICLASS:
/* iClass shares table with the module */
break;
case T_FLOAT:
case T_VARMAP:
break;
case T_BIGNUM:
if (RANY(obj)->as.bignum.digits) free(RANY(obj)->as.bignum.digits);
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
free(RANY(obj)->as.node.u1.tbl);
}
break;
#ifdef C_ALLOCA
case NODE_ALLOCA:
free(RANY(obj)->as.node.u1.value);
break;
#endif
}
return; /* no need to free iv_tbl */
case T_SCOPE:
if (RANY(obj)->as.scope.local_vars &&
RANY(obj)->as.scope.flag != SCOPE_ALLOCA) {
VALUE *vars = RANY(obj)->as.scope.local_vars-1;
if (vars[0] == 0)
free(RANY(obj)->as.scope.local_tbl);
if (RANY(obj)->as.scope.flag&SCOPE_MALLOC)
free(vars);
}
break;
case T_STRUCT:
if (RANY(obj)->as.rstruct.ptr)
free(RANY(obj)->as.rstruct.ptr);
break;
default:
rb_bug("gc_sweep(): unknown data type %d",
RANY(obj)->as.basic.flags & T_MASK);
}
}
void
rb_gc_mark_frame(frame)
struct FRAME *frame;
{
mark_locations_array(frame->argv, frame->argc);
rb_gc_mark(frame->cbase);
}
#ifdef __GNUC__
#if defined(__human68k__) || defined(DJGPP)
#if defined(__human68k__)
typedef unsigned long rb_jmp_buf[8];
__asm__ (".even
_rb_setjmp:
move.l 4(sp),a0
movem.l d3-d7/a3-a5,(a0)
moveq.l #0,d0
rts");
#ifdef setjmp
#undef setjmp
#endif
#else
#if defined(DJGPP)
typedef unsigned long rb_jmp_buf[6];
__asm__ (".align 4
_rb_setjmp:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ebp
movl %eax,(%ebp)
movl %ebx,4(%ebp)
movl %ecx,8(%ebp)
movl %edx,12(%ebp)
movl %esi,16(%ebp)
movl %edi,20(%ebp)
popl %ebp
xorl %eax,%eax
ret");
#endif
#endif
int rb_setjmp (rb_jmp_buf);
#define jmp_buf rb_jmp_buf
#define setjmp rb_setjmp
#endif /* __human68k__ or DJGPP */
#endif /* __GNUC__ */
void
rb_gc()
{
struct gc_list *list;
struct FRAME * volatile frame; /* gcc 2.7.2.3 -O2 bug?? */
jmp_buf save_regs_gc_mark;
#ifdef C_ALLOCA
VALUE stack_end;
alloca(0);
# define STACK_END (&stack_end)
#else
VALUE *stack_end = alloca(1);
# define STACK_END (stack_end)
#endif
alloc_objects = 0;
malloc_memories = 0;
if (during_gc) return;
during_gc++;
/* mark frame stack */
for (frame = ruby_frame; frame; frame = frame->prev) {
rb_gc_mark_frame(frame);
if (frame->tmp) {
struct FRAME *tmp = frame->tmp;
while (tmp) {
rb_gc_mark_frame(tmp);
tmp = tmp->prev;
}
}
}
rb_gc_mark(ruby_class);
rb_gc_mark(ruby_scope);
rb_gc_mark(ruby_dyna_vars);
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf */
setjmp(save_regs_gc_mark);
mark_locations_array((VALUE*)save_regs_gc_mark, sizeof(save_regs_gc_mark) / sizeof(VALUE *));
rb_gc_mark_locations(rb_gc_stack_start, (VALUE*)STACK_END);
#if defined(__human68k__)
rb_gc_mark_locations((VALUE*)((char*)rb_gc_stack_start + 2),
(VALUE*)((char*)STACK_END + 2));
#endif
rb_gc_mark_threads();
/* mark protected global variables */
for (list = Global_List; list; list = list->next) {
rb_gc_mark(*list->varptr);
}
rb_mark_end_proc();
rb_gc_mark_global_tbl();
rb_mark_tbl(rb_class_tbl);
rb_gc_mark_trap_list();
/* mark generic instance variables for special constants */
rb_mark_generic_ivar_tbl();
gc_sweep();
}
static VALUE
gc_start()
{
rb_gc();
return Qnil;
}
void
Init_stack(addr)
VALUE *addr;
{
#ifdef __human68k__
extern void *_SEND;
rb_gc_stack_start = _SEND;
#else
VALUE start;
if (!addr) addr = &start;
rb_gc_stack_start = addr;
#endif
}
void
Init_heap()
{
if (!rb_gc_stack_start) {
Init_stack(0);
}
add_heap();
}
static VALUE
os_live_obj()
{
int i;
int n = 0;
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = heaps[i]; pend = p + HEAP_SLOTS;
for (;p < pend; p++) {
if (p->as.basic.flags) {
switch (TYPE(p)) {
case T_ICLASS:
case T_VARMAP:
case T_SCOPE:
case T_NODE:
continue;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON)) continue;
default:
rb_yield((VALUE)p);
n++;
}
}
}
}
return INT2FIX(n);
}
static VALUE
os_obj_of(of)
VALUE of;
{
int i;
int n = 0;
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = heaps[i]; pend = p + HEAP_SLOTS;
for (;p < pend; p++) {
if (p->as.basic.flags) {
switch (TYPE(p)) {
case T_ICLASS:
case T_VARMAP:
case T_SCOPE:
case T_NODE:
continue;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON)) continue;
default:
if (rb_obj_is_kind_of((VALUE)p, of)) {
rb_yield((VALUE)p);
n++;
}
}
}
}
}
return INT2FIX(n);
}
static VALUE
os_each_obj(argc, argv)
int argc;
VALUE *argv;
{
VALUE of;
if (rb_scan_args(argc, argv, "01", &of) == 0) {
return os_live_obj();
}
else {
return os_obj_of(of);
}
}
static VALUE finalizers;
static VALUE
add_final(os, proc)
VALUE os, proc;
{
if (!rb_obj_is_kind_of(proc, rb_cProc)) {
rb_raise(rb_eArgError, "wrong type argument %s (Proc required)",
rb_class2name(CLASS_OF(proc)));
}
rb_ary_push(finalizers, proc);
return proc;
}
static VALUE
rm_final(os, proc)
VALUE os, proc;
{
rb_ary_delete(finalizers, proc);
return proc;
}
static VALUE
finals()
{
return finalizers;
}
static VALUE
call_final(os, obj)
VALUE os, obj;
{
need_call_final = 1;
FL_SET(obj, FL_FINALIZE);
return obj;
}
static VALUE
run_single_final(args)
VALUE *args;
{
rb_eval_cmd(args[0], args[1]);
return Qnil;
}
static void
run_final(obj)
VALUE obj;
{
int i, status;
VALUE args[2];
obj = rb_obj_id(obj); /* make obj into id */
args[1] = rb_ary_new3(1, obj);
for (i=0; i<RARRAY(finalizers)->len; i++) {
args[0] = RARRAY(finalizers)->ptr[i];
rb_protect(run_single_final, (VALUE)args, &status);
}
}
void
rb_gc_call_finalizer_at_exit()
{
RVALUE *p, *pend;
int i;
/* run finalizers */
for (i = 0; i < heaps_used; i++) {
p = heaps[i]; pend = p + HEAP_SLOTS;
while (p < pend) {
if (FL_TEST(p, FL_FINALIZE)) {
p->as.free.flag = 0;
run_final((VALUE)p);
}
p++;
}
}
/* run data object's finaliers */
for (i = 0; i < heaps_used; i++) {
p = heaps[i]; pend = p + HEAP_SLOTS;
while (p < pend) {
if (BUILTIN_TYPE(p) == T_DATA &&
DATA_PTR(p) && RANY(p)->as.data.dfree) {
(*RANY(p)->as.data.dfree)(DATA_PTR(p));
}
else if (BUILTIN_TYPE(p) == T_FILE) {
rb_io_fptr_finalize(RANY(p)->as.file.fptr);
}
p++;
}
}
}
static VALUE
id2ref(obj, id)
VALUE obj, id;
{
unsigned long ptr;
rb_secure(4);
ptr = NUM2UINT(id);
if (FIXNUM_P(ptr)) return (VALUE)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
ptr = id ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */
if (!is_pointer_to_heap(ptr)) {
rb_raise(rb_eRangeError, "0x%x is not id value", ptr);
}
if (BUILTIN_TYPE(ptr) == 0) {
rb_raise(rb_eRangeError, "0x%x is recycled object", ptr);
}
return (VALUE)ptr;
}
void
Init_GC()
{
VALUE rb_mObSpace;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", gc_start, 0);
rb_define_singleton_method(rb_mGC, "enable", gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", gc_disable, 0);
rb_define_method(rb_mGC, "garbage_collect", gc_start, 0);
rb_mObSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObSpace, "garbage_collect", gc_start, 0);
rb_define_module_function(rb_mObSpace, "add_finalizer", add_final, 1);
rb_define_module_function(rb_mObSpace, "remove_finalizer", rm_final, 1);
rb_define_module_function(rb_mObSpace, "finalizers", finals, 0);
rb_define_module_function(rb_mObSpace, "call_finalizer", call_final, 1);
rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
rb_gc_register_address(&rb_mObSpace);
rb_global_variable(&finalizers);
rb_gc_unregister_address(&rb_mObSpace);
finalizers = rb_ary_new();
}
#undef xmalloc
#undef xcalloc
#undef xrealloc
#undef xfree
void*
xmalloc(size)
size_t size;
{
return ruby_xmalloc(size);
}
void*
xcalloc(n,size)
size_t n,size;
{
return ruby_xcalloc(n, size);
}
void*
xrealloc(ptr,size)
void *ptr;
size_t size;
{
return ruby_xrealloc(ptr, size);
}
void
xfree(ptr)
void *ptr;
{
ruby_xfree(ptr);
}