1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/test/ruby/test_complexrational.rb
tadf 74cb0507ab * test/ruby/test_rational2.rb: updated.
* test/ruby/test_complex2.rb: added.

	* test/ruby/test_complexrational.rb: added.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19491 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-23 12:34:35 +00:00

407 lines
11 KiB
Ruby

require 'test/unit'
class ComplexRational_Test < Test::Unit::TestCase
def test_rat_srat
return unless defined?(Rational)
c = SimpleRat(1,3)
cc = Rational(3,2)
assert_kind_of(Numeric, c)
assert_kind_of(Numeric, cc)
assert_instance_of(SimpleRat, c)
assert_instance_of(Rational, cc)
assert_equal(SimpleRat(1,3), +c)
assert_equal(SimpleRat(-1,3), -c)
assert_equal(SimpleRat(7,3), c + 2)
assert_equal(SimpleRat(-5,3), c - 2)
assert_equal(SimpleRat(2,3), c * 2)
assert_equal(SimpleRat(1,6), c / 2)
assert_equal(SimpleRat(1,9), c ** 2)
assert_equal(-1, c <=> 2)
assert_equal(SimpleRat(7,3), 2 + c)
assert_equal(SimpleRat(5,3), 2 - c)
assert_equal(SimpleRat(2,3), 2 * c)
assert_equal(SimpleRat(6,1), 2 / c)
assert_in_delta(1.2599, 2 ** c, 0.001)
assert_equal(1, 2 <=> c)
assert_equal(SimpleRat(11,6), c + cc)
assert_equal(SimpleRat(-7,6), c - cc)
assert_equal(SimpleRat(1,2), c * cc)
assert_equal(SimpleRat(2,9), c / cc)
assert_in_delta(0.1924, c ** cc, 0.001)
assert_equal(-1, c <=> cc)
assert_equal(SimpleRat(11,6), cc + c)
assert_equal(SimpleRat(7,6), cc - c)
assert_equal(SimpleRat(1,2), cc * c)
assert_equal(SimpleRat(9,2), cc / c)
assert_in_delta(1.1447, cc ** c, 0.001)
assert_equal(1, cc <=> c)
assert_equal(SimpleRat, (+c).class)
assert_equal(SimpleRat, (-c).class)
assert_equal(SimpleRat, (c + 2).class)
assert_equal(SimpleRat, (c - 2).class)
assert_equal(SimpleRat, (c * 2).class)
assert_equal(SimpleRat, (c / 2).class)
assert_equal(SimpleRat, (c ** 2).class)
assert_equal(SimpleRat, (2 + c).class)
assert_equal(SimpleRat, (2 - c).class)
assert_equal(SimpleRat, (2 * c).class)
assert_equal(SimpleRat, (2 / c).class)
assert_equal(Float, (2 ** c).class)
assert_equal(SimpleRat, (c + cc).class)
assert_equal(SimpleRat, (c - cc).class)
assert_equal(SimpleRat, (c * cc).class)
assert_equal(SimpleRat, (c / cc).class)
assert_equal(Float, (c ** cc).class)
assert_equal(SimpleRat, (cc + c).class)
assert_equal(SimpleRat, (cc - c).class)
assert_equal(SimpleRat, (cc * c).class)
assert_equal(SimpleRat, (cc / c).class)
assert_equal(Float, (cc ** c).class)
assert_equal(0, Rational(2,3) <=> SimpleRat(2,3))
assert_equal(0, SimpleRat(2,3) <=> Rational(2,3))
assert(Rational(2,3) == SimpleRat(2,3))
assert(SimpleRat(2,3) == Rational(2,3))
assert_equal(SimpleRat, (c + 0).class)
assert_equal(SimpleRat, (c - 0).class)
assert_equal(SimpleRat, (c * 0).class)
assert_equal(SimpleRat, (c * 1).class)
assert_equal(SimpleRat, (0 + c).class)
assert_equal(SimpleRat, (0 - c).class)
assert_equal(SimpleRat, (0 * c).class)
assert_equal(SimpleRat, (1 * c).class)
end
def test_comp_srat
return unless defined?(Rational)
c = Complex(SimpleRat(2,3),SimpleRat(1,2))
cc = Complex(Rational(3,2),Rational(2,1))
assert_equal(Complex(SimpleRat(2,3),SimpleRat(1,2)), +c)
assert_equal(Complex(SimpleRat(-2,3),SimpleRat(-1,2)), -c)
assert_equal(Complex(SimpleRat(8,3),SimpleRat(1,2)), c + 2)
assert_equal(Complex(SimpleRat(-4,3),SimpleRat(1,2)), c - 2)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(1,1)), c * 2)
assert_equal(Complex(SimpleRat(1,3),SimpleRat(1,4)), c / 2)
assert_equal(Complex(SimpleRat(7,36),SimpleRat(2,3)), c ** 2)
assert_raise(NoMethodError){c <=> 2}
assert_equal(Complex(SimpleRat(8,3),SimpleRat(1,2)), 2 + c)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(-1,2)), 2 - c)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(1,1)), 2 * c)
assert_equal(Complex(SimpleRat(48,25),SimpleRat(-36,25)), 2 / c)
r = 2 ** c
assert_in_delta(1.4940, r.real, 0.001)
assert_in_delta(0.5392, r.imag, 0.001)
assert_raise(NoMethodError){2 <=> c}
assert_equal(Complex(SimpleRat(13,6),SimpleRat(5,2)), c + cc)
assert_equal(Complex(SimpleRat(-5,6),SimpleRat(-3,2)), c - cc)
assert_equal(Complex(SimpleRat(0,1),SimpleRat(25,12)), c * cc)
assert_equal(Complex(SimpleRat(8,25),SimpleRat(-7,75)), c / cc)
r = c ** cc
assert_in_delta(0.1732, r.real, 0.001)
assert_in_delta(0.1186, r.imag, 0.001)
assert_raise(NoMethodError){c <=> cc}
assert_equal(Complex(SimpleRat(13,6),SimpleRat(5,2)), cc + c)
assert_equal(Complex(SimpleRat(5,6),SimpleRat(3,2)), cc - c)
assert_equal(Complex(SimpleRat(0,1),SimpleRat(25,12)), cc * c)
assert_equal(Complex(SimpleRat(72,25),SimpleRat(21,25)), cc / c)
r = cc ** c
assert_in_delta(0.5498, r.real, 0.001)
assert_in_delta(1.0198, r.imag, 0.001)
assert_raise(NoMethodError){cc <=> c}
assert_equal([SimpleRat,SimpleRat],
(+c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(-c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c + 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c / 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c ** 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c + cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c / cc).instance_eval{[real.class, imag.class]})
assert_equal([Float,Float],
(c ** cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc + c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc - c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc * c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc / c).instance_eval{[real.class, imag.class]})
assert_equal([Float,Float],
(cc ** c).instance_eval{[real.class, imag.class]})
assert(Complex(SimpleRat(2,3),SimpleRat(3,2)) ==
Complex(Rational(2,3),Rational(3,2)))
assert(Complex(Rational(2,3),Rational(3,2)) ==
Complex(SimpleRat(2,3),SimpleRat(3,2)))
assert_equal([SimpleRat,SimpleRat],
(c + 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 1).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 + c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 - c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 * c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(1 * c).instance_eval{[real.class, imag.class]})
end
end
def SimpleRat(*a) SimpleRat.new(*a) end
class SimpleRat < Numeric
def initialize(num, den = 1)
if den == 0
raise ZeroDivisionError, "divided by zero"
end
if den < 0
num = -num
den = -den
end
gcd = num.gcd(den)
@num = num.div(gcd)
@den = den.div(gcd)
end
def numerator() @num end
def denominator() @den end
def +@ () self end
def -@ () self.class.new(-@num, @den) end
def + (o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
self.class.new(a + b, @den * o.denominator)
when Integer
self + self.class.new(o)
when Float
to_f + o
else
x, y = o.coerce(self)
x + y
end
end
def - (o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
self.class.new(a - b, @den * o.denominator)
when Integer
self - self.class.new(o)
when Float
to_f - o
else
x, y = o.coerce(self)
x - y
end
end
def * (o)
case o
when SimpleRat, Rational
a = @num * o.numerator
b = @den * o.denominator
self.class.new(a, b)
when Integer
self * self.class.new(o)
when Float
to_f * o
else
x, y = o.coerce(self)
x * y
end
end
def quo(o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = @den * o.numerator
self.class.new(a, b)
when Integer
if o == 0
raise raise ZeroDivisionError, "divided by zero"
end
self.quo(self.class.new(o))
when Float
to_f.quo(o)
else
x, y = o.coerce(self)
x.quo(y)
end
end
alias / quo
def floor
@num.div(@den)
end
def ceil
-((-@num).div(@den))
end
def truncate
if @num < 0
return -((-@num).div(@den))
end
@num.div(@den)
end
alias to_i truncate
def round
if @num < 0
num = -@num
num = num * 2 + @den
den = @den * 2
-(num.div(den))
else
num = @num * 2 + @den
den = @den * 2
num.div(den)
end
end
def div(o) (self / o).floor end
def quot(o) (self / o).truncate end
def modulo(o)
q = div(o)
self - o * q
end
def remainder(o)
q = quot(o)
self - o * q
end
alias % modulo
def divmod(o) [div(o), modulo(o)] end
def quotrem(o) [quot(o), remainder(o)] end
def ** (o)
case o
when SimpleRat, Rational
Float(self) ** o
when Integer
if o > 0
a = @num ** o
b = @den ** o
elsif o < 0
a = @den ** -o
b = @num ** -o
else
a = b = 1
end
self.class.new(a, b)
when Float
to_f ** o
else
x, y = o.coerce(self)
x ** y
end
end
def <=> (o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
return a <=> b
when Integer
self <=> self.class.new(o)
when Float
to_f <=> o
else
x, y = o.coerce(self)
x <=> y
end
end
def == (o)
begin
(self <=> o) == 0
rescue
false
end
end
def coerce(o)
case o
when Rational
[self.class.new(o.numerator, o.denominator), self]
when Integer
[self.class.new(o), self]
when Float
[o, self.to_f]
else
super
end
end
def hash() @num.hash ^ @den.hash end
def to_f() @num.to_f / @den.to_f end
def to_r() self end
def to_s() format('%s/%s', @num, @den) end
def inspect() format('#SR(%s)', to_s) end
def marshal_dump() [@num, @den] end
def marshal_load(a) @num, @den = a end
end