mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@26986 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			495 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			495 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
#
 | 
						|
# = prime.rb
 | 
						|
#
 | 
						|
# Prime numbers and factorization library.
 | 
						|
#
 | 
						|
# Copyright::
 | 
						|
#   Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
 | 
						|
#   Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
 | 
						|
#
 | 
						|
# Documentation::
 | 
						|
#   Yuki Sonoda
 | 
						|
#
 | 
						|
 | 
						|
require "singleton"
 | 
						|
require "forwardable"
 | 
						|
 | 
						|
class Integer
 | 
						|
  # Re-composes a prime factorization and returns the product.
 | 
						|
  #
 | 
						|
  # See Prime#int_from_prime_division for more details.
 | 
						|
  def Integer.from_prime_division(pd)
 | 
						|
    Prime.int_from_prime_division(pd)
 | 
						|
  end
 | 
						|
 | 
						|
  # Returns the factorization of +self+.
 | 
						|
  #
 | 
						|
  # See Prime#prime_division for more details.
 | 
						|
  def prime_division(generator = Prime::Generator23.new)
 | 
						|
    Prime.prime_division(self, generator)
 | 
						|
  end
 | 
						|
 | 
						|
  # Returns true if +self+ is a prime number, false for a composite.
 | 
						|
  def prime?
 | 
						|
    Prime.prime?(self)
 | 
						|
  end
 | 
						|
 | 
						|
  # Iterates the given block over all prime numbers.
 | 
						|
  #
 | 
						|
  # See +Prime+#each for more details.
 | 
						|
  def Integer.each_prime(ubound, &block) # :yields: prime
 | 
						|
    Prime.each(ubound, &block)
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
#
 | 
						|
# The set of all prime numbers.
 | 
						|
#
 | 
						|
# == Example
 | 
						|
#  Prime.each(100) do |prime|
 | 
						|
#    p prime  #=> 2, 3, 5, 7, 11, ...., 97
 | 
						|
#  end
 | 
						|
#
 | 
						|
# == Retrieving the instance
 | 
						|
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
 | 
						|
# access it as +Prime+.instance.
 | 
						|
#
 | 
						|
# For convenience, each instance method of +Prime+.instance can be accessed
 | 
						|
# as a class method of +Prime+.
 | 
						|
#
 | 
						|
# e.g.
 | 
						|
#  Prime.instance.prime?(2)  #=> true
 | 
						|
#  Prime.prime?(2)           #=> true
 | 
						|
#
 | 
						|
# == Generators
 | 
						|
# A "generator" provides an implementation of enumerating pseudo-prime
 | 
						|
# numbers and it remembers the position of enumeration and upper bound.
 | 
						|
# Futhermore, it is a external iterator of prime enumeration which is
 | 
						|
# compatible to an Enumerator.
 | 
						|
#
 | 
						|
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
 | 
						|
# There are few implementations of generator.
 | 
						|
#
 | 
						|
# [+Prime+::+EratosthenesGenerator+]
 | 
						|
#   Uses eratosthenes's sieve.
 | 
						|
# [+Prime+::+TrialDivisionGenerator+]
 | 
						|
#   Uses the trial division method.
 | 
						|
# [+Prime+::+Generator23+]
 | 
						|
#   Generates all positive integers which is not divided by 2 nor 3.
 | 
						|
#   This sequence is very bad as a pseudo-prime sequence. But this
 | 
						|
#   is faster and uses much less memory than other generators. So,
 | 
						|
#   it is suitable for factorizing an integer which is not large but
 | 
						|
#   has many prime factors. e.g. for Prime#prime? .
 | 
						|
class Prime
 | 
						|
  include Enumerable
 | 
						|
  @the_instance = Prime.new
 | 
						|
 | 
						|
  # obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
 | 
						|
  def initialize
 | 
						|
    @generator = EratosthenesGenerator.new
 | 
						|
    extend OldCompatibility
 | 
						|
    warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
 | 
						|
  end
 | 
						|
 | 
						|
  class << self
 | 
						|
    extend Forwardable
 | 
						|
    include Enumerable
 | 
						|
    # Returns the default instance of Prime.
 | 
						|
    def instance; @the_instance end
 | 
						|
 | 
						|
    def method_added(method) # :nodoc:
 | 
						|
      (class<< self;self;end).def_delegator :instance, method
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # Iterates the given block over all prime numbers.
 | 
						|
  #
 | 
						|
  # == Parameters
 | 
						|
  # +ubound+::
 | 
						|
  #   Optional. An arbitrary positive number.
 | 
						|
  #   The upper bound of enumeration. The method enumerates
 | 
						|
  #   prime numbers infinitely if +ubound+ is nil.
 | 
						|
  # +generator+::
 | 
						|
  #   Optional. An implementation of pseudo-prime generator.
 | 
						|
  #
 | 
						|
  # == Return value
 | 
						|
  # An evaluated value of the given block at the last time.
 | 
						|
  # Or an enumerator which is compatible to an +Enumerator+
 | 
						|
  # if no block given.
 | 
						|
  #
 | 
						|
  # == Description
 | 
						|
  # Calls +block+ once for each prime number, passing the prime as
 | 
						|
  # a parameter.
 | 
						|
  #
 | 
						|
  # +ubound+::
 | 
						|
  #   Upper bound of prime numbers. The iterator stops after
 | 
						|
  #   yields all prime numbers p <= +ubound+.
 | 
						|
  #
 | 
						|
  # == Note
 | 
						|
  # +Prime+.+new+ returns a object extended by +Prime+::+OldCompatibility+
 | 
						|
  # in order to compatibility to Ruby 1.8, and +Prime+#each is overwritten
 | 
						|
  # by +Prime+::+OldCompatibility+#+each+.
 | 
						|
  #
 | 
						|
  # +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
 | 
						|
  # +Prime+.+each+.
 | 
						|
  def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
 | 
						|
    generator.upper_bound = ubound
 | 
						|
    generator.each(&block)
 | 
						|
  end
 | 
						|
 | 
						|
 | 
						|
  # Returns true if +value+ is prime, false for a composite.
 | 
						|
  #
 | 
						|
  # == Parameters
 | 
						|
  # +value+:: an arbitrary integer to be checked.
 | 
						|
  # +generator+:: optional. A pseudo-prime generator.
 | 
						|
  def prime?(value, generator = Prime::Generator23.new)
 | 
						|
    value = -value if value < 0
 | 
						|
    return false if value < 2
 | 
						|
    for num in generator
 | 
						|
      q,r = value.divmod num
 | 
						|
      return true if q < num
 | 
						|
      return false if r == 0
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # Re-composes a prime factorization and returns the product.
 | 
						|
  #
 | 
						|
  # == Parameters
 | 
						|
  # +pd+:: Array of pairs of integers. The each internal
 | 
						|
  #        pair consists of a prime number -- a prime factor --
 | 
						|
  #        and a natural number -- an exponent.
 | 
						|
  #
 | 
						|
  # == Example
 | 
						|
  # For [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]], it returns
 | 
						|
  # p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
 | 
						|
  #
 | 
						|
  #  Prime.int_from_prime_division([[2,2], [3,1]])  #=> 12
 | 
						|
  def int_from_prime_division(pd)
 | 
						|
    pd.inject(1){|value, (prime, index)|
 | 
						|
      value *= prime**index
 | 
						|
    }
 | 
						|
  end
 | 
						|
 | 
						|
  # Returns the factorization of +value+.
 | 
						|
  #
 | 
						|
  # == Parameters
 | 
						|
  # +value+:: An arbitrary integer.
 | 
						|
  # +generator+:: Optional. A pseudo-prime generator.
 | 
						|
  #               +generator+.succ must return the next
 | 
						|
  #               pseudo-prime number in the ascendent
 | 
						|
  #               order. It must generate all prime numbers,
 | 
						|
  #               but may generate non prime numbers.
 | 
						|
  #
 | 
						|
  # === Exceptions
 | 
						|
  # +ZeroDivisionError+:: when +value+ is zero.
 | 
						|
  #
 | 
						|
  # == Example
 | 
						|
  # For an arbitrary integer
 | 
						|
  # n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
 | 
						|
  # prime_division(n) returns
 | 
						|
  # [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
 | 
						|
  #
 | 
						|
  #  Prime.prime_division(12) #=> [[2,2], [3,1]]
 | 
						|
  #
 | 
						|
  def prime_division(value, generator= Prime::Generator23.new)
 | 
						|
    raise ZeroDivisionError if value == 0
 | 
						|
    if value < 0
 | 
						|
      value = -value
 | 
						|
      pv = [[-1, 1]]
 | 
						|
    else
 | 
						|
      pv = []
 | 
						|
    end
 | 
						|
    for prime in generator
 | 
						|
      count = 0
 | 
						|
      while (value1, mod = value.divmod(prime)
 | 
						|
	     mod) == 0
 | 
						|
	value = value1
 | 
						|
	count += 1
 | 
						|
      end
 | 
						|
      if count != 0
 | 
						|
	pv.push [prime, count]
 | 
						|
      end
 | 
						|
      break if value1 <= prime
 | 
						|
    end
 | 
						|
    if value > 1
 | 
						|
      pv.push [value, 1]
 | 
						|
    end
 | 
						|
    return pv
 | 
						|
  end
 | 
						|
 | 
						|
  # An abstract class for enumerating pseudo-prime numbers.
 | 
						|
  #
 | 
						|
  # Concrete subclasses should override succ, next, rewind.
 | 
						|
  class PseudoPrimeGenerator
 | 
						|
    include Enumerable
 | 
						|
 | 
						|
    def initialize(ubound = nil)
 | 
						|
      @ubound = ubound
 | 
						|
    end
 | 
						|
 | 
						|
    def upper_bound=(ubound)
 | 
						|
      @ubound = ubound
 | 
						|
    end
 | 
						|
    def upper_bound
 | 
						|
      @ubound
 | 
						|
    end
 | 
						|
 | 
						|
    # returns the next pseudo-prime number, and move the internal
 | 
						|
    # position forward.
 | 
						|
    #
 | 
						|
    # +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
 | 
						|
    def succ
 | 
						|
      raise NotImplementedError, "need to define `succ'"
 | 
						|
    end
 | 
						|
 | 
						|
    # alias of +succ+.
 | 
						|
    def next
 | 
						|
      raise NotImplementedError, "need to define `next'"
 | 
						|
    end
 | 
						|
 | 
						|
    # Rewinds the internal position for enumeration.
 | 
						|
    #
 | 
						|
    # See +Enumerator+#rewind.
 | 
						|
    def rewind
 | 
						|
      raise NotImplementedError, "need to define `rewind'"
 | 
						|
    end
 | 
						|
 | 
						|
    # Iterates the given block for each prime numbers.
 | 
						|
    def each(&block)
 | 
						|
      return self.dup unless block
 | 
						|
      if @ubound
 | 
						|
	last_value = nil
 | 
						|
	loop do
 | 
						|
	  prime = succ
 | 
						|
	  break last_value if prime > @ubound
 | 
						|
	  last_value = block.call(prime)
 | 
						|
	end
 | 
						|
      else
 | 
						|
	loop do
 | 
						|
	  block.call(succ)
 | 
						|
	end
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    # see +Enumerator+#with_index.
 | 
						|
    alias with_index each_with_index
 | 
						|
 | 
						|
    # see +Enumerator+#with_object.
 | 
						|
    def with_object(obj)
 | 
						|
      return enum_for(:with_object) unless block_given?
 | 
						|
      each do |prime|
 | 
						|
	yield prime, obj
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # An implementation of +PseudoPrimeGenerator+.
 | 
						|
  #
 | 
						|
  # Uses +EratosthenesSieve+.
 | 
						|
  class EratosthenesGenerator < PseudoPrimeGenerator
 | 
						|
    def initialize
 | 
						|
      @last_prime = nil
 | 
						|
      super
 | 
						|
    end
 | 
						|
 | 
						|
    def succ
 | 
						|
      @last_prime = @last_prime ? EratosthenesSieve.instance.next_to(@last_prime) : 2
 | 
						|
    end
 | 
						|
    def rewind
 | 
						|
      initialize
 | 
						|
    end
 | 
						|
    alias next succ
 | 
						|
  end
 | 
						|
 | 
						|
  # An implementation of +PseudoPrimeGenerator+ which uses
 | 
						|
  # a prime table generated by trial division.
 | 
						|
  class TrialDivisionGenerator<PseudoPrimeGenerator
 | 
						|
    def initialize
 | 
						|
      @index = -1
 | 
						|
      super
 | 
						|
    end
 | 
						|
 | 
						|
    def succ
 | 
						|
      TrialDivision.instance[@index += 1]
 | 
						|
    end
 | 
						|
    def rewind
 | 
						|
      initialize
 | 
						|
    end
 | 
						|
    alias next succ
 | 
						|
  end
 | 
						|
 | 
						|
  # Generates all integer which are greater than 2 and
 | 
						|
  # are not divided by 2 nor 3.
 | 
						|
  #
 | 
						|
  # This is a pseudo-prime generator, suitable on
 | 
						|
  # checking primality of a integer by brute force
 | 
						|
  # method.
 | 
						|
  class Generator23<PseudoPrimeGenerator
 | 
						|
    def initialize
 | 
						|
      @prime = 1
 | 
						|
      @step = nil
 | 
						|
      super
 | 
						|
    end
 | 
						|
 | 
						|
    def succ
 | 
						|
      loop do
 | 
						|
	if (@step)
 | 
						|
	  @prime += @step
 | 
						|
	  @step = 6 - @step
 | 
						|
	else
 | 
						|
	  case @prime
 | 
						|
	  when 1; @prime = 2
 | 
						|
	  when 2; @prime = 3
 | 
						|
	  when 3; @prime = 5; @step = 2
 | 
						|
	  end
 | 
						|
	end
 | 
						|
	return @prime
 | 
						|
      end
 | 
						|
    end
 | 
						|
    alias next succ
 | 
						|
    def rewind
 | 
						|
      initialize
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  # Internal use. An implementation of prime table by trial division method.
 | 
						|
  class TrialDivision
 | 
						|
    include Singleton
 | 
						|
 | 
						|
    def initialize # :nodoc:
 | 
						|
      # These are included as class variables to cache them for later uses.  If memory
 | 
						|
      #   usage is a problem, they can be put in Prime#initialize as instance variables.
 | 
						|
 | 
						|
      # There must be no primes between @primes[-1] and @next_to_check.
 | 
						|
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
 | 
						|
      # @next_to_check % 6 must be 1.
 | 
						|
      @next_to_check = 103            # @primes[-1] - @primes[-1] % 6 + 7
 | 
						|
      @ulticheck_index = 3            # @primes.index(@primes.reverse.find {|n|
 | 
						|
      #   n < Math.sqrt(@@next_to_check) })
 | 
						|
      @ulticheck_next_squared = 121   # @primes[@ulticheck_index + 1] ** 2
 | 
						|
    end
 | 
						|
 | 
						|
    # Returns the cached prime numbers.
 | 
						|
    def cache
 | 
						|
      return @primes
 | 
						|
    end
 | 
						|
    alias primes cache
 | 
						|
    alias primes_so_far cache
 | 
						|
 | 
						|
    # Returns the +index+th prime number.
 | 
						|
    #
 | 
						|
    # +index+ is a 0-based index.
 | 
						|
    def [](index)
 | 
						|
      while index >= @primes.length
 | 
						|
	# Only check for prime factors up to the square root of the potential primes,
 | 
						|
	#   but without the performance hit of an actual square root calculation.
 | 
						|
	if @next_to_check + 4 > @ulticheck_next_squared
 | 
						|
	  @ulticheck_index += 1
 | 
						|
	  @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
 | 
						|
	end
 | 
						|
	# Only check numbers congruent to one and five, modulo six. All others
 | 
						|
 | 
						|
	#   are divisible by two or three.  This also allows us to skip checking against
 | 
						|
	#   two and three.
 | 
						|
	@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
 | 
						|
	@next_to_check += 4
 | 
						|
	@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
 | 
						|
	@next_to_check += 2
 | 
						|
      end
 | 
						|
      return @primes[index]
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # Internal use. An implementation of eratosthenes's sieve
 | 
						|
  class EratosthenesSieve
 | 
						|
    include Singleton
 | 
						|
 | 
						|
    BITS_PER_ENTRY = 16  # each entry is a set of 16-bits in a Fixnum
 | 
						|
    NUMS_PER_ENTRY = BITS_PER_ENTRY * 2 # twiced because even numbers are omitted
 | 
						|
    ENTRIES_PER_TABLE = 8
 | 
						|
    NUMS_PER_TABLE = NUMS_PER_ENTRY * ENTRIES_PER_TABLE
 | 
						|
    FILLED_ENTRY = (1 << NUMS_PER_ENTRY) - 1
 | 
						|
 | 
						|
    def initialize # :nodoc:
 | 
						|
      # bitmap for odd prime numbers less than 256.
 | 
						|
      # For an arbitrary odd number n, @tables[i][j][k] is
 | 
						|
      # * 1 if n is prime,
 | 
						|
      # * 0 if n is composite,
 | 
						|
      # where i,j,k = indices(n)
 | 
						|
      @tables = [[0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196].freeze]
 | 
						|
    end
 | 
						|
 | 
						|
    # returns the least odd prime number which is greater than +n+.
 | 
						|
    def next_to(n)
 | 
						|
      n = (n-1).div(2)*2+3 # the next odd number to given n
 | 
						|
      table_index, integer_index, bit_index = indices(n)
 | 
						|
      loop do
 | 
						|
	extend_table until @tables.length > table_index
 | 
						|
	for j in integer_index...ENTRIES_PER_TABLE
 | 
						|
	  if !@tables[table_index][j].zero?
 | 
						|
	    for k in bit_index...BITS_PER_ENTRY
 | 
						|
	      return NUMS_PER_TABLE*table_index + NUMS_PER_ENTRY*j + 2*k+1 if !@tables[table_index][j][k].zero?
 | 
						|
	    end
 | 
						|
	  end
 | 
						|
	  bit_index = 0
 | 
						|
	end
 | 
						|
	table_index += 1; integer_index = 0
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    private
 | 
						|
    # for an odd number +n+, returns (i, j, k) such that @tables[i][j][k] represents primarity of the number
 | 
						|
    def indices(n)
 | 
						|
      #   binary digits of n: |0|1|2|3|4|5|6|7|8|9|10|11|....
 | 
						|
      #   indices:            |-|    k  |  j  |     i
 | 
						|
      # because of NUMS_PER_ENTRY, NUMS_PER_TABLE
 | 
						|
 | 
						|
      k = (n & 0b00011111) >> 1
 | 
						|
      j = (n & 0b11100000) >> 5
 | 
						|
      i = n >> 8
 | 
						|
      return i, j, k
 | 
						|
    end
 | 
						|
 | 
						|
    def extend_table
 | 
						|
      lbound = NUMS_PER_TABLE * @tables.length
 | 
						|
      ubound = lbound + NUMS_PER_TABLE
 | 
						|
      new_table = [FILLED_ENTRY] * ENTRIES_PER_TABLE # which represents primarity in lbound...ubound
 | 
						|
      (3..Integer(Math.sqrt(ubound))).step(2) do |p|
 | 
						|
	i, j, k = indices(p)
 | 
						|
	next if @tables[i][j][k].zero?
 | 
						|
 | 
						|
	start = (lbound.div(p)+1)*p  # least multiple of p which is >= lbound
 | 
						|
	start += p if start.even?
 | 
						|
	(start...ubound).step(2*p) do |n|
 | 
						|
	  _, j, k = indices(n)
 | 
						|
	  new_table[j] &= FILLED_ENTRY^(1<<k)
 | 
						|
	end
 | 
						|
      end
 | 
						|
      @tables << new_table.freeze
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # Provides a +Prime+ object with compatibility to Ruby 1.8 when instantiated via +Prime+.+new+.
 | 
						|
  module OldCompatibility
 | 
						|
    # Returns the next prime number and forwards internal pointer.
 | 
						|
    def succ
 | 
						|
      @generator.succ
 | 
						|
    end
 | 
						|
    alias next succ
 | 
						|
 | 
						|
    # Overwrites Prime#each.
 | 
						|
    #
 | 
						|
    # Iterates the given block over all prime numbers. Note that enumeration starts from
 | 
						|
    # the current position of internal pointer, not rewound.
 | 
						|
    def each(&block)
 | 
						|
      return @generator.dup unless block_given?
 | 
						|
      loop do
 | 
						|
	yield succ
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 |