1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/missing/tgamma.c
akr 14373fc4db * math.c (math_gamma): new method Math.gamma.
(math_lgamma): new method Math.lgamma.

* include/ruby/missing.h (tgamma): declared unless HAVE_TGAMMA.
  (lgamma_r): declared unless HAVE_LGAMMA_R.

* configure.in (tgamma): check for replacement funtions.
  (lgamma_r): ditto.

* missing/tgamma.c: new file.  based on gamma.c from
  "C-gengo niyoru saishin algorithm jiten" (New Algorithm handbook
  in C language) (Gijyutsu hyouron sha, Tokyo, 1991)
  by Haruhiko Okumura.

* missing/lgamma_r.c: ditto.

* LEGAL (missing/tgamma.c): describe as public domain.
  (missing/lgamma_r.c): ditto.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@15388 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-02-07 01:43:43 +00:00

49 lines
1.5 KiB
C

/* tgamma.c - public domain implementation of error function tgamma(3m)
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
(New Algorithm handbook in C language) (Gijyutsu hyouron
sha, Tokyo, 1991) [in Japanese]
http://oku.edu.mie-u.ac.jp/~okumura/algo/
*/
/***********************************************************
gamma.c -- Gamma function
***********************************************************/
#include <math.h>
#define PI 3.14159265358979324 /* $\pi$ */
#define LOG_2PI 1.83787706640934548 /* $\log 2\pi$ */
#define N 8
#define B0 1 /* Bernoulli numbers */
#define B1 (-1.0 / 2.0)
#define B2 ( 1.0 / 6.0)
#define B4 (-1.0 / 30.0)
#define B6 ( 1.0 / 42.0)
#define B8 (-1.0 / 30.0)
#define B10 ( 5.0 / 66.0)
#define B12 (-691.0 / 2730.0)
#define B14 ( 7.0 / 6.0)
#define B16 (-3617.0 / 510.0)
static double
loggamma(double x) /* the natural logarithm of the Gamma function. */
{
double v, w;
v = 1;
while (x < N) { v *= x; x++; }
w = 1 / (x * x);
return ((((((((B16 / (16 * 15)) * w + (B14 / (14 * 13))) * w
+ (B12 / (12 * 11))) * w + (B10 / (10 * 9))) * w
+ (B8 / ( 8 * 7))) * w + (B6 / ( 6 * 5))) * w
+ (B4 / ( 4 * 3))) * w + (B2 / ( 2 * 1))) / x
+ 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
}
double tgamma(double x) /* Gamma function */
{
if (x < 0)
return PI / (sin(PI * x) * exp(loggamma(1 - x)));
return exp(loggamma(x));
}