1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/bigdecimal/lib/ludcmp.rb
shigek 7744351708 Copied from rough/bigdecimal,documents & some sample programs added.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@3625 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2003-03-28 05:00:21 +00:00

75 lines
1.6 KiB
Ruby

#
# ludcmp.rb
#
module LUSolve
def ludecomp(a,n,zero=0.0,one=1.0)
ps = []
scales = []
for i in 0...n do # pick up largest(abs. val.) element in each row.
ps <<= i
nrmrow = zero
ixn = i*n
for j in 0...n do
biggst = a[ixn+j].abs
nrmrow = biggst if biggst>nrmrow
end
if nrmrow>zero then
scales <<= one/nrmrow
else
raise "Singular matrix"
end
end
n1 = n - 1
for k in 0...n1 do # Gaussian elimination with partial pivoting.
biggst = zero;
for i in k...n do
size = a[ps[i]*n+k].abs*scales[ps[i]]
if size>biggst then
biggst = size
pividx = i
end
end
raise "Singular matrix" if biggst<=zero
if pividx!=k then
j = ps[k]
ps[k] = ps[pividx]
ps[pividx] = j
end
pivot = a[ps[k]*n+k]
for i in (k+1)...n do
psin = ps[i]*n
a[psin+k] = mult = a[psin+k]/pivot
if mult!=zero then
pskn = ps[k]*n
for j in (k+1)...n do
a[psin+j] -= mult*a[pskn+j]
end
end
end
end
raise "Singular matrix" if a[ps[n1]*n+n1] == zero
ps
end
def lusolve(a,b,ps,zero=0.0)
n = ps.size
x = []
for i in 0...n do
dot = zero
psin = ps[i]*n
for j in 0...i do
dot = a[psin+j]*x[j] + dot
end
x <<= b[ps[i]] - dot
end
(n-1).downto(0) do |i|
dot = zero
psin = ps[i]*n
for j in (i+1)...n do
dot = a[psin+j]*x[j] + dot
end
x[i] = (x[i]-dot)/a[psin+i]
end
x
end
end