1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/lib/rexml/xpath_parser.rb
ser 7255981a4d r1002 | ser | 2004-06-07 07:45:53 -0400 (Mon, 07 Jun 2004) | 2 lines
* Workin' in the coal mine, goin' down, down, down...
r1003 | ser | 2004-06-08 22:24:08 -0400 (Tue, 08 Jun 2004) | 7 lines
* Entirely rewrote the validation code; the finite state machine, while cool,
  didn't survive the encounter with Interleave.  It was getting sort of hacky,
  too.  The new mechanism is less elegant, but is basically still a FSM, and is
  more flexible without having to add hacks to extend it.  Large chunks of the
  FSM may be reusable in other validation mechanisms.
* Added interleave support
r1004 | ser | 2004-06-09 07:24:17 -0400 (Wed, 09 Jun 2004) | 2 lines
* Added suppert for mixed
r1005 | ser | 2004-06-09 08:01:33 -0400 (Wed, 09 Jun 2004) | 3 lines
* Added Kou's patch to normalize attribute values passed through the SAX2 and
  Stream parsers.
r1006 | ser | 2004-06-09 08:12:35 -0400 (Wed, 09 Jun 2004) | 2 lines
* Applied Kou's preceding-sibling patch, which fixes the order of the axe results
r1009 | ser | 2004-06-20 11:02:55 -0400 (Sun, 20 Jun 2004) | 8 lines
* Redesigned and rewrote the RelaxNG code.  It isn't elegant, but it works.
  Particular problems encountered were interleave and ref.  Interleave means I
  can't use a clean FSM design, and ref means the dirty FSM design has to be modified
  during validation.  There's a lot of code that could be cleaned up in here.
  However, I'm pretty sure that this design is reasonably fast and space efficient.
  I'm not entirely convinced that it is correct; more tests are required.
* This version adds support for defines and refs.
r1011 | ser | 2004-06-20 11:20:07 -0400 (Sun, 20 Jun 2004) | 3 lines
* Removed debugging output from unit test
* Moved ">" in Element.inspect
r1014 | ser | 2004-06-20 11:40:30 -0400 (Sun, 20 Jun 2004) | 2 lines
* Minor big in missing includes for validation rules
r1023 | ser | 2004-07-03 08:57:34 -0400 (Sat, 03 Jul 2004) | 2 lines
* Fixed bug #34, typo in xpath_parser.
r1024 | ser | 2004-07-03 10:22:08 -0400 (Sat, 03 Jul 2004) | 9 lines
* Previous fix, (include? -> includes?) was incorrect.
* Added another test for encoding
* Started AnyName support in RelaxNG
* Added Element#Attributes#to_a, so that it does something intelligent.
  This was needed by XPath, for '@*'
* Fixed XPath so that @* works.


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@6577 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2004-07-04 15:26:07 +00:00

558 lines
17 KiB
Ruby

require 'rexml/namespace'
require 'rexml/xmltokens'
require 'rexml/parsers/xpathparser'
module REXML
# You don't want to use this class. Really. Use XPath, which is a wrapper
# for this class. Believe me. You don't want to poke around in here.
# There is strange, dark magic at work in this code. Beware. Go back! Go
# back while you still can!
class XPathParser
include XMLTokens
LITERAL = /^'([^']*)'|^"([^"]*)"/u
def initialize( )
@parser = REXML::Parsers::XPathParser.new
@namespaces = {}
@variables = {}
end
def namespaces=( namespaces={} )
Functions::namespace_context = namespaces
@namespaces = namespaces
end
def variables=( vars={} )
Functions::variables = vars
@variables = vars
end
def parse path, nodeset
path_stack = @parser.parse( path )
#puts "PARSE: #{path} => #{path_stack.inspect}"
#puts "PARSE: nodeset = #{nodeset.collect{|x|x.to_s}.inspect}"
match( path_stack, nodeset )
end
def predicate path, nodeset
path_stack = @parser.predicate( path )
return Predicate( path_stack, nodeset )
end
def []=( variable_name, value )
@variables[ variable_name ] = value
end
def match( path_stack, nodeset )
while ( path_stack.size > 0 and nodeset.size > 0 )
#puts "PARSE: #{path_stack.inspect} '#{nodeset.collect{|n|n.class}.inspect}'"
nodeset = internal_parse( path_stack, nodeset )
#puts "NODESET: #{nodeset}"
#puts "PATH_STACK: #{path_stack.inspect}"
end
nodeset
end
private
def internal_parse path_stack, nodeset
#puts "INTERNAL_PARSE RETURNING WITH NO RESULTS" if nodeset.size == 0 or path_stack.size == 0
return nodeset if nodeset.size == 0 or path_stack.size == 0
#puts "INTERNAL_PARSE: #{path_stack.inspect}, #{nodeset.collect{|n| n.class}.inspect}"
case path_stack.shift
when :document
return [ nodeset[0].root.parent ]
when :qname
prefix = path_stack.shift
name = path_stack.shift
#puts "QNAME #{prefix}#{prefix.size>0?':':''}#{name}"
n = nodeset.clone
ns = @namespaces[prefix]
ns = ns ? ns : ''
n.delete_if do |node|
# FIXME: This DOUBLES the time XPath searches take
ns = node.namespace( prefix ) if node.node_type == :element and ns == ''
#puts "NODE: '#{node.to_s}'; node.has_name?( #{name.inspect}, #{ns.inspect} ): #{ node.has_name?( name, ns )}; node.namespace() = #{node.namespace().inspect}; node.prefix = #{node.prefix().inspect}" if node.node_type == :element
!(node.node_type == :element and node.name == name and node.namespace == ns )
end
return n
when :any
n = nodeset.clone
n.delete_if { |node| node.node_type != :element }
return n
when :self
# THIS SPACE LEFT INTENTIONALLY BLANK
when :processing_instruction
target = path_stack.shift
n = nodeset.clone
n.delete_if do |node|
(node.node_type != :processing_instruction) or
( !target.nil? and ( node.target != target ) )
end
return n
when :text
#puts ":TEXT"
n = nodeset.clone
n.delete_if do |node|
#puts "#{node} :: #{node.node_type}"
node.node_type != :text
end
return n
when :comment
n = nodeset.clone
n.delete_if do |node|
node.node_type != :comment
end
return n
when :node
return nodeset
# FIXME: I suspect the following XPath will fail:
# /a/*/*[1]
when :child
#puts "CHILD"
new_nodeset = []
nt = nil
for node in nodeset
nt = node.node_type
new_nodeset += node.children if nt == :element or nt == :document
end
#path_stack[0,(path_stack.size-ps_clone.size)] = []
return new_nodeset
when :literal
literal = path_stack.shift
if literal =~ /^\d+(\.\d+)?$/
return ($1 ? literal.to_f : literal.to_i)
end
#puts "RETURNING '#{literal}'"
return literal
when :attribute
new_nodeset = []
case path_stack.shift
when :qname
prefix = path_stack.shift
name = path_stack.shift
for element in nodeset
if element.node_type == :element
#puts element.name
#puts "looking for attribute #{name} in '#{@namespaces[prefix]}'"
attr = element.attribute( name, @namespaces[prefix] )
#puts ":ATTRIBUTE: attr => #{attr}"
new_nodeset << attr if attr
end
end
when :any
#puts "ANY"
for element in nodeset
if element.node_type == :element
new_nodeset += element.attributes.to_a
end
end
end
#puts "RETURNING #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :parent
return internal_parse( path_stack, nodeset.collect{|n| n.parent}.compact )
when :ancestor
#puts "ANCESTOR"
new_nodeset = []
for node in nodeset
while node.parent
node = node.parent
new_nodeset << node unless new_nodeset.include? node
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :ancestor_or_self
new_nodeset = []
for node in nodeset
if node.node_type == :element
new_nodeset << node
while ( node.parent )
node = node.parent
new_nodeset << node unless new_nodeset.include? node
end
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :predicate
#puts "@"*80
#puts "NODESET = #{nodeset.collect{|n|n.to_s}.inspect}"
predicate = path_stack.shift
new_nodeset = []
Functions::size = nodeset.size
nodeset.size.times do |index|
node = nodeset[index]
Functions::node = node
Functions::index = index+1
#puts "Node #{node} and index=#{index+1}"
result = Predicate( predicate, node )
#puts "Predicate returned #{result} (#{result.class}) for #{node.class}"
if result.kind_of? Numeric
#puts "#{result} == #{index} => #{result == index}"
new_nodeset << node if result == (index+1)
elsif result.instance_of? Array
new_nodeset << node if result.size > 0
else
new_nodeset << node if result
end
end
#puts "Nodeset after predicate #{predicate.inspect} has #{new_nodeset.size} nodes"
#puts "NODESET: #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :descendant_or_self
rv = descendant_or_self( path_stack, nodeset )
path_stack.clear
return rv
when :descendant
#puts ":DESCENDANT"
results = []
nt = nil
for node in nodeset
nt = node.node_type
results += internal_parse( path_stack.clone.unshift( :descendant_or_self ),
node.children ) if nt == :element or nt == :document
end
return results
when :following_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
results += internal_parse( path_stack.clone, following_siblings )
end
return results
when :preceding_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
results += internal_parse( path_stack.clone, preceding_siblings )
end
return results
when :preceding
new_nodeset = []
for node in nodeset
new_nodeset += preceding( node )
end
return new_nodeset
when :following
new_nodeset = []
for node in nodeset
new_nodeset += following( node )
end
return new_nodeset
when :namespace
new_set = []
for node in nodeset
new_nodeset << node.namespace if node.node_type == :element or node.node_type == :attribute
end
return new_nodeset
when :variable
var_name = path_stack.shift
return @variables[ var_name ]
end
nodeset
end
##########################################################
# FIXME
# The next two methods are BAD MOJO!
# This is my achilles heel. If anybody thinks of a better
# way of doing this, be my guest. This really sucks, but
# it took me three days to get it to work at all.
# ########################################################
def descendant_or_self( path_stack, nodeset )
rs = []
d_o_s( path_stack, nodeset, rs )
#puts "RS = #{rs.collect{|n|n.to_s}.inspect}"
document_order(rs.flatten.compact)
end
def d_o_s( p, ns, r )
nt = nil
ns.each_index do |i|
n = ns[i]
x = match( p.clone, [ n ] )
nt = n.node_type
d_o_s( p, n.children, x ) if nt == :element or nt == :document and n.children.size > 0
r.concat(x) if x.size > 0
end
end
# Reorders an array of nodes so that they are in document order
# It tries to do this efficiently.
def document_order( array_of_nodes )
new_arry = []
array_of_nodes.each { |node|
node_idx = []
np = node.node_type == :attribute ? node.element : node
while np.parent and np.parent.node_type == :element
node_idx << np.parent.index( np )
np = np.parent
end
new_arry << [ node_idx.reverse.join, node ]
}
new_arry.sort{ |s1, s2| s1[0] <=> s2[0] }.collect{ |s| s[1] }
end
def recurse( nodeset, &block )
for node in nodeset
yield node
recurse( node, &block ) if node.node_type == :element
end
end
# Given a predicate, a node, and a context, evaluates to true or false.
def Predicate( predicate, node )
predicate = predicate.clone
#puts "#"*20
#puts "Predicate( #{predicate.inspect}, #{node.class} )"
results = []
case (predicate[0])
when :and, :or, :eq, :neq, :lt, :lteq, :gt, :gteq
eq = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
return equality_relational_compare( left, eq, right )
when :div, :mod, :mult, :plus, :minus
op = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
left = Functions::number( left )
right = Functions::number( right )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
case op
when :div
return left.to_f / right.to_f
when :mod
return left % right
when :mult
return left * right
when :plus
return left + right
when :minus
return left - right
end
when :union
predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
return (left | right)
when :neg
predicate.shift
operand = Functions::number(Predicate( predicate, node ))
return -operand
when :not
predicate.shift
return !Predicate( predicate.shift, node )
when :function
predicate.shift
func_name = predicate.shift.tr('-', '_')
arguments = predicate.shift
#puts "\nFUNCTION: #{func_name}"
#puts "ARGUMENTS: #{arguments.inspect} #{node.to_s}"
args = arguments.collect { |arg| Predicate( arg, node ) }
#puts "FUNCTION: #{func_name}( #{args.collect{|n|n.to_s}.inspect} )"
result = Functions.send( func_name, *args )
#puts "RESULTS: #{result.inspect}"
return result
else
return match( predicate, [ node ] )
end
end
# Builds a nodeset of all of the following nodes of the supplied node,
# in document order
def following( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
following = []
recurse( following_siblings ) { |node| following << node }
following.shift
#puts "following is returning #{puta following}"
following
end
# Builds a nodeset of all of the preceding nodes of the supplied node,
# in reverse document order
def preceding( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
preceding = []
recurse( preceding_siblings ) { |node| preceding.unshift( node ) }
preceding
end
def equality_relational_compare( set1, op, set2 )
#puts "#"*80
if set1.kind_of? Array and set2.kind_of? Array
#puts "#{set1.size} & #{set2.size}"
if set1.size == 1 and set2.size == 1
set1 = set1[0]
set2 = set2[0]
elsif set1.size == 0 or set2.size == 0
nd = set1.size==0 ? set2 : set1
nd.each { |il| return true if compare( il, op, nil ) }
else
set1.each do |i1|
i1 = i1.to_s
set2.each do |i2|
i2 = i2.to_s
return true if compare( i1, op, i2 )
end
end
return false
end
end
#puts "EQ_REL_COMP: #{set1.class.name} #{set1.inspect}, #{op}, #{set2.class.name} #{set2.inspect}"
#puts "COMPARING VALUES"
# If one is nodeset and other is number, compare number to each item
# in nodeset s.t. number op number(string(item))
# If one is nodeset and other is string, compare string to each item
# in nodeset s.t. string op string(item)
# If one is nodeset and other is boolean, compare boolean to each item
# in nodeset s.t. boolean op boolean(item)
if set1.kind_of? Array or set2.kind_of? Array
#puts "ISA ARRAY"
if set1.kind_of? Array
a = set1
b = set2.to_s
else
a = set2
b = set1.to_s
end
case b
when 'true', 'false'
b = Functions::boolean( b )
for v in a
v = Functions::boolean(v)
return true if compare( v, op, b )
end
when /^\d+(\.\d+)?$/
b = Functions::number( b )
#puts "B = #{b.inspect}"
for v in a
#puts "v = #{v.inspect}"
v = Functions::number(v)
#puts "v = #{v.inspect}"
#puts compare(v,op,b)
return true if compare( v, op, b )
end
else
#puts "Functions::string( #{b}(#{b.class.name}) ) = #{Functions::string(b)}"
b = Functions::string( b )
for v in a
#puts "v = #{v.class.name} #{v.inspect}"
v = Functions::string(v)
return true if compare( v, op, b )
end
end
else
# If neither is nodeset,
# If op is = or !=
# If either boolean, convert to boolean
# If either number, convert to number
# Else, convert to string
# Else
# Convert both to numbers and compare
s1 = set1.to_s
s2 = set2.to_s
#puts "EQ_REL_COMP: #{set1}=>#{s1}, #{set2}=>#{s2}"
if s1 == 'true' or s1 == 'false' or s2 == 'true' or s2 == 'false'
#puts "Functions::boolean(#{set1})=>#{Functions::boolean(set1)}"
#puts "Functions::boolean(#{set2})=>#{Functions::boolean(set2)}"
set1 = Functions::boolean( set1 )
set2 = Functions::boolean( set2 )
else
if op == :eq or op == :neq
if s1 =~ /^\d+(\.\d+)?$/ or s2 =~ /^\d+(\.\d+)?$/
set1 = Functions::number( s1 )
set2 = Functions::number( s2 )
else
set1 = Functions::string( set1 )
set2 = Functions::string( set2 )
end
else
set1 = Functions::number( set1 )
set2 = Functions::number( set2 )
end
end
#puts "EQ_REL_COMP: #{set1} #{op} #{set2}"
#puts ">>> #{compare( set1, op, set2 )}"
return compare( set1, op, set2 )
end
return false
end
def compare a, op, b
#puts "COMPARE #{a.to_s}(#{a.class.name}) #{op} #{b.to_s}(#{a.class.name})"
case op
when :eq
a == b
when :neq
a != b
when :lt
a < b
when :lteq
a <= b
when :gt
a > b
when :gteq
a >= b
when :and
a and b
when :or
a or b
else
false
end
end
end
end