ruby--ruby/yjit/src/backend/x86_64/mod.rs

863 lines
32 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(unused_imports)]
use std::mem::take;
use crate::asm::*;
use crate::asm::x86_64::*;
use crate::codegen::{JITState};
use crate::cruby::*;
use crate::backend::ir::*;
use crate::codegen::CodegenGlobals;
// Use the x86 register type for this platform
pub type Reg = X86Reg;
// Callee-saved registers
pub const _CFP: Opnd = Opnd::Reg(R13_REG);
pub const _EC: Opnd = Opnd::Reg(R12_REG);
pub const _SP: Opnd = Opnd::Reg(RBX_REG);
// C argument registers on this platform
pub const _C_ARG_OPNDS: [Opnd; 6] = [
Opnd::Reg(RDI_REG),
Opnd::Reg(RSI_REG),
Opnd::Reg(RDX_REG),
Opnd::Reg(RCX_REG),
Opnd::Reg(R8_REG),
Opnd::Reg(R9_REG)
];
// C return value register on this platform
pub const C_RET_REG: Reg = RAX_REG;
pub const _C_RET_OPND: Opnd = Opnd::Reg(RAX_REG);
// The number of bytes that are generated by jmp_ptr
pub const JMP_PTR_BYTES: usize = 6;
/// Map Opnd to X86Opnd
impl From<Opnd> for X86Opnd {
fn from(opnd: Opnd) -> Self {
match opnd {
// NOTE: these operand types need to be lowered first
//Value(VALUE), // Immediate Ruby value, may be GC'd, movable
//InsnOut(usize), // Output of a preceding instruction in this block
Opnd::InsnOut{..} => panic!("InsnOut operand made it past register allocation"),
Opnd::UImm(val) => uimm_opnd(val),
Opnd::Imm(val) => imm_opnd(val),
Opnd::Value(VALUE(uimm)) => uimm_opnd(uimm as u64),
// General-purpose register
Opnd::Reg(reg) => X86Opnd::Reg(reg),
// Memory operand with displacement
Opnd::Mem(Mem{ base: MemBase::Reg(reg_no), num_bits, disp }) => {
let reg = X86Reg {
reg_no,
num_bits: 64,
reg_type: RegType::GP
};
mem_opnd(num_bits, X86Opnd::Reg(reg), disp)
}
Opnd::None => panic!(
"Attempted to lower an Opnd::None. This often happens when an out operand was not allocated for an instruction because the output of the instruction was not used. Please ensure you are using the output."
),
_ => panic!("unsupported x86 operand type")
}
}
}
/// Also implement going from a reference to an operand for convenience.
impl From<&Opnd> for X86Opnd {
fn from(opnd: &Opnd) -> Self {
X86Opnd::from(*opnd)
}
}
impl Assembler
{
// A special scratch register for intermediate processing.
// Note: right now this is only used by LeaLabel because label_ref accepts
// a closure and we don't want it to have to capture anything.
const SCRATCH0: X86Opnd = X86Opnd::Reg(R11_REG);
/// Get the list of registers from which we can allocate on this platform
pub fn get_alloc_regs() -> Vec<Reg>
{
vec![
RAX_REG,
RCX_REG,
]
}
/// Get a list of all of the caller-save registers
pub fn get_caller_save_regs() -> Vec<Reg> {
vec![RAX_REG, RCX_REG, RDX_REG, RSI_REG, RDI_REG, R8_REG, R9_REG, R10_REG, R11_REG]
}
// These are the callee-saved registers in the x86-64 SysV ABI
// RBX, RSP, RBP, and R12R15
/// Split IR instructions for the x86 platform
fn x86_split(mut self) -> Assembler
{
let live_ranges: Vec<usize> = take(&mut self.live_ranges);
let mut asm = Assembler::new_with_label_names(take(&mut self.label_names));
let mut iterator = self.into_draining_iter();
while let Some((index, mut insn)) = iterator.next_unmapped() {
// When we're iterating through the instructions with x86_split, we
// need to know the previous live ranges in order to tell if a
// register lasts beyond the current instruction. So instead of
// using next_mapped, we call next_unmapped. When you're using the
// next_unmapped API, you need to make sure that you map each
// operand that could reference an old index, which means both
// Opnd::InsnOut operands and Opnd::Mem operands with a base of
// MemBase::InsnOut.
//
// You need to ensure that you only map it _once_, because otherwise
// you'll end up mapping an incorrect index which could end up being
// out of bounds of the old set of indices.
//
// We handle all of that mapping here to ensure that it's only
// mapped once. We also handle loading Opnd::Value operands into
// registers here so that all mapping happens in one place. We load
// Opnd::Value operands into registers here because:
//
// - Most instructions can't be encoded with 64-bit immediates.
// - We look for Op::Load specifically when emiting to keep GC'ed
// VALUEs alive. This is a sort of canonicalization.
let mut unmapped_opnds: Vec<Opnd> = vec![];
let is_load = matches!(insn, Insn::Load { .. } | Insn::LoadInto { .. });
let mut opnd_iter = insn.opnd_iter_mut();
while let Some(opnd) = opnd_iter.next() {
unmapped_opnds.push(*opnd);
*opnd = if is_load {
iterator.map_opnd(*opnd)
} else if let Opnd::Value(value) = opnd {
// Since mov(mem64, imm32) sign extends, as_i64() makes sure
// we split when the extended value is different.
if !value.special_const_p() || imm_num_bits(value.as_i64()) > 32 {
asm.load(iterator.map_opnd(*opnd))
} else {
Opnd::UImm(value.as_u64())
}
} else {
iterator.map_opnd(*opnd)
}
}
// We are replacing instructions here so we know they are already
// being used. It is okay not to use their output here.
#[allow(unused_must_use)]
match &mut insn {
Insn::Add { left, right, out } |
Insn::Sub { left, right, out } |
Insn::And { left, right, out } |
Insn::Or { left, right, out } |
Insn::Xor { left, right, out } => {
match (unmapped_opnds[0], unmapped_opnds[1]) {
(Opnd::Mem(_), Opnd::Mem(_)) => {
*left = asm.load(*left);
*right = asm.load(*right);
},
(Opnd::Mem(_), Opnd::UImm(_) | Opnd::Imm(_)) => {
*left = asm.load(*left);
},
// Instruction output whose live range spans beyond this instruction
(Opnd::InsnOut { idx, .. }, _) => {
if live_ranges[idx] > index {
*left = asm.load(*left);
}
},
// We have to load memory operands to avoid corrupting them
(Opnd::Mem(_) | Opnd::Reg(_), _) => {
*left = asm.load(*left);
},
_ => {}
};
*out = asm.next_opnd_out(Opnd::match_num_bits(&[*left, *right]));
asm.push_insn(insn);
},
Insn::Cmp { left, right } |
Insn::Test { left, right } => {
if let (Opnd::Mem(_), Opnd::Mem(_)) = (&left, &right) {
let loaded = asm.load(*right);
*right = loaded;
}
asm.push_insn(insn);
},
// These instructions modify their input operand in-place, so we
// may need to load the input value to preserve it
Insn::LShift { opnd, shift, out } |
Insn::RShift { opnd, shift, out } |
Insn::URShift { opnd, shift, out } => {
match (&unmapped_opnds[0], &unmapped_opnds[1]) {
// Instruction output whose live range spans beyond this instruction
(Opnd::InsnOut { idx, .. }, _) => {
if live_ranges[*idx] > index {
*opnd = asm.load(*opnd);
}
},
// We have to load memory operands to avoid corrupting them
(Opnd::Mem(_) | Opnd::Reg(_), _) => {
*opnd = asm.load(*opnd);
},
_ => {}
};
*out = asm.next_opnd_out(Opnd::match_num_bits(&[*opnd, *shift]));
asm.push_insn(insn);
},
Insn::CSelZ { truthy, falsy, out } |
Insn::CSelNZ { truthy, falsy, out } |
Insn::CSelE { truthy, falsy, out } |
Insn::CSelNE { truthy, falsy, out } |
Insn::CSelL { truthy, falsy, out } |
Insn::CSelLE { truthy, falsy, out } |
Insn::CSelG { truthy, falsy, out } |
Insn::CSelGE { truthy, falsy, out } => {
match unmapped_opnds[0] {
// If we have an instruction output whose live range
// spans beyond this instruction, we have to load it.
Opnd::InsnOut { idx, .. } => {
if live_ranges[idx] > index {
*truthy = asm.load(*truthy);
}
},
Opnd::UImm(_) | Opnd::Imm(_) | Opnd::Value(_) => {
*truthy = asm.load(*truthy);
},
_ => {}
};
match falsy {
Opnd::UImm(_) | Opnd::Imm(_) => {
*falsy = asm.load(*falsy);
},
_ => {}
};
*out = asm.next_opnd_out(Opnd::match_num_bits(&[*truthy, *falsy]));
asm.push_insn(insn);
},
Insn::Mov { dest, src } => {
match (&dest, &src) {
(Opnd::Mem(_), Opnd::Mem(_)) => {
// We load opnd1 because for mov, opnd0 is the output
let opnd1 = asm.load(*src);
asm.mov(*dest, opnd1);
},
(Opnd::Mem(_), Opnd::UImm(value)) => {
// 32-bit values will be sign-extended
if imm_num_bits(*value as i64) > 32 {
let opnd1 = asm.load(*src);
asm.mov(*dest, opnd1);
} else {
asm.mov(*dest, *src);
}
},
(Opnd::Mem(_), Opnd::Imm(value)) => {
if imm_num_bits(*value) > 32 {
let opnd1 = asm.load(*src);
asm.mov(*dest, opnd1);
} else {
asm.mov(*dest, *src);
}
},
_ => {
asm.mov(*dest, *src);
}
}
},
Insn::Not { opnd, .. } => {
let opnd0 = match unmapped_opnds[0] {
// If we have an instruction output whose live range
// spans beyond this instruction, we have to load it.
Opnd::InsnOut { idx, .. } => {
if live_ranges[idx] > index {
asm.load(*opnd)
} else {
*opnd
}
},
// We have to load memory and register operands to avoid
// corrupting them.
Opnd::Mem(_) | Opnd::Reg(_) => {
asm.load(*opnd)
},
// Otherwise we can just reuse the existing operand.
_ => *opnd
};
asm.not(opnd0);
},
Insn::CCall { opnds, target, .. } => {
assert!(opnds.len() <= C_ARG_OPNDS.len());
// Load each operand into the corresponding argument
// register.
for (idx, opnd) in opnds.into_iter().enumerate() {
asm.load_into(C_ARG_OPNDS[idx], *opnd);
}
// Now we push the CCall without any arguments so that it
// just performs the call.
asm.ccall(target.unwrap_fun_ptr(), vec![]);
},
_ => {
if insn.out_opnd().is_some() {
let out_num_bits = Opnd::match_num_bits_iter(insn.opnd_iter());
let out = insn.out_opnd_mut().unwrap();
*out = asm.next_opnd_out(out_num_bits);
}
asm.push_insn(insn);
}
};
iterator.map_insn_index(&mut asm);
}
asm
}
/// Emit platform-specific machine code
pub fn x86_emit(&mut self, cb: &mut CodeBlock) -> Vec<u32>
{
/// For some instructions, we want to be able to lower a 64-bit operand
/// without requiring more registers to be available in the register
/// allocator. So we just use the SCRATCH0 register temporarily to hold
/// the value before we immediately use it.
fn emit_64bit_immediate(cb: &mut CodeBlock, opnd: &Opnd) -> X86Opnd {
match opnd {
Opnd::Imm(value) => {
// 32-bit values will be sign-extended
if imm_num_bits(*value) > 32 {
mov(cb, Assembler::SCRATCH0, opnd.into());
Assembler::SCRATCH0
} else {
opnd.into()
}
},
Opnd::UImm(value) => {
// 32-bit values will be sign-extended
if imm_num_bits(*value as i64) > 32 {
mov(cb, Assembler::SCRATCH0, opnd.into());
Assembler::SCRATCH0
} else {
opnd.into()
}
},
_ => opnd.into()
}
}
fn emit_csel(cb: &mut CodeBlock, truthy: Opnd, falsy: Opnd, out: Opnd, cmov_fn: fn(&mut CodeBlock, X86Opnd, X86Opnd)) {
if out != truthy {
mov(cb, out.into(), truthy.into());
}
cmov_fn(cb, out.into(), falsy.into());
}
//dbg!(&self.insns);
// List of GC offsets
let mut gc_offsets: Vec<u32> = Vec::new();
// For each instruction
let start_write_pos = cb.get_write_pos();
let mut insns_idx: usize = 0;
while let Some(insn) = self.insns.get(insns_idx) {
let src_ptr = cb.get_write_ptr();
let had_dropped_bytes = cb.has_dropped_bytes();
let old_label_state = cb.get_label_state();
let mut insn_gc_offsets: Vec<u32> = Vec::new();
match insn {
Insn::Comment(text) => {
if cfg!(feature = "disasm") {
cb.add_comment(text);
}
},
// Write the label at the current position
Insn::Label(target) => {
cb.write_label(target.unwrap_label_idx());
},
// Report back the current position in the generated code
Insn::PosMarker(pos_marker) => {
pos_marker(cb.get_write_ptr());
},
Insn::BakeString(text) => {
for byte in text.as_bytes() {
cb.write_byte(*byte);
}
// Add a null-terminator byte for safety (in case we pass
// this to C code)
cb.write_byte(0);
},
Insn::Add { left, right, .. } => {
let opnd1 = emit_64bit_immediate(cb, right);
add(cb, left.into(), opnd1);
},
Insn::FrameSetup => {},
Insn::FrameTeardown => {},
Insn::Sub { left, right, .. } => {
let opnd1 = emit_64bit_immediate(cb, right);
sub(cb, left.into(), opnd1);
},
Insn::And { left, right, .. } => {
let opnd1 = emit_64bit_immediate(cb, right);
and(cb, left.into(), opnd1);
},
Insn::Or { left, right, .. } => {
let opnd1 = emit_64bit_immediate(cb, right);
or(cb, left.into(), opnd1);
},
Insn::Xor { left, right, .. } => {
let opnd1 = emit_64bit_immediate(cb, right);
xor(cb, left.into(), opnd1);
},
Insn::Not { opnd, .. } => {
not(cb, opnd.into());
},
Insn::LShift { opnd, shift , ..} => {
shl(cb, opnd.into(), shift.into())
},
Insn::RShift { opnd, shift , ..} => {
sar(cb, opnd.into(), shift.into())
},
Insn::URShift { opnd, shift, .. } => {
shr(cb, opnd.into(), shift.into())
},
Insn::Store { dest, src } => {
mov(cb, dest.into(), src.into());
},
// This assumes only load instructions can contain references to GC'd Value operands
Insn::Load { opnd, out } |
Insn::LoadInto { dest: out, opnd } => {
mov(cb, out.into(), opnd.into());
// If the value being loaded is a heap object
if let Opnd::Value(val) = opnd {
if !val.special_const_p() {
// The pointer immediate is encoded as the last part of the mov written out
let ptr_offset: u32 = (cb.get_write_pos() as u32) - (SIZEOF_VALUE as u32);
insn_gc_offsets.push(ptr_offset);
}
}
},
Insn::LoadSExt { opnd, out } => {
movsx(cb, out.into(), opnd.into());
},
Insn::Mov { dest, src } => {
mov(cb, dest.into(), src.into());
},
// Load effective address
Insn::Lea { opnd, out } => {
lea(cb, out.into(), opnd.into());
},
// Load relative address
Insn::LeaLabel { target, out } => {
let label_idx = target.unwrap_label_idx();
cb.label_ref(label_idx, 7, |cb, src_addr, dst_addr| {
let disp = dst_addr - src_addr;
lea(cb, Self::SCRATCH0, mem_opnd(8, RIP, disp.try_into().unwrap()));
});
mov(cb, out.into(), Self::SCRATCH0);
},
// Push and pop to/from the C stack
Insn::CPush(opnd) => {
push(cb, opnd.into());
},
Insn::CPop { out } => {
pop(cb, out.into());
},
Insn::CPopInto(opnd) => {
pop(cb, opnd.into());
},
// Push and pop to the C stack all caller-save registers and the
// flags
Insn::CPushAll => {
let regs = Assembler::get_caller_save_regs();
for reg in regs {
push(cb, X86Opnd::Reg(reg));
}
pushfq(cb);
},
Insn::CPopAll => {
let regs = Assembler::get_caller_save_regs();
popfq(cb);
for reg in regs.into_iter().rev() {
pop(cb, X86Opnd::Reg(reg));
}
},
// C function call
Insn::CCall { target, .. } => {
call_ptr(cb, RAX, target.unwrap_fun_ptr());
},
Insn::CRet(opnd) => {
// TODO: bias allocation towards return register
if *opnd != Opnd::Reg(C_RET_REG) {
mov(cb, RAX, opnd.into());
}
ret(cb);
},
// Compare
Insn::Cmp { left, right } => {
let emitted = emit_64bit_immediate(cb, right);
cmp(cb, left.into(), emitted);
}
// Test and set flags
Insn::Test { left, right } => {
let emitted = emit_64bit_immediate(cb, right);
test(cb, left.into(), emitted);
}
Insn::JmpOpnd(opnd) => {
jmp_rm(cb, opnd.into());
}
// Conditional jump to a label
Insn::Jmp(target) => {
match *target {
Target::CodePtr(code_ptr) => jmp_ptr(cb, code_ptr),
Target::Label(label_idx) => jmp_label(cb, label_idx),
_ => unreachable!()
}
}
Insn::Je(target) => {
match *target {
Target::CodePtr(code_ptr) => je_ptr(cb, code_ptr),
Target::Label(label_idx) => je_label(cb, label_idx),
_ => unreachable!()
}
}
Insn::Jne(target) => {
match *target {
Target::CodePtr(code_ptr) => jne_ptr(cb, code_ptr),
Target::Label(label_idx) => jne_label(cb, label_idx),
_ => unreachable!()
}
}
Insn::Jl(target) => {
match *target {
Target::CodePtr(code_ptr) => jl_ptr(cb, code_ptr),
Target::Label(label_idx) => jl_label(cb, label_idx),
_ => unreachable!()
}
},
Insn::Jbe(target) => {
match *target {
Target::CodePtr(code_ptr) => jbe_ptr(cb, code_ptr),
Target::Label(label_idx) => jbe_label(cb, label_idx),
_ => unreachable!()
}
},
Insn::Jz(target) => {
match *target {
Target::CodePtr(code_ptr) => jz_ptr(cb, code_ptr),
Target::Label(label_idx) => jz_label(cb, label_idx),
_ => unreachable!()
}
}
Insn::Jnz(target) => {
match *target {
Target::CodePtr(code_ptr) => jnz_ptr(cb, code_ptr),
Target::Label(label_idx) => jnz_label(cb, label_idx),
_ => unreachable!()
}
}
Insn::Jo(target) => {
match *target {
Target::CodePtr(code_ptr) => jo_ptr(cb, code_ptr),
Target::Label(label_idx) => jo_label(cb, label_idx),
_ => unreachable!()
}
}
// Atomically increment a counter at a given memory location
Insn::IncrCounter { mem, value } => {
assert!(matches!(mem, Opnd::Mem(_)));
assert!(matches!(value, Opnd::UImm(_) | Opnd::Imm(_) ) );
write_lock_prefix(cb);
add(cb, mem.into(), value.into());
},
Insn::Breakpoint => int3(cb),
Insn::CSelZ { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovnz);
},
Insn::CSelNZ { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovz);
},
Insn::CSelE { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovne);
},
Insn::CSelNE { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmove);
},
Insn::CSelL { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovge);
},
Insn::CSelLE { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovg);
},
Insn::CSelG { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovle);
},
Insn::CSelGE { truthy, falsy, out } => {
emit_csel(cb, *truthy, *falsy, *out, cmovl);
}
Insn::LiveReg { .. } => (), // just a reg alloc signal, no code
Insn::PadInvalPatch => {
let code_size = cb.get_write_pos().saturating_sub(std::cmp::max(start_write_pos, cb.page_start_pos()));
if code_size < JMP_PTR_BYTES {
nop(cb, (JMP_PTR_BYTES - code_size) as u32);
}
}
// We want to keep the panic here because some instructions that
// we feed to the backend could get lowered into other
// instructions. So it's possible that some of our backend
// instructions can never make it to the emit stage.
#[allow(unreachable_patterns)]
_ => panic!("unsupported instruction passed to x86 backend: {:?}", insn)
};
// On failure, jump to the next page and retry the current insn
if !had_dropped_bytes && cb.has_dropped_bytes() && cb.next_page(src_ptr, jmp_ptr) {
// Reset cb states before retrying the current Insn
cb.set_label_state(old_label_state);
} else {
insns_idx += 1;
gc_offsets.append(&mut insn_gc_offsets);
}
}
gc_offsets
}
/// Optimize and compile the stored instructions
pub fn compile_with_regs(self, cb: &mut CodeBlock, regs: Vec<Reg>) -> Vec<u32>
{
let mut asm = self.x86_split().alloc_regs(regs);
// Create label instances in the code block
for (idx, name) in asm.label_names.iter().enumerate() {
let label_idx = cb.new_label(name.to_string());
assert!(label_idx == idx);
}
let gc_offsets = asm.x86_emit(cb);
if cb.has_dropped_bytes() {
cb.clear_labels();
} else {
cb.link_labels();
}
gc_offsets
}
}
#[cfg(test)]
mod tests {
use super::*;
fn setup_asm() -> (Assembler, CodeBlock) {
(Assembler::new(), CodeBlock::new_dummy(1024))
}
#[test]
fn test_emit_add_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.add(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c04881c0ff000000");
}
#[test]
fn test_emit_add_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.add(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c049bbffffffffffff00004c01d8");
}
#[test]
fn test_emit_and_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.and(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c04881e0ff000000");
}
#[test]
fn test_emit_and_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.and(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c049bbffffffffffff00004c21d8");
}
#[test]
fn test_emit_cmp_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
asm.cmp(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 0);
assert_eq!(format!("{:x}", cb), "4881f8ff000000");
}
#[test]
fn test_emit_cmp_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
asm.cmp(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 0);
assert_eq!(format!("{:x}", cb), "49bbffffffffffff00004c39d8");
}
#[test]
fn test_emit_or_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.or(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c04881c8ff000000");
}
#[test]
fn test_emit_or_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.or(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c049bbffffffffffff00004c09d8");
}
#[test]
fn test_emit_sub_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.sub(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c04881e8ff000000");
}
#[test]
fn test_emit_sub_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.sub(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c049bbffffffffffff00004c29d8");
}
#[test]
fn test_emit_test_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
asm.test(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 0);
assert_eq!(format!("{:x}", cb), "f6c0ff");
}
#[test]
fn test_emit_test_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
asm.test(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 0);
assert_eq!(format!("{:x}", cb), "49bbffffffffffff00004c85d8");
}
#[test]
fn test_emit_xor_lt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.xor(Opnd::Reg(RAX_REG), Opnd::UImm(0xFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c04881f0ff000000");
}
#[test]
fn test_emit_xor_gt_32_bits() {
let (mut asm, mut cb) = setup_asm();
let _ = asm.xor(Opnd::Reg(RAX_REG), Opnd::UImm(0xFFFF_FFFF_FFFF));
asm.compile_with_num_regs(&mut cb, 1);
assert_eq!(format!("{:x}", cb), "4889c049bbffffffffffff00004c31d8");
}
}