mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
2528 lines
69 KiB
C
2528 lines
69 KiB
C
/**********************************************************************
|
|
|
|
class.c -
|
|
|
|
$Author$
|
|
created at: Tue Aug 10 15:05:44 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
**********************************************************************/
|
|
|
|
/*!
|
|
* \addtogroup class
|
|
* \{
|
|
*/
|
|
|
|
#include "ruby/internal/config.h"
|
|
#include <ctype.h>
|
|
|
|
#include "constant.h"
|
|
#include "debug_counter.h"
|
|
#include "id_table.h"
|
|
#include "internal.h"
|
|
#include "internal/class.h"
|
|
#include "internal/eval.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/object.h"
|
|
#include "internal/string.h"
|
|
#include "internal/variable.h"
|
|
#include "ruby/st.h"
|
|
#include "vm_core.h"
|
|
|
|
#define id_attached id__attached__
|
|
|
|
#define METACLASS_OF(k) RBASIC(k)->klass
|
|
#define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls)
|
|
|
|
RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state;
|
|
|
|
static rb_subclass_entry_t *
|
|
push_subclass_entry_to_list(VALUE super, VALUE klass)
|
|
{
|
|
rb_subclass_entry_t *entry, *head;
|
|
|
|
entry = ZALLOC(rb_subclass_entry_t);
|
|
entry->klass = klass;
|
|
|
|
head = RCLASS_SUBCLASSES(super);
|
|
if (!head) {
|
|
head = ZALLOC(rb_subclass_entry_t);
|
|
RCLASS_SUBCLASSES(super) = head;
|
|
}
|
|
entry->next = head->next;
|
|
entry->prev = head;
|
|
|
|
if (head->next) {
|
|
head->next->prev = entry;
|
|
}
|
|
head->next = entry;
|
|
|
|
return entry;
|
|
}
|
|
|
|
void
|
|
rb_class_subclass_add(VALUE super, VALUE klass)
|
|
{
|
|
if (super && super != Qundef) {
|
|
rb_subclass_entry_t *entry = push_subclass_entry_to_list(super, klass);
|
|
RCLASS_SUBCLASS_ENTRY(klass) = entry;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_module_add_to_subclasses_list(VALUE module, VALUE iclass)
|
|
{
|
|
rb_subclass_entry_t *entry = push_subclass_entry_to_list(module, iclass);
|
|
RCLASS_MODULE_SUBCLASS_ENTRY(iclass) = entry;
|
|
}
|
|
|
|
void
|
|
rb_class_remove_subclass_head(VALUE klass)
|
|
{
|
|
rb_subclass_entry_t *head = RCLASS_SUBCLASSES(klass);
|
|
|
|
if (head) {
|
|
if (head->next) {
|
|
head->next->prev = NULL;
|
|
}
|
|
RCLASS_SUBCLASSES(klass) = NULL;
|
|
xfree(head);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_class_remove_from_super_subclasses(VALUE klass)
|
|
{
|
|
rb_subclass_entry_t *entry = RCLASS_SUBCLASS_ENTRY(klass);
|
|
|
|
if (entry) {
|
|
rb_subclass_entry_t *prev = entry->prev, *next = entry->next;
|
|
|
|
if (prev) {
|
|
prev->next = next;
|
|
}
|
|
if (next) {
|
|
next->prev = prev;
|
|
}
|
|
|
|
xfree(entry);
|
|
}
|
|
|
|
RCLASS_SUBCLASS_ENTRY(klass) = NULL;
|
|
}
|
|
|
|
void
|
|
rb_class_remove_from_module_subclasses(VALUE klass)
|
|
{
|
|
rb_subclass_entry_t *entry = RCLASS_MODULE_SUBCLASS_ENTRY(klass);
|
|
|
|
if (entry) {
|
|
rb_subclass_entry_t *prev = entry->prev, *next = entry->next;
|
|
|
|
if (prev) {
|
|
prev->next = next;
|
|
}
|
|
if (next) {
|
|
next->prev = prev;
|
|
}
|
|
|
|
xfree(entry);
|
|
}
|
|
|
|
RCLASS_MODULE_SUBCLASS_ENTRY(klass) = NULL;
|
|
}
|
|
|
|
void
|
|
rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg)
|
|
{
|
|
// RCLASS_SUBCLASSES should always point to our head element which has NULL klass
|
|
rb_subclass_entry_t *cur = RCLASS_SUBCLASSES(klass);
|
|
// if we have a subclasses list, then the head is a placeholder with no valid
|
|
// class. So ignore it and use the next element in the list (if one exists)
|
|
if (cur) {
|
|
RUBY_ASSERT(!cur->klass);
|
|
cur = cur->next;
|
|
}
|
|
|
|
/* do not be tempted to simplify this loop into a for loop, the order of
|
|
operations is important here if `f` modifies the linked list */
|
|
while (cur) {
|
|
VALUE curklass = cur->klass;
|
|
cur = cur->next;
|
|
// do not trigger GC during f, otherwise the cur will become
|
|
// a dangling pointer if the subclass is collected
|
|
f(curklass, arg);
|
|
}
|
|
}
|
|
|
|
static void
|
|
class_detach_subclasses(VALUE klass, VALUE arg)
|
|
{
|
|
rb_class_remove_from_super_subclasses(klass);
|
|
}
|
|
|
|
void
|
|
rb_class_detach_subclasses(VALUE klass)
|
|
{
|
|
rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil);
|
|
}
|
|
|
|
static void
|
|
class_detach_module_subclasses(VALUE klass, VALUE arg)
|
|
{
|
|
rb_class_remove_from_module_subclasses(klass);
|
|
}
|
|
|
|
void
|
|
rb_class_detach_module_subclasses(VALUE klass)
|
|
{
|
|
rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil);
|
|
}
|
|
|
|
/**
|
|
* Allocates a struct RClass for a new class.
|
|
*
|
|
* \param flags initial value for basic.flags of the returned class.
|
|
* \param klass the class of the returned class.
|
|
* \return an uninitialized Class object.
|
|
* \pre \p klass must refer \c Class class or an ancestor of Class.
|
|
* \pre \code (flags | T_CLASS) != 0 \endcode
|
|
* \post the returned class can safely be \c #initialize 'd.
|
|
*
|
|
* \note this function is not Class#allocate.
|
|
*/
|
|
static VALUE
|
|
class_alloc(VALUE flags, VALUE klass)
|
|
{
|
|
size_t alloc_size = sizeof(struct RClass);
|
|
|
|
#if USE_RVARGC
|
|
alloc_size += sizeof(rb_classext_t);
|
|
#endif
|
|
|
|
flags &= T_MASK;
|
|
flags |= FL_PROMOTED1 /* start from age == 2 */;
|
|
if (RGENGC_WB_PROTECTED_CLASS) flags |= FL_WB_PROTECTED;
|
|
RVARGC_NEWOBJ_OF(obj, struct RClass, klass, flags, alloc_size);
|
|
|
|
#if USE_RVARGC
|
|
memset(RCLASS_EXT(obj), 0, sizeof(rb_classext_t));
|
|
# if SIZEOF_SERIAL_T != SIZEOF_VALUE
|
|
RCLASS(obj)->class_serial_ptr = ZALLOC(rb_serial_t);
|
|
# endif
|
|
#else
|
|
obj->ptr = ZALLOC(rb_classext_t);
|
|
#endif
|
|
|
|
/* ZALLOC
|
|
RCLASS_IV_TBL(obj) = 0;
|
|
RCLASS_CONST_TBL(obj) = 0;
|
|
RCLASS_M_TBL(obj) = 0;
|
|
RCLASS_IV_INDEX_TBL(obj) = 0;
|
|
RCLASS_SET_SUPER((VALUE)obj, 0);
|
|
RCLASS_SUBCLASSES(obj) = NULL;
|
|
RCLASS_PARENT_SUBCLASSES(obj) = NULL;
|
|
RCLASS_MODULE_SUBCLASSES(obj) = NULL;
|
|
*/
|
|
RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj);
|
|
RCLASS_SERIAL(obj) = rb_next_class_serial();
|
|
RB_OBJ_WRITE(obj, &RCLASS_REFINED_CLASS(obj), Qnil);
|
|
RCLASS_ALLOCATOR(obj) = 0;
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static void
|
|
RCLASS_M_TBL_INIT(VALUE c)
|
|
{
|
|
RCLASS_M_TBL(c) = rb_id_table_create(0);
|
|
}
|
|
|
|
/*!
|
|
* A utility function that wraps class_alloc.
|
|
*
|
|
* allocates a class and initializes safely.
|
|
* \param super a class from which the new class derives.
|
|
* \return a class object.
|
|
* \pre \a super must be a class.
|
|
* \post the metaclass of the new class is Class.
|
|
*/
|
|
VALUE
|
|
rb_class_boot(VALUE super)
|
|
{
|
|
VALUE klass = class_alloc(T_CLASS, rb_cClass);
|
|
|
|
RCLASS_SET_SUPER(klass, super);
|
|
RCLASS_M_TBL_INIT(klass);
|
|
|
|
return (VALUE)klass;
|
|
}
|
|
|
|
static VALUE *
|
|
class_superclasses_including_self(VALUE klass)
|
|
{
|
|
if (FL_TEST_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF))
|
|
return RCLASS_SUPERCLASSES(klass);
|
|
|
|
size_t depth = RCLASS_SUPERCLASS_DEPTH(klass);
|
|
VALUE *superclasses = xmalloc(sizeof(VALUE) * (depth + 1));
|
|
if (depth > 0)
|
|
memcpy(superclasses, RCLASS_SUPERCLASSES(klass), sizeof(VALUE) * depth);
|
|
superclasses[depth] = klass;
|
|
|
|
RCLASS_SUPERCLASSES(klass) = superclasses;
|
|
FL_SET_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF);
|
|
return superclasses;
|
|
}
|
|
|
|
void
|
|
rb_class_update_superclasses(VALUE klass)
|
|
{
|
|
VALUE super = RCLASS_SUPER(klass);
|
|
|
|
if (!RB_TYPE_P(klass, T_CLASS)) return;
|
|
if (super == Qundef) return;
|
|
|
|
// If the superclass array is already built
|
|
if (RCLASS_SUPERCLASSES(klass))
|
|
return;
|
|
|
|
// find the proper superclass
|
|
while (super != Qfalse && !RB_TYPE_P(super, T_CLASS)) {
|
|
super = RCLASS_SUPER(super);
|
|
}
|
|
|
|
// For BasicObject and uninitialized classes, depth=0 and ary=NULL
|
|
if (super == Qfalse)
|
|
return;
|
|
|
|
// Sometimes superclasses are set before the full ancestry tree is built
|
|
// This happens during metaclass construction
|
|
if (super != rb_cBasicObject && !RCLASS_SUPERCLASS_DEPTH(super)) {
|
|
rb_class_update_superclasses(super);
|
|
|
|
// If it is still unset we need to try later
|
|
if (!RCLASS_SUPERCLASS_DEPTH(super))
|
|
return;
|
|
}
|
|
|
|
RCLASS_SUPERCLASSES(klass) = class_superclasses_including_self(super);
|
|
RCLASS_SUPERCLASS_DEPTH(klass) = RCLASS_SUPERCLASS_DEPTH(super) + 1;
|
|
}
|
|
|
|
void
|
|
rb_check_inheritable(VALUE super)
|
|
{
|
|
if (!RB_TYPE_P(super, T_CLASS)) {
|
|
rb_raise(rb_eTypeError, "superclass must be an instance of Class (given an instance of %"PRIsVALUE")",
|
|
rb_obj_class(super));
|
|
}
|
|
if (RBASIC(super)->flags & FL_SINGLETON) {
|
|
rb_raise(rb_eTypeError, "can't make subclass of singleton class");
|
|
}
|
|
if (super == rb_cClass) {
|
|
rb_raise(rb_eTypeError, "can't make subclass of Class");
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_class_new(VALUE super)
|
|
{
|
|
Check_Type(super, T_CLASS);
|
|
rb_check_inheritable(super);
|
|
return rb_class_boot(super);
|
|
}
|
|
|
|
VALUE
|
|
rb_class_s_alloc(VALUE klass)
|
|
{
|
|
return rb_class_boot(0);
|
|
}
|
|
|
|
static void
|
|
clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me)
|
|
{
|
|
if (me->def->type == VM_METHOD_TYPE_ISEQ) {
|
|
rb_cref_t *new_cref;
|
|
rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref);
|
|
rb_add_method_iseq(new_klass, mid, me->def->body.iseq.iseqptr, new_cref, METHOD_ENTRY_VISI(me));
|
|
}
|
|
else {
|
|
rb_method_entry_set(new_klass, mid, me, METHOD_ENTRY_VISI(me));
|
|
}
|
|
}
|
|
|
|
struct clone_method_arg {
|
|
VALUE new_klass;
|
|
VALUE old_klass;
|
|
};
|
|
|
|
static enum rb_id_table_iterator_result
|
|
clone_method_i(ID key, VALUE value, void *data)
|
|
{
|
|
const struct clone_method_arg *arg = (struct clone_method_arg *)data;
|
|
clone_method(arg->old_klass, arg->new_klass, key, (const rb_method_entry_t *)value);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
struct clone_const_arg {
|
|
VALUE klass;
|
|
struct rb_id_table *tbl;
|
|
};
|
|
|
|
static int
|
|
clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg)
|
|
{
|
|
rb_const_entry_t *nce = ALLOC(rb_const_entry_t);
|
|
MEMCPY(nce, ce, rb_const_entry_t, 1);
|
|
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value);
|
|
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file);
|
|
|
|
rb_id_table_insert(arg->tbl, key, (VALUE)nce);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
clone_const_i(ID key, VALUE value, void *data)
|
|
{
|
|
return clone_const(key, (const rb_const_entry_t *)value, data);
|
|
}
|
|
|
|
static void
|
|
class_init_copy_check(VALUE clone, VALUE orig)
|
|
{
|
|
if (orig == rb_cBasicObject) {
|
|
rb_raise(rb_eTypeError, "can't copy the root class");
|
|
}
|
|
if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) {
|
|
rb_raise(rb_eTypeError, "already initialized class");
|
|
}
|
|
if (FL_TEST(orig, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError, "can't copy singleton class");
|
|
}
|
|
}
|
|
|
|
static void
|
|
copy_tables(VALUE clone, VALUE orig)
|
|
{
|
|
if (RCLASS_IV_TBL(clone)) {
|
|
st_free_table(RCLASS_IV_TBL(clone));
|
|
RCLASS_IV_TBL(clone) = 0;
|
|
}
|
|
if (RCLASS_CONST_TBL(clone)) {
|
|
rb_free_const_table(RCLASS_CONST_TBL(clone));
|
|
RCLASS_CONST_TBL(clone) = 0;
|
|
}
|
|
RCLASS_M_TBL(clone) = 0;
|
|
if (RCLASS_IV_TBL(orig)) {
|
|
st_data_t id;
|
|
|
|
rb_iv_tbl_copy(clone, orig);
|
|
CONST_ID(id, "__tmp_classpath__");
|
|
st_delete(RCLASS_IV_TBL(clone), &id, 0);
|
|
CONST_ID(id, "__classpath__");
|
|
st_delete(RCLASS_IV_TBL(clone), &id, 0);
|
|
}
|
|
if (RCLASS_CONST_TBL(orig)) {
|
|
struct clone_const_arg arg;
|
|
|
|
arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
|
|
arg.klass = clone;
|
|
rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg);
|
|
}
|
|
}
|
|
|
|
static bool ensure_origin(VALUE klass);
|
|
|
|
/**
|
|
* If this flag is set, that module is allocated but not initialized yet.
|
|
*/
|
|
enum {RMODULE_ALLOCATED_BUT_NOT_INITIALIZED = RUBY_FL_USER5};
|
|
|
|
static inline bool
|
|
RMODULE_UNINITIALIZED(VALUE module)
|
|
{
|
|
return FL_TEST_RAW(module, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
|
|
}
|
|
|
|
void
|
|
rb_module_set_initialized(VALUE mod)
|
|
{
|
|
FL_UNSET_RAW(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
|
|
/* no more re-initialization */
|
|
}
|
|
|
|
void
|
|
rb_module_check_initializable(VALUE mod)
|
|
{
|
|
if (!RMODULE_UNINITIALIZED(mod)) {
|
|
rb_raise(rb_eTypeError, "already initialized module");
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
VALUE
|
|
rb_mod_init_copy(VALUE clone, VALUE orig)
|
|
{
|
|
switch (BUILTIN_TYPE(clone)) {
|
|
case T_CLASS:
|
|
case T_ICLASS:
|
|
class_init_copy_check(clone, orig);
|
|
break;
|
|
case T_MODULE:
|
|
rb_module_check_initializable(clone);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (!OBJ_INIT_COPY(clone, orig)) return clone;
|
|
|
|
/* cloned flag is refer at constant inline cache
|
|
* see vm_get_const_key_cref() in vm_insnhelper.c
|
|
*/
|
|
FL_SET(clone, RCLASS_CLONED);
|
|
FL_SET(orig , RCLASS_CLONED);
|
|
|
|
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
|
|
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
|
|
rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone);
|
|
}
|
|
RCLASS_ALLOCATOR(clone) = RCLASS_ALLOCATOR(orig);
|
|
copy_tables(clone, orig);
|
|
if (RCLASS_M_TBL(orig)) {
|
|
struct clone_method_arg arg;
|
|
arg.old_klass = orig;
|
|
arg.new_klass = clone;
|
|
RCLASS_M_TBL_INIT(clone);
|
|
rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
|
|
}
|
|
|
|
if (RCLASS_ORIGIN(orig) == orig) {
|
|
RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
|
|
}
|
|
else {
|
|
VALUE p = RCLASS_SUPER(orig);
|
|
VALUE orig_origin = RCLASS_ORIGIN(orig);
|
|
VALUE prev_clone_p = clone;
|
|
VALUE origin_stack = rb_ary_hidden_new(2);
|
|
VALUE origin[2];
|
|
VALUE clone_p = 0;
|
|
long origin_len;
|
|
int add_subclass;
|
|
VALUE clone_origin;
|
|
|
|
ensure_origin(clone);
|
|
clone_origin = RCLASS_ORIGIN(clone);
|
|
|
|
while (p && p != orig_origin) {
|
|
if (BUILTIN_TYPE(p) != T_ICLASS) {
|
|
rb_bug("non iclass between module/class and origin");
|
|
}
|
|
clone_p = class_alloc(RBASIC(p)->flags, METACLASS_OF(p));
|
|
RCLASS_SET_SUPER(prev_clone_p, clone_p);
|
|
prev_clone_p = clone_p;
|
|
RCLASS_M_TBL(clone_p) = RCLASS_M_TBL(p);
|
|
RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p);
|
|
RCLASS_IV_TBL(clone_p) = RCLASS_IV_TBL(p);
|
|
RCLASS_ALLOCATOR(clone_p) = RCLASS_ALLOCATOR(p);
|
|
if (RB_TYPE_P(clone, T_CLASS)) {
|
|
RCLASS_SET_INCLUDER(clone_p, clone);
|
|
}
|
|
add_subclass = TRUE;
|
|
if (p != RCLASS_ORIGIN(p)) {
|
|
origin[0] = clone_p;
|
|
origin[1] = RCLASS_ORIGIN(p);
|
|
rb_ary_cat(origin_stack, origin, 2);
|
|
}
|
|
else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
|
|
RARRAY_AREF(origin_stack, origin_len - 1) == p) {
|
|
RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
|
|
RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p);
|
|
rb_ary_resize(origin_stack, origin_len);
|
|
add_subclass = FALSE;
|
|
}
|
|
if (add_subclass) {
|
|
rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p);
|
|
}
|
|
p = RCLASS_SUPER(p);
|
|
}
|
|
|
|
if (p == orig_origin) {
|
|
if (clone_p) {
|
|
RCLASS_SET_SUPER(clone_p, clone_origin);
|
|
RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin));
|
|
}
|
|
copy_tables(clone_origin, orig_origin);
|
|
if (RCLASS_M_TBL(orig_origin)) {
|
|
struct clone_method_arg arg;
|
|
arg.old_klass = orig;
|
|
arg.new_klass = clone;
|
|
RCLASS_M_TBL_INIT(clone_origin);
|
|
rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
|
|
}
|
|
}
|
|
else {
|
|
rb_bug("no origin for class that has origin");
|
|
}
|
|
|
|
rb_class_update_superclasses(clone);
|
|
}
|
|
|
|
return clone;
|
|
}
|
|
|
|
VALUE
|
|
rb_singleton_class_clone(VALUE obj)
|
|
{
|
|
return rb_singleton_class_clone_and_attach(obj, Qundef);
|
|
}
|
|
|
|
// Clone and return the singleton class of `obj` if it has been created and is attached to `obj`.
|
|
VALUE
|
|
rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach)
|
|
{
|
|
const VALUE klass = METACLASS_OF(obj);
|
|
|
|
// Note that `rb_singleton_class()` can create situations where `klass` is
|
|
// attached to an object other than `obj`. In which case `obj` does not have
|
|
// a material singleton class attached yet and there is no singleton class
|
|
// to clone.
|
|
if (!(FL_TEST(klass, FL_SINGLETON) && rb_attr_get(klass, id_attached) == obj)) {
|
|
// nothing to clone
|
|
return klass;
|
|
}
|
|
else {
|
|
/* copy singleton(unnamed) class */
|
|
bool klass_of_clone_is_new;
|
|
VALUE clone = class_alloc(RBASIC(klass)->flags, 0);
|
|
|
|
if (BUILTIN_TYPE(obj) == T_CLASS) {
|
|
klass_of_clone_is_new = true;
|
|
RBASIC_SET_CLASS(clone, clone);
|
|
}
|
|
else {
|
|
VALUE klass_metaclass_clone = rb_singleton_class_clone(klass);
|
|
// When `METACLASS_OF(klass) == klass_metaclass_clone`, it means the
|
|
// recursive call did not clone `METACLASS_OF(klass)`.
|
|
klass_of_clone_is_new = (METACLASS_OF(klass) != klass_metaclass_clone);
|
|
RBASIC_SET_CLASS(clone, klass_metaclass_clone);
|
|
}
|
|
|
|
RCLASS_SET_SUPER(clone, RCLASS_SUPER(klass));
|
|
RCLASS_ALLOCATOR(clone) = RCLASS_ALLOCATOR(klass);
|
|
if (RCLASS_IV_TBL(klass)) {
|
|
rb_iv_tbl_copy(clone, klass);
|
|
}
|
|
if (RCLASS_CONST_TBL(klass)) {
|
|
struct clone_const_arg arg;
|
|
arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
|
|
arg.klass = clone;
|
|
rb_id_table_foreach(RCLASS_CONST_TBL(klass), clone_const_i, &arg);
|
|
}
|
|
if (attach != Qundef) {
|
|
rb_singleton_class_attached(clone, attach);
|
|
}
|
|
RCLASS_M_TBL_INIT(clone);
|
|
{
|
|
struct clone_method_arg arg;
|
|
arg.old_klass = klass;
|
|
arg.new_klass = clone;
|
|
rb_id_table_foreach(RCLASS_M_TBL(klass), clone_method_i, &arg);
|
|
}
|
|
if (klass_of_clone_is_new) {
|
|
rb_singleton_class_attached(METACLASS_OF(clone), clone);
|
|
}
|
|
FL_SET(clone, FL_SINGLETON);
|
|
|
|
return clone;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_singleton_class_attached(VALUE klass, VALUE obj)
|
|
{
|
|
if (FL_TEST(klass, FL_SINGLETON)) {
|
|
rb_class_ivar_set(klass, id_attached, obj);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* whether k is a meta^(n)-class of Class class
|
|
* @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0)
|
|
* @retval 0 otherwise
|
|
*/
|
|
#define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k))
|
|
|
|
static int
|
|
rb_singleton_class_has_metaclass_p(VALUE sklass)
|
|
{
|
|
return rb_attr_get(METACLASS_OF(sklass), id_attached) == sklass;
|
|
}
|
|
|
|
int
|
|
rb_singleton_class_internal_p(VALUE sklass)
|
|
{
|
|
return (RB_TYPE_P(rb_attr_get(sklass, id_attached), T_CLASS) &&
|
|
!rb_singleton_class_has_metaclass_p(sklass));
|
|
}
|
|
|
|
/*!
|
|
* whether k has a metaclass
|
|
* @retval 1 if \a k has a metaclass
|
|
* @retval 0 otherwise
|
|
*/
|
|
#define HAVE_METACLASS_P(k) \
|
|
(FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \
|
|
rb_singleton_class_has_metaclass_p(k))
|
|
|
|
/*!
|
|
* ensures \a klass belongs to its own eigenclass.
|
|
* @return the eigenclass of \a klass
|
|
* @post \a klass belongs to the returned eigenclass.
|
|
* i.e. the attached object of the eigenclass is \a klass.
|
|
* @note this macro creates a new eigenclass if necessary.
|
|
*/
|
|
#define ENSURE_EIGENCLASS(klass) \
|
|
(HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass))
|
|
|
|
|
|
/*!
|
|
* Creates a metaclass of \a klass
|
|
* \param klass a class
|
|
* \return created metaclass for the class
|
|
* \pre \a klass is a Class object
|
|
* \pre \a klass has no singleton class.
|
|
* \post the class of \a klass is the returned class.
|
|
* \post the returned class is meta^(n+1)-class when \a klass is a meta^(n)-klass for n >= 0
|
|
*/
|
|
static inline VALUE
|
|
make_metaclass(VALUE klass)
|
|
{
|
|
VALUE super;
|
|
VALUE metaclass = rb_class_boot(Qundef);
|
|
|
|
FL_SET(metaclass, FL_SINGLETON);
|
|
rb_singleton_class_attached(metaclass, klass);
|
|
|
|
if (META_CLASS_OF_CLASS_CLASS_P(klass)) {
|
|
SET_METACLASS_OF(klass, metaclass);
|
|
SET_METACLASS_OF(metaclass, metaclass);
|
|
}
|
|
else {
|
|
VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */
|
|
SET_METACLASS_OF(klass, metaclass);
|
|
SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp));
|
|
}
|
|
|
|
super = RCLASS_SUPER(klass);
|
|
while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super);
|
|
RCLASS_SET_SUPER(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass);
|
|
|
|
// Full class ancestry may not have been filled until we reach here.
|
|
rb_class_update_superclasses(METACLASS_OF(metaclass));
|
|
|
|
return metaclass;
|
|
}
|
|
|
|
/*!
|
|
* Creates a singleton class for \a obj.
|
|
* \pre \a obj must not a immediate nor a special const.
|
|
* \pre \a obj must not a Class object.
|
|
* \pre \a obj has no singleton class.
|
|
*/
|
|
static inline VALUE
|
|
make_singleton_class(VALUE obj)
|
|
{
|
|
VALUE orig_class = METACLASS_OF(obj);
|
|
VALUE klass = rb_class_boot(orig_class);
|
|
|
|
FL_SET(klass, FL_SINGLETON);
|
|
RBASIC_SET_CLASS(obj, klass);
|
|
rb_singleton_class_attached(klass, obj);
|
|
|
|
SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class)));
|
|
return klass;
|
|
}
|
|
|
|
|
|
static VALUE
|
|
boot_defclass(const char *name, VALUE super)
|
|
{
|
|
VALUE obj = rb_class_boot(super);
|
|
ID id = rb_intern(name);
|
|
|
|
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
|
|
rb_vm_add_root_module(obj);
|
|
return obj;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*
|
|
* Document-class: Refinement
|
|
*
|
|
* Refinement is a class of the +self+ (current context) inside +refine+
|
|
* statement. It allows to import methods from other modules, see #import_methods.
|
|
*/
|
|
|
|
#if 0 /* for RDoc */
|
|
/*
|
|
* Document-method: Refinement#import_methods
|
|
*
|
|
* call-seq:
|
|
* import_methods(module, ...) -> self
|
|
*
|
|
* Imports methods from modules. Unlike Module#include,
|
|
* Refinement#import_methods copies methods and adds them into the refinement,
|
|
* so the refinement is activated in the imported methods.
|
|
*
|
|
* Note that due to method copying, only methods defined in Ruby code can be imported.
|
|
*
|
|
* module StrUtils
|
|
* def indent(level)
|
|
* ' ' * level + self
|
|
* end
|
|
* end
|
|
*
|
|
* module M
|
|
* refine String do
|
|
* import_methods StrUtils
|
|
* end
|
|
* end
|
|
*
|
|
* using M
|
|
* "foo".indent(3)
|
|
* #=> " foo"
|
|
*
|
|
* module M
|
|
* refine String do
|
|
* import_methods Enumerable
|
|
* # Can't import method which is not defined with Ruby code: Enumerable#drop
|
|
* end
|
|
* end
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
refinement_import_methods(int argc, VALUE *argv, VALUE refinement)
|
|
{
|
|
}
|
|
# endif
|
|
|
|
void
|
|
Init_class_hierarchy(void)
|
|
{
|
|
rb_cBasicObject = boot_defclass("BasicObject", 0);
|
|
rb_cObject = boot_defclass("Object", rb_cBasicObject);
|
|
rb_gc_register_mark_object(rb_cObject);
|
|
|
|
/* resolve class name ASAP for order-independence */
|
|
rb_set_class_path_string(rb_cObject, rb_cObject, rb_fstring_lit("Object"));
|
|
|
|
rb_cModule = boot_defclass("Module", rb_cObject);
|
|
rb_cClass = boot_defclass("Class", rb_cModule);
|
|
rb_cRefinement = boot_defclass("Refinement", rb_cModule);
|
|
|
|
#if 0 /* for RDoc */
|
|
// we pretend it to be public, otherwise RDoc will ignore it
|
|
rb_define_method(rb_cRefinement, "import_methods", refinement_import_methods, -1);
|
|
#endif
|
|
|
|
rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject);
|
|
RBASIC_SET_CLASS(rb_cClass, rb_cClass);
|
|
RBASIC_SET_CLASS(rb_cModule, rb_cClass);
|
|
RBASIC_SET_CLASS(rb_cObject, rb_cClass);
|
|
RBASIC_SET_CLASS(rb_cRefinement, rb_cClass);
|
|
RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);
|
|
|
|
ENSURE_EIGENCLASS(rb_cRefinement);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \internal
|
|
* Creates a new *singleton class* for an object.
|
|
*
|
|
* \pre \a obj has no singleton class.
|
|
* \note DO NOT USE the function in an extension libraries. Use \ref rb_singleton_class.
|
|
* \param obj An object.
|
|
* \param unused ignored.
|
|
* \return The singleton class of the object.
|
|
*/
|
|
VALUE
|
|
rb_make_metaclass(VALUE obj, VALUE unused)
|
|
{
|
|
if (BUILTIN_TYPE(obj) == T_CLASS) {
|
|
return make_metaclass(obj);
|
|
}
|
|
else {
|
|
return make_singleton_class(obj);
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_define_class_id(ID id, VALUE super)
|
|
{
|
|
VALUE klass;
|
|
|
|
if (!super) super = rb_cObject;
|
|
klass = rb_class_new(super);
|
|
rb_make_metaclass(klass, METACLASS_OF(super));
|
|
|
|
return klass;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calls Class#inherited.
|
|
* \param super A class which will be called #inherited.
|
|
* NULL means Object class.
|
|
* \param klass A Class object which derived from \a super
|
|
* \return the value \c Class#inherited's returns
|
|
* \pre Each of \a super and \a klass must be a \c Class object.
|
|
*/
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_class_inherited(VALUE super, VALUE klass)
|
|
{
|
|
ID inherited;
|
|
if (!super) super = rb_cObject;
|
|
CONST_ID(inherited, "inherited");
|
|
return rb_funcall(super, inherited, 1, klass);
|
|
}
|
|
|
|
VALUE
|
|
rb_define_class(const char *name, VALUE super)
|
|
{
|
|
VALUE klass;
|
|
ID id;
|
|
|
|
id = rb_intern(name);
|
|
if (rb_const_defined(rb_cObject, id)) {
|
|
klass = rb_const_get(rb_cObject, id);
|
|
if (!RB_TYPE_P(klass, T_CLASS)) {
|
|
rb_raise(rb_eTypeError, "%s is not a class (%"PRIsVALUE")",
|
|
name, rb_obj_class(klass));
|
|
}
|
|
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
|
|
rb_raise(rb_eTypeError, "superclass mismatch for class %s", name);
|
|
}
|
|
|
|
/* Class may have been defined in Ruby and not pin-rooted */
|
|
rb_vm_add_root_module(klass);
|
|
return klass;
|
|
}
|
|
if (!super) {
|
|
rb_raise(rb_eArgError, "no super class for `%s'", name);
|
|
}
|
|
klass = rb_define_class_id(id, super);
|
|
rb_vm_add_root_module(klass);
|
|
rb_const_set(rb_cObject, id, klass);
|
|
rb_class_inherited(super, klass);
|
|
|
|
return klass;
|
|
}
|
|
|
|
VALUE
|
|
rb_define_class_under(VALUE outer, const char *name, VALUE super)
|
|
{
|
|
return rb_define_class_id_under(outer, rb_intern(name), super);
|
|
}
|
|
|
|
VALUE
|
|
rb_define_class_id_under(VALUE outer, ID id, VALUE super)
|
|
{
|
|
VALUE klass;
|
|
|
|
if (rb_const_defined_at(outer, id)) {
|
|
klass = rb_const_get_at(outer, id);
|
|
if (!RB_TYPE_P(klass, T_CLASS)) {
|
|
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a class"
|
|
" (%"PRIsVALUE")",
|
|
outer, rb_id2str(id), rb_obj_class(klass));
|
|
}
|
|
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
|
|
rb_raise(rb_eTypeError, "superclass mismatch for class "
|
|
"%"PRIsVALUE"::%"PRIsVALUE""
|
|
" (%"PRIsVALUE" is given but was %"PRIsVALUE")",
|
|
outer, rb_id2str(id), RCLASS_SUPER(klass), super);
|
|
}
|
|
/* Class may have been defined in Ruby and not pin-rooted */
|
|
rb_vm_add_root_module(klass);
|
|
|
|
return klass;
|
|
}
|
|
if (!super) {
|
|
rb_raise(rb_eArgError, "no super class for `%"PRIsVALUE"::%"PRIsVALUE"'",
|
|
rb_class_path(outer), rb_id2str(id));
|
|
}
|
|
klass = rb_define_class_id(id, super);
|
|
rb_set_class_path_string(klass, outer, rb_id2str(id));
|
|
rb_const_set(outer, id, klass);
|
|
rb_class_inherited(super, klass);
|
|
rb_vm_add_root_module(klass);
|
|
|
|
return klass;
|
|
}
|
|
|
|
VALUE
|
|
rb_module_s_alloc(VALUE klass)
|
|
{
|
|
VALUE mod = class_alloc(T_MODULE, klass);
|
|
RCLASS_M_TBL_INIT(mod);
|
|
FL_SET(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
|
|
return mod;
|
|
}
|
|
|
|
static inline VALUE
|
|
module_new(VALUE klass)
|
|
{
|
|
VALUE mdl = class_alloc(T_MODULE, klass);
|
|
RCLASS_M_TBL_INIT(mdl);
|
|
return (VALUE)mdl;
|
|
}
|
|
|
|
VALUE
|
|
rb_module_new(void)
|
|
{
|
|
return module_new(rb_cModule);
|
|
}
|
|
|
|
VALUE
|
|
rb_refinement_new(void)
|
|
{
|
|
return module_new(rb_cRefinement);
|
|
}
|
|
|
|
// Kept for compatibility. Use rb_module_new() instead.
|
|
VALUE
|
|
rb_define_module_id(ID id)
|
|
{
|
|
return rb_module_new();
|
|
}
|
|
|
|
VALUE
|
|
rb_define_module(const char *name)
|
|
{
|
|
VALUE module;
|
|
ID id;
|
|
|
|
id = rb_intern(name);
|
|
if (rb_const_defined(rb_cObject, id)) {
|
|
module = rb_const_get(rb_cObject, id);
|
|
if (!RB_TYPE_P(module, T_MODULE)) {
|
|
rb_raise(rb_eTypeError, "%s is not a module (%"PRIsVALUE")",
|
|
name, rb_obj_class(module));
|
|
}
|
|
/* Module may have been defined in Ruby and not pin-rooted */
|
|
rb_vm_add_root_module(module);
|
|
return module;
|
|
}
|
|
module = rb_module_new();
|
|
rb_vm_add_root_module(module);
|
|
rb_const_set(rb_cObject, id, module);
|
|
|
|
return module;
|
|
}
|
|
|
|
VALUE
|
|
rb_define_module_under(VALUE outer, const char *name)
|
|
{
|
|
return rb_define_module_id_under(outer, rb_intern(name));
|
|
}
|
|
|
|
VALUE
|
|
rb_define_module_id_under(VALUE outer, ID id)
|
|
{
|
|
VALUE module;
|
|
|
|
if (rb_const_defined_at(outer, id)) {
|
|
module = rb_const_get_at(outer, id);
|
|
if (!RB_TYPE_P(module, T_MODULE)) {
|
|
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a module"
|
|
" (%"PRIsVALUE")",
|
|
outer, rb_id2str(id), rb_obj_class(module));
|
|
}
|
|
/* Module may have been defined in Ruby and not pin-rooted */
|
|
rb_gc_register_mark_object(module);
|
|
return module;
|
|
}
|
|
module = rb_module_new();
|
|
rb_const_set(outer, id, module);
|
|
rb_set_class_path_string(module, outer, rb_id2str(id));
|
|
rb_gc_register_mark_object(module);
|
|
|
|
return module;
|
|
}
|
|
|
|
VALUE
|
|
rb_include_class_new(VALUE module, VALUE super)
|
|
{
|
|
VALUE klass = class_alloc(T_ICLASS, rb_cClass);
|
|
|
|
RCLASS_M_TBL(klass) = RCLASS_M_TBL(module);
|
|
|
|
RCLASS_SET_ORIGIN(klass, klass);
|
|
if (BUILTIN_TYPE(module) == T_ICLASS) {
|
|
module = METACLASS_OF(module);
|
|
}
|
|
RUBY_ASSERT(!RB_TYPE_P(module, T_ICLASS));
|
|
if (!RCLASS_IV_TBL(module)) {
|
|
RCLASS_IV_TBL(module) = st_init_numtable();
|
|
}
|
|
if (!RCLASS_CONST_TBL(module)) {
|
|
RCLASS_CONST_TBL(module) = rb_id_table_create(0);
|
|
}
|
|
RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);
|
|
RCLASS_CVC_TBL(klass) = RCLASS_CVC_TBL(module);
|
|
RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
|
|
|
|
RCLASS_SET_SUPER(klass, super);
|
|
RBASIC_SET_CLASS(klass, module);
|
|
|
|
return (VALUE)klass;
|
|
}
|
|
|
|
static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super);
|
|
|
|
static void
|
|
ensure_includable(VALUE klass, VALUE module)
|
|
{
|
|
rb_class_modify_check(klass);
|
|
Check_Type(module, T_MODULE);
|
|
rb_module_set_initialized(module);
|
|
if (!NIL_P(rb_refinement_module_get_refined_class(module))) {
|
|
rb_raise(rb_eArgError, "refinement module is not allowed");
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_include_module(VALUE klass, VALUE module)
|
|
{
|
|
int changed = 0;
|
|
|
|
ensure_includable(klass, module);
|
|
|
|
changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE);
|
|
if (changed < 0)
|
|
rb_raise(rb_eArgError, "cyclic include detected");
|
|
|
|
if (RB_TYPE_P(klass, T_MODULE)) {
|
|
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass);
|
|
// skip the placeholder subclass entry at the head of the list
|
|
if (iclass) {
|
|
RUBY_ASSERT(!iclass->klass);
|
|
iclass = iclass->next;
|
|
}
|
|
|
|
int do_include = 1;
|
|
while (iclass) {
|
|
VALUE check_class = iclass->klass;
|
|
/* During lazy sweeping, iclass->klass could be a dead object that
|
|
* has not yet been swept. */
|
|
if (!rb_objspace_garbage_object_p(check_class)) {
|
|
while (check_class) {
|
|
RUBY_ASSERT(!rb_objspace_garbage_object_p(check_class));
|
|
|
|
if (RB_TYPE_P(check_class, T_ICLASS) &&
|
|
(METACLASS_OF(check_class) == module)) {
|
|
do_include = 0;
|
|
}
|
|
check_class = RCLASS_SUPER(check_class);
|
|
}
|
|
|
|
if (do_include) {
|
|
include_modules_at(iclass->klass, RCLASS_ORIGIN(iclass->klass), module, TRUE);
|
|
}
|
|
}
|
|
|
|
iclass = iclass->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
add_refined_method_entry_i(ID key, VALUE value, void *data)
|
|
{
|
|
rb_add_refined_method_entry((VALUE)data, key);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
clear_module_cache_i(ID id, VALUE val, void *data)
|
|
{
|
|
VALUE klass = (VALUE)data;
|
|
rb_clear_method_cache(klass, id);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static bool
|
|
module_in_super_chain(const VALUE klass, VALUE module)
|
|
{
|
|
struct rb_id_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass));
|
|
if (klass_m_tbl) {
|
|
while (module) {
|
|
if (klass_m_tbl == RCLASS_M_TBL(module))
|
|
return true;
|
|
module = RCLASS_SUPER(module);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For each ID key in the class constant table, we're going to clear the VM's
|
|
// inline constant caches associated with it.
|
|
static enum rb_id_table_iterator_result
|
|
clear_constant_cache_i(ID id, VALUE value, void *data)
|
|
{
|
|
rb_clear_constant_cache_for_id(id);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
do_include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super, bool check_cyclic)
|
|
{
|
|
VALUE p, iclass, origin_stack = 0;
|
|
int method_changed = 0, add_subclass;
|
|
long origin_len;
|
|
VALUE klass_origin = RCLASS_ORIGIN(klass);
|
|
VALUE original_klass = klass;
|
|
|
|
if (check_cyclic && module_in_super_chain(klass, module))
|
|
return -1;
|
|
|
|
while (module) {
|
|
int c_seen = FALSE;
|
|
int superclass_seen = FALSE;
|
|
struct rb_id_table *tbl;
|
|
|
|
if (klass == c) {
|
|
c_seen = TRUE;
|
|
}
|
|
if (klass_origin != c || search_super) {
|
|
/* ignore if the module included already in superclasses for include,
|
|
* ignore if the module included before origin class for prepend
|
|
*/
|
|
for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
|
|
int type = BUILTIN_TYPE(p);
|
|
if (klass_origin == p && !search_super)
|
|
break;
|
|
if (c == p)
|
|
c_seen = TRUE;
|
|
if (type == T_ICLASS) {
|
|
if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
|
|
if (!superclass_seen && c_seen) {
|
|
c = p; /* move insertion point */
|
|
}
|
|
goto skip;
|
|
}
|
|
}
|
|
else if (type == T_CLASS) {
|
|
superclass_seen = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE super_class = RCLASS_SUPER(c);
|
|
|
|
// invalidate inline method cache
|
|
RB_DEBUG_COUNTER_INC(cvar_include_invalidate);
|
|
ruby_vm_global_cvar_state++;
|
|
tbl = RCLASS_M_TBL(module);
|
|
if (tbl && rb_id_table_size(tbl)) {
|
|
if (search_super) { // include
|
|
if (super_class && !RB_TYPE_P(super_class, T_MODULE)) {
|
|
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)super_class);
|
|
}
|
|
}
|
|
else { // prepend
|
|
if (!RB_TYPE_P(original_klass, T_MODULE)) {
|
|
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)original_klass);
|
|
}
|
|
}
|
|
method_changed = 1;
|
|
}
|
|
|
|
// setup T_ICLASS for the include/prepend module
|
|
iclass = rb_include_class_new(module, super_class);
|
|
c = RCLASS_SET_SUPER(c, iclass);
|
|
RCLASS_SET_INCLUDER(iclass, klass);
|
|
add_subclass = TRUE;
|
|
if (module != RCLASS_ORIGIN(module)) {
|
|
if (!origin_stack) origin_stack = rb_ary_hidden_new(2);
|
|
VALUE origin[2] = {iclass, RCLASS_ORIGIN(module)};
|
|
rb_ary_cat(origin_stack, origin, 2);
|
|
}
|
|
else if (origin_stack && (origin_len = RARRAY_LEN(origin_stack)) > 1 &&
|
|
RARRAY_AREF(origin_stack, origin_len - 1) == module) {
|
|
RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), iclass);
|
|
RICLASS_SET_ORIGIN_SHARED_MTBL(iclass);
|
|
rb_ary_resize(origin_stack, origin_len);
|
|
add_subclass = FALSE;
|
|
}
|
|
|
|
if (add_subclass) {
|
|
VALUE m = module;
|
|
if (BUILTIN_TYPE(m) == T_ICLASS) m = METACLASS_OF(m);
|
|
rb_module_add_to_subclasses_list(m, iclass);
|
|
}
|
|
|
|
if (BUILTIN_TYPE(klass) == T_MODULE && FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
|
|
VALUE refined_class =
|
|
rb_refinement_module_get_refined_class(klass);
|
|
|
|
rb_id_table_foreach(RCLASS_M_TBL(module), add_refined_method_entry_i, (void *)refined_class);
|
|
RUBY_ASSERT(BUILTIN_TYPE(c) == T_MODULE);
|
|
}
|
|
|
|
tbl = RCLASS_CONST_TBL(module);
|
|
if (tbl && rb_id_table_size(tbl))
|
|
rb_id_table_foreach(tbl, clear_constant_cache_i, NULL);
|
|
skip:
|
|
module = RCLASS_SUPER(module);
|
|
}
|
|
|
|
return method_changed;
|
|
}
|
|
|
|
static int
|
|
include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super)
|
|
{
|
|
return do_include_modules_at(klass, c, module, search_super, true);
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
move_refined_method(ID key, VALUE value, void *data)
|
|
{
|
|
rb_method_entry_t *me = (rb_method_entry_t *)value;
|
|
|
|
if (me->def->type == VM_METHOD_TYPE_REFINED) {
|
|
VALUE klass = (VALUE)data;
|
|
struct rb_id_table *tbl = RCLASS_M_TBL(klass);
|
|
|
|
if (me->def->body.refined.orig_me) {
|
|
const rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me;
|
|
RB_OBJ_WRITE(me, &me->def->body.refined.orig_me, NULL);
|
|
new_me = rb_method_entry_clone(me);
|
|
rb_method_table_insert(klass, tbl, key, new_me);
|
|
rb_method_entry_copy(me, orig_me);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
else {
|
|
rb_method_table_insert(klass, tbl, key, me);
|
|
return ID_TABLE_DELETE;
|
|
}
|
|
}
|
|
else {
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
cache_clear_refined_method(ID key, VALUE value, void *data)
|
|
{
|
|
rb_method_entry_t *me = (rb_method_entry_t *) value;
|
|
|
|
if (me->def->type == VM_METHOD_TYPE_REFINED && me->def->body.refined.orig_me) {
|
|
VALUE klass = (VALUE)data;
|
|
rb_clear_method_cache(klass, me->called_id);
|
|
}
|
|
// Refined method entries without an orig_me is going to stay in the method
|
|
// table of klass, like before the move, so no need to clear the cache.
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static bool
|
|
ensure_origin(VALUE klass)
|
|
{
|
|
VALUE origin = RCLASS_ORIGIN(klass);
|
|
if (origin == klass) {
|
|
origin = class_alloc(T_ICLASS, klass);
|
|
RCLASS_SET_SUPER(origin, RCLASS_SUPER(klass));
|
|
RCLASS_SET_SUPER(klass, origin);
|
|
RCLASS_SET_ORIGIN(klass, origin);
|
|
RCLASS_M_TBL(origin) = RCLASS_M_TBL(klass);
|
|
RCLASS_M_TBL_INIT(klass);
|
|
rb_id_table_foreach(RCLASS_M_TBL(origin), cache_clear_refined_method, (void *)klass);
|
|
rb_id_table_foreach(RCLASS_M_TBL(origin), move_refined_method, (void *)klass);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
rb_prepend_module(VALUE klass, VALUE module)
|
|
{
|
|
int changed;
|
|
bool klass_had_no_origin;
|
|
|
|
ensure_includable(klass, module);
|
|
if (module_in_super_chain(klass, module))
|
|
rb_raise(rb_eArgError, "cyclic prepend detected");
|
|
|
|
klass_had_no_origin = ensure_origin(klass);
|
|
changed = do_include_modules_at(klass, klass, module, FALSE, false);
|
|
RUBY_ASSERT(changed >= 0); // already checked for cyclic prepend above
|
|
if (changed) {
|
|
rb_vm_check_redefinition_by_prepend(klass);
|
|
}
|
|
if (RB_TYPE_P(klass, T_MODULE)) {
|
|
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass);
|
|
// skip the placeholder subclass entry at the head of the list if it exists
|
|
if (iclass) {
|
|
RUBY_ASSERT(!iclass->klass);
|
|
iclass = iclass->next;
|
|
}
|
|
|
|
VALUE klass_origin = RCLASS_ORIGIN(klass);
|
|
struct rb_id_table *klass_m_tbl = RCLASS_M_TBL(klass);
|
|
struct rb_id_table *klass_origin_m_tbl = RCLASS_M_TBL(klass_origin);
|
|
while (iclass) {
|
|
/* During lazy sweeping, iclass->klass could be a dead object that
|
|
* has not yet been swept. */
|
|
if (!rb_objspace_garbage_object_p(iclass->klass)) {
|
|
const VALUE subclass = iclass->klass;
|
|
if (klass_had_no_origin && klass_origin_m_tbl == RCLASS_M_TBL(subclass)) {
|
|
// backfill an origin iclass to handle refinements and future prepends
|
|
rb_id_table_foreach(RCLASS_M_TBL(subclass), clear_module_cache_i, (void *)subclass);
|
|
RCLASS_M_TBL(subclass) = klass_m_tbl;
|
|
VALUE origin = rb_include_class_new(klass_origin, RCLASS_SUPER(subclass));
|
|
RCLASS_SET_SUPER(subclass, origin);
|
|
RCLASS_SET_INCLUDER(origin, RCLASS_INCLUDER(subclass));
|
|
RCLASS_SET_ORIGIN(subclass, origin);
|
|
RICLASS_SET_ORIGIN_SHARED_MTBL(origin);
|
|
}
|
|
include_modules_at(subclass, subclass, module, FALSE);
|
|
}
|
|
|
|
iclass = iclass->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.included_modules -> array
|
|
*
|
|
* Returns the list of modules included or prepended in <i>mod</i>
|
|
* or one of <i>mod</i>'s ancestors.
|
|
*
|
|
* module Sub
|
|
* end
|
|
*
|
|
* module Mixin
|
|
* prepend Sub
|
|
* end
|
|
*
|
|
* module Outer
|
|
* include Mixin
|
|
* end
|
|
*
|
|
* Mixin.included_modules #=> [Sub]
|
|
* Outer.included_modules #=> [Sub, Mixin]
|
|
*/
|
|
|
|
VALUE
|
|
rb_mod_included_modules(VALUE mod)
|
|
{
|
|
VALUE ary = rb_ary_new();
|
|
VALUE p;
|
|
VALUE origin = RCLASS_ORIGIN(mod);
|
|
|
|
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
|
|
if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
|
|
VALUE m = METACLASS_OF(p);
|
|
if (RB_TYPE_P(m, T_MODULE))
|
|
rb_ary_push(ary, m);
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.include?(module) -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>module</i> is included
|
|
* or prepended in <i>mod</i> or one of <i>mod</i>'s ancestors.
|
|
*
|
|
* module A
|
|
* end
|
|
* class B
|
|
* include A
|
|
* end
|
|
* class C < B
|
|
* end
|
|
* B.include?(A) #=> true
|
|
* C.include?(A) #=> true
|
|
* A.include?(A) #=> false
|
|
*/
|
|
|
|
VALUE
|
|
rb_mod_include_p(VALUE mod, VALUE mod2)
|
|
{
|
|
VALUE p;
|
|
|
|
Check_Type(mod2, T_MODULE);
|
|
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
|
|
if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) {
|
|
if (METACLASS_OF(p) == mod2) return Qtrue;
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.ancestors -> array
|
|
*
|
|
* Returns a list of modules included/prepended in <i>mod</i>
|
|
* (including <i>mod</i> itself).
|
|
*
|
|
* module Mod
|
|
* include Math
|
|
* include Comparable
|
|
* prepend Enumerable
|
|
* end
|
|
*
|
|
* Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
|
|
* Math.ancestors #=> [Math]
|
|
* Enumerable.ancestors #=> [Enumerable]
|
|
*/
|
|
|
|
VALUE
|
|
rb_mod_ancestors(VALUE mod)
|
|
{
|
|
VALUE p, ary = rb_ary_new();
|
|
VALUE refined_class = Qnil;
|
|
if (BUILTIN_TYPE(mod) == T_MODULE && FL_TEST(mod, RMODULE_IS_REFINEMENT)) {
|
|
refined_class = rb_refinement_module_get_refined_class(mod);
|
|
}
|
|
|
|
for (p = mod; p; p = RCLASS_SUPER(p)) {
|
|
if (p == refined_class) break;
|
|
if (p != RCLASS_ORIGIN(p)) continue;
|
|
if (BUILTIN_TYPE(p) == T_ICLASS) {
|
|
rb_ary_push(ary, METACLASS_OF(p));
|
|
}
|
|
else {
|
|
rb_ary_push(ary, p);
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
struct subclass_traverse_data
|
|
{
|
|
VALUE buffer;
|
|
long count;
|
|
long maxcount;
|
|
bool immediate_only;
|
|
};
|
|
|
|
static void
|
|
class_descendants_recursive(VALUE klass, VALUE v)
|
|
{
|
|
struct subclass_traverse_data *data = (struct subclass_traverse_data *) v;
|
|
|
|
if (BUILTIN_TYPE(klass) == T_CLASS && !FL_TEST(klass, FL_SINGLETON)) {
|
|
if (data->buffer && data->count < data->maxcount && !rb_objspace_garbage_object_p(klass)) {
|
|
// assumes that this does not cause GC as long as the length does not exceed the capacity
|
|
rb_ary_push(data->buffer, klass);
|
|
}
|
|
data->count++;
|
|
if (!data->immediate_only) {
|
|
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
|
|
}
|
|
}
|
|
else {
|
|
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
class_descendants(VALUE klass, bool immediate_only)
|
|
{
|
|
struct subclass_traverse_data data = { Qfalse, 0, -1, immediate_only };
|
|
|
|
// estimate the count of subclasses
|
|
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
|
|
|
|
// the following allocation may cause GC which may change the number of subclasses
|
|
data.buffer = rb_ary_new_capa(data.count);
|
|
data.maxcount = data.count;
|
|
data.count = 0;
|
|
|
|
size_t gc_count = rb_gc_count();
|
|
|
|
// enumerate subclasses
|
|
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
|
|
|
|
if (gc_count != rb_gc_count()) {
|
|
rb_bug("GC must not occur during the subclass iteration of Class#descendants");
|
|
}
|
|
|
|
return data.buffer;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* subclasses -> array
|
|
*
|
|
* Returns an array of classes where the receiver is the
|
|
* direct superclass of the class, excluding singleton classes.
|
|
* The order of the returned array is not defined.
|
|
*
|
|
* class A; end
|
|
* class B < A; end
|
|
* class C < B; end
|
|
* class D < A; end
|
|
*
|
|
* A.subclasses #=> [D, B]
|
|
* B.subclasses #=> [C]
|
|
* C.subclasses #=> []
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_subclasses(VALUE klass)
|
|
{
|
|
return class_descendants(klass, true);
|
|
}
|
|
|
|
static void
|
|
ins_methods_push(st_data_t name, st_data_t ary)
|
|
{
|
|
rb_ary_push((VALUE)ary, ID2SYM((ID)name));
|
|
}
|
|
|
|
static int
|
|
ins_methods_i(st_data_t name, st_data_t type, st_data_t ary)
|
|
{
|
|
switch ((rb_method_visibility_t)type) {
|
|
case METHOD_VISI_UNDEF:
|
|
case METHOD_VISI_PRIVATE:
|
|
break;
|
|
default: /* everything but private */
|
|
ins_methods_push(name, ary);
|
|
break;
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
ins_methods_type_i(st_data_t name, st_data_t type, st_data_t ary, rb_method_visibility_t visi)
|
|
{
|
|
if ((rb_method_visibility_t)type == visi) {
|
|
ins_methods_push(name, ary);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary)
|
|
{
|
|
return ins_methods_type_i(name, type, ary, METHOD_VISI_PROTECTED);
|
|
}
|
|
|
|
static int
|
|
ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary)
|
|
{
|
|
return ins_methods_type_i(name, type, ary, METHOD_VISI_PRIVATE);
|
|
}
|
|
|
|
static int
|
|
ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary)
|
|
{
|
|
return ins_methods_type_i(name, type, ary, METHOD_VISI_PUBLIC);
|
|
}
|
|
|
|
static int
|
|
ins_methods_undef_i(st_data_t name, st_data_t type, st_data_t ary)
|
|
{
|
|
return ins_methods_type_i(name, type, ary, METHOD_VISI_UNDEF);
|
|
}
|
|
|
|
struct method_entry_arg {
|
|
st_table *list;
|
|
int recur;
|
|
};
|
|
|
|
static enum rb_id_table_iterator_result
|
|
method_entry_i(ID key, VALUE value, void *data)
|
|
{
|
|
const rb_method_entry_t *me = (const rb_method_entry_t *)value;
|
|
struct method_entry_arg *arg = (struct method_entry_arg *)data;
|
|
rb_method_visibility_t type;
|
|
|
|
if (me->def->type == VM_METHOD_TYPE_REFINED) {
|
|
VALUE owner = me->owner;
|
|
me = rb_resolve_refined_method(Qnil, me);
|
|
if (!me) return ID_TABLE_CONTINUE;
|
|
if (!arg->recur && me->owner != owner) return ID_TABLE_CONTINUE;
|
|
}
|
|
if (!st_is_member(arg->list, key)) {
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) {
|
|
type = METHOD_VISI_UNDEF; /* none */
|
|
}
|
|
else {
|
|
type = METHOD_ENTRY_VISI(me);
|
|
RUBY_ASSERT(type != METHOD_VISI_UNDEF);
|
|
}
|
|
st_add_direct(arg->list, key, (st_data_t)type);
|
|
}
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
add_instance_method_list(VALUE mod, struct method_entry_arg *me_arg)
|
|
{
|
|
struct rb_id_table *m_tbl = RCLASS_M_TBL(mod);
|
|
if (!m_tbl) return;
|
|
rb_id_table_foreach(m_tbl, method_entry_i, me_arg);
|
|
}
|
|
|
|
static bool
|
|
particular_class_p(VALUE mod)
|
|
{
|
|
if (!mod) return false;
|
|
if (FL_TEST(mod, FL_SINGLETON)) return true;
|
|
if (BUILTIN_TYPE(mod) == T_ICLASS) return true;
|
|
return false;
|
|
}
|
|
|
|
static VALUE
|
|
class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t))
|
|
{
|
|
VALUE ary;
|
|
int recur = TRUE, prepended = 0;
|
|
struct method_entry_arg me_arg;
|
|
|
|
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
|
|
|
|
me_arg.list = st_init_numtable();
|
|
me_arg.recur = recur;
|
|
|
|
if (obj) {
|
|
for (; particular_class_p(mod); mod = RCLASS_SUPER(mod)) {
|
|
add_instance_method_list(mod, &me_arg);
|
|
}
|
|
}
|
|
|
|
if (!recur && RCLASS_ORIGIN(mod) != mod) {
|
|
mod = RCLASS_ORIGIN(mod);
|
|
prepended = 1;
|
|
}
|
|
|
|
for (; mod; mod = RCLASS_SUPER(mod)) {
|
|
add_instance_method_list(mod, &me_arg);
|
|
if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue;
|
|
if (!recur) break;
|
|
}
|
|
ary = rb_ary_new2(me_arg.list->num_entries);
|
|
st_foreach(me_arg.list, func, ary);
|
|
st_free_table(me_arg.list);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.instance_methods(include_super=true) -> array
|
|
*
|
|
* Returns an array containing the names of the public and protected instance
|
|
* methods in the receiver. For a module, these are the public and protected methods;
|
|
* for a class, they are the instance (not singleton) methods. If the optional
|
|
* parameter is <code>false</code>, the methods of any ancestors are not included.
|
|
*
|
|
* module A
|
|
* def method1() end
|
|
* end
|
|
* class B
|
|
* include A
|
|
* def method2() end
|
|
* end
|
|
* class C < B
|
|
* def method3() end
|
|
* end
|
|
*
|
|
* A.instance_methods(false) #=> [:method1]
|
|
* B.instance_methods(false) #=> [:method2]
|
|
* B.instance_methods(true).include?(:method1) #=> true
|
|
* C.instance_methods(false) #=> [:method3]
|
|
* C.instance_methods.include?(:method2) #=> true
|
|
*
|
|
* Note that method visibility changes in the current class, as well as aliases,
|
|
* are considered as methods of the current class by this method:
|
|
*
|
|
* class C < B
|
|
* alias method4 method2
|
|
* protected :method2
|
|
* end
|
|
* C.instance_methods(false).sort #=> [:method2, :method3, :method4]
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
|
|
{
|
|
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.protected_instance_methods(include_super=true) -> array
|
|
*
|
|
* Returns a list of the protected instance methods defined in
|
|
* <i>mod</i>. If the optional parameter is <code>false</code>, the
|
|
* methods of any ancestors are not included.
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
|
|
{
|
|
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.private_instance_methods(include_super=true) -> array
|
|
*
|
|
* Returns a list of the private instance methods defined in
|
|
* <i>mod</i>. If the optional parameter is <code>false</code>, the
|
|
* methods of any ancestors are not included.
|
|
*
|
|
* module Mod
|
|
* def method1() end
|
|
* private :method1
|
|
* def method2() end
|
|
* end
|
|
* Mod.instance_methods #=> [:method2]
|
|
* Mod.private_instance_methods #=> [:method1]
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
|
|
{
|
|
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.public_instance_methods(include_super=true) -> array
|
|
*
|
|
* Returns a list of the public instance methods defined in <i>mod</i>.
|
|
* If the optional parameter is <code>false</code>, the methods of
|
|
* any ancestors are not included.
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
|
|
{
|
|
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.undefined_instance_methods -> array
|
|
*
|
|
* Returns a list of the undefined instance methods defined in <i>mod</i>.
|
|
* The undefined methods of any ancestors are not included.
|
|
*/
|
|
|
|
VALUE
|
|
rb_class_undefined_instance_methods(VALUE mod)
|
|
{
|
|
VALUE include_super = Qfalse;
|
|
return class_instance_method_list(1, &include_super, mod, 0, ins_methods_undef_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.methods(regular=true) -> array
|
|
*
|
|
* Returns a list of the names of public and protected methods of
|
|
* <i>obj</i>. This will include all the methods accessible in
|
|
* <i>obj</i>'s ancestors.
|
|
* If the optional parameter is <code>false</code>, it
|
|
* returns an array of <i>obj</i>'s public and protected singleton methods,
|
|
* the array will not include methods in modules included in <i>obj</i>.
|
|
*
|
|
* class Klass
|
|
* def klass_method()
|
|
* end
|
|
* end
|
|
* k = Klass.new
|
|
* k.methods[0..9] #=> [:klass_method, :nil?, :===,
|
|
* # :==~, :!, :eql?
|
|
* # :hash, :<=>, :class, :singleton_class]
|
|
* k.methods.length #=> 56
|
|
*
|
|
* k.methods(false) #=> []
|
|
* def k.singleton_method; end
|
|
* k.methods(false) #=> [:singleton_method]
|
|
*
|
|
* module M123; def m123; end end
|
|
* k.extend M123
|
|
* k.methods(false) #=> [:singleton_method]
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
|
|
{
|
|
rb_check_arity(argc, 0, 1);
|
|
if (argc > 0 && !RTEST(argv[0])) {
|
|
return rb_obj_singleton_methods(argc, argv, obj);
|
|
}
|
|
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.protected_methods(all=true) -> array
|
|
*
|
|
* Returns the list of protected methods accessible to <i>obj</i>. If
|
|
* the <i>all</i> parameter is set to <code>false</code>, only those methods
|
|
* in the receiver will be listed.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
|
|
{
|
|
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.private_methods(all=true) -> array
|
|
*
|
|
* Returns the list of private methods accessible to <i>obj</i>. If
|
|
* the <i>all</i> parameter is set to <code>false</code>, only those methods
|
|
* in the receiver will be listed.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
|
|
{
|
|
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.public_methods(all=true) -> array
|
|
*
|
|
* Returns the list of public methods accessible to <i>obj</i>. If
|
|
* the <i>all</i> parameter is set to <code>false</code>, only those methods
|
|
* in the receiver will be listed.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
|
|
{
|
|
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.singleton_methods(all=true) -> array
|
|
*
|
|
* Returns an array of the names of singleton methods for <i>obj</i>.
|
|
* If the optional <i>all</i> parameter is true, the list will include
|
|
* methods in modules included in <i>obj</i>.
|
|
* Only public and protected singleton methods are returned.
|
|
*
|
|
* module Other
|
|
* def three() end
|
|
* end
|
|
*
|
|
* class Single
|
|
* def Single.four() end
|
|
* end
|
|
*
|
|
* a = Single.new
|
|
*
|
|
* def a.one()
|
|
* end
|
|
*
|
|
* class << a
|
|
* include Other
|
|
* def two()
|
|
* end
|
|
* end
|
|
*
|
|
* Single.singleton_methods #=> [:four]
|
|
* a.singleton_methods(false) #=> [:two, :one]
|
|
* a.singleton_methods #=> [:two, :one, :three]
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE ary, klass, origin;
|
|
struct method_entry_arg me_arg;
|
|
struct rb_id_table *mtbl;
|
|
int recur = TRUE;
|
|
|
|
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
|
|
if (RB_TYPE_P(obj, T_CLASS) && FL_TEST(obj, FL_SINGLETON)) {
|
|
rb_singleton_class(obj);
|
|
}
|
|
klass = CLASS_OF(obj);
|
|
origin = RCLASS_ORIGIN(klass);
|
|
me_arg.list = st_init_numtable();
|
|
me_arg.recur = recur;
|
|
if (klass && FL_TEST(klass, FL_SINGLETON)) {
|
|
if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
|
|
klass = RCLASS_SUPER(klass);
|
|
}
|
|
if (recur) {
|
|
while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
|
|
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
|
|
klass = RCLASS_SUPER(klass);
|
|
}
|
|
}
|
|
ary = rb_ary_new2(me_arg.list->num_entries);
|
|
st_foreach(me_arg.list, ins_methods_i, ary);
|
|
st_free_table(me_arg.list);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*!
|
|
* \}
|
|
*/
|
|
/*!
|
|
* \addtogroup defmethod
|
|
* \{
|
|
*/
|
|
|
|
#ifdef rb_define_method_id
|
|
#undef rb_define_method_id
|
|
#endif
|
|
void
|
|
rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC);
|
|
}
|
|
|
|
#ifdef rb_define_method
|
|
#undef rb_define_method
|
|
#endif
|
|
void
|
|
rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC);
|
|
}
|
|
|
|
#ifdef rb_define_protected_method
|
|
#undef rb_define_protected_method
|
|
#endif
|
|
void
|
|
rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED);
|
|
}
|
|
|
|
#ifdef rb_define_private_method
|
|
#undef rb_define_private_method
|
|
#endif
|
|
void
|
|
rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE);
|
|
}
|
|
|
|
void
|
|
rb_undef_method(VALUE klass, const char *name)
|
|
{
|
|
rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
undef_method_i(ID name, VALUE value, void *data)
|
|
{
|
|
VALUE klass = (VALUE)data;
|
|
rb_add_method(klass, name, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
void
|
|
rb_undef_methods_from(VALUE klass, VALUE super)
|
|
{
|
|
struct rb_id_table *mtbl = RCLASS_M_TBL(super);
|
|
if (mtbl) {
|
|
rb_id_table_foreach(mtbl, undef_method_i, (void *)klass);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \}
|
|
*/
|
|
/*!
|
|
* \addtogroup class
|
|
* \{
|
|
*/
|
|
|
|
static inline VALUE
|
|
special_singleton_class_of(VALUE obj)
|
|
{
|
|
switch (obj) {
|
|
case Qnil: return rb_cNilClass;
|
|
case Qfalse: return rb_cFalseClass;
|
|
case Qtrue: return rb_cTrueClass;
|
|
default: return Qnil;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_special_singleton_class(VALUE obj)
|
|
{
|
|
return special_singleton_class_of(obj);
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* Returns the singleton class of \a obj. Creates it if necessary.
|
|
*
|
|
* \note DO NOT expose the returned singleton class to
|
|
* outside of class.c.
|
|
* Use \ref rb_singleton_class instead for
|
|
* consistency of the metaclass hierarchy.
|
|
*/
|
|
static VALUE
|
|
singleton_class_of(VALUE obj)
|
|
{
|
|
VALUE klass;
|
|
|
|
switch (TYPE(obj)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
case T_SYMBOL:
|
|
rb_raise(rb_eTypeError, "can't define singleton");
|
|
|
|
case T_FALSE:
|
|
case T_TRUE:
|
|
case T_NIL:
|
|
klass = special_singleton_class_of(obj);
|
|
if (NIL_P(klass))
|
|
rb_bug("unknown immediate %p", (void *)obj);
|
|
return klass;
|
|
|
|
case T_STRING:
|
|
if (FL_TEST_RAW(obj, RSTRING_FSTR)) {
|
|
rb_raise(rb_eTypeError, "can't define singleton");
|
|
}
|
|
}
|
|
|
|
klass = METACLASS_OF(obj);
|
|
if (!(FL_TEST(klass, FL_SINGLETON) &&
|
|
rb_attr_get(klass, id_attached) == obj)) {
|
|
rb_serial_t serial = RCLASS_SERIAL(klass);
|
|
klass = rb_make_metaclass(obj, klass);
|
|
RCLASS_SERIAL(klass) = serial;
|
|
}
|
|
|
|
RB_FL_SET_RAW(klass, RB_OBJ_FROZEN_RAW(obj));
|
|
|
|
return klass;
|
|
}
|
|
|
|
void
|
|
rb_freeze_singleton_class(VALUE x)
|
|
{
|
|
/* should not propagate to meta-meta-class, and so on */
|
|
if (!(RBASIC(x)->flags & FL_SINGLETON)) {
|
|
VALUE klass = RBASIC_CLASS(x);
|
|
if (klass && (klass = RCLASS_ORIGIN(klass)) != 0 &&
|
|
FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) {
|
|
OBJ_FREEZE_RAW(klass);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Returns the singleton class of \a obj, or nil if obj is not a
|
|
* singleton object.
|
|
*
|
|
* \param obj an arbitrary object.
|
|
* \return the singleton class or nil.
|
|
*/
|
|
VALUE
|
|
rb_singleton_class_get(VALUE obj)
|
|
{
|
|
VALUE klass;
|
|
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
return rb_special_singleton_class(obj);
|
|
}
|
|
klass = METACLASS_OF(obj);
|
|
if (!FL_TEST(klass, FL_SINGLETON)) return Qnil;
|
|
if (rb_attr_get(klass, id_attached) != obj) return Qnil;
|
|
return klass;
|
|
}
|
|
|
|
VALUE
|
|
rb_singleton_class(VALUE obj)
|
|
{
|
|
VALUE klass = singleton_class_of(obj);
|
|
|
|
/* ensures an exposed class belongs to its own eigenclass */
|
|
if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass);
|
|
|
|
return klass;
|
|
}
|
|
|
|
/*!
|
|
* \}
|
|
*/
|
|
|
|
/*!
|
|
* \addtogroup defmethod
|
|
* \{
|
|
*/
|
|
|
|
#ifdef rb_define_singleton_method
|
|
#undef rb_define_singleton_method
|
|
#endif
|
|
void
|
|
rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_define_method(singleton_class_of(obj), name, func, argc);
|
|
}
|
|
|
|
#ifdef rb_define_module_function
|
|
#undef rb_define_module_function
|
|
#endif
|
|
void
|
|
rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_define_private_method(module, name, func, argc);
|
|
rb_define_singleton_method(module, name, func, argc);
|
|
}
|
|
|
|
#ifdef rb_define_global_function
|
|
#undef rb_define_global_function
|
|
#endif
|
|
void
|
|
rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
|
|
{
|
|
rb_define_module_function(rb_mKernel, name, func, argc);
|
|
}
|
|
|
|
void
|
|
rb_define_alias(VALUE klass, const char *name1, const char *name2)
|
|
{
|
|
rb_alias(klass, rb_intern(name1), rb_intern(name2));
|
|
}
|
|
|
|
void
|
|
rb_define_attr(VALUE klass, const char *name, int read, int write)
|
|
{
|
|
rb_attr(klass, rb_intern(name), read, write, FALSE);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_keyword_error_new(const char *error, VALUE keys)
|
|
{
|
|
long i = 0, len = RARRAY_LEN(keys);
|
|
VALUE error_message = rb_sprintf("%s keyword%.*s", error, len > 1, "s");
|
|
|
|
if (len > 0) {
|
|
rb_str_cat_cstr(error_message, ": ");
|
|
while (1) {
|
|
const VALUE k = RARRAY_AREF(keys, i);
|
|
rb_str_append(error_message, rb_inspect(k));
|
|
if (++i >= len) break;
|
|
rb_str_cat_cstr(error_message, ", ");
|
|
}
|
|
}
|
|
|
|
return rb_exc_new_str(rb_eArgError, error_message);
|
|
}
|
|
|
|
NORETURN(static void rb_keyword_error(const char *error, VALUE keys));
|
|
static void
|
|
rb_keyword_error(const char *error, VALUE keys)
|
|
{
|
|
rb_exc_raise(rb_keyword_error_new(error, keys));
|
|
}
|
|
|
|
NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords));
|
|
static void
|
|
unknown_keyword_error(VALUE hash, const ID *table, int keywords)
|
|
{
|
|
int i;
|
|
for (i = 0; i < keywords; i++) {
|
|
st_data_t key = ID2SYM(table[i]);
|
|
rb_hash_stlike_delete(hash, &key, NULL);
|
|
}
|
|
rb_keyword_error("unknown", rb_hash_keys(hash));
|
|
}
|
|
|
|
|
|
static int
|
|
separate_symbol(st_data_t key, st_data_t value, st_data_t arg)
|
|
{
|
|
VALUE *kwdhash = (VALUE *)arg;
|
|
if (!SYMBOL_P(key)) kwdhash++;
|
|
if (!*kwdhash) *kwdhash = rb_hash_new();
|
|
rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
VALUE
|
|
rb_extract_keywords(VALUE *orighash)
|
|
{
|
|
VALUE parthash[2] = {0, 0};
|
|
VALUE hash = *orighash;
|
|
|
|
if (RHASH_EMPTY_P(hash)) {
|
|
*orighash = 0;
|
|
return hash;
|
|
}
|
|
rb_hash_foreach(hash, separate_symbol, (st_data_t)&parthash);
|
|
*orighash = parthash[1];
|
|
if (parthash[1] && RBASIC_CLASS(hash) != rb_cHash) {
|
|
RBASIC_SET_CLASS(parthash[1], RBASIC_CLASS(hash));
|
|
}
|
|
return parthash[0];
|
|
}
|
|
|
|
int
|
|
rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
|
|
{
|
|
int i = 0, j;
|
|
int rest = 0;
|
|
VALUE missing = Qnil;
|
|
st_data_t key;
|
|
|
|
#define extract_kwarg(keyword, val) \
|
|
(key = (st_data_t)(keyword), values ? \
|
|
(rb_hash_stlike_delete(keyword_hash, &key, &(val)) || ((val) = Qundef, 0)) : \
|
|
rb_hash_stlike_lookup(keyword_hash, key, NULL))
|
|
|
|
if (NIL_P(keyword_hash)) keyword_hash = 0;
|
|
|
|
if (optional < 0) {
|
|
rest = 1;
|
|
optional = -1-optional;
|
|
}
|
|
if (required) {
|
|
for (; i < required; i++) {
|
|
VALUE keyword = ID2SYM(table[i]);
|
|
if (keyword_hash) {
|
|
if (extract_kwarg(keyword, values[i])) {
|
|
continue;
|
|
}
|
|
}
|
|
if (NIL_P(missing)) missing = rb_ary_hidden_new(1);
|
|
rb_ary_push(missing, keyword);
|
|
}
|
|
if (!NIL_P(missing)) {
|
|
rb_keyword_error("missing", missing);
|
|
}
|
|
}
|
|
j = i;
|
|
if (optional && keyword_hash) {
|
|
for (i = 0; i < optional; i++) {
|
|
if (extract_kwarg(ID2SYM(table[required+i]), values[required+i])) {
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
if (!rest && keyword_hash) {
|
|
if (RHASH_SIZE(keyword_hash) > (unsigned int)(values ? 0 : j)) {
|
|
unknown_keyword_error(keyword_hash, table, required+optional);
|
|
}
|
|
}
|
|
if (values && !keyword_hash) {
|
|
for (i = 0; i < required + optional; i++) {
|
|
values[i] = Qundef;
|
|
}
|
|
}
|
|
return j;
|
|
#undef extract_kwarg
|
|
}
|
|
|
|
struct rb_scan_args_t {
|
|
int kw_flag;
|
|
int n_lead;
|
|
int n_opt;
|
|
int n_trail;
|
|
bool f_var;
|
|
bool f_hash;
|
|
bool f_block;
|
|
};
|
|
|
|
static void
|
|
rb_scan_args_parse(int kw_flag, const char *fmt, struct rb_scan_args_t *arg)
|
|
{
|
|
const char *p = fmt;
|
|
|
|
memset(arg, 0, sizeof(*arg));
|
|
arg->kw_flag = kw_flag;
|
|
|
|
if (ISDIGIT(*p)) {
|
|
arg->n_lead = *p - '0';
|
|
p++;
|
|
if (ISDIGIT(*p)) {
|
|
arg->n_opt = *p - '0';
|
|
p++;
|
|
}
|
|
}
|
|
if (*p == '*') {
|
|
arg->f_var = 1;
|
|
p++;
|
|
}
|
|
if (ISDIGIT(*p)) {
|
|
arg->n_trail = *p - '0';
|
|
p++;
|
|
}
|
|
if (*p == ':') {
|
|
arg->f_hash = 1;
|
|
p++;
|
|
}
|
|
if (*p == '&') {
|
|
arg->f_block = 1;
|
|
p++;
|
|
}
|
|
if (*p != '\0') {
|
|
rb_fatal("bad scan arg format: %s", fmt);
|
|
}
|
|
}
|
|
|
|
static int
|
|
rb_scan_args_assign(const struct rb_scan_args_t *arg, int argc, const VALUE *const argv, va_list vargs)
|
|
{
|
|
int i, argi = 0;
|
|
VALUE *var, hash = Qnil;
|
|
#define rb_scan_args_next_param() va_arg(vargs, VALUE *)
|
|
const int kw_flag = arg->kw_flag;
|
|
const int n_lead = arg->n_lead;
|
|
const int n_opt = arg->n_opt;
|
|
const int n_trail = arg->n_trail;
|
|
const int n_mand = n_lead + n_trail;
|
|
const bool f_var = arg->f_var;
|
|
const bool f_hash = arg->f_hash;
|
|
const bool f_block = arg->f_block;
|
|
|
|
/* capture an option hash - phase 1: pop from the argv */
|
|
if (f_hash && argc > 0) {
|
|
VALUE last = argv[argc - 1];
|
|
if (rb_scan_args_keyword_p(kw_flag, last)) {
|
|
hash = rb_hash_dup(last);
|
|
argc--;
|
|
}
|
|
}
|
|
|
|
if (argc < n_mand) {
|
|
goto argc_error;
|
|
}
|
|
|
|
/* capture leading mandatory arguments */
|
|
for (i = 0; i < n_lead; i++) {
|
|
var = rb_scan_args_next_param();
|
|
if (var) *var = argv[argi];
|
|
argi++;
|
|
}
|
|
/* capture optional arguments */
|
|
for (i = 0; i < n_opt; i++) {
|
|
var = rb_scan_args_next_param();
|
|
if (argi < argc - n_trail) {
|
|
if (var) *var = argv[argi];
|
|
argi++;
|
|
}
|
|
else {
|
|
if (var) *var = Qnil;
|
|
}
|
|
}
|
|
/* capture variable length arguments */
|
|
if (f_var) {
|
|
int n_var = argc - argi - n_trail;
|
|
|
|
var = rb_scan_args_next_param();
|
|
if (0 < n_var) {
|
|
if (var) *var = rb_ary_new_from_values(n_var, &argv[argi]);
|
|
argi += n_var;
|
|
}
|
|
else {
|
|
if (var) *var = rb_ary_new();
|
|
}
|
|
}
|
|
/* capture trailing mandatory arguments */
|
|
for (i = 0; i < n_trail; i++) {
|
|
var = rb_scan_args_next_param();
|
|
if (var) *var = argv[argi];
|
|
argi++;
|
|
}
|
|
/* capture an option hash - phase 2: assignment */
|
|
if (f_hash) {
|
|
var = rb_scan_args_next_param();
|
|
if (var) *var = hash;
|
|
}
|
|
/* capture iterator block */
|
|
if (f_block) {
|
|
var = rb_scan_args_next_param();
|
|
if (rb_block_given_p()) {
|
|
*var = rb_block_proc();
|
|
}
|
|
else {
|
|
*var = Qnil;
|
|
}
|
|
}
|
|
|
|
if (argi == argc) {
|
|
return argc;
|
|
}
|
|
|
|
argc_error:
|
|
return -(argc + 1);
|
|
#undef rb_scan_args_next_param
|
|
}
|
|
|
|
static int
|
|
rb_scan_args_result(const struct rb_scan_args_t *const arg, int argc)
|
|
{
|
|
const int n_lead = arg->n_lead;
|
|
const int n_opt = arg->n_opt;
|
|
const int n_trail = arg->n_trail;
|
|
const int n_mand = n_lead + n_trail;
|
|
const bool f_var = arg->f_var;
|
|
|
|
if (argc >= 0) {
|
|
return argc;
|
|
}
|
|
|
|
argc = -argc - 1;
|
|
rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt);
|
|
UNREACHABLE_RETURN(-1);
|
|
}
|
|
|
|
#undef rb_scan_args
|
|
int
|
|
rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
|
|
{
|
|
va_list vargs;
|
|
struct rb_scan_args_t arg;
|
|
rb_scan_args_parse(RB_SCAN_ARGS_PASS_CALLED_KEYWORDS, fmt, &arg);
|
|
va_start(vargs,fmt);
|
|
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
|
|
va_end(vargs);
|
|
return rb_scan_args_result(&arg, argc);
|
|
}
|
|
|
|
#undef rb_scan_args_kw
|
|
int
|
|
rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt, ...)
|
|
{
|
|
va_list vargs;
|
|
struct rb_scan_args_t arg;
|
|
rb_scan_args_parse(kw_flag, fmt, &arg);
|
|
va_start(vargs,fmt);
|
|
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
|
|
va_end(vargs);
|
|
return rb_scan_args_result(&arg, argc);
|
|
}
|
|
|
|
/*!
|
|
* \}
|
|
*/
|