mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
b99775b163
Import the master branch of ruby/openssl for preparing to release openssl-2.2.0
1065 lines
33 KiB
C
1065 lines
33 KiB
C
/*
|
|
* 'OpenSSL for Ruby' project
|
|
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
|
|
* All rights reserved.
|
|
*/
|
|
/*
|
|
* This program is licensed under the same licence as Ruby.
|
|
* (See the file 'LICENCE'.)
|
|
*/
|
|
#include "ossl.h"
|
|
|
|
#define NewCipher(klass) \
|
|
TypedData_Wrap_Struct((klass), &ossl_cipher_type, 0)
|
|
#define AllocCipher(obj, ctx) do { \
|
|
(ctx) = EVP_CIPHER_CTX_new(); \
|
|
if (!(ctx)) \
|
|
ossl_raise(rb_eRuntimeError, NULL); \
|
|
RTYPEDDATA_DATA(obj) = (ctx); \
|
|
} while (0)
|
|
#define GetCipherInit(obj, ctx) do { \
|
|
TypedData_Get_Struct((obj), EVP_CIPHER_CTX, &ossl_cipher_type, (ctx)); \
|
|
} while (0)
|
|
#define GetCipher(obj, ctx) do { \
|
|
GetCipherInit((obj), (ctx)); \
|
|
if (!(ctx)) { \
|
|
ossl_raise(rb_eRuntimeError, "Cipher not initialized!"); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Classes
|
|
*/
|
|
VALUE cCipher;
|
|
VALUE eCipherError;
|
|
static ID id_auth_tag_len, id_key_set;
|
|
|
|
static VALUE ossl_cipher_alloc(VALUE klass);
|
|
static void ossl_cipher_free(void *ptr);
|
|
|
|
static const rb_data_type_t ossl_cipher_type = {
|
|
"OpenSSL/Cipher",
|
|
{
|
|
0, ossl_cipher_free,
|
|
},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY,
|
|
};
|
|
|
|
/*
|
|
* PUBLIC
|
|
*/
|
|
const EVP_CIPHER *
|
|
ossl_evp_get_cipherbyname(VALUE obj)
|
|
{
|
|
if (rb_obj_is_kind_of(obj, cCipher)) {
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(obj, ctx);
|
|
|
|
return EVP_CIPHER_CTX_cipher(ctx);
|
|
}
|
|
else {
|
|
const EVP_CIPHER *cipher;
|
|
|
|
StringValueCStr(obj);
|
|
cipher = EVP_get_cipherbyname(RSTRING_PTR(obj));
|
|
if (!cipher)
|
|
ossl_raise(rb_eArgError,
|
|
"unsupported cipher algorithm: %"PRIsVALUE, obj);
|
|
|
|
return cipher;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
ossl_cipher_new(const EVP_CIPHER *cipher)
|
|
{
|
|
VALUE ret;
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
ret = ossl_cipher_alloc(cCipher);
|
|
AllocCipher(ret, ctx);
|
|
if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PRIVATE
|
|
*/
|
|
static void
|
|
ossl_cipher_free(void *ptr)
|
|
{
|
|
EVP_CIPHER_CTX_free(ptr);
|
|
}
|
|
|
|
static VALUE
|
|
ossl_cipher_alloc(VALUE klass)
|
|
{
|
|
return NewCipher(klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Cipher.new(string) -> cipher
|
|
*
|
|
* The string must contain a valid cipher name like "AES-256-CBC".
|
|
*
|
|
* A list of cipher names is available by calling OpenSSL::Cipher.ciphers.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_initialize(VALUE self, VALUE str)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
const EVP_CIPHER *cipher;
|
|
char *name;
|
|
|
|
name = StringValueCStr(str);
|
|
GetCipherInit(self, ctx);
|
|
if (ctx) {
|
|
ossl_raise(rb_eRuntimeError, "Cipher already initialized!");
|
|
}
|
|
AllocCipher(self, ctx);
|
|
if (!(cipher = EVP_get_cipherbyname(name))) {
|
|
ossl_raise(rb_eRuntimeError, "unsupported cipher algorithm (%"PRIsVALUE")", str);
|
|
}
|
|
if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
ossl_cipher_copy(VALUE self, VALUE other)
|
|
{
|
|
EVP_CIPHER_CTX *ctx1, *ctx2;
|
|
|
|
rb_check_frozen(self);
|
|
if (self == other) return self;
|
|
|
|
GetCipherInit(self, ctx1);
|
|
if (!ctx1) {
|
|
AllocCipher(self, ctx1);
|
|
}
|
|
GetCipher(other, ctx2);
|
|
if (EVP_CIPHER_CTX_copy(ctx1, ctx2) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return self;
|
|
}
|
|
|
|
static void*
|
|
add_cipher_name_to_ary(const OBJ_NAME *name, VALUE ary)
|
|
{
|
|
rb_ary_push(ary, rb_str_new2(name->name));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* OpenSSL::Cipher.ciphers -> array[string...]
|
|
*
|
|
* Returns the names of all available ciphers in an array.
|
|
*/
|
|
static VALUE
|
|
ossl_s_ciphers(VALUE self)
|
|
{
|
|
VALUE ary;
|
|
|
|
ary = rb_ary_new();
|
|
OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH,
|
|
(void(*)(const OBJ_NAME*,void*))add_cipher_name_to_ary,
|
|
(void*)ary);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.reset -> self
|
|
*
|
|
* Fully resets the internal state of the Cipher. By using this, the same
|
|
* Cipher instance may be used several times for encryption or decryption tasks.
|
|
*
|
|
* Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1).
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_reset(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
ossl_cipher_init(int argc, VALUE *argv, VALUE self, int mode)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
unsigned char key[EVP_MAX_KEY_LENGTH], *p_key = NULL;
|
|
unsigned char iv[EVP_MAX_IV_LENGTH], *p_iv = NULL;
|
|
VALUE pass, init_v;
|
|
|
|
if(rb_scan_args(argc, argv, "02", &pass, &init_v) > 0){
|
|
/*
|
|
* oops. this code mistakes salt for IV.
|
|
* We deprecated the arguments for this method, but we decided
|
|
* keeping this behaviour for backward compatibility.
|
|
*/
|
|
VALUE cname = rb_class_path(rb_obj_class(self));
|
|
rb_warn("arguments for %"PRIsVALUE"#encrypt and %"PRIsVALUE"#decrypt were deprecated; "
|
|
"use %"PRIsVALUE"#pkcs5_keyivgen to derive key and IV",
|
|
cname, cname, cname);
|
|
StringValue(pass);
|
|
GetCipher(self, ctx);
|
|
if (NIL_P(init_v)) memcpy(iv, "OpenSSL for Ruby rulez!", sizeof(iv));
|
|
else{
|
|
StringValue(init_v);
|
|
if (EVP_MAX_IV_LENGTH > RSTRING_LEN(init_v)) {
|
|
memset(iv, 0, EVP_MAX_IV_LENGTH);
|
|
memcpy(iv, RSTRING_PTR(init_v), RSTRING_LEN(init_v));
|
|
}
|
|
else memcpy(iv, RSTRING_PTR(init_v), sizeof(iv));
|
|
}
|
|
EVP_BytesToKey(EVP_CIPHER_CTX_cipher(ctx), EVP_md5(), iv,
|
|
(unsigned char *)RSTRING_PTR(pass), RSTRING_LENINT(pass), 1, key, NULL);
|
|
p_key = key;
|
|
p_iv = iv;
|
|
}
|
|
else {
|
|
GetCipher(self, ctx);
|
|
}
|
|
if (EVP_CipherInit_ex(ctx, NULL, NULL, p_key, p_iv, mode) != 1) {
|
|
ossl_raise(eCipherError, NULL);
|
|
}
|
|
|
|
rb_ivar_set(self, id_key_set, p_key ? Qtrue : Qfalse);
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.encrypt -> self
|
|
*
|
|
* Initializes the Cipher for encryption.
|
|
*
|
|
* Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the
|
|
* following methods:
|
|
* * [#key=, #iv=, #random_key, #random_iv, #pkcs5_keyivgen]
|
|
*
|
|
* Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 1).
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_encrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return ossl_cipher_init(argc, argv, self, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.decrypt -> self
|
|
*
|
|
* Initializes the Cipher for decryption.
|
|
*
|
|
* Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the
|
|
* following methods:
|
|
* * [#key=, #iv=, #random_key, #random_iv, #pkcs5_keyivgen]
|
|
*
|
|
* Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 0).
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_decrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return ossl_cipher_init(argc, argv, self, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.pkcs5_keyivgen(pass, salt = nil, iterations = 2048, digest = "MD5") -> nil
|
|
*
|
|
* Generates and sets the key/IV based on a password.
|
|
*
|
|
* *WARNING*: This method is only PKCS5 v1.5 compliant when using RC2, RC4-40,
|
|
* or DES with MD5 or SHA1. Using anything else (like AES) will generate the
|
|
* key/iv using an OpenSSL specific method. This method is deprecated and
|
|
* should no longer be used. Use a PKCS5 v2 key generation method from
|
|
* OpenSSL::PKCS5 instead.
|
|
*
|
|
* === Parameters
|
|
* * _salt_ must be an 8 byte string if provided.
|
|
* * _iterations_ is an integer with a default of 2048.
|
|
* * _digest_ is a Digest object that defaults to 'MD5'
|
|
*
|
|
* A minimum of 1000 iterations is recommended.
|
|
*
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_pkcs5_keyivgen(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
const EVP_MD *digest;
|
|
VALUE vpass, vsalt, viter, vdigest;
|
|
unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH], *salt = NULL;
|
|
int iter;
|
|
|
|
rb_scan_args(argc, argv, "13", &vpass, &vsalt, &viter, &vdigest);
|
|
StringValue(vpass);
|
|
if(!NIL_P(vsalt)){
|
|
StringValue(vsalt);
|
|
if(RSTRING_LEN(vsalt) != PKCS5_SALT_LEN)
|
|
ossl_raise(eCipherError, "salt must be an 8-octet string");
|
|
salt = (unsigned char *)RSTRING_PTR(vsalt);
|
|
}
|
|
iter = NIL_P(viter) ? 2048 : NUM2INT(viter);
|
|
if (iter <= 0)
|
|
rb_raise(rb_eArgError, "iterations must be a positive integer");
|
|
digest = NIL_P(vdigest) ? EVP_md5() : ossl_evp_get_digestbyname(vdigest);
|
|
GetCipher(self, ctx);
|
|
EVP_BytesToKey(EVP_CIPHER_CTX_cipher(ctx), digest, salt,
|
|
(unsigned char *)RSTRING_PTR(vpass), RSTRING_LENINT(vpass), iter, key, iv);
|
|
if (EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
OPENSSL_cleanse(key, sizeof key);
|
|
OPENSSL_cleanse(iv, sizeof iv);
|
|
|
|
rb_ivar_set(self, id_key_set, Qtrue);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
static int
|
|
ossl_cipher_update_long(EVP_CIPHER_CTX *ctx, unsigned char *out, long *out_len_ptr,
|
|
const unsigned char *in, long in_len)
|
|
{
|
|
int out_part_len;
|
|
int limit = INT_MAX / 2 + 1;
|
|
long out_len = 0;
|
|
|
|
do {
|
|
int in_part_len = in_len > limit ? limit : (int)in_len;
|
|
|
|
if (!EVP_CipherUpdate(ctx, out ? (out + out_len) : 0,
|
|
&out_part_len, in, in_part_len))
|
|
return 0;
|
|
|
|
out_len += out_part_len;
|
|
in += in_part_len;
|
|
} while ((in_len -= limit) > 0);
|
|
|
|
if (out_len_ptr)
|
|
*out_len_ptr = out_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.update(data [, buffer]) -> string or buffer
|
|
*
|
|
* Encrypts data in a streaming fashion. Hand consecutive blocks of data
|
|
* to the #update method in order to encrypt it. Returns the encrypted
|
|
* data chunk. When done, the output of Cipher#final should be additionally
|
|
* added to the result.
|
|
*
|
|
* If _buffer_ is given, the encryption/decryption result will be written to
|
|
* it. _buffer_ will be resized automatically.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_update(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
unsigned char *in;
|
|
long in_len, out_len;
|
|
VALUE data, str;
|
|
|
|
rb_scan_args(argc, argv, "11", &data, &str);
|
|
|
|
if (!RTEST(rb_attr_get(self, id_key_set)))
|
|
ossl_raise(eCipherError, "key not set");
|
|
|
|
StringValue(data);
|
|
in = (unsigned char *)RSTRING_PTR(data);
|
|
if ((in_len = RSTRING_LEN(data)) == 0)
|
|
ossl_raise(rb_eArgError, "data must not be empty");
|
|
GetCipher(self, ctx);
|
|
out_len = in_len+EVP_CIPHER_CTX_block_size(ctx);
|
|
if (out_len <= 0) {
|
|
ossl_raise(rb_eRangeError,
|
|
"data too big to make output buffer: %ld bytes", in_len);
|
|
}
|
|
|
|
if (NIL_P(str)) {
|
|
str = rb_str_new(0, out_len);
|
|
} else {
|
|
StringValue(str);
|
|
rb_str_resize(str, out_len);
|
|
}
|
|
|
|
if (!ossl_cipher_update_long(ctx, (unsigned char *)RSTRING_PTR(str), &out_len, in, in_len))
|
|
ossl_raise(eCipherError, NULL);
|
|
assert(out_len < RSTRING_LEN(str));
|
|
rb_str_set_len(str, out_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.final -> string
|
|
*
|
|
* Returns the remaining data held in the cipher object. Further calls to
|
|
* Cipher#update or Cipher#final will return garbage. This call should always
|
|
* be made as the last call of an encryption or decryption operation, after
|
|
* having fed the entire plaintext or ciphertext to the Cipher instance.
|
|
*
|
|
* If an authenticated cipher was used, a CipherError is raised if the tag
|
|
* could not be authenticated successfully. Only call this method after
|
|
* setting the authentication tag and passing the entire contents of the
|
|
* ciphertext into the cipher.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_final(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int out_len;
|
|
VALUE str;
|
|
|
|
GetCipher(self, ctx);
|
|
str = rb_str_new(0, EVP_CIPHER_CTX_block_size(ctx));
|
|
if (!EVP_CipherFinal_ex(ctx, (unsigned char *)RSTRING_PTR(str), &out_len))
|
|
ossl_raise(eCipherError, NULL);
|
|
assert(out_len <= RSTRING_LEN(str));
|
|
rb_str_set_len(str, out_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.name -> string
|
|
*
|
|
* Returns the name of the cipher which may differ slightly from the original
|
|
* name provided.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_name(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
|
|
return rb_str_new2(EVP_CIPHER_name(EVP_CIPHER_CTX_cipher(ctx)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.key = string -> string
|
|
*
|
|
* Sets the cipher key. To generate a key, you should either use a secure
|
|
* random byte string or, if the key is to be derived from a password, you
|
|
* should rely on PBKDF2 functionality provided by OpenSSL::PKCS5. To
|
|
* generate a secure random-based key, Cipher#random_key may be used.
|
|
*
|
|
* Only call this method after calling Cipher#encrypt or Cipher#decrypt.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_key(VALUE self, VALUE key)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int key_len;
|
|
|
|
StringValue(key);
|
|
GetCipher(self, ctx);
|
|
|
|
key_len = EVP_CIPHER_CTX_key_length(ctx);
|
|
if (RSTRING_LEN(key) != key_len)
|
|
ossl_raise(rb_eArgError, "key must be %d bytes", key_len);
|
|
|
|
if (EVP_CipherInit_ex(ctx, NULL, NULL, (unsigned char *)RSTRING_PTR(key), NULL, -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
rb_ivar_set(self, id_key_set, Qtrue);
|
|
|
|
return key;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.iv = string -> string
|
|
*
|
|
* Sets the cipher IV. Please note that since you should never be using ECB
|
|
* mode, an IV is always explicitly required and should be set prior to
|
|
* encryption. The IV itself can be safely transmitted in public, but it
|
|
* should be unpredictable to prevent certain kinds of attacks. You may use
|
|
* Cipher#random_iv to create a secure random IV.
|
|
*
|
|
* Only call this method after calling Cipher#encrypt or Cipher#decrypt.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_iv(VALUE self, VALUE iv)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int iv_len = 0;
|
|
|
|
StringValue(iv);
|
|
GetCipher(self, ctx);
|
|
|
|
if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER)
|
|
iv_len = (int)(VALUE)EVP_CIPHER_CTX_get_app_data(ctx);
|
|
if (!iv_len)
|
|
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
|
|
if (RSTRING_LEN(iv) != iv_len)
|
|
ossl_raise(rb_eArgError, "iv must be %d bytes", iv_len);
|
|
|
|
if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, (unsigned char *)RSTRING_PTR(iv), -1) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return iv;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.authenticated? -> true | false
|
|
*
|
|
* Indicated whether this Cipher instance uses an Authenticated Encryption
|
|
* mode.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_is_authenticated(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
|
|
return (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.auth_data = string -> string
|
|
*
|
|
* Sets the cipher's additional authenticated data. This field must be
|
|
* set when using AEAD cipher modes such as GCM or CCM. If no associated
|
|
* data shall be used, this method must *still* be called with a value of "".
|
|
* The contents of this field should be non-sensitive data which will be
|
|
* added to the ciphertext to generate the authentication tag which validates
|
|
* the contents of the ciphertext.
|
|
*
|
|
* The AAD must be set prior to encryption or decryption. In encryption mode,
|
|
* it must be set after calling Cipher#encrypt and setting Cipher#key= and
|
|
* Cipher#iv=. When decrypting, the authenticated data must be set after key,
|
|
* iv and especially *after* the authentication tag has been set. I.e. set it
|
|
* only after calling Cipher#decrypt, Cipher#key=, Cipher#iv= and
|
|
* Cipher#auth_tag= first.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_auth_data(VALUE self, VALUE data)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
unsigned char *in;
|
|
long in_len, out_len;
|
|
|
|
StringValue(data);
|
|
|
|
in = (unsigned char *) RSTRING_PTR(data);
|
|
in_len = RSTRING_LEN(data);
|
|
|
|
GetCipher(self, ctx);
|
|
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
|
|
ossl_raise(eCipherError, "AEAD not supported by this cipher");
|
|
|
|
if (!ossl_cipher_update_long(ctx, NULL, &out_len, in, in_len))
|
|
ossl_raise(eCipherError, "couldn't set additional authenticated data");
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.auth_tag(tag_len = 16) -> String
|
|
*
|
|
* Gets the authentication tag generated by Authenticated Encryption Cipher
|
|
* modes (GCM for example). This tag may be stored along with the ciphertext,
|
|
* then set on the decryption cipher to authenticate the contents of the
|
|
* ciphertext against changes. If the optional integer parameter _tag_len_ is
|
|
* given, the returned tag will be _tag_len_ bytes long. If the parameter is
|
|
* omitted, the default length of 16 bytes or the length previously set by
|
|
* #auth_tag_len= will be used. For maximum security, the longest possible
|
|
* should be chosen.
|
|
*
|
|
* The tag may only be retrieved after calling Cipher#final.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_get_auth_tag(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE vtag_len, ret;
|
|
EVP_CIPHER_CTX *ctx;
|
|
int tag_len = 16;
|
|
|
|
rb_scan_args(argc, argv, "01", &vtag_len);
|
|
if (NIL_P(vtag_len))
|
|
vtag_len = rb_attr_get(self, id_auth_tag_len);
|
|
if (!NIL_P(vtag_len))
|
|
tag_len = NUM2INT(vtag_len);
|
|
|
|
GetCipher(self, ctx);
|
|
|
|
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
|
|
ossl_raise(eCipherError, "authentication tag not supported by this cipher");
|
|
|
|
ret = rb_str_new(NULL, tag_len);
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, RSTRING_PTR(ret)))
|
|
ossl_raise(eCipherError, "retrieving the authentication tag failed");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.auth_tag = string -> string
|
|
*
|
|
* Sets the authentication tag to verify the integrity of the ciphertext.
|
|
* This can be called only when the cipher supports AE. The tag must be set
|
|
* after calling Cipher#decrypt, Cipher#key= and Cipher#iv=, but before
|
|
* calling Cipher#final. After all decryption is performed, the tag is
|
|
* verified automatically in the call to Cipher#final.
|
|
*
|
|
* For OCB mode, the tag length must be supplied with #auth_tag_len=
|
|
* beforehand.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_auth_tag(VALUE self, VALUE vtag)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
unsigned char *tag;
|
|
int tag_len;
|
|
|
|
StringValue(vtag);
|
|
tag = (unsigned char *) RSTRING_PTR(vtag);
|
|
tag_len = RSTRING_LENINT(vtag);
|
|
|
|
GetCipher(self, ctx);
|
|
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
|
|
ossl_raise(eCipherError, "authentication tag not supported by this cipher");
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, tag))
|
|
ossl_raise(eCipherError, "unable to set AEAD tag");
|
|
|
|
return vtag;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.auth_tag_len = Integer -> Integer
|
|
*
|
|
* Sets the length of the authentication tag to be generated or to be given for
|
|
* AEAD ciphers that requires it as in input parameter. Note that not all AEAD
|
|
* ciphers support this method.
|
|
*
|
|
* In OCB mode, the length must be supplied both when encrypting and when
|
|
* decrypting, and must be before specifying an IV.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_auth_tag_len(VALUE self, VALUE vlen)
|
|
{
|
|
int tag_len = NUM2INT(vlen);
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
|
|
ossl_raise(eCipherError, "AEAD not supported by this cipher");
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, NULL))
|
|
ossl_raise(eCipherError, "unable to set authentication tag length");
|
|
|
|
/* for #auth_tag */
|
|
rb_ivar_set(self, id_auth_tag_len, INT2NUM(tag_len));
|
|
|
|
return vlen;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.iv_len = integer -> integer
|
|
*
|
|
* Sets the IV/nonce length of the Cipher. Normally block ciphers don't allow
|
|
* changing the IV length, but some make use of IV for 'nonce'. You may need
|
|
* this for interoperability with other applications.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_iv_length(VALUE self, VALUE iv_length)
|
|
{
|
|
int len = NUM2INT(iv_length);
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER))
|
|
ossl_raise(eCipherError, "cipher does not support AEAD");
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, len, NULL))
|
|
ossl_raise(eCipherError, "unable to set IV length");
|
|
|
|
/*
|
|
* EVP_CIPHER_CTX_iv_length() returns the default length. So we need to save
|
|
* the length somewhere. Luckily currently we aren't using app_data.
|
|
*/
|
|
EVP_CIPHER_CTX_set_app_data(ctx, (void *)(VALUE)len);
|
|
|
|
return iv_length;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.key_len = integer -> integer
|
|
*
|
|
* Sets the key length of the cipher. If the cipher is a fixed length cipher
|
|
* then attempting to set the key length to any value other than the fixed
|
|
* value is an error.
|
|
*
|
|
* Under normal circumstances you do not need to call this method (and probably shouldn't).
|
|
*
|
|
* See EVP_CIPHER_CTX_set_key_length for further information.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_key_length(VALUE self, VALUE key_length)
|
|
{
|
|
int len = NUM2INT(key_length);
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
if (EVP_CIPHER_CTX_set_key_length(ctx, len) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
|
|
return key_length;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.padding = integer -> integer
|
|
*
|
|
* Enables or disables padding. By default encryption operations are padded using standard block padding and the
|
|
* padding is checked and removed when decrypting. If the pad parameter is zero then no padding is performed, the
|
|
* total amount of data encrypted or decrypted must then be a multiple of the block size or an error will occur.
|
|
*
|
|
* See EVP_CIPHER_CTX_set_padding for further information.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_set_padding(VALUE self, VALUE padding)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int pad = NUM2INT(padding);
|
|
|
|
GetCipher(self, ctx);
|
|
if (EVP_CIPHER_CTX_set_padding(ctx, pad) != 1)
|
|
ossl_raise(eCipherError, NULL);
|
|
return padding;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.key_len -> integer
|
|
*
|
|
* Returns the key length in bytes of the Cipher.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_key_length(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
|
|
return INT2NUM(EVP_CIPHER_CTX_key_length(ctx));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.iv_len -> integer
|
|
*
|
|
* Returns the expected length in bytes for an IV for this Cipher.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_iv_length(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int len = 0;
|
|
|
|
GetCipher(self, ctx);
|
|
if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_FLAG_AEAD_CIPHER)
|
|
len = (int)(VALUE)EVP_CIPHER_CTX_get_app_data(ctx);
|
|
if (!len)
|
|
len = EVP_CIPHER_CTX_iv_length(ctx);
|
|
|
|
return INT2NUM(len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cipher.block_size -> integer
|
|
*
|
|
* Returns the size in bytes of the blocks on which this Cipher operates on.
|
|
*/
|
|
static VALUE
|
|
ossl_cipher_block_size(VALUE self)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
GetCipher(self, ctx);
|
|
|
|
return INT2NUM(EVP_CIPHER_CTX_block_size(ctx));
|
|
}
|
|
|
|
/*
|
|
* INIT
|
|
*/
|
|
void
|
|
Init_ossl_cipher(void)
|
|
{
|
|
#if 0
|
|
mOSSL = rb_define_module("OpenSSL");
|
|
eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
|
|
#endif
|
|
|
|
/* Document-class: OpenSSL::Cipher
|
|
*
|
|
* Provides symmetric algorithms for encryption and decryption. The
|
|
* algorithms that are available depend on the particular version
|
|
* of OpenSSL that is installed.
|
|
*
|
|
* === Listing all supported algorithms
|
|
*
|
|
* A list of supported algorithms can be obtained by
|
|
*
|
|
* puts OpenSSL::Cipher.ciphers
|
|
*
|
|
* === Instantiating a Cipher
|
|
*
|
|
* There are several ways to create a Cipher instance. Generally, a
|
|
* Cipher algorithm is categorized by its name, the key length in bits
|
|
* and the cipher mode to be used. The most generic way to create a
|
|
* Cipher is the following
|
|
*
|
|
* cipher = OpenSSL::Cipher.new('<name>-<key length>-<mode>')
|
|
*
|
|
* That is, a string consisting of the hyphenated concatenation of the
|
|
* individual components name, key length and mode. Either all uppercase
|
|
* or all lowercase strings may be used, for example:
|
|
*
|
|
* cipher = OpenSSL::Cipher.new('AES-128-CBC')
|
|
*
|
|
* For each algorithm supported, there is a class defined under the
|
|
* Cipher class that goes by the name of the cipher, e.g. to obtain an
|
|
* instance of AES, you could also use
|
|
*
|
|
* # these are equivalent
|
|
* cipher = OpenSSL::Cipher::AES.new(128, :CBC)
|
|
* cipher = OpenSSL::Cipher::AES.new(128, 'CBC')
|
|
* cipher = OpenSSL::Cipher::AES.new('128-CBC')
|
|
*
|
|
* Finally, due to its wide-spread use, there are also extra classes
|
|
* defined for the different key sizes of AES
|
|
*
|
|
* cipher = OpenSSL::Cipher::AES128.new(:CBC)
|
|
* cipher = OpenSSL::Cipher::AES192.new(:CBC)
|
|
* cipher = OpenSSL::Cipher::AES256.new(:CBC)
|
|
*
|
|
* === Choosing either encryption or decryption mode
|
|
*
|
|
* Encryption and decryption are often very similar operations for
|
|
* symmetric algorithms, this is reflected by not having to choose
|
|
* different classes for either operation, both can be done using the
|
|
* same class. Still, after obtaining a Cipher instance, we need to
|
|
* tell the instance what it is that we intend to do with it, so we
|
|
* need to call either
|
|
*
|
|
* cipher.encrypt
|
|
*
|
|
* or
|
|
*
|
|
* cipher.decrypt
|
|
*
|
|
* on the Cipher instance. This should be the first call after creating
|
|
* the instance, otherwise configuration that has already been set could
|
|
* get lost in the process.
|
|
*
|
|
* === Choosing a key
|
|
*
|
|
* Symmetric encryption requires a key that is the same for the encrypting
|
|
* and for the decrypting party and after initial key establishment should
|
|
* be kept as private information. There are a lot of ways to create
|
|
* insecure keys, the most notable is to simply take a password as the key
|
|
* without processing the password further. A simple and secure way to
|
|
* create a key for a particular Cipher is
|
|
*
|
|
* cipher = OpenSSL::Cipher::AES256.new(:CFB)
|
|
* cipher.encrypt
|
|
* key = cipher.random_key # also sets the generated key on the Cipher
|
|
*
|
|
* If you absolutely need to use passwords as encryption keys, you
|
|
* should use Password-Based Key Derivation Function 2 (PBKDF2) by
|
|
* generating the key with the help of the functionality provided by
|
|
* OpenSSL::PKCS5.pbkdf2_hmac_sha1 or OpenSSL::PKCS5.pbkdf2_hmac.
|
|
*
|
|
* Although there is Cipher#pkcs5_keyivgen, its use is deprecated and
|
|
* it should only be used in legacy applications because it does not use
|
|
* the newer PKCS#5 v2 algorithms.
|
|
*
|
|
* === Choosing an IV
|
|
*
|
|
* The cipher modes CBC, CFB, OFB and CTR all need an "initialization
|
|
* vector", or short, IV. ECB mode is the only mode that does not require
|
|
* an IV, but there is almost no legitimate use case for this mode
|
|
* because of the fact that it does not sufficiently hide plaintext
|
|
* patterns. Therefore
|
|
*
|
|
* <b>You should never use ECB mode unless you are absolutely sure that
|
|
* you absolutely need it</b>
|
|
*
|
|
* Because of this, you will end up with a mode that explicitly requires
|
|
* an IV in any case. Although the IV can be seen as public information,
|
|
* i.e. it may be transmitted in public once generated, it should still
|
|
* stay unpredictable to prevent certain kinds of attacks. Therefore,
|
|
* ideally
|
|
*
|
|
* <b>Always create a secure random IV for every encryption of your
|
|
* Cipher</b>
|
|
*
|
|
* A new, random IV should be created for every encryption of data. Think
|
|
* of the IV as a nonce (number used once) - it's public but random and
|
|
* unpredictable. A secure random IV can be created as follows
|
|
*
|
|
* cipher = ...
|
|
* cipher.encrypt
|
|
* key = cipher.random_key
|
|
* iv = cipher.random_iv # also sets the generated IV on the Cipher
|
|
*
|
|
* Although the key is generally a random value, too, it is a bad choice
|
|
* as an IV. There are elaborate ways how an attacker can take advantage
|
|
* of such an IV. As a general rule of thumb, exposing the key directly
|
|
* or indirectly should be avoided at all cost and exceptions only be
|
|
* made with good reason.
|
|
*
|
|
* === Calling Cipher#final
|
|
*
|
|
* ECB (which should not be used) and CBC are both block-based modes.
|
|
* This means that unlike for the other streaming-based modes, they
|
|
* operate on fixed-size blocks of data, and therefore they require a
|
|
* "finalization" step to produce or correctly decrypt the last block of
|
|
* data by appropriately handling some form of padding. Therefore it is
|
|
* essential to add the output of OpenSSL::Cipher#final to your
|
|
* encryption/decryption buffer or you will end up with decryption errors
|
|
* or truncated data.
|
|
*
|
|
* Although this is not really necessary for streaming-mode ciphers, it is
|
|
* still recommended to apply the same pattern of adding the output of
|
|
* Cipher#final there as well - it also enables you to switch between
|
|
* modes more easily in the future.
|
|
*
|
|
* === Encrypting and decrypting some data
|
|
*
|
|
* data = "Very, very confidential data"
|
|
*
|
|
* cipher = OpenSSL::Cipher::AES.new(128, :CBC)
|
|
* cipher.encrypt
|
|
* key = cipher.random_key
|
|
* iv = cipher.random_iv
|
|
*
|
|
* encrypted = cipher.update(data) + cipher.final
|
|
* ...
|
|
* decipher = OpenSSL::Cipher::AES.new(128, :CBC)
|
|
* decipher.decrypt
|
|
* decipher.key = key
|
|
* decipher.iv = iv
|
|
*
|
|
* plain = decipher.update(encrypted) + decipher.final
|
|
*
|
|
* puts data == plain #=> true
|
|
*
|
|
* === Authenticated Encryption and Associated Data (AEAD)
|
|
*
|
|
* If the OpenSSL version used supports it, an Authenticated Encryption
|
|
* mode (such as GCM or CCM) should always be preferred over any
|
|
* unauthenticated mode. Currently, OpenSSL supports AE only in combination
|
|
* with Associated Data (AEAD) where additional associated data is included
|
|
* in the encryption process to compute a tag at the end of the encryption.
|
|
* This tag will also be used in the decryption process and by verifying
|
|
* its validity, the authenticity of a given ciphertext is established.
|
|
*
|
|
* This is superior to unauthenticated modes in that it allows to detect
|
|
* if somebody effectively changed the ciphertext after it had been
|
|
* encrypted. This prevents malicious modifications of the ciphertext that
|
|
* could otherwise be exploited to modify ciphertexts in ways beneficial to
|
|
* potential attackers.
|
|
*
|
|
* An associated data is used where there is additional information, such as
|
|
* headers or some metadata, that must be also authenticated but not
|
|
* necessarily need to be encrypted. If no associated data is needed for
|
|
* encryption and later decryption, the OpenSSL library still requires a
|
|
* value to be set - "" may be used in case none is available.
|
|
*
|
|
* An example using the GCM (Galois/Counter Mode). You have 16 bytes _key_,
|
|
* 12 bytes (96 bits) _nonce_ and the associated data _auth_data_. Be sure
|
|
* not to reuse the _key_ and _nonce_ pair. Reusing an nonce ruins the
|
|
* security guarantees of GCM mode.
|
|
*
|
|
* cipher = OpenSSL::Cipher::AES.new(128, :GCM).encrypt
|
|
* cipher.key = key
|
|
* cipher.iv = nonce
|
|
* cipher.auth_data = auth_data
|
|
*
|
|
* encrypted = cipher.update(data) + cipher.final
|
|
* tag = cipher.auth_tag # produces 16 bytes tag by default
|
|
*
|
|
* Now you are the receiver. You know the _key_ and have received _nonce_,
|
|
* _auth_data_, _encrypted_ and _tag_ through an untrusted network. Note
|
|
* that GCM accepts an arbitrary length tag between 1 and 16 bytes. You may
|
|
* additionally need to check that the received tag has the correct length,
|
|
* or you allow attackers to forge a valid single byte tag for the tampered
|
|
* ciphertext with a probability of 1/256.
|
|
*
|
|
* raise "tag is truncated!" unless tag.bytesize == 16
|
|
* decipher = OpenSSL::Cipher::AES.new(128, :GCM).decrypt
|
|
* decipher.key = key
|
|
* decipher.iv = nonce
|
|
* decipher.auth_tag = tag
|
|
* decipher.auth_data = auth_data
|
|
*
|
|
* decrypted = decipher.update(encrypted) + decipher.final
|
|
*
|
|
* puts data == decrypted #=> true
|
|
*/
|
|
cCipher = rb_define_class_under(mOSSL, "Cipher", rb_cObject);
|
|
eCipherError = rb_define_class_under(cCipher, "CipherError", eOSSLError);
|
|
|
|
rb_define_alloc_func(cCipher, ossl_cipher_alloc);
|
|
rb_define_method(cCipher, "initialize_copy", ossl_cipher_copy, 1);
|
|
rb_define_module_function(cCipher, "ciphers", ossl_s_ciphers, 0);
|
|
rb_define_method(cCipher, "initialize", ossl_cipher_initialize, 1);
|
|
rb_define_method(cCipher, "reset", ossl_cipher_reset, 0);
|
|
rb_define_method(cCipher, "encrypt", ossl_cipher_encrypt, -1);
|
|
rb_define_method(cCipher, "decrypt", ossl_cipher_decrypt, -1);
|
|
rb_define_method(cCipher, "pkcs5_keyivgen", ossl_cipher_pkcs5_keyivgen, -1);
|
|
rb_define_method(cCipher, "update", ossl_cipher_update, -1);
|
|
rb_define_method(cCipher, "final", ossl_cipher_final, 0);
|
|
rb_define_method(cCipher, "name", ossl_cipher_name, 0);
|
|
rb_define_method(cCipher, "key=", ossl_cipher_set_key, 1);
|
|
rb_define_method(cCipher, "auth_data=", ossl_cipher_set_auth_data, 1);
|
|
rb_define_method(cCipher, "auth_tag=", ossl_cipher_set_auth_tag, 1);
|
|
rb_define_method(cCipher, "auth_tag", ossl_cipher_get_auth_tag, -1);
|
|
rb_define_method(cCipher, "auth_tag_len=", ossl_cipher_set_auth_tag_len, 1);
|
|
rb_define_method(cCipher, "authenticated?", ossl_cipher_is_authenticated, 0);
|
|
rb_define_method(cCipher, "key_len=", ossl_cipher_set_key_length, 1);
|
|
rb_define_method(cCipher, "key_len", ossl_cipher_key_length, 0);
|
|
rb_define_method(cCipher, "iv=", ossl_cipher_set_iv, 1);
|
|
rb_define_method(cCipher, "iv_len=", ossl_cipher_set_iv_length, 1);
|
|
rb_define_method(cCipher, "iv_len", ossl_cipher_iv_length, 0);
|
|
rb_define_method(cCipher, "block_size", ossl_cipher_block_size, 0);
|
|
rb_define_method(cCipher, "padding=", ossl_cipher_set_padding, 1);
|
|
|
|
id_auth_tag_len = rb_intern_const("auth_tag_len");
|
|
id_key_set = rb_intern_const("key_set");
|
|
}
|