mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@28846 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1248 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1248 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**********************************************************************
 | 
						|
 | 
						|
  random.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
  created at: Fri Dec 24 16:39:21 JST 1993
 | 
						|
 | 
						|
  Copyright (C) 1993-2007 Yukihiro Matsumoto
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
This is based on trimmed version of MT19937.  To get the original version,
 | 
						|
contact <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>.
 | 
						|
 | 
						|
The original copyright notice follows.
 | 
						|
 | 
						|
   A C-program for MT19937, with initialization improved 2002/2/10.
 | 
						|
   Coded by Takuji Nishimura and Makoto Matsumoto.
 | 
						|
   This is a faster version by taking Shawn Cokus's optimization,
 | 
						|
   Matthe Bellew's simplification, Isaku Wada's real version.
 | 
						|
 | 
						|
   Before using, initialize the state by using init_genrand(mt, seed)
 | 
						|
   or init_by_array(mt, init_key, key_length).
 | 
						|
 | 
						|
   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | 
						|
   All rights reserved.
 | 
						|
 | 
						|
   Redistribution and use in source and binary forms, with or without
 | 
						|
   modification, are permitted provided that the following conditions
 | 
						|
   are met:
 | 
						|
 | 
						|
     1. Redistributions of source code must retain the above copyright
 | 
						|
        notice, this list of conditions and the following disclaimer.
 | 
						|
 | 
						|
     2. Redistributions in binary form must reproduce the above copyright
 | 
						|
        notice, this list of conditions and the following disclaimer in the
 | 
						|
        documentation and/or other materials provided with the distribution.
 | 
						|
 | 
						|
     3. The names of its contributors may not be used to endorse or promote
 | 
						|
        products derived from this software without specific prior written
 | 
						|
        permission.
 | 
						|
 | 
						|
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | 
						|
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | 
						|
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | 
						|
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
 | 
						|
   Any feedback is very welcome.
 | 
						|
   http://www.math.keio.ac.jp/matumoto/emt.html
 | 
						|
   email: matumoto@math.keio.ac.jp
 | 
						|
*/
 | 
						|
 | 
						|
#include "ruby/ruby.h"
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#ifdef HAVE_UNISTD_H
 | 
						|
#include <unistd.h>
 | 
						|
#endif
 | 
						|
#include <time.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#ifdef HAVE_FCNTL_H
 | 
						|
#include <fcntl.h>
 | 
						|
#endif
 | 
						|
#include <math.h>
 | 
						|
#include <errno.h>
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
# if !defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0400
 | 
						|
#  undef _WIN32_WINNT
 | 
						|
#  define _WIN32_WINNT 0x400
 | 
						|
#  undef __WINCRYPT_H__
 | 
						|
# endif
 | 
						|
#include <wincrypt.h>
 | 
						|
#endif
 | 
						|
 | 
						|
typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1];
 | 
						|
 | 
						|
/* Period parameters */
 | 
						|
#define N 624
 | 
						|
#define M 397
 | 
						|
#define MATRIX_A 0x9908b0dfU	/* constant vector a */
 | 
						|
#define UMASK 0x80000000U	/* most significant w-r bits */
 | 
						|
#define LMASK 0x7fffffffU	/* least significant r bits */
 | 
						|
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
 | 
						|
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1U ? MATRIX_A : 0U))
 | 
						|
 | 
						|
enum {MT_MAX_STATE = N};
 | 
						|
 | 
						|
struct MT {
 | 
						|
    /* assume int is enough to store 32bits */
 | 
						|
    unsigned int state[N]; /* the array for the state vector  */
 | 
						|
    unsigned int *next;
 | 
						|
    int left;
 | 
						|
};
 | 
						|
 | 
						|
#define genrand_initialized(mt) ((mt)->next != 0)
 | 
						|
#define uninit_genrand(mt) ((mt)->next = 0)
 | 
						|
 | 
						|
/* initializes state[N] with a seed */
 | 
						|
static void
 | 
						|
init_genrand(struct MT *mt, unsigned int s)
 | 
						|
{
 | 
						|
    int j;
 | 
						|
    mt->state[0] = s & 0xffffffffU;
 | 
						|
    for (j=1; j<N; j++) {
 | 
						|
        mt->state[j] = (1812433253U * (mt->state[j-1] ^ (mt->state[j-1] >> 30)) + j);
 | 
						|
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | 
						|
        /* In the previous versions, MSBs of the seed affect   */
 | 
						|
        /* only MSBs of the array state[].                     */
 | 
						|
        /* 2002/01/09 modified by Makoto Matsumoto             */
 | 
						|
        mt->state[j] &= 0xffffffff;  /* for >32 bit machines */
 | 
						|
    }
 | 
						|
    mt->left = 1;
 | 
						|
    mt->next = mt->state + N;
 | 
						|
}
 | 
						|
 | 
						|
/* initialize by an array with array-length */
 | 
						|
/* init_key is the array for initializing keys */
 | 
						|
/* key_length is its length */
 | 
						|
/* slight change for C++, 2004/2/26 */
 | 
						|
static void
 | 
						|
init_by_array(struct MT *mt, unsigned int init_key[], int key_length)
 | 
						|
{
 | 
						|
    int i, j, k;
 | 
						|
    init_genrand(mt, 19650218U);
 | 
						|
    i=1; j=0;
 | 
						|
    k = (N>key_length ? N : key_length);
 | 
						|
    for (; k; k--) {
 | 
						|
        mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1664525U))
 | 
						|
          + init_key[j] + j; /* non linear */
 | 
						|
        mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | 
						|
        i++; j++;
 | 
						|
        if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | 
						|
        if (j>=key_length) j=0;
 | 
						|
    }
 | 
						|
    for (k=N-1; k; k--) {
 | 
						|
        mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1566083941U))
 | 
						|
          - i; /* non linear */
 | 
						|
        mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | 
						|
        i++;
 | 
						|
        if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | 
						|
    }
 | 
						|
 | 
						|
    mt->state[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
next_state(struct MT *mt)
 | 
						|
{
 | 
						|
    unsigned int *p = mt->state;
 | 
						|
    int j;
 | 
						|
 | 
						|
    mt->left = N;
 | 
						|
    mt->next = mt->state;
 | 
						|
 | 
						|
    for (j=N-M+1; --j; p++)
 | 
						|
        *p = p[M] ^ TWIST(p[0], p[1]);
 | 
						|
 | 
						|
    for (j=M; --j; p++)
 | 
						|
        *p = p[M-N] ^ TWIST(p[0], p[1]);
 | 
						|
 | 
						|
    *p = p[M-N] ^ TWIST(p[0], mt->state[0]);
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,0xffffffff]-interval */
 | 
						|
static unsigned int
 | 
						|
genrand_int32(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned int y;
 | 
						|
 | 
						|
    if (--mt->left <= 0) next_state(mt);
 | 
						|
    y = *mt->next++;
 | 
						|
 | 
						|
    /* Tempering */
 | 
						|
    y ^= (y >> 11);
 | 
						|
    y ^= (y << 7) & 0x9d2c5680;
 | 
						|
    y ^= (y << 15) & 0xefc60000;
 | 
						|
    y ^= (y >> 18);
 | 
						|
 | 
						|
    return y;
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,1) with 53-bit resolution*/
 | 
						|
static double
 | 
						|
genrand_real(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned int a = genrand_int32(mt)>>5, b = genrand_int32(mt)>>6;
 | 
						|
    return(a*67108864.0+b)*(1.0/9007199254740992.0);
 | 
						|
}
 | 
						|
 | 
						|
/* generates a random number on [0,1] with 53-bit resolution*/
 | 
						|
static double int_pair_to_real_inclusive(unsigned int a, unsigned int b);
 | 
						|
static double
 | 
						|
genrand_real2(struct MT *mt)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
 | 
						|
    return int_pair_to_real_inclusive(a, b);
 | 
						|
}
 | 
						|
 | 
						|
/* These real versions are due to Isaku Wada, 2002/01/09 added */
 | 
						|
 | 
						|
#undef N
 | 
						|
#undef M
 | 
						|
 | 
						|
/* These real versions are due to Isaku Wada, 2002/01/09 added */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    VALUE seed;
 | 
						|
    struct MT mt;
 | 
						|
} rb_random_t;
 | 
						|
 | 
						|
#define DEFAULT_SEED_CNT 4
 | 
						|
 | 
						|
static rb_random_t default_rand;
 | 
						|
 | 
						|
static VALUE rand_init(struct MT *mt, VALUE vseed);
 | 
						|
static VALUE random_seed(void);
 | 
						|
 | 
						|
static struct MT *
 | 
						|
default_mt(void)
 | 
						|
{
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
    struct MT *mt = &r->mt;
 | 
						|
    if (!genrand_initialized(mt)) {
 | 
						|
	r->seed = rand_init(mt, random_seed());
 | 
						|
    }
 | 
						|
    return mt;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
rb_genrand_int32(void)
 | 
						|
{
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
    return genrand_int32(mt);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
rb_genrand_real(void)
 | 
						|
{
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
    return genrand_real(mt);
 | 
						|
}
 | 
						|
 | 
						|
#define BDIGITS(x) (RBIGNUM_DIGITS(x))
 | 
						|
#define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
 | 
						|
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
 | 
						|
#define DIGSPERINT (SIZEOF_INT/SIZEOF_BDIGITS)
 | 
						|
#define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
 | 
						|
#define BIGDN(x) RSHIFT(x,BITSPERDIG)
 | 
						|
#define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
 | 
						|
#define BDIGMAX ((BDIGIT)-1)
 | 
						|
 | 
						|
#define roomof(n, m) (int)(((n)+(m)-1) / (m))
 | 
						|
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
 | 
						|
#define SIZEOF_INT32 (31/CHAR_BIT + 1)
 | 
						|
 | 
						|
static double
 | 
						|
int_pair_to_real_inclusive(unsigned int a, unsigned int b)
 | 
						|
{
 | 
						|
    VALUE x = rb_big_new(roomof(64, BITSPERDIG), 1);
 | 
						|
    VALUE m = rb_big_new(roomof(53, BITSPERDIG), 1);
 | 
						|
    BDIGIT *xd = BDIGITS(x);
 | 
						|
    int i = 0;
 | 
						|
    double r;
 | 
						|
 | 
						|
    xd[i++] = (BDIGIT)b;
 | 
						|
#if BITSPERDIG < 32
 | 
						|
    xd[i++] = (BDIGIT)(b >> BITSPERDIG);
 | 
						|
#endif
 | 
						|
    xd[i++] = (BDIGIT)a;
 | 
						|
#if BITSPERDIG < 32
 | 
						|
    xd[i++] = (BDIGIT)(a >> BITSPERDIG);
 | 
						|
#endif
 | 
						|
    xd = BDIGITS(m);
 | 
						|
#if BITSPERDIG < 53
 | 
						|
    MEMZERO(xd, BDIGIT, roomof(53, BITSPERDIG) - 1);
 | 
						|
#endif
 | 
						|
    xd[53 / BITSPERDIG] = 1 << 53 % BITSPERDIG;
 | 
						|
    xd[0] |= 1;
 | 
						|
    x = rb_big_mul(x, m);
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
#if CHAR_BIT * SIZEOF_LONG > 64
 | 
						|
	r = (double)(FIX2ULONG(x) >> 64);
 | 
						|
#else
 | 
						|
	return 0.0;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#if 64 % BITSPERDIG == 0
 | 
						|
	long len = RBIGNUM_LEN(x);
 | 
						|
	xd = BDIGITS(x);
 | 
						|
	MEMMOVE(xd, xd + 64 / BITSPERDIG, BDIGIT, len - 64 / BITSPERDIG);
 | 
						|
	MEMZERO(xd + len - 64 / BITSPERDIG, BDIGIT, 64 / BITSPERDIG);
 | 
						|
	r = rb_big2dbl(x);
 | 
						|
#else
 | 
						|
	x = rb_big_rshift(x, INT2FIX(64));
 | 
						|
	if (FIXNUM_P(x)) {
 | 
						|
	    r = (double)FIX2ULONG(x);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    r = rb_big2dbl(x);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return ldexp(r, -53);
 | 
						|
}
 | 
						|
 | 
						|
VALUE rb_cRandom;
 | 
						|
#define id_minus '-'
 | 
						|
#define id_plus  '+'
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static void
 | 
						|
random_mark(void *ptr)
 | 
						|
{
 | 
						|
    rb_gc_mark(((rb_random_t *)ptr)->seed);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
random_free(void *ptr)
 | 
						|
{
 | 
						|
    if (ptr != &default_rand)
 | 
						|
	xfree(ptr);
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
random_memsize(const void *ptr)
 | 
						|
{
 | 
						|
    return ptr ? sizeof(rb_random_t) : 0;
 | 
						|
}
 | 
						|
 | 
						|
static const rb_data_type_t random_data_type = {
 | 
						|
    "random",
 | 
						|
    {
 | 
						|
	random_mark,
 | 
						|
	random_free,
 | 
						|
	random_memsize,
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static rb_random_t *
 | 
						|
get_rnd(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *ptr;
 | 
						|
    TypedData_Get_Struct(obj, rb_random_t, &random_data_type, ptr);
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_alloc(VALUE klass)
 | 
						|
{
 | 
						|
    rb_random_t *rnd;
 | 
						|
    VALUE obj = TypedData_Make_Struct(klass, rb_random_t, &random_data_type, rnd);
 | 
						|
    rnd->seed = INT2FIX(0);
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rand_init(struct MT *mt, VALUE vseed)
 | 
						|
{
 | 
						|
    volatile VALUE seed;
 | 
						|
    long blen = 0;
 | 
						|
    long fixnum_seed;
 | 
						|
    int i, j, len;
 | 
						|
    unsigned int buf0[SIZEOF_LONG / SIZEOF_INT32 * 4], *buf = buf0;
 | 
						|
 | 
						|
    seed = rb_to_int(vseed);
 | 
						|
    switch (TYPE(seed)) {
 | 
						|
      case T_FIXNUM:
 | 
						|
	len = 1;
 | 
						|
	fixnum_seed = FIX2LONG(seed);
 | 
						|
        if (fixnum_seed < 0)
 | 
						|
            fixnum_seed = -fixnum_seed;
 | 
						|
	buf[0] = (unsigned int)(fixnum_seed & 0xffffffff);
 | 
						|
#if SIZEOF_LONG > SIZEOF_INT32
 | 
						|
	if ((long)(int)fixnum_seed != fixnum_seed) {
 | 
						|
	    if ((buf[1] = (unsigned int)(fixnum_seed >> 32)) != 0) ++len;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	break;
 | 
						|
      case T_BIGNUM:
 | 
						|
	blen = RBIGNUM_LEN(seed);
 | 
						|
	if (blen == 0) {
 | 
						|
	    len = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    if (blen > MT_MAX_STATE * SIZEOF_INT32 / SIZEOF_BDIGITS)
 | 
						|
		blen = (len = MT_MAX_STATE) * SIZEOF_INT32 / SIZEOF_BDIGITS;
 | 
						|
	    len = roomof((int)blen * SIZEOF_BDIGITS, SIZEOF_INT32);
 | 
						|
	}
 | 
						|
	/* allocate ints for init_by_array */
 | 
						|
	if (len > numberof(buf0)) buf = ALLOC_N(unsigned int, len);
 | 
						|
	memset(buf, 0, len * sizeof(*buf));
 | 
						|
	len = 0;
 | 
						|
	for (i = (int)(blen-1); 0 <= i; i--) {
 | 
						|
	    j = i * SIZEOF_BDIGITS / SIZEOF_INT32;
 | 
						|
#if SIZEOF_BDIGITS < SIZEOF_INT32
 | 
						|
	    buf[j] <<= BITSPERDIG;
 | 
						|
#endif
 | 
						|
	    buf[j] |= RBIGNUM_DIGITS(seed)[i];
 | 
						|
	    if (!len && buf[j]) len = j;
 | 
						|
	}
 | 
						|
	++len;
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	rb_raise(rb_eTypeError, "failed to convert %s into Integer",
 | 
						|
		 rb_obj_classname(vseed));
 | 
						|
    }
 | 
						|
    if (len <= 1) {
 | 
						|
        init_genrand(mt, buf[0]);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (buf[len-1] == 1) /* remove leading-zero-guard */
 | 
						|
            len--;
 | 
						|
        init_by_array(mt, buf, len);
 | 
						|
    }
 | 
						|
    if (buf != buf0) xfree(buf);
 | 
						|
    return seed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: Random.new([seed]) -> prng
 | 
						|
 *
 | 
						|
 * Creates new Mersenne Twister based pseudorandom number generator with
 | 
						|
 * seed.  When the argument seed is omitted, the generator is initialized
 | 
						|
 * with Random.new_seed.
 | 
						|
 *
 | 
						|
 * The argument seed is used to ensure repeatable sequences of random numbers
 | 
						|
 * between different runs of the program.
 | 
						|
 *
 | 
						|
 *     prng = Random.new(1234)
 | 
						|
 *     [ prng.rand, prng.rand ]   #=> [0.191519450378892, 0.622108771039832]
 | 
						|
 *     [ prng.integer(10), prng.integer(1000) ]  #=> [4, 664]
 | 
						|
 *     prng = Random.new(1234)
 | 
						|
 *     [ prng.rand, prng.rand ]   #=> [0.191519450378892, 0.622108771039832]
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_init(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE vseed;
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	vseed = random_seed();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &vseed);
 | 
						|
    }
 | 
						|
    rnd->seed = rand_init(&rnd->mt, vseed);
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
#define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int))
 | 
						|
 | 
						|
#if defined(S_ISCHR) && !defined(DOSISH)
 | 
						|
# define USE_DEV_URANDOM 1
 | 
						|
#else
 | 
						|
# define USE_DEV_URANDOM 0
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
fill_random_seed(unsigned int seed[DEFAULT_SEED_CNT])
 | 
						|
{
 | 
						|
    static int n = 0;
 | 
						|
    struct timeval tv;
 | 
						|
#if USE_DEV_URANDOM
 | 
						|
    int fd;
 | 
						|
    struct stat statbuf;
 | 
						|
#elif defined(_WIN32)
 | 
						|
    HCRYPTPROV prov;
 | 
						|
#endif
 | 
						|
 | 
						|
    memset(seed, 0, DEFAULT_SEED_LEN);
 | 
						|
 | 
						|
#if USE_DEV_URANDOM
 | 
						|
    if ((fd = open("/dev/urandom", O_RDONLY
 | 
						|
#ifdef O_NONBLOCK
 | 
						|
            |O_NONBLOCK
 | 
						|
#endif
 | 
						|
#ifdef O_NOCTTY
 | 
						|
            |O_NOCTTY
 | 
						|
#endif
 | 
						|
            )) >= 0) {
 | 
						|
        if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
 | 
						|
	    if (read(fd, seed, DEFAULT_SEED_LEN) < DEFAULT_SEED_LEN) {
 | 
						|
		/* abandon */;
 | 
						|
	    }
 | 
						|
        }
 | 
						|
        close(fd);
 | 
						|
    }
 | 
						|
#elif defined(_WIN32)
 | 
						|
    if (CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
 | 
						|
	CryptGenRandom(prov, DEFAULT_SEED_LEN, (void *)seed);
 | 
						|
	CryptReleaseContext(prov, 0);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    gettimeofday(&tv, 0);
 | 
						|
    seed[0] ^= tv.tv_usec;
 | 
						|
    seed[1] ^= (unsigned int)tv.tv_sec;
 | 
						|
#if SIZEOF_TIME_T > SIZEOF_INT
 | 
						|
    seed[0] ^= (unsigned int)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
 | 
						|
#endif
 | 
						|
    seed[2] ^= getpid() ^ (n++ << 16);
 | 
						|
    seed[3] ^= (unsigned int)(VALUE)&seed;
 | 
						|
#if SIZEOF_VOIDP > SIZEOF_INT
 | 
						|
    seed[2] ^= (unsigned int)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
make_seed_value(const void *ptr)
 | 
						|
{
 | 
						|
    const long len = DEFAULT_SEED_LEN/SIZEOF_BDIGITS;
 | 
						|
    BDIGIT *digits;
 | 
						|
    NEWOBJ(big, struct RBignum);
 | 
						|
    OBJSETUP(big, rb_cBignum, T_BIGNUM);
 | 
						|
 | 
						|
    RBIGNUM_SET_SIGN(big, 1);
 | 
						|
    rb_big_resize((VALUE)big, len + 1);
 | 
						|
    digits = RBIGNUM_DIGITS(big);
 | 
						|
 | 
						|
    MEMCPY(digits, ptr, char, DEFAULT_SEED_LEN);
 | 
						|
 | 
						|
    /* set leading-zero-guard if need. */
 | 
						|
    digits[len] =
 | 
						|
#if SIZEOF_INT32 / SIZEOF_BDIGITS > 1
 | 
						|
	digits[len-2] <= 1 && digits[len-1] == 0
 | 
						|
#else
 | 
						|
	digits[len-1] <= 1
 | 
						|
#endif
 | 
						|
	? 1 : 0;
 | 
						|
 | 
						|
    return rb_big_norm((VALUE)big);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: Random.new_seed -> integer
 | 
						|
 *
 | 
						|
 * Returns arbitrary value for seed.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_seed(void)
 | 
						|
{
 | 
						|
    unsigned int buf[DEFAULT_SEED_CNT];
 | 
						|
    fill_random_seed(buf);
 | 
						|
    return make_seed_value(buf);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: prng.seed -> integer
 | 
						|
 *
 | 
						|
 * Returns the seed of the generator.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_get_seed(VALUE obj)
 | 
						|
{
 | 
						|
    return get_rnd(obj)->seed;
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_copy(VALUE obj, VALUE orig)
 | 
						|
{
 | 
						|
    rb_random_t *rnd1 = get_rnd(obj);
 | 
						|
    rb_random_t *rnd2 = get_rnd(orig);
 | 
						|
    struct MT *mt = &rnd1->mt;
 | 
						|
 | 
						|
    *rnd1 = *rnd2;
 | 
						|
    mt->next = mt->state + numberof(mt->state) - mt->left + 1;
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
mt_state(const struct MT *mt)
 | 
						|
{
 | 
						|
    VALUE bigo = rb_big_new(sizeof(mt->state) / sizeof(BDIGIT), 1);
 | 
						|
    BDIGIT *d = RBIGNUM_DIGITS(bigo);
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < numberof(mt->state); ++i) {
 | 
						|
	unsigned int x = mt->state[i];
 | 
						|
#if SIZEOF_BDIGITS < SIZEOF_INT32
 | 
						|
	int j;
 | 
						|
	for (j = 0; j < SIZEOF_INT32 / SIZEOF_BDIGITS; ++j) {
 | 
						|
	    *d++ = BIGLO(x);
 | 
						|
	    x = BIGDN(x);
 | 
						|
	}
 | 
						|
#else
 | 
						|
	*d++ = (BDIGIT)x;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return rb_big_norm(bigo);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_state(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return mt_state(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_s_state(VALUE klass)
 | 
						|
{
 | 
						|
    return mt_state(&default_rand.mt);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_left(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return INT2FIX(rnd->mt.left);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_s_left(VALUE klass)
 | 
						|
{
 | 
						|
    return INT2FIX(default_rand.mt.left);
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_dump(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    VALUE dump = rb_ary_new2(3);
 | 
						|
 | 
						|
    rb_ary_push(dump, mt_state(&rnd->mt));
 | 
						|
    rb_ary_push(dump, INT2FIX(rnd->mt.left));
 | 
						|
    rb_ary_push(dump, rnd->seed);
 | 
						|
 | 
						|
    return dump;
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
random_load(VALUE obj, VALUE dump)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    struct MT *mt = &rnd->mt;
 | 
						|
    VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
 | 
						|
    VALUE *ary;
 | 
						|
    unsigned long x;
 | 
						|
 | 
						|
    Check_Type(dump, T_ARRAY);
 | 
						|
    ary = RARRAY_PTR(dump);
 | 
						|
    switch (RARRAY_LEN(dump)) {
 | 
						|
      case 3:
 | 
						|
	seed = ary[2];
 | 
						|
      case 2:
 | 
						|
	left = ary[1];
 | 
						|
      case 1:
 | 
						|
	state = ary[0];
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	rb_raise(rb_eArgError, "wrong dump data");
 | 
						|
    }
 | 
						|
    memset(mt->state, 0, sizeof(mt->state));
 | 
						|
    if (FIXNUM_P(state)) {
 | 
						|
	x = FIX2ULONG(state);
 | 
						|
	mt->state[0] = (unsigned int)x;
 | 
						|
#if SIZEOF_LONG / SIZEOF_INT >= 2
 | 
						|
	mt->state[1] = (unsigned int)(x >> BITSPERDIG);
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG / SIZEOF_INT >= 3
 | 
						|
	mt->state[2] = (unsigned int)(x >> 2 * BITSPERDIG);
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG / SIZEOF_INT >= 4
 | 
						|
	mt->state[3] = (unsigned int)(x >> 3 * BITSPERDIG);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	BDIGIT *d;
 | 
						|
	long len;
 | 
						|
	Check_Type(state, T_BIGNUM);
 | 
						|
	len = RBIGNUM_LEN(state);
 | 
						|
	if (len > roomof(sizeof(mt->state), SIZEOF_BDIGITS)) {
 | 
						|
	    len = roomof(sizeof(mt->state), SIZEOF_BDIGITS);
 | 
						|
	}
 | 
						|
#if SIZEOF_BDIGITS < SIZEOF_INT
 | 
						|
	else if (len % DIGSPERINT) {
 | 
						|
	    d = RBIGNUM_DIGITS(state) + len;
 | 
						|
# if DIGSPERINT == 2
 | 
						|
	    --len;
 | 
						|
	    x = *--d;
 | 
						|
# else
 | 
						|
	    x = 0;
 | 
						|
	    do {
 | 
						|
		x = (x << BITSPERDIG) | *--d;
 | 
						|
	    } while (--len % DIGSPERINT);
 | 
						|
# endif
 | 
						|
	    mt->state[len / DIGSPERINT] = (unsigned int)x;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	if (len > 0) {
 | 
						|
	    d = BDIGITS(state) + len;
 | 
						|
	    do {
 | 
						|
		--len;
 | 
						|
		x = *--d;
 | 
						|
# if DIGSPERINT == 2
 | 
						|
		--len;
 | 
						|
		x = (x << BITSPERDIG) | *--d;
 | 
						|
# elif SIZEOF_BDIGITS < SIZEOF_INT
 | 
						|
		do {
 | 
						|
		    x = (x << BITSPERDIG) | *--d;
 | 
						|
		} while (--len % DIGSPERINT);
 | 
						|
# endif
 | 
						|
		mt->state[len / DIGSPERINT] = (unsigned int)x;
 | 
						|
	    } while (len > 0);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    x = NUM2ULONG(left);
 | 
						|
    if (x > numberof(mt->state)) {
 | 
						|
	rb_raise(rb_eArgError, "wrong value");
 | 
						|
    }
 | 
						|
    mt->left = (unsigned int)x;
 | 
						|
    mt->next = mt->state + numberof(mt->state) - x + 1;
 | 
						|
    rnd->seed = rb_to_int(seed);
 | 
						|
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     srand(number=0)    -> old_seed
 | 
						|
 *
 | 
						|
 *  Seeds the pseudorandom number generator to the value of
 | 
						|
 *  <i>number</i>. If <i>number</i> is omitted
 | 
						|
 *  or zero, seeds the generator using a combination of the time, the
 | 
						|
 *  process id, and a sequence number. (This is also the behavior if
 | 
						|
 *  <code>Kernel::rand</code> is called without previously calling
 | 
						|
 *  <code>srand</code>, but without the sequence.) By setting the seed
 | 
						|
 *  to a known value, scripts can be made deterministic during testing.
 | 
						|
 *  The previous seed value is returned. Also see <code>Kernel::rand</code>.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_f_srand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE seed, old;
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
 | 
						|
    rb_secure(4);
 | 
						|
    if (argc == 0) {
 | 
						|
	seed = random_seed();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &seed);
 | 
						|
    }
 | 
						|
    old = r->seed;
 | 
						|
    r->seed = rand_init(&r->mt, seed);
 | 
						|
 | 
						|
    return old;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
make_mask(unsigned long x)
 | 
						|
{
 | 
						|
    x = x | x >> 1;
 | 
						|
    x = x | x >> 2;
 | 
						|
    x = x | x >> 4;
 | 
						|
    x = x | x >> 8;
 | 
						|
    x = x | x >> 16;
 | 
						|
#if 4 < SIZEOF_LONG
 | 
						|
    x = x | x >> 32;
 | 
						|
#endif
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
limited_rand(struct MT *mt, unsigned long limit)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    int i;
 | 
						|
    unsigned long val, mask;
 | 
						|
 | 
						|
    if (!limit) return 0;
 | 
						|
    mask = make_mask(limit);
 | 
						|
  retry:
 | 
						|
    val = 0;
 | 
						|
    for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
 | 
						|
        if ((mask >> (i * 32)) & 0xffffffff) {
 | 
						|
            val |= (unsigned long)genrand_int32(mt) << (i * 32);
 | 
						|
            val &= mask;
 | 
						|
            if (limit < val)
 | 
						|
                goto retry;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
limited_big_rand(struct MT *mt, struct RBignum *limit)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    unsigned long mask, lim, rnd;
 | 
						|
    struct RBignum *val;
 | 
						|
    long i, len;
 | 
						|
    int boundary;
 | 
						|
 | 
						|
    len = (RBIGNUM_LEN(limit) * SIZEOF_BDIGITS + 3) / 4;
 | 
						|
    val = (struct RBignum *)rb_big_clone((VALUE)limit);
 | 
						|
    RBIGNUM_SET_SIGN(val, 1);
 | 
						|
#if SIZEOF_BDIGITS == 2
 | 
						|
# define BIG_GET32(big,i) \
 | 
						|
    (RBIGNUM_DIGITS(big)[(i)*2] | \
 | 
						|
     ((i)*2+1 < RBIGNUM_LEN(big) ? \
 | 
						|
      (RBIGNUM_DIGITS(big)[(i)*2+1] << 16) : \
 | 
						|
      0))
 | 
						|
# define BIG_SET32(big,i,d) \
 | 
						|
    ((RBIGNUM_DIGITS(big)[(i)*2] = (d) & 0xffff), \
 | 
						|
     ((i)*2+1 < RBIGNUM_LEN(big) ? \
 | 
						|
      (RBIGNUM_DIGITS(big)[(i)*2+1] = (d) >> 16) : \
 | 
						|
      0))
 | 
						|
#else
 | 
						|
    /* SIZEOF_BDIGITS == 4 */
 | 
						|
# define BIG_GET32(big,i) (RBIGNUM_DIGITS(big)[i])
 | 
						|
# define BIG_SET32(big,i,d) (RBIGNUM_DIGITS(big)[i] = (d))
 | 
						|
#endif
 | 
						|
  retry:
 | 
						|
    mask = 0;
 | 
						|
    boundary = 1;
 | 
						|
    for (i = len-1; 0 <= i; i--) {
 | 
						|
        lim = BIG_GET32(limit, i);
 | 
						|
        mask = mask ? 0xffffffff : make_mask(lim);
 | 
						|
        if (mask) {
 | 
						|
            rnd = genrand_int32(mt) & mask;
 | 
						|
            if (boundary) {
 | 
						|
                if (lim < rnd)
 | 
						|
                    goto retry;
 | 
						|
                if (rnd < lim)
 | 
						|
                    boundary = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            rnd = 0;
 | 
						|
        }
 | 
						|
        BIG_SET32(val, i, (BDIGIT)rnd);
 | 
						|
    }
 | 
						|
    return rb_big_norm((VALUE)val);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_rand_internal(unsigned long i)
 | 
						|
{
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
    return limited_rand(mt, i);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
rb_random_int32(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return genrand_int32(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
rb_random_real(VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    return genrand_real(&rnd->mt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq: prng.bytes(size) -> prng
 | 
						|
 *
 | 
						|
 * Returns a random binary string.  The argument size specified the length of
 | 
						|
 * the result string.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_bytes(VALUE obj, VALUE len)
 | 
						|
{
 | 
						|
    return rb_random_bytes(obj, NUM2LONG(rb_to_int(len)));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_random_bytes(VALUE obj, long n)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    VALUE bytes = rb_str_new(0, n);
 | 
						|
    char *ptr = RSTRING_PTR(bytes);
 | 
						|
    unsigned int r, i;
 | 
						|
 | 
						|
    for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
 | 
						|
	r = genrand_int32(&rnd->mt);
 | 
						|
	i = SIZEOF_INT32;
 | 
						|
	do {
 | 
						|
	    *ptr++ = (char)r;
 | 
						|
	    r >>= CHAR_BIT;
 | 
						|
        } while (--i);
 | 
						|
    }
 | 
						|
    if (n > 0) {
 | 
						|
	r = genrand_int32(&rnd->mt);
 | 
						|
	do {
 | 
						|
	    *ptr++ = (char)r;
 | 
						|
	    r >>= CHAR_BIT;
 | 
						|
	} while (--n);
 | 
						|
    }
 | 
						|
    return bytes;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
range_values(VALUE vmax, VALUE *begp, int *exclp)
 | 
						|
{
 | 
						|
    VALUE end, r;
 | 
						|
 | 
						|
    if (!rb_range_values(vmax, begp, &end, exclp)) return Qfalse;
 | 
						|
    if (!rb_respond_to(end, id_minus)) return Qfalse;
 | 
						|
    r = rb_funcall2(end, id_minus, 1, begp);
 | 
						|
    if (NIL_P(r)) return Qfalse;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rand_int(struct MT *mt, VALUE vmax, int restrictive)
 | 
						|
{
 | 
						|
    /* mt must be initialized */
 | 
						|
    long max;
 | 
						|
    unsigned long r;
 | 
						|
 | 
						|
    if (FIXNUM_P(vmax)) {
 | 
						|
	max = FIX2LONG(vmax);
 | 
						|
	if (!max) return Qnil;
 | 
						|
	if (max < 0) {
 | 
						|
	    if (restrictive) return Qnil;
 | 
						|
	    max = -max;
 | 
						|
	}
 | 
						|
	r = limited_rand(mt, (unsigned long)max - 1);
 | 
						|
	return ULONG2NUM(r);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	VALUE ret;
 | 
						|
	if (rb_bigzero_p(vmax)) return Qnil;
 | 
						|
	if (!RBIGNUM_SIGN(vmax)) {
 | 
						|
	    if (restrictive) return Qnil;
 | 
						|
	    vmax = rb_big_clone(vmax);
 | 
						|
	    RBIGNUM_SET_SIGN(vmax, 1);
 | 
						|
	}
 | 
						|
	vmax = rb_big_minus(vmax, INT2FIX(1));
 | 
						|
	if (FIXNUM_P(vmax)) {
 | 
						|
	    max = FIX2LONG(vmax);
 | 
						|
	    if (max == -1) return Qnil;
 | 
						|
	    r = limited_rand(mt, max);
 | 
						|
	    return LONG2NUM(r);
 | 
						|
	}
 | 
						|
	ret = limited_big_rand(mt, RBIGNUM(vmax));
 | 
						|
	RB_GC_GUARD(vmax);
 | 
						|
	return ret;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline double
 | 
						|
float_value(VALUE v)
 | 
						|
{
 | 
						|
    double x = RFLOAT_VALUE(v);
 | 
						|
    if (isinf(x) || isnan(x)) {
 | 
						|
	VALUE error = INT2FIX(EDOM);
 | 
						|
	rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *     prng.rand -> float
 | 
						|
 *     prng.rand(limit) -> number
 | 
						|
 *
 | 
						|
 * When the argument is an +Integer+ or a +Bignum+, it returns a
 | 
						|
 * random integer greater than or equal to zero and less than the
 | 
						|
 * argument.  Unlike Random.rand, when the argument is a negative
 | 
						|
 * integer or zero, it raises an ArgumentError.
 | 
						|
 *
 | 
						|
 * When the argument is a +Float+, it returns a random floating point
 | 
						|
 * number between 0.0 and _max_, including 0.0 and excluding _max_.
 | 
						|
 *
 | 
						|
 * When the argument _limit_ is a +Range+, it returns a random
 | 
						|
 * number where range.member?(number) == true.
 | 
						|
 *     prng.rand(5..9)  #=> one of [5, 6, 7, 8, 9]
 | 
						|
 *     prng.rand(5...9) #=> one of [5, 6, 7, 8]
 | 
						|
 *     prng.rand(5.0..9.0) #=> between 5.0 and 9.0, including 9.0
 | 
						|
 *     prng.rand(5.0...9.0) #=> between 5.0 and 9.0, excluding 9.0
 | 
						|
 *
 | 
						|
 * +begin+/+end+ of the range have to have subtract and add methods.
 | 
						|
 *
 | 
						|
 * Otherwise, it raises an ArgumentError.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_rand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    rb_random_t *rnd = get_rnd(obj);
 | 
						|
    VALUE vmax, beg = Qundef, v;
 | 
						|
    int excl = 0;
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	return rb_float_new(genrand_real(&rnd->mt));
 | 
						|
    }
 | 
						|
    else if (argc != 1) {
 | 
						|
	rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..1)", argc);
 | 
						|
    }
 | 
						|
    vmax = argv[0];
 | 
						|
    if (NIL_P(vmax)) {
 | 
						|
	v = Qnil;
 | 
						|
    }
 | 
						|
    else if (TYPE(vmax) != T_FLOAT && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | 
						|
	v = rand_int(&rnd->mt, vmax = v, 1);
 | 
						|
    }
 | 
						|
    else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | 
						|
	double max = float_value(v);
 | 
						|
	if (max > 0.0)
 | 
						|
	    v = rb_float_new(max * genrand_real(&rnd->mt));
 | 
						|
	else
 | 
						|
	    v = Qnil;
 | 
						|
    }
 | 
						|
    else if ((v = range_values(vmax, &beg, &excl)) != Qfalse) {
 | 
						|
	vmax = v;
 | 
						|
	if (TYPE(vmax) != T_FLOAT && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | 
						|
	    long max;
 | 
						|
	    vmax = v;
 | 
						|
	    v = Qnil;
 | 
						|
	    if (FIXNUM_P(vmax)) {
 | 
						|
	      fixnum:
 | 
						|
		if ((max = FIX2LONG(vmax) - excl) >= 0) {
 | 
						|
		    unsigned long r = limited_rand(&rnd->mt, (unsigned long)max);
 | 
						|
		    v = ULONG2NUM(r);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    else if (BUILTIN_TYPE(vmax) == T_BIGNUM && RBIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
 | 
						|
		vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
 | 
						|
		if (FIXNUM_P(vmax)) {
 | 
						|
		    excl = 0;
 | 
						|
		    goto fixnum;
 | 
						|
		}
 | 
						|
		v = limited_big_rand(&rnd->mt, RBIGNUM(vmax));
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | 
						|
	    double max = float_value(v), r;
 | 
						|
	    v = Qnil;
 | 
						|
	    if (max > 0.0) {
 | 
						|
		if (excl) {
 | 
						|
		    r = genrand_real(&rnd->mt);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
		    r = genrand_real2(&rnd->mt);
 | 
						|
		}
 | 
						|
		v = rb_float_new(r * max);
 | 
						|
	    }
 | 
						|
	    else if (max == 0.0 && !excl) {
 | 
						|
		v = rb_float_new(0.0);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	v = Qnil;
 | 
						|
	(void)NUM2LONG(vmax);
 | 
						|
    }
 | 
						|
    if (NIL_P(v)) {
 | 
						|
	VALUE mesg = rb_str_new_cstr("invalid argument - ");
 | 
						|
	rb_str_append(mesg, rb_obj_as_string(argv[0]));
 | 
						|
	rb_exc_raise(rb_exc_new3(rb_eArgError, mesg));
 | 
						|
    }
 | 
						|
    if (beg == Qundef) return v;
 | 
						|
    if (FIXNUM_P(beg) && FIXNUM_P(v)) {
 | 
						|
	long x = FIX2LONG(beg) + FIX2LONG(v);
 | 
						|
	return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    switch (TYPE(v)) {
 | 
						|
      case T_BIGNUM:
 | 
						|
	return rb_big_plus(v, beg);
 | 
						|
      case T_FLOAT: {
 | 
						|
	VALUE f = rb_check_to_float(beg);
 | 
						|
	if (!NIL_P(f)) {
 | 
						|
	    RFLOAT_VALUE(v) += RFLOAT_VALUE(f);
 | 
						|
	    return v;
 | 
						|
	}
 | 
						|
      }
 | 
						|
      default:
 | 
						|
	return rb_funcall2(beg, id_plus, 1, &v);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *     prng1 == prng2 -> true or false
 | 
						|
 *
 | 
						|
 * Returns true if the generators' states equal.
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
random_equal(VALUE self, VALUE other)
 | 
						|
{
 | 
						|
    rb_random_t *r1, *r2;
 | 
						|
    if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
 | 
						|
    r1 = get_rnd(self);
 | 
						|
    r2 = get_rnd(other);
 | 
						|
    if (!RTEST(rb_funcall2(r1->seed, rb_intern("=="), 1, &r2->seed))) return Qfalse;
 | 
						|
    if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
 | 
						|
    if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
 | 
						|
    if (r1->mt.left != r2->mt.left) return Qfalse;
 | 
						|
    return Qtrue;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     rand(max=0)    -> number
 | 
						|
 *
 | 
						|
 *  Converts <i>max</i> to an integer using max1 =
 | 
						|
 *  max<code>.to_i.abs</code>. If _max_ is +nil+ the result is zero, returns a
 | 
						|
 *  pseudorandom floating point number greater than or equal to 0.0 and
 | 
						|
 *  less than 1.0. Otherwise, returns a pseudorandom integer greater
 | 
						|
 *  than or equal to zero and less than max1. <code>Kernel::srand</code>
 | 
						|
 *  may be used to ensure repeatable sequences of random numbers between
 | 
						|
 *  different runs of the program. Ruby currently uses a modified
 | 
						|
 *  Mersenne Twister with a period of 2**19937-1.
 | 
						|
 *
 | 
						|
 *     srand 1234                 #=> 0
 | 
						|
 *     [ rand,  rand ]            #=> [0.191519450163469, 0.49766366626136]
 | 
						|
 *     [ rand(10), rand(1000) ]   #=> [6, 817]
 | 
						|
 *     srand 1234                 #=> 1234
 | 
						|
 *     [ rand,  rand ]            #=> [0.191519450163469, 0.49766366626136]
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_f_rand(int argc, VALUE *argv, VALUE obj)
 | 
						|
{
 | 
						|
    VALUE vmax, r;
 | 
						|
    struct MT *mt = default_mt();
 | 
						|
 | 
						|
    if (argc == 0) goto zero_arg;
 | 
						|
    rb_scan_args(argc, argv, "01", &vmax);
 | 
						|
    if (NIL_P(vmax)) goto zero_arg;
 | 
						|
    vmax = rb_to_int(vmax);
 | 
						|
    if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax, 0))) {
 | 
						|
      zero_arg:
 | 
						|
	return DBL2NUM(genrand_real(mt));
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static st_index_t hashseed;
 | 
						|
 | 
						|
static VALUE
 | 
						|
init_randomseed(struct MT *mt, unsigned int initial[DEFAULT_SEED_CNT])
 | 
						|
{
 | 
						|
    VALUE seed;
 | 
						|
    fill_random_seed(initial);
 | 
						|
    init_by_array(mt, initial, DEFAULT_SEED_CNT);
 | 
						|
    seed = make_seed_value(initial);
 | 
						|
    memset(initial, 0, DEFAULT_SEED_LEN);
 | 
						|
    return seed;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Init_RandomSeed(void)
 | 
						|
{
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
    unsigned int initial[DEFAULT_SEED_CNT];
 | 
						|
    struct MT *mt = &r->mt;
 | 
						|
    VALUE seed = init_randomseed(mt, initial);
 | 
						|
 | 
						|
    hashseed = genrand_int32(mt);
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
 | 
						|
    hashseed <<= 32;
 | 
						|
    hashseed |= genrand_int32(mt);
 | 
						|
#endif
 | 
						|
 | 
						|
    rb_global_variable(&r->seed);
 | 
						|
    r->seed = seed;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
rb_hash_start(st_index_t h)
 | 
						|
{
 | 
						|
    return st_hash_start(hashseed + h);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
Init_RandomSeed2(void)
 | 
						|
{
 | 
						|
    VALUE seed = default_rand.seed;
 | 
						|
 | 
						|
    if (RB_TYPE_P(seed, T_BIGNUM)) {
 | 
						|
	RBASIC(seed)->klass = rb_cBignum;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_reset_random_seed(void)
 | 
						|
{
 | 
						|
    rb_random_t *r = &default_rand;
 | 
						|
    uninit_genrand(&r->mt);
 | 
						|
    r->seed = INT2FIX(0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Init_Random(void)
 | 
						|
{
 | 
						|
    Init_RandomSeed2();
 | 
						|
    rb_define_global_function("srand", rb_f_srand, -1);
 | 
						|
    rb_define_global_function("rand", rb_f_rand, -1);
 | 
						|
 | 
						|
    rb_cRandom = rb_define_class("Random", rb_cObject);
 | 
						|
    rb_define_alloc_func(rb_cRandom, random_alloc);
 | 
						|
    rb_define_method(rb_cRandom, "initialize", random_init, -1);
 | 
						|
    rb_define_method(rb_cRandom, "rand", random_rand, -1);
 | 
						|
    rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
 | 
						|
    rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
 | 
						|
    rb_define_method(rb_cRandom, "initialize_copy", random_copy, 1);
 | 
						|
    rb_define_method(rb_cRandom, "marshal_dump", random_dump, 0);
 | 
						|
    rb_define_method(rb_cRandom, "marshal_load", random_load, 1);
 | 
						|
    rb_define_private_method(rb_cRandom, "state", random_state, 0);
 | 
						|
    rb_define_private_method(rb_cRandom, "left", random_left, 0);
 | 
						|
    rb_define_method(rb_cRandom, "==", random_equal, 1);
 | 
						|
    rb_define_const(rb_cRandom, "DEFAULT",
 | 
						|
		    TypedData_Wrap_Struct(rb_cRandom, &random_data_type, &default_rand));
 | 
						|
 | 
						|
    rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
 | 
						|
    rb_define_singleton_method(rb_cRandom, "rand", rb_f_rand, -1);
 | 
						|
    rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
 | 
						|
    rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
 | 
						|
    rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
 | 
						|
}
 |