1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/mjit.c
nobu 5b794fee39 mjit.c: replaced magic numbers
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62341 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-10 01:55:47 +00:00

1461 lines
47 KiB
C

/**********************************************************************
mjit.c - Infrastructure for MRI method JIT compiler
Copyright (C) 2017 Vladimir Makarov <vmakarov@redhat.com>.
**********************************************************************/
/* We utilize widely used C compilers (GCC and LLVM Clang) to
implement MJIT. We feed them a C code generated from ISEQ. The
industrial C compilers are slower than regular JIT engines.
Generated code performance of the used C compilers has a higher
priority over the compilation speed.
So our major goal is to minimize the ISEQ compilation time when we
use widely optimization level (-O2). It is achieved by
o Using a precompiled version of the header
o Keeping all files in `/tmp`. On modern Linux `/tmp` is a file
system in memory. So it is pretty fast
o Implementing MJIT as a multi-threaded code because we want to
compile ISEQs in parallel with iseq execution to speed up Ruby
code execution. MJIT has one thread (*worker*) to do
parallel compilations:
o It prepares a precompiled code of the minimized header.
It starts at the MRI execution start
o It generates PIC object files of ISEQs
o It takes one JIT unit from a priority queue unless it is empty.
o It translates the JIT unit ISEQ into C-code using the precompiled
header, calls CC and load PIC code when it is ready
o Currently MJIT put ISEQ in the queue when ISEQ is called
o MJIT can reorder ISEQs in the queue if some ISEQ has been called
many times and its compilation did not start yet
o MRI reuses the machine code if it already exists for ISEQ
o The machine code we generate can stop and switch to the ISEQ
interpretation if some condition is not satisfied as the machine
code can be speculative or some exception raises
o Speculative machine code can be canceled.
Here is a diagram showing the MJIT organization:
_______
|header |
|_______|
| MRI building
--------------|----------------------------------------
| MRI execution
|
_____________|_____
| | |
| ___V__ | CC ____________________
| | |----------->| precompiled header |
| | | | |____________________|
| | | | |
| | MJIT | | |
| | | | |
| | | | ____V___ CC __________
| |______|----------->| C code |--->| .so file |
| | |________| |__________|
| | |
| | |
| MRI machine code |<-----------------------------
|___________________| loading
We don't use SIGCHLD signal and WNOHANG waitpid in MJIT as it
might mess with ruby code dealing with signals. Also as SIGCHLD
signal can be delivered to non-main thread, the stack might have a
constraint. So the correct version of code based on SIGCHLD and
WNOHANG waitpid would be very complicated. */
#ifdef __sun
#define __EXTENSIONS__ 1
#endif
#include "internal.h"
#include "vm_core.h"
#include "mjit.h"
#include "gc.h"
#include "constant.h"
#include "id_table.h"
#include "ruby_assert.h"
#include "ruby/util.h"
#include "ruby/version.h"
#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#else
#include <sys/wait.h>
#include <sys/time.h>
#include <dlfcn.h>
#endif
#include <errno.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
extern void rb_native_mutex_lock(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_unlock(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_initialize(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_destroy(rb_nativethread_lock_t *lock);
extern void rb_native_cond_initialize(rb_nativethread_cond_t *cond, int flags);
extern void rb_native_cond_destroy(rb_nativethread_cond_t *cond);
extern void rb_native_cond_signal(rb_nativethread_cond_t *cond);
extern void rb_native_cond_broadcast(rb_nativethread_cond_t *cond);
extern void rb_native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex);
extern int rb_thread_create_mjit_thread(void (*child_hook)(void), void (*worker_func)(void));
#define RB_CONDATTR_CLOCK_MONOTONIC 1
#ifdef _WIN32
#define dlopen(name,flag) ((void*)LoadLibrary(name))
#define dlerror() strerror(rb_w32_map_errno(GetLastError()))
#define dlsym(handle,name) ((void*)GetProcAddress((handle),(name)))
#define dlclose(handle) (CloseHandle(handle))
#define RTLD_NOW -1
#define waitpid(pid,stat_loc,options) (WaitForSingleObject((HANDLE)(pid), INFINITE), GetExitCodeProcess((HANDLE)(pid), (LPDWORD)(stat_loc)))
#define WIFEXITED(S) ((S) != STILL_ACTIVE)
#define WEXITSTATUS(S) (S)
#define WIFSIGNALED(S) (0)
typedef intptr_t pid_t;
#endif
/* Atomically set function pointer if possible. */
#ifdef _WIN32
# ifdef InterlockedExchangePointer
# define MJIT_ATOMIC_SET(var, val) InterlockedExchangePointer((void **)&(var), (void *)val)
# else
# define MJIT_ATOMIC_SET(var, val) (void)((var) = (val))
# endif
#else
# define MJIT_ATOMIC_SET(var, val) ATOMIC_SET(var, val)
#endif
/* A copy of MJIT portion of MRI options since MJIT initialization. We
need them as MJIT threads still can work when the most MRI data were
freed. */
struct mjit_options mjit_opts;
/* The unit structure that holds metadata of ISeq for MJIT. */
struct rb_mjit_unit {
/* Unique order number of unit. */
int id;
/* Dlopen handle of the loaded object file. */
void *handle;
const rb_iseq_t *iseq;
/* Only used by unload_units. Flag to check this unit is currently on stack or not. */
char used_code_p;
};
/* Node of linked list in struct rb_mjit_unit_list.
TODO: use ccan/list for this */
struct rb_mjit_unit_node {
struct rb_mjit_unit *unit;
struct rb_mjit_unit_node *next, *prev;
};
/* Linked list of struct rb_mjit_unit. */
struct rb_mjit_unit_list {
struct rb_mjit_unit_node *head;
int length; /* the list length */
};
/* TRUE if MJIT is initialized and will be used. */
int mjit_init_p = FALSE;
/* Priority queue of iseqs waiting for JIT compilation.
This variable is a pointer to head unit of the queue. */
static struct rb_mjit_unit_list unit_queue;
/* List of units which are successfully compiled. */
static struct rb_mjit_unit_list active_units;
/* The number of so far processed ISEQs, used to generate unique id. */
static int current_unit_num;
/* A mutex for conitionals and critical sections. */
static rb_nativethread_lock_t mjit_engine_mutex;
/* A thread conditional to wake up `mjit_finish` at the end of PCH thread. */
static rb_nativethread_cond_t mjit_pch_wakeup;
/* A thread conditional to wake up the client if there is a change in
executed unit status. */
static rb_nativethread_cond_t mjit_client_wakeup;
/* A thread conditional to wake up a worker if there we have something
to add or we need to stop MJIT engine. */
static rb_nativethread_cond_t mjit_worker_wakeup;
/* A thread conditional to wake up workers if at the end of GC. */
static rb_nativethread_cond_t mjit_gc_wakeup;
/* True when GC is working. */
static int in_gc;
/* True when JIT is working. */
static int in_jit;
/* Defined in the client thread before starting MJIT threads: */
/* Used C compiler path. */
static const char *cc_path;
/* Name of the header file. */
static char *header_file;
/* Name of the precompiled header file. */
static char *pch_file;
/* Path of "/tmp", which can be changed to $TMP in MinGW. */
static char *tmp_dir;
/* Hash like { 1 => true, 2 => true, ... } whose keys are valid `class_serial`s.
This is used to invalidate obsoleted CALL_CACHE. */
static VALUE valid_class_serials;
/* Ruby level interface module. */
VALUE rb_mMJIT;
#ifdef _WIN32
/* Linker option to enable libruby in the build directory. */
static char *libruby_build;
/* Linker option to enable libruby in the directory after install. */
static char *libruby_installed;
#endif
/* Return time in milliseconds as a double. */
static double
real_ms_time(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec / 1000.0 + tv.tv_sec * 1000.0;
}
/* Make and return copy of STR in the heap. */
#define get_string ruby_strdup
static int
sprint_uniq_filename(char *str, size_t size, unsigned long id, const char *prefix, const char *suffix)
{
return snprintf(str, size, "%s/%sp%luu%lu%s", tmp_dir, prefix, (unsigned long) getpid(), id, suffix);
}
/* Return an unique file name in /tmp with PREFIX and SUFFIX and
number ID. Use getpid if ID == 0. The return file name exists
until the next function call. */
static char *
get_uniq_filename(unsigned long id, const char *prefix, const char *suffix)
{
char buff[70], *str = buff;
int size = sprint_uniq_filename(buff, sizeof(buff), id, prefix, suffix);
str = 0;
++size;
str = xmalloc(size);
if (size <= (int)sizeof(buff)) {
memcpy(str, buff, size);
}
else {
sprint_uniq_filename(str, size, id, prefix, suffix);
}
return str;
}
/* Print the arguments according to FORMAT to stderr only if MJIT
verbose option value is more or equal to LEVEL. */
PRINTF_ARGS(static void, 2, 3)
verbose(int level, const char *format, ...)
{
va_list args;
va_start(args, format);
if (mjit_opts.verbose >= level)
vfprintf(stderr, format, args);
va_end(args);
if (mjit_opts.verbose >= level)
fprintf(stderr, "\n");
}
/* Return length of NULL-terminated array ARGS excluding the NULL
marker. */
static size_t
args_len(char *const *args)
{
size_t i;
for (i = 0; (args[i]) != NULL;i++)
;
return i;
}
/* Concatenate NUM passed NULL-terminated arrays of strings, put the
result (with NULL end marker) into the heap, and return the
result. */
static char **
form_args(int num, ...)
{
va_list argp, argp2;
size_t len, disp;
int i;
char **args, **res;
va_start(argp, num);
va_copy(argp2, argp);
for (i = len = 0; i < num; i++) {
args = va_arg(argp, char **);
len += args_len(args);
}
va_end(argp);
if ((res = xmalloc((len + 1) * sizeof(char *))) == NULL)
return NULL;
for (i = disp = 0; i < num; i++) {
args = va_arg(argp2, char **);
len = args_len(args);
memmove(res + disp, args, len * sizeof(char *));
disp += len;
}
res[disp] = NULL;
va_end(argp2);
return res;
}
/* Start an OS process of executable PATH with arguments ARGV. Return
PID of the process.
TODO: Use the same function in process.c */
static pid_t
start_process(const char *path, char *const *argv)
{
pid_t pid;
if (mjit_opts.verbose >= 2) {
int i;
const char *arg;
fprintf(stderr, "Starting process: %s", path);
for (i = 0; (arg = argv[i]) != NULL; i++)
fprintf(stderr, " %s", arg);
fprintf(stderr, "\n");
}
#ifdef _WIN32
pid = spawnvp(_P_NOWAIT, path, argv);
#else
{
/* Not calling IO functions between fork and exec for safety */
int dev_null = rb_cloexec_open(ruby_null_device, O_WRONLY, 0);
if ((pid = vfork()) == 0) {
umask(0077);
if (mjit_opts.verbose == 0) {
/* CC can be started in a thread using a file which has been
already removed while MJIT is finishing. Discard the
messages about missing files. */
dup2(dev_null, STDERR_FILENO);
dup2(dev_null, STDOUT_FILENO);
}
(void)close(dev_null);
pid = execvp(path, argv); /* Pid will be negative on an error */
/* Even if we successfully found CC to compile PCH we still can
fail with loading the CC in very rare cases for some reasons.
Stop the forked process in this case. */
verbose(1, "MJIT: Error in execvp: %s\n", path);
_exit(1);
}
(void)close(dev_null);
}
#endif
return pid;
}
/* Execute an OS process of executable PATH with arguments ARGV.
Return -1 or -2 if failed to execute, otherwise exit code of the process.
TODO: Use the same function in process.c */
static int
exec_process(const char *path, char *const argv[])
{
int stat, exit_code;
pid_t pid;
pid = start_process(path, argv);
if (pid <= 0)
return -2;
for (;;) {
waitpid(pid, &stat, 0);
if (WIFEXITED(stat)) {
exit_code = WEXITSTATUS(stat);
break;
} else if (WIFSIGNALED(stat)) {
exit_code = -1;
break;
}
}
return exit_code;
}
/* Start a critical section. Use message MSG to print debug info at
LEVEL. */
static inline void
CRITICAL_SECTION_START(int level, const char *msg)
{
verbose(level, "Locking %s", msg);
rb_native_mutex_lock(&mjit_engine_mutex);
verbose(level, "Locked %s", msg);
}
/* Finish the current critical section. Use message MSG to print
debug info at LEVEL. */
static inline void
CRITICAL_SECTION_FINISH(int level, const char *msg)
{
verbose(level, "Unlocked %s", msg);
rb_native_mutex_unlock(&mjit_engine_mutex);
}
/* Wait until workers don't compile any iseq. It is called at the
start of GC. */
void
mjit_gc_start_hook(void)
{
if (!mjit_init_p)
return;
CRITICAL_SECTION_START(4, "mjit_gc_start_hook");
while (in_jit) {
verbose(4, "Waiting wakeup from a worker for GC");
rb_native_cond_wait(&mjit_client_wakeup, &mjit_engine_mutex);
verbose(4, "Getting wakeup from a worker for GC");
}
in_gc = TRUE;
CRITICAL_SECTION_FINISH(4, "mjit_gc_start_hook");
}
/* Send a signal to workers to continue iseq compilations. It is
called at the end of GC. */
void
mjit_gc_finish_hook(void)
{
if (!mjit_init_p)
return;
CRITICAL_SECTION_START(4, "mjit_gc_finish_hook");
in_gc = FALSE;
verbose(4, "Sending wakeup signal to workers after GC");
rb_native_cond_broadcast(&mjit_gc_wakeup);
CRITICAL_SECTION_FINISH(4, "mjit_gc_finish_hook");
}
/* Iseqs can be garbage collected. This function should call when it
happens. It removes iseq from the unit. */
void
mjit_free_iseq(const rb_iseq_t *iseq)
{
if (!mjit_init_p)
return;
CRITICAL_SECTION_START(4, "mjit_free_iseq");
if (iseq->body->jit_unit) {
/* jit_unit is not freed here because it may be referred by multiple
lists of units. `get_from_list` and `mjit_finish` do the job. */
iseq->body->jit_unit->iseq = NULL;
}
CRITICAL_SECTION_FINISH(4, "mjit_free_iseq");
}
static void
free_unit(struct rb_mjit_unit *unit)
{
if (unit->iseq) /* ISeq is not GCed */
unit->iseq->body->jit_func = 0;
if (unit->handle) /* handle is NULL if it's in queue */
dlclose(unit->handle);
xfree(unit);
}
static void
init_list(struct rb_mjit_unit_list *list)
{
list->head = NULL;
list->length = 0;
}
/* Allocate struct rb_mjit_unit_node and return it. This MUST NOT be
called inside critical section because that causes deadlock. ZALLOC
may fire GC and GC hooks mjit_gc_start_hook that starts critical section. */
static struct rb_mjit_unit_node *
create_list_node(struct rb_mjit_unit *unit)
{
struct rb_mjit_unit_node *node = ZALLOC(struct rb_mjit_unit_node);
node->unit = unit;
return node;
}
/* Add unit node to the tail of doubly linked LIST. It should be not in
the list before. */
static void
add_to_list(struct rb_mjit_unit_node *node, struct rb_mjit_unit_list *list)
{
/* Append iseq to list */
if (list->head == NULL) {
list->head = node;
}
else {
struct rb_mjit_unit_node *tail = list->head;
while (tail->next != NULL) {
tail = tail->next;
}
tail->next = node;
node->prev = tail;
}
list->length++;
}
static void
remove_from_list(struct rb_mjit_unit_node *node, struct rb_mjit_unit_list *list)
{
if (node->prev && node->next) {
node->prev->next = node->next;
node->next->prev = node->prev;
}
else if (node->prev == NULL && node->next) {
list->head = node->next;
node->next->prev = NULL;
}
else if (node->prev && node->next == NULL) {
node->prev->next = NULL;
}
else {
list->head = NULL;
}
list->length--;
xfree(node);
}
/* Return the best unit from list. The best is the first
high priority unit or the unit whose iseq has the biggest number
of calls so far. */
static struct rb_mjit_unit_node *
get_from_list(struct rb_mjit_unit_list *list)
{
struct rb_mjit_unit_node *node, *best = NULL;
if (list->head == NULL)
return NULL;
/* Find iseq with max total_calls */
for (node = list->head; node != NULL; node = node ? node->next : NULL) {
if (node->unit->iseq == NULL) { /* ISeq is GCed. */
free_unit(node->unit);
remove_from_list(node, list);
continue;
}
if (best == NULL || best->unit->iseq->body->total_calls < node->unit->iseq->body->total_calls) {
best = node;
}
}
return best;
}
/* Free unit list. This should be called only when worker is finished
because node of unit_queue and one of active_units may have the same unit
during proceeding unit. */
static void
free_list(struct rb_mjit_unit_list *list)
{
struct rb_mjit_unit_node *node, *next;
for (node = list->head; node != NULL; node = next) {
next = node->next;
free_unit(node->unit);
xfree(node);
}
}
/* XXX_COMMONN_ARGS define the command line arguments of XXX C
compiler used by MJIT.
XXX_EMIT_PCH_ARGS define additional options to generate the
precomiled header.
XXX_USE_PCH_ARAGS define additional options to use the precomiled
header. */
static const char *GCC_COMMON_ARGS_DEBUG[] = {"gcc", "-O0", "-g", "-Wfatal-errors", "-fPIC", "-shared", "-w", "-pipe", "-nostartfiles", "-nodefaultlibs", "-nostdlib", NULL};
static const char *GCC_COMMON_ARGS[] = {"gcc", "-O2", "-Wfatal-errors", "-fPIC", "-shared", "-w", "-pipe", "-nostartfiles", "-nodefaultlibs", "-nostdlib", NULL};
static const char *GCC_USE_PCH_ARGS[] = {"-I/tmp", NULL};
static const char *GCC_EMIT_PCH_ARGS[] = {NULL};
#ifdef __MACH__
static const char *CLANG_COMMON_ARGS_DEBUG[] = {"clang", "-O0", "-g", "-dynamic", "-I/usr/local/include", "-L/usr/local/lib", "-w", "-bundle", NULL};
static const char *CLANG_COMMON_ARGS[] = {"clang", "-O2", "-dynamic", "-I/usr/local/include", "-L/usr/local/lib", "-w", "-bundle", NULL};
#else
static const char *CLANG_COMMON_ARGS_DEBUG[] = {"clang", "-O0", "-g", "-fPIC", "-shared", "-I/usr/local/include", "-L/usr/local/lib", "-w", "-bundle", NULL};
static const char *CLANG_COMMON_ARGS[] = {"clang", "-O2", "-fPIC", "-shared", "-I/usr/local/include", "-L/usr/local/lib", "-w", "-bundle", NULL};
#endif /* #if __MACH__ */
#ifdef _MSC_VER
static const char *VC_COMMON_ARGS_DEBUG[] = {"cl.exe", "-nologo", "-O0", "-Zi", "-MD", "-LD", NULL};
static const char *VC_COMMON_ARGS[] = {"cl.exe", "-nologo",
# if _MSC_VER < 1400
"-O2b2xg-",
# else
"-O2sy-",
# endif
"-MD", "-LD", NULL};
#endif
static const char *CLANG_USE_PCH_ARGS[] = {"-include-pch", NULL, "-Wl,-undefined", "-Wl,dynamic_lookup", NULL};
static const char *CLANG_EMIT_PCH_ARGS[] = {"-emit-pch", NULL};
/* Status of the the precompiled header creation. The status is
shared by the workers and the pch thread. */
static enum {PCH_NOT_READY, PCH_FAILED, PCH_SUCCESS} pch_status;
/* The function producing the pre-compiled header. */
static void
make_pch(void)
{
int exit_code;
#ifdef _MSC_VER
/* XXX TODO */
exit_code = 0;
#else
static const char *input[] = {NULL, NULL};
static const char *output[] = {"-o", NULL, NULL};
char **args;
verbose(2, "Creating precompiled header");
input[0] = header_file;
output[1] = pch_file;
if (mjit_opts.cc == MJIT_CC_CLANG)
args = form_args(4, (mjit_opts.debug ? CLANG_COMMON_ARGS_DEBUG : CLANG_COMMON_ARGS),
CLANG_EMIT_PCH_ARGS, input, output);
else
args = form_args(4, (mjit_opts.debug ? GCC_COMMON_ARGS_DEBUG : GCC_COMMON_ARGS),
GCC_EMIT_PCH_ARGS, input, output);
if (args == NULL) {
if (mjit_opts.warnings || mjit_opts.verbose)
fprintf(stderr, "MJIT warning: making precompiled header failed on forming args\n");
CRITICAL_SECTION_START(3, "in make_pch");
pch_status = PCH_FAILED;
CRITICAL_SECTION_FINISH(3, "in make_pch");
return;
}
exit_code = exec_process(cc_path, args);
xfree(args);
#endif
CRITICAL_SECTION_START(3, "in make_pch");
if (exit_code == 0) {
pch_status = PCH_SUCCESS;
} else {
if (mjit_opts.warnings || mjit_opts.verbose)
fprintf(stderr, "MJIT warning: Making precompiled header failed on compilation. Stopping MJIT worker...\n");
pch_status = PCH_FAILED;
}
/* wakeup `mjit_finish` */
rb_native_cond_broadcast(&mjit_pch_wakeup);
CRITICAL_SECTION_FINISH(3, "in make_pch");
}
#define append_str2(p, str, len) ((char *)memcpy((p), str, (len))+(len))
#define append_str(p, str) append_str2(p, str, sizeof(str)-1)
#define append_lit(p, str) append_str2(p, str, rb_strlen_lit(str))
/* Compile C file to so. It returns 1 if it succeeds. */
static int
compile_c_to_so(const char *c_file, const char *so_file)
{
int exit_code;
const char *input[] = {NULL, NULL};
const char *output[] = {
#ifndef _MSC_VER
"-o",
#endif
NULL, NULL};
const char *libs[] = {
#ifdef _WIN32
# ifdef _MSC_VER
LIBRUBYARG_SHARED,
"-link",
libruby_installed,
libruby_build,
# else
/* Look for ruby.dll.a in build and install directories. */
libruby_installed,
libruby_build,
/* Link to ruby.dll.a, because Windows DLLs don't allow unresolved symbols. */
LIBRUBYARG_SHARED,
"-lmsvcrt",
"-lgcc",
# endif
#endif
NULL};
char **args;
#ifdef _MSC_VER
char *p;
int solen;
#endif
input[0] = c_file;
#ifdef _MSC_VER
solen = strlen(so_file);
p = (char *)output[0] = xmalloc(3 + solen + 1);
p = append_lit(p, "-Fe");
p = append_str2(p, so_file, solen);
*p = '\0';
args = form_args(4, (mjit_opts.debug ? VC_COMMON_ARGS_DEBUG : VC_COMMON_ARGS),
output, input, libs);
#else
output[1] = so_file;
if (mjit_opts.cc == MJIT_CC_CLANG) {
CLANG_USE_PCH_ARGS[1] = pch_file;
args = form_args(5, (mjit_opts.debug ? CLANG_COMMON_ARGS_DEBUG : CLANG_COMMON_ARGS),
CLANG_USE_PCH_ARGS, input, output, libs);
}
else {
args = form_args(5, (mjit_opts.debug ? GCC_COMMON_ARGS_DEBUG : GCC_COMMON_ARGS),
GCC_USE_PCH_ARGS, input, output, libs);
}
#endif
if (args == NULL)
return FALSE;
exit_code = exec_process(cc_path, args);
xfree(args);
#ifdef _MSC_VER
xfree((char *)output[0]);
#endif
if (exit_code != 0)
verbose(2, "compile_c_to_so: compile error: %d", exit_code);
return exit_code == 0;
}
static void *
load_func_from_so(const char *so_file, const char *funcname, struct rb_mjit_unit *unit)
{
void *handle, *func;
handle = dlopen(so_file, RTLD_NOW);
if (handle == NULL) {
if (mjit_opts.warnings || mjit_opts.verbose)
fprintf(stderr, "MJIT warning: failure in loading code from '%s': %s\n", so_file, dlerror());
return (void *)NOT_ADDED_JIT_ISEQ_FUNC;
}
func = dlsym(handle, funcname);
unit->handle = handle;
return func;
}
#define MJIT_TMP_PREFIX "_ruby_mjit_"
/* Compile ISeq in UNIT and return function pointer of JIT-ed code.
It may return NOT_COMPILABLE_JIT_ISEQ_FUNC if something went wrong. */
static mjit_func_t
convert_unit_to_func(struct rb_mjit_unit *unit)
{
char c_file_buff[70], *c_file = c_file_buff, *so_file, funcname[35];
int success;
int fd;
FILE *f;
void *func;
double start_time, end_time;
int c_file_len = (int)sizeof(c_file_buff);
static const char c_ext[] = ".c";
static const char so_ext[] = DLEXT;
const int access_mode =
#ifdef O_BINARY
O_BINARY|
#endif
O_WRONLY|O_EXCL|O_CREAT;
c_file_len = sprint_uniq_filename(c_file_buff, c_file_len, unit->id, MJIT_TMP_PREFIX, c_ext);
if (c_file_len >= (int)sizeof(c_file_buff)) {
++c_file_len;
c_file = alloca(c_file_len);
c_file_len = sprint_uniq_filename(c_file, c_file_len, unit->id, MJIT_TMP_PREFIX, c_ext);
}
++c_file_len;
so_file = alloca(c_file_len - sizeof(c_ext) + sizeof(so_ext));
memcpy(so_file, c_file, c_file_len - sizeof(c_ext));
memcpy(&so_file[c_file_len - sizeof(c_ext)], so_ext, sizeof(so_ext));
sprintf(funcname, "_mjit%d", unit->id);
fd = rb_cloexec_open(c_file, access_mode, 0600);
if (fd < 0 || (f = fdopen(fd, "w")) == NULL) {
int e = errno;
if (fd >= 0) (void)close(fd);
verbose(1, "Failed to fopen '%s', giving up JIT for it (%s)", c_file, strerror(e));
return (mjit_func_t)NOT_COMPILABLE_JIT_ISEQ_FUNC;
}
/* -include-pch is used for Clang */
if (mjit_opts.cc == MJIT_CC_GCC) {
const char *s = pch_file;
const char *e = s + strlen(s);
static const char suffix[] = ".gch";
fprintf(f, "#include \"");
/* chomp .gch suffix */
if (e > s+sizeof(suffix)-1 && strcmp(e-sizeof(suffix)+1, suffix) == 0) {
e -= sizeof(suffix)-1;
}
/* print pch_file except .gch */
for (; s < e; s++) {
switch(*s) {
case '\\': case '"':
fputc('\\', f);
}
fputc(*s, f);
}
fprintf(f, "\"\n");
}
#ifdef _WIN32
fprintf(f, "void _pei386_runtime_relocator(void){}\n");
fprintf(f, "int __stdcall DllMainCRTStartup(void* hinstDLL, unsigned int fdwReason, void* lpvReserved) { return 1; }\n");
#endif
/* wait until mjit_gc_finish_hook is called */
CRITICAL_SECTION_START(3, "before mjit_compile to wait GC finish");
while (in_gc) {
verbose(3, "Waiting wakeup from GC");
rb_native_cond_wait(&mjit_gc_wakeup, &mjit_engine_mutex);
}
in_jit = TRUE;
CRITICAL_SECTION_FINISH(3, "before mjit_compile to wait GC finish");
verbose(2, "start compile: %s@%s:%d -> %s", RSTRING_PTR(unit->iseq->body->location.label),
RSTRING_PTR(rb_iseq_path(unit->iseq)), FIX2INT(unit->iseq->body->location.first_lineno), c_file);
fprintf(f, "/* %s@%s:%d */\n\n", RSTRING_PTR(unit->iseq->body->location.label),
RSTRING_PTR(rb_iseq_path(unit->iseq)), FIX2INT(unit->iseq->body->location.first_lineno));
success = mjit_compile(f, unit->iseq->body, funcname);
/* release blocking mjit_gc_start_hook */
CRITICAL_SECTION_START(3, "after mjit_compile to wakeup client for GC");
in_jit = FALSE;
verbose(3, "Sending wakeup signal to client in a mjit-worker for GC");
rb_native_cond_signal(&mjit_client_wakeup);
CRITICAL_SECTION_FINISH(3, "in worker to wakeup client for GC");
fclose(f);
if (!success) {
if (!mjit_opts.save_temps)
remove(c_file);
return (mjit_func_t)NOT_COMPILABLE_JIT_ISEQ_FUNC;
}
start_time = real_ms_time();
success = compile_c_to_so(c_file, so_file);
end_time = real_ms_time();
if (!mjit_opts.save_temps)
remove(c_file);
if (!success) {
verbose(2, "Failed to generate so: %s", so_file);
return (mjit_func_t)NOT_COMPILABLE_JIT_ISEQ_FUNC;
}
func = load_func_from_so(so_file, funcname, unit);
if (!mjit_opts.save_temps)
remove(so_file);
if ((ptrdiff_t)func > (ptrdiff_t)LAST_JIT_ISEQ_FUNC) {
struct rb_mjit_unit_node *node = create_list_node(unit);
CRITICAL_SECTION_START(3, "end of jit");
add_to_list(node, &active_units);
if (unit->iseq)
verbose(1, "JIT success (%.1fms): %s@%s:%d -> %s", end_time - start_time, RSTRING_PTR(unit->iseq->body->location.label),
RSTRING_PTR(rb_iseq_path(unit->iseq)), FIX2INT(unit->iseq->body->location.first_lineno), c_file);
CRITICAL_SECTION_FINISH(3, "end of jit");
}
return (mjit_func_t)func;
}
/* Set to TRUE to finish worker. */
static int finish_worker_p;
/* Set to TRUE if worker is finished. */
static int worker_finished;
/* The function implementing a worker. It is executed in a separate
thread by rb_thread_create_mjit_thread. It compiles precompiled header
and then compiles requested ISeqs. */
static void
worker(void)
{
make_pch();
if (pch_status == PCH_FAILED) {
mjit_init_p = FALSE;
CRITICAL_SECTION_START(3, "in worker to update worker_finished");
worker_finished = TRUE;
verbose(3, "Sending wakeup signal to client in a mjit-worker");
rb_native_cond_signal(&mjit_client_wakeup);
CRITICAL_SECTION_FINISH(3, "in worker to update worker_finished");
return; /* TODO: do the same thing in the latter half of mjit_finish */
}
/* main worker loop */
while (!finish_worker_p) {
struct rb_mjit_unit_node *node;
/* wait until unit is available */
CRITICAL_SECTION_START(3, "in worker dequeue");
while ((unit_queue.head == NULL || active_units.length > mjit_opts.max_cache_size) && !finish_worker_p) {
rb_native_cond_wait(&mjit_worker_wakeup, &mjit_engine_mutex);
verbose(3, "Getting wakeup from client");
}
node = get_from_list(&unit_queue);
CRITICAL_SECTION_FINISH(3, "in worker dequeue");
if (node) {
mjit_func_t func = convert_unit_to_func(node->unit);
CRITICAL_SECTION_START(3, "in jit func replace");
if (node->unit->iseq) { /* Check whether GCed or not */
/* Usage of jit_code might be not in a critical section. */
MJIT_ATOMIC_SET(node->unit->iseq->body->jit_func, func);
}
remove_from_list(node, &unit_queue);
CRITICAL_SECTION_FINISH(3, "in jit func replace");
}
}
CRITICAL_SECTION_START(3, "in the end of worker to update worker_finished");
worker_finished = TRUE;
CRITICAL_SECTION_FINISH(3, "in the end of worker to update worker_finished");
}
/* MJIT info related to an existing continutaion. */
struct mjit_cont {
rb_execution_context_t *ec; /* continuation ec */
struct mjit_cont *prev, *next; /* used to form lists */
};
/* Double linked list of registered continuations. This is used to detect
units which are in use in unload_units. */
static struct mjit_cont *first_cont;
/* Register a new continuation with thread TH. Return MJIT info about
the continuation. */
struct mjit_cont *
mjit_cont_new(rb_execution_context_t *ec)
{
struct mjit_cont *cont;
cont = ZALLOC(struct mjit_cont);
cont->ec = ec;
CRITICAL_SECTION_START(3, "in mjit_cont_new");
if (first_cont == NULL) {
cont->next = cont->prev = NULL;
}
else {
cont->prev = NULL;
cont->next = first_cont;
first_cont->prev = cont;
}
first_cont = cont;
CRITICAL_SECTION_FINISH(3, "in mjit_cont_new");
return cont;
}
/* Unregister continuation CONT. */
void
mjit_cont_free(struct mjit_cont *cont)
{
CRITICAL_SECTION_START(3, "in mjit_cont_new");
if (cont == first_cont) {
first_cont = cont->next;
if (first_cont != NULL)
first_cont->prev = NULL;
}
else {
cont->prev->next = cont->next;
if (cont->next != NULL)
cont->next->prev = cont->prev;
}
CRITICAL_SECTION_FINISH(3, "in mjit_cont_new");
xfree(cont);
}
/* Finish work with continuation info. */
static void
finish_conts(void)
{
struct mjit_cont *cont, *next;
for (cont = first_cont; cont != NULL; cont = next) {
next = cont->next;
xfree(cont);
}
}
/* Create unit for ISEQ. */
static void
create_unit(const rb_iseq_t *iseq)
{
struct rb_mjit_unit *unit;
unit = ZALLOC(struct rb_mjit_unit);
if (unit == NULL)
return;
unit->id = current_unit_num++;
unit->iseq = iseq;
iseq->body->jit_unit = unit;
}
/* Set up field used_code_p for unit iseqs whose iseq on the stack of ec. */
static void
mark_ec_units(rb_execution_context_t *ec)
{
const rb_iseq_t *iseq;
const rb_control_frame_t *cfp;
rb_control_frame_t *last_cfp = ec->cfp;
const rb_control_frame_t *end_marker_cfp;
ptrdiff_t i, size;
if (ec->vm_stack == NULL)
return;
end_marker_cfp = RUBY_VM_END_CONTROL_FRAME(ec);
size = end_marker_cfp - last_cfp;
for (i = 0, cfp = end_marker_cfp - 1; i < size; i++, cfp = RUBY_VM_NEXT_CONTROL_FRAME(cfp)) {
if (cfp->pc && (iseq = cfp->iseq) != NULL
&& imemo_type((VALUE) iseq) == imemo_iseq
&& (iseq->body->jit_unit) != NULL) {
iseq->body->jit_unit->used_code_p = TRUE;
}
}
}
/* Unload JIT code of some units to satisfy the maximum permitted
number of units with a loaded code. */
static void
unload_units(void)
{
rb_vm_t *vm = GET_THREAD()->vm;
rb_thread_t *th = NULL;
struct rb_mjit_unit_node *node, *next, *worst_node;
struct rb_mjit_unit *unit;
struct mjit_cont *cont;
int delete_num, units_num = active_units.length;
/* For now, we don't unload units when ISeq is GCed. We should
unload such ISeqs first here. */
for (node = active_units.head; node != NULL; node = next) {
next = node->next;
if (node->unit->iseq == NULL) { /* ISeq is GCed. */
free_unit(node->unit);
remove_from_list(node, &active_units);
}
}
/* Detect units which are in use and can't be unloaded. */
for (node = active_units.head; node != NULL; node = node->next) {
assert(node->unit != NULL && node->unit->iseq != NULL && node->unit->handle != NULL);
node->unit->used_code_p = FALSE;
}
list_for_each(&vm->living_threads, th, vmlt_node) {
mark_ec_units(th->ec);
}
for (cont = first_cont; cont != NULL; cont = cont->next) {
mark_ec_units(cont->ec);
}
/* Remove 1/10 units more to decrease unloading calls. */
delete_num = active_units.length / 10;
for (; active_units.length > mjit_opts.max_cache_size - delete_num;) {
/* Find one unit that has the minimum total_calls. */
worst_node = NULL;
for (node = active_units.head; node != NULL; node = node->next) {
if (node->unit->used_code_p) /* We can't unload code on stack. */
continue;
if (worst_node == NULL || worst_node->unit->iseq->body->total_calls > node->unit->iseq->body->total_calls) {
worst_node = node;
}
}
if (worst_node == NULL)
break;
/* Unload the worst node. */
verbose(2, "Unloading unit %d (calls=%lu)", worst_node->unit->id, worst_node->unit->iseq->body->total_calls);
unit = worst_node->unit;
unit->iseq->body->jit_func = (mjit_func_t)NOT_READY_JIT_ISEQ_FUNC;
remove_from_list(worst_node, &active_units);
assert(unit->handle != NULL);
dlclose(unit->handle);
unit->handle = NULL;
}
verbose(1, "Too many JIT code -- %d units unloaded", units_num - active_units.length);
}
/* Add ISEQ to be JITed in parallel with the current thread.
Unload some JIT codes if there are too many of them. */
void
mjit_add_iseq_to_process(const rb_iseq_t *iseq)
{
struct rb_mjit_unit_node *node;
if (!mjit_init_p)
return;
iseq->body->jit_func = (mjit_func_t)NOT_READY_JIT_ISEQ_FUNC;
create_unit(iseq);
if (iseq->body->jit_unit == NULL)
/* Failure in creating the unit. */
return;
node = create_list_node(iseq->body->jit_unit);
CRITICAL_SECTION_START(3, "in add_iseq_to_process");
add_to_list(node, &unit_queue);
if (active_units.length >= mjit_opts.max_cache_size) {
unload_units();
}
verbose(3, "Sending wakeup signal to workers in mjit_add_iseq_to_process");
rb_native_cond_broadcast(&mjit_worker_wakeup);
CRITICAL_SECTION_FINISH(3, "in add_iseq_to_process");
}
/* Wait for JIT compilation finish for --jit-wait. This should only return a function pointer
or NOT_COMPILABLE_JIT_ISEQ_FUNC. */
mjit_func_t
mjit_get_iseq_func(const struct rb_iseq_constant_body *body)
{
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 1000;
while ((enum rb_mjit_iseq_func)body->jit_func == NOT_READY_JIT_ISEQ_FUNC) {
CRITICAL_SECTION_START(3, "in mjit_get_iseq_func for a client wakeup");
rb_native_cond_broadcast(&mjit_worker_wakeup);
CRITICAL_SECTION_FINISH(3, "in mjit_get_iseq_func for a client wakeup");
rb_thread_wait_for(tv);
}
return body->jit_func;
}
/* A name of the header file included in any C file generated by MJIT for iseqs. */
#define RUBY_MJIT_HEADER_NAME "rb_mjit_min_header-"
/* GCC and CLANG executable paths. TODO: The paths should absolute
ones to prevent changing C compiler for security reasons. */
#define GCC_PATH "gcc"
#define CLANG_PATH "clang"
#ifdef _MSC_VER
# define VC_PATH "cl.exe"
#endif
static void
init_header_filename(void)
{
int fd;
/* Root path of the running ruby process. Equal to RbConfig::TOPDIR. */
VALUE basedir_val;
char *basedir;
size_t baselen;
size_t verlen;
static const char header_name[] =
"/" MJIT_HEADER_INSTALL_DIR "/" RUBY_MJIT_HEADER_NAME;
const size_t header_name_len = sizeof(header_name) - 1;
char *p;
#ifdef _WIN32
static const char libpathflag[] =
# ifdef _MSC_VER
"-LIBPATH:"
# else
"-L"
# endif
;
const size_t libpathflag_len = sizeof(libpathflag) - 1;
#endif
basedir_val = rb_const_get(rb_cObject, rb_intern_const("TMP_RUBY_PREFIX"));
basedir = StringValuePtr(basedir_val);
baselen = RSTRING_LEN(basedir_val);
verlen = strlen(ruby_version);
header_file = xmalloc(baselen + header_name_len + verlen + rb_strlen_lit(".h") + 1);
p = append_str2(header_file, basedir, baselen);
p = append_str2(p, header_name, header_name_len);
p = append_str2(p, ruby_version, verlen);
p = append_str2(p, ".h", rb_strlen_lit(".h") + 1);
if ((fd = rb_cloexec_open(header_file, O_RDONLY, 0)) < 0) {
verbose(2, "Cannot access header file %s\n", header_file);
xfree(header_file);
header_file = NULL;
return;
}
(void)close(fd);
#ifdef _WIN32
p = libruby_build = xmalloc(libpathflag_len + baselen + 1);
p = append_str(p, libpathflag);
p = append_str2(p, basedir, baselen);
*p = '\0';
libruby_installed = xmalloc(libpathflag_len + baselen + rb_strlen_lit("/lib") + 1);
p = append_str2(libruby_installed, libruby_build, p - libruby_build);
p = append_lit(p, "/lib");
*p = '\0';
#endif
}
/* This is called after each fork in the child in to switch off MJIT
engine in the child as it does not inherit MJIT threads. */
static void
child_after_fork(void)
{
verbose(3, "Switching off MJIT in a forked child");
mjit_init_p = FALSE;
/* TODO: Should we initiate MJIT in the forked Ruby. */
}
static enum rb_id_table_iterator_result
valid_class_serials_add_i(ID key, VALUE v, void *unused)
{
rb_const_entry_t *ce = (rb_const_entry_t *)v;
VALUE value = ce->value;
if (!rb_is_const_id(key)) return ID_TABLE_CONTINUE;
if (RB_TYPE_P(value, T_MODULE) || RB_TYPE_P(value, T_CLASS)) {
mjit_add_class_serial(RCLASS_SERIAL(value));
}
return ID_TABLE_CONTINUE;
}
#ifdef _WIN32
UINT rb_w32_system_tmpdir(WCHAR *path, UINT len);
#endif
static char *
system_tmpdir(void)
{
char *tmpdir;
/* c.f. ext/etc/etc.c:etc_systmpdir() */
#ifdef _WIN32
WCHAR tmppath[_MAX_PATH];
UINT len = rb_w32_system_tmpdir(tmppath, numberof(tmppath));
if (len) {
tmpdir = rb_w32_wstr_to_mbstr(CP_UTF8, tmppath, -1, NULL);
return get_string(tmpdir);
}
#elif defined _CS_DARWIN_USER_TEMP_DIR
#ifndef MAXPATHLEN
#define MAXPATHLEN 1024
#endif
char path[MAXPATHLEN];
size_t len = confstr(_CS_DARWIN_USER_TEMP_DIR, path, sizeof(path));
if (len > 0) {
tmpdir = xmalloc(len);
if (len > sizeof(path)) {
confstr(_CS_DARWIN_USER_TEMP_DIR, tmpdir, len);
}
else {
memcpy(tmpdir, path, len);
}
return tmpdir;
}
#endif
if (!(tmpdir = getenv("TMPDIR")) &&
!(tmpdir = getenv("TMP"))) {
return get_string("/tmp");
}
return get_string(tmpdir);
}
/* Default permitted number of units with a JIT code kept in
memory. */
#define DEFAULT_CACHE_SIZE 1000
/* A default threshold used to add iseq to JIT. */
#define DEFAULT_MIN_CALLS_TO_ADD 5
/* Minimum value for JIT cache size. */
#define MIN_CACHE_SIZE 10
/* Initialize MJIT. Start a thread creating the precompiled header and
processing ISeqs. The function should be called first for using MJIT.
If everything is successfull, MJIT_INIT_P will be TRUE. */
void
mjit_init(struct mjit_options *opts)
{
mjit_opts = *opts;
mjit_init_p = TRUE;
/* Normalize options */
if (mjit_opts.min_calls == 0)
mjit_opts.min_calls = DEFAULT_MIN_CALLS_TO_ADD;
if (mjit_opts.max_cache_size <= 0)
mjit_opts.max_cache_size = DEFAULT_CACHE_SIZE;
if (mjit_opts.max_cache_size < MIN_CACHE_SIZE)
mjit_opts.max_cache_size = MIN_CACHE_SIZE;
if (mjit_opts.cc == MJIT_CC_DEFAULT) {
#if _MSC_VER
verbose(2, "MJIT: CC defaults to cl");
#else
# if defined(__clang__)
mjit_opts.cc = MJIT_CC_CLANG;
verbose(2, "MJIT: CC defaults to clang");
# else
mjit_opts.cc = MJIT_CC_GCC;
verbose(2, "MJIT: CC defaults to gcc");
# endif
#endif
}
/* Initialize variables for compilation */
pch_status = PCH_NOT_READY;
#ifdef _MSC_VER
cc_path = VC_PATH;
#else
if (mjit_opts.cc == MJIT_CC_CLANG) {
cc_path = CLANG_PATH;
} else {
cc_path = GCC_PATH;
}
#endif
tmp_dir = system_tmpdir();
init_header_filename();
pch_file = get_uniq_filename(0, MJIT_TMP_PREFIX "h", ".h.gch");
if (header_file == NULL || pch_file == NULL) {
mjit_init_p = FALSE;
verbose(1, "Failure in MJIT header file name initialization\n");
return;
}
init_list(&unit_queue);
init_list(&active_units);
/* Initialize mutex */
rb_native_mutex_initialize(&mjit_engine_mutex);
rb_native_cond_initialize(&mjit_pch_wakeup, RB_CONDATTR_CLOCK_MONOTONIC);
rb_native_cond_initialize(&mjit_client_wakeup, RB_CONDATTR_CLOCK_MONOTONIC);
rb_native_cond_initialize(&mjit_worker_wakeup, RB_CONDATTR_CLOCK_MONOTONIC);
rb_native_cond_initialize(&mjit_gc_wakeup, RB_CONDATTR_CLOCK_MONOTONIC);
/* Initialize class_serials cache for compilation */
valid_class_serials = rb_hash_new();
rb_obj_hide(valid_class_serials);
rb_gc_register_mark_object(valid_class_serials);
if (RCLASS_CONST_TBL(rb_cObject)) {
rb_id_table_foreach(RCLASS_CONST_TBL(rb_cObject), valid_class_serials_add_i, NULL);
}
/* Initialize worker thread */
finish_worker_p = FALSE;
worker_finished = FALSE;
if (!rb_thread_create_mjit_thread(child_after_fork, worker)) {
mjit_init_p = FALSE;
rb_native_mutex_destroy(&mjit_engine_mutex);
rb_native_cond_destroy(&mjit_pch_wakeup);
rb_native_cond_destroy(&mjit_client_wakeup);
rb_native_cond_destroy(&mjit_worker_wakeup);
rb_native_cond_destroy(&mjit_gc_wakeup);
verbose(1, "Failure in MJIT thread initialization\n");
}
}
/* Finish the threads processing units and creating PCH, finalize
and free MJIT data. It should be called last during MJIT
life. */
void
mjit_finish(void)
{
if (!mjit_init_p)
return;
/* Wait for pch finish */
verbose(2, "Canceling pch and worker threads");
CRITICAL_SECTION_START(3, "in mjit_finish to wakeup from pch");
/* As our threads are detached, we could just cancel them. But it
is a bad idea because OS processes (C compiler) started by
threads can produce temp files. And even if the temp files are
removed, the used C compiler still complaint about their
absence. So wait for a clean finish of the threads. */
while (pch_status == PCH_NOT_READY) {
verbose(3, "Waiting wakeup from make_pch");
rb_native_cond_wait(&mjit_pch_wakeup, &mjit_engine_mutex);
}
CRITICAL_SECTION_FINISH(3, "in mjit_finish to wakeup from pch");
/* Stop worker */
finish_worker_p = TRUE;
while (!worker_finished) {
verbose(3, "Sending cancel signal to workers");
CRITICAL_SECTION_START(3, "in mjit_finish");
rb_native_cond_broadcast(&mjit_worker_wakeup);
CRITICAL_SECTION_FINISH(3, "in mjit_finish");
}
rb_native_mutex_destroy(&mjit_engine_mutex);
rb_native_cond_destroy(&mjit_pch_wakeup);
rb_native_cond_destroy(&mjit_client_wakeup);
rb_native_cond_destroy(&mjit_worker_wakeup);
rb_native_cond_destroy(&mjit_gc_wakeup);
/* cleanup temps */
if (!mjit_opts.save_temps)
remove(pch_file);
xfree(tmp_dir); tmp_dir = NULL;
xfree(pch_file); pch_file = NULL;
xfree(header_file); header_file = NULL;
free_list(&unit_queue);
free_list(&active_units);
finish_conts();
mjit_init_p = FALSE;
verbose(1, "Successful MJIT finish");
}
void
mjit_mark(void)
{
struct rb_mjit_unit_node *node;
if (!mjit_init_p)
return;
RUBY_MARK_ENTER("mjit");
CRITICAL_SECTION_START(4, "mjit_mark");
for (node = unit_queue.head; node != NULL; node = node->next) {
if (node->unit->iseq) { /* ISeq is still not GCed */
rb_gc_mark((VALUE)node->unit->iseq);
}
}
CRITICAL_SECTION_FINISH(4, "mjit_mark");
RUBY_MARK_LEAVE("mjit");
}
/* A hook to update valid_class_serials. This should NOT be used in MJIT worker. */
void
mjit_add_class_serial(rb_serial_t class_serial)
{
if (!mjit_init_p)
return;
CRITICAL_SECTION_START(3, "in mjit_add_class_serial");
rb_hash_aset(valid_class_serials, LONG2FIX(class_serial), Qtrue);
CRITICAL_SECTION_FINISH(3, "in mjit_add_class_serial");
}
/* A hook to update valid_class_serials. This should NOT be used in MJIT worker. */
void
mjit_remove_class_serial(rb_serial_t class_serial)
{
if (!mjit_init_p)
return;
CRITICAL_SECTION_START(3, "in mjit_remove_class_serial");
rb_hash_delete_entry(valid_class_serials, LONG2FIX(class_serial));
CRITICAL_SECTION_FINISH(3, "in mjit_remove_class_serial");
}
/* Return TRUE if class_serial is not obsoleted. This can be used in MJIT worker. */
int
mjit_valid_class_serial_p(rb_serial_t class_serial)
{
int found_p;
CRITICAL_SECTION_START(3, "in valid_class_serial_p");
found_p = st_lookup(RHASH_TBL_RAW(valid_class_serials), LONG2FIX(class_serial), NULL);
CRITICAL_SECTION_FINISH(3, "in valid_class_serial_p");
return found_p;
}