1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/time.c
nobu 4191a6b90d preserve encodings in error messages
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51962 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-09-28 02:40:46 +00:00

5059 lines
131 KiB
C

/**********************************************************************
time.c -
$Author$
created at: Tue Dec 28 14:31:59 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "internal.h"
#include <sys/types.h>
#include <time.h>
#include <errno.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <float.h>
#include <math.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#if defined(HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#include "timev.h"
static ID id_divmod, id_mul, id_submicro, id_nano_num, id_nano_den, id_offset, id_zone;
static ID id_eq, id_ne, id_quo, id_div, id_cmp;
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
#define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
#define VTM_WDAY_INITVAL (7)
#define VTM_ISDST_INITVAL (3)
#define TO_GMT_INITVAL (3)
static int
eq(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return x == y;
}
return RTEST(rb_funcall(x, id_eq, 1, y));
}
static int
cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
if ((long)x < (long)y)
return -1;
if ((long)x > (long)y)
return 1;
return 0;
}
return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
}
#define ne(x,y) (!eq((x),(y)))
#define lt(x,y) (cmp((x),(y)) < 0)
#define gt(x,y) (cmp((x),(y)) > 0)
#define le(x,y) (cmp((x),(y)) <= 0)
#define ge(x,y) (cmp((x),(y)) >= 0)
static VALUE
add(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
long l = FIX2LONG(x) + FIX2LONG(y);
if (FIXABLE(l)) return LONG2FIX(l);
return LONG2NUM(l);
}
if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_plus(x, y);
return rb_funcall(x, '+', 1, y);
}
static VALUE
sub(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
long l = FIX2LONG(x) - FIX2LONG(y);
if (FIXABLE(l)) return LONG2FIX(l);
return LONG2NUM(l);
}
if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_minus(x, y);
return rb_funcall(x, '-', 1, y);
}
#if !(HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG)
static int
long_mul(long x, long y, long *z)
{
unsigned long a, b, c;
int s;
if (x == 0 || y == 0) {
*z = 0;
return 1;
}
if (x < 0) {
s = -1;
a = (unsigned long)-x;
}
else {
s = 1;
a = (unsigned long)x;
}
if (y < 0) {
s = -s;
b = (unsigned long)-y;
}
else {
b = (unsigned long)y;
}
if (a <= ULONG_MAX / b) {
c = a * b;
if (s < 0) {
if (c <= (unsigned long)LONG_MAX + 1) {
*z = -(long)c;
return 1;
}
}
else {
if (c <= (unsigned long)LONG_MAX) {
*z = (long)c;
return 1;
}
}
}
return 0;
}
#endif
static VALUE
mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
#if HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
LONG_LONG ll = (LONG_LONG)FIX2LONG(x) * FIX2LONG(y);
if (FIXABLE(ll))
return LONG2FIX(ll);
return LL2NUM(ll);
#else
long z;
if (long_mul(FIX2LONG(x), FIX2LONG(y), &z))
return LONG2NUM(z);
#endif
}
if (RB_TYPE_P(x, T_BIGNUM))
return rb_big_mul(x, y);
return rb_funcall(x, '*', 1, y);
}
#define div(x,y) (rb_funcall((x), id_div, 1, (y)))
static VALUE
mod(VALUE x, VALUE y)
{
switch (TYPE(x)) {
case T_BIGNUM: return rb_big_modulo(x, y);
default: return rb_funcall(x, '%', 1, y);
}
}
#define neg(x) (sub(INT2FIX(0), (x)))
static VALUE
quo(VALUE x, VALUE y)
{
VALUE ret;
if (FIXNUM_P(x) && FIXNUM_P(y)) {
long a, b, c;
a = FIX2LONG(x);
b = FIX2LONG(y);
if (b == 0) rb_num_zerodiv();
c = a / b;
if (c * b == a) {
return LONG2NUM(c);
}
}
ret = rb_funcall(x, id_quo, 1, y);
if (RB_TYPE_P(ret, T_RATIONAL) &&
RRATIONAL(ret)->den == INT2FIX(1)) {
ret = RRATIONAL(ret)->num;
}
return ret;
}
#define mulquo(x,y,z) (((y) == (z)) ? (x) : quo(mul((x),(y)),(z)))
static void
divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
{
VALUE tmp, ary;
tmp = rb_funcall(n, id_divmod, 1, d);
ary = rb_check_array_type(tmp);
if (NIL_P(ary)) {
rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
rb_obj_class(tmp));
}
*q = rb_ary_entry(ary, 0);
*r = rb_ary_entry(ary, 1);
}
#if SIZEOF_LONG == 8
# define INT64toNUM(x) LONG2NUM(x)
#elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
# define INT64toNUM(x) LL2NUM(x)
#endif
#if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
typedef uint64_t uwideint_t;
typedef int64_t wideint_t;
typedef uint64_t WIDEVALUE;
typedef int64_t SIGNED_WIDEVALUE;
# define WIDEVALUE_IS_WIDER 1
# define UWIDEINT_MAX UINT64_MAX
# define WIDEINT_MAX INT64_MAX
# define WIDEINT_MIN INT64_MIN
# define FIXWINT_P(tv) ((tv) & 1)
# define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
# define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
# define FIXWV_MAX (((int64_t)1 << 62) - 1)
# define FIXWV_MIN (-((int64_t)1 << 62))
# define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
# define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
# define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
#else
typedef unsigned long uwideint_t;
typedef long wideint_t;
typedef VALUE WIDEVALUE;
typedef SIGNED_VALUE SIGNED_WIDEVALUE;
# define WIDEVALUE_IS_WIDER 0
# define UWIDEINT_MAX ULONG_MAX
# define WIDEINT_MAX LONG_MAX
# define WIDEINT_MIN LONG_MIN
# define FIXWINT_P(v) FIXNUM_P(v)
# define FIXWV_MAX FIXNUM_MAX
# define FIXWV_MIN FIXNUM_MIN
# define FIXWVABLE(i) FIXABLE(i)
# define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
# define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
#endif
#define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
#define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
#define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
/* #define STRUCT_WIDEVAL */
#ifdef STRUCT_WIDEVAL
/* for type checking */
typedef struct {
WIDEVALUE value;
} wideval_t;
static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
# define WIDEVAL_GET(w) ((w).value)
#else
typedef WIDEVALUE wideval_t;
# define WIDEVAL_WRAP(v) (v)
# define WIDEVAL_GET(w) (w)
#endif
#if WIDEVALUE_IS_WIDER
static inline wideval_t
wint2wv(wideint_t wi)
{
if (FIXWVABLE(wi))
return WINT2FIXWV(wi);
else
return WIDEVAL_WRAP(INT64toNUM(wi));
}
# define WINT2WV(wi) wint2wv(wi)
#else
# define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
#endif
static inline VALUE
w2v(wideval_t w)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w))
return INT64toNUM(FIXWV2WINT(w));
return (VALUE)WIDEVAL_GET(w);
#else
return WIDEVAL_GET(w);
#endif
}
#if WIDEVALUE_IS_WIDER
static wideval_t
v2w_bignum(VALUE v)
{
int sign;
uwideint_t u;
sign = rb_integer_pack(v, &u, 1, sizeof(u), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign == 0)
return WINT2FIXWV(0);
else if (sign == -1) {
if (u <= -FIXWV_MIN)
return WINT2FIXWV(-(wideint_t)u);
}
else if (sign == +1) {
if (u <= FIXWV_MAX)
return WINT2FIXWV((wideint_t)u);
}
return WIDEVAL_WRAP(v);
}
#endif
static inline wideval_t
v2w(VALUE v)
{
if (RB_TYPE_P(v, T_RATIONAL)) {
if (RRATIONAL(v)->den != LONG2FIX(1))
return v;
v = RRATIONAL(v)->num;
}
#if WIDEVALUE_IS_WIDER
if (FIXNUM_P(v)) {
return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
}
else if (RB_TYPE_P(v, T_BIGNUM) &&
rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) {
return v2w_bignum(v);
}
#endif
return WIDEVAL_WRAP(v);
}
static int
weq(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
}
return RTEST(rb_funcall(w2v(wx), id_eq, 1, w2v(wy)));
#else
return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
#endif
}
static int
wcmp(wideval_t wx, wideval_t wy)
{
VALUE x, y;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t a, b;
a = FIXWV2WINT(wx);
b = FIXWV2WINT(wy);
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
#endif
x = w2v(wx);
y = w2v(wy);
return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
}
#define wne(x,y) (!weq((x),(y)))
#define wlt(x,y) (wcmp((x),(y)) < 0)
#define wgt(x,y) (wcmp((x),(y)) > 0)
#define wle(x,y) (wcmp((x),(y)) <= 0)
#define wge(x,y) (wcmp((x),(y)) >= 0)
static wideval_t
wadd(wideval_t wx, wideval_t wy)
{
VALUE x;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
return WINT2WV(r);
}
else
#endif
x = w2v(wx);
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_plus(x, w2v(wy)));
return v2w(rb_funcall(x, '+', 1, w2v(wy)));
}
static wideval_t
wsub(wideval_t wx, wideval_t wy)
{
VALUE x;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
return WINT2WV(r);
}
else
#endif
x = w2v(wx);
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_minus(x, w2v(wy)));
return v2w(rb_funcall(x, '-', 1, w2v(wy)));
}
static int
wi_mul(wideint_t x, wideint_t y, wideint_t *z)
{
uwideint_t a, b, c;
int s;
if (x == 0 || y == 0) {
*z = 0;
return 1;
}
if (x < 0) {
s = -1;
a = (uwideint_t)-x;
}
else {
s = 1;
a = (uwideint_t)x;
}
if (y < 0) {
s = -s;
b = (uwideint_t)-y;
}
else {
b = (uwideint_t)y;
}
if (a <= UWIDEINT_MAX / b) {
c = a * b;
if (s < 0) {
if (c <= (uwideint_t)WIDEINT_MAX + 1) {
*z = -(wideint_t)c;
return 1;
}
}
else {
if (c <= (uwideint_t)WIDEINT_MAX) {
*z = (wideint_t)c;
return 1;
}
}
}
return 0;
}
static wideval_t
wmul(wideval_t wx, wideval_t wy)
{
VALUE x, z;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t z;
if (wi_mul(FIXWV2WINT(wx), FIXWV2WINT(wy), &z))
return WINT2WV(z);
}
#endif
x = w2v(wx);
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_mul(x, w2v(wy)));
z = rb_funcall(x, '*', 1, w2v(wy));
if (RB_TYPE_P(z, T_RATIONAL) && RRATIONAL(z)->den == INT2FIX(1)) {
z = RRATIONAL(z)->num;
}
return v2w(z);
}
static wideval_t
wquo(wideval_t wx, wideval_t wy)
{
VALUE x, y, ret;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t a, b, c;
a = FIXWV2WINT(wx);
b = FIXWV2WINT(wy);
if (b == 0) rb_num_zerodiv();
c = a / b;
if (c * b == a) {
return WINT2WV(c);
}
}
#endif
x = w2v(wx);
y = w2v(wy);
ret = rb_funcall(x, id_quo, 1, y);
if (RB_TYPE_P(ret, T_RATIONAL) &&
RRATIONAL(ret)->den == INT2FIX(1)) {
ret = RRATIONAL(ret)->num;
}
return v2w(ret);
}
#define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
#define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
static void
wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
{
VALUE tmp, ary;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wn) && FIXWV_P(wd)) {
wideint_t n, d, q, r;
d = FIXWV2WINT(wd);
if (d == 0) rb_num_zerodiv();
if (d == 1) {
*wq = wn;
*wr = WINT2FIXWV(0);
return;
}
if (d == -1) {
wideint_t xneg = -FIXWV2WINT(wn);
*wq = WINT2WV(xneg);
*wr = WINT2FIXWV(0);
return;
}
n = FIXWV2WINT(wn);
if (n == 0) {
*wq = WINT2FIXWV(0);
*wr = WINT2FIXWV(0);
return;
}
if (d < 0) {
if (n < 0) {
q = ((-n) / (-d));
r = ((-n) % (-d));
if (r != 0) {
q -= 1;
r += d;
}
}
else { /* 0 < n */
q = -(n / (-d));
r = -(n % (-d));
}
}
else { /* 0 < d */
if (n < 0) {
q = -((-n) / d);
r = -((-n) % d);
if (r != 0) {
q -= 1;
r += d;
}
}
else { /* 0 < n */
q = n / d;
r = n % d;
}
}
*wq = WINT2FIXWV(q);
*wr = WINT2FIXWV(r);
return;
}
#endif
tmp = rb_funcall(w2v(wn), id_divmod, 1, w2v(wd));
ary = rb_check_array_type(tmp);
if (NIL_P(ary)) {
rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
rb_obj_class(tmp));
}
*wq = v2w(rb_ary_entry(ary, 0));
*wr = v2w(rb_ary_entry(ary, 1));
}
static void
wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
{
if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
*wq = wx;
*wr = WINT2FIXWV(0);
return;
}
wdivmod(wmul(wx,wy), wz, wq, wr);
}
static wideval_t
wdiv(wideval_t wx, wideval_t wy)
{
wideval_t q, r;
wdivmod(wx, wy, &q, &r);
return q;
}
static wideval_t
wmod(wideval_t wx, wideval_t wy)
{
wideval_t q, r;
wdivmod(wx, wy, &q, &r);
return r;
}
static VALUE
num_exact(VALUE v)
{
VALUE tmp;
int t;
t = TYPE(v);
switch (t) {
case T_FIXNUM:
case T_BIGNUM:
return v;
case T_RATIONAL:
break;
case T_STRING:
case T_NIL:
goto typeerror;
default:
if ((tmp = rb_check_funcall(v, rb_intern("to_r"), 0, NULL)) != Qundef) {
/* test to_int method availability to reject non-Numeric
* objects such as String, Time, etc which have to_r method. */
if (!rb_respond_to(v, rb_intern("to_int"))) goto typeerror;
v = tmp;
break;
}
if (!NIL_P(tmp = rb_check_to_integer(v, "to_int"))) {
v = tmp;
break;
}
goto typeerror;
}
t = TYPE(v);
switch (t) {
case T_FIXNUM:
case T_BIGNUM:
return v;
case T_RATIONAL:
if (RRATIONAL(v)->den == INT2FIX(1))
v = RRATIONAL(v)->num;
break;
default:
typeerror:
if (NIL_P(v))
rb_raise(rb_eTypeError, "can't convert nil into an exact number");
rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number",
rb_obj_class(v));
}
return v;
}
/* time_t */
static wideval_t
rb_time_magnify(wideval_t w)
{
if (FIXWV_P(w)) {
wideint_t z;
if (wi_mul(FIXWV2WINT(w), TIME_SCALE, &z))
return WINT2WV(z);
}
return wmul(w, WINT2FIXWV(TIME_SCALE));
}
static wideval_t
rb_time_unmagnify(wideval_t w)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w)) {
wideint_t a, b, c;
a = FIXWV2WINT(w);
b = TIME_SCALE;
c = a / b;
if (c * b == a) {
return WINT2FIXWV(c);
}
}
#endif
return wquo(w, WINT2FIXWV(TIME_SCALE));
}
static VALUE
rb_time_unmagnify_to_float(wideval_t w)
{
VALUE v;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w)) {
wideint_t a, b, c;
a = FIXWV2WINT(w);
b = TIME_SCALE;
c = a / b;
if (c * b == a) {
return DBL2NUM((double)c);
}
v = DBL2NUM((double)FIXWV2WINT(w));
return quo(v, DBL2NUM(TIME_SCALE));
}
#endif
v = w2v(w);
if (RB_TYPE_P(v, T_RATIONAL))
return rb_Float(quo(v, INT2FIX(TIME_SCALE)));
else
return quo(v, DBL2NUM(TIME_SCALE));
}
static void
split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
{
wideval_t q, r;
wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
*timew_p = q;
*subsecx_p = w2v(r);
}
static wideval_t
timet2wv(time_t t)
{
#if WIDEVALUE_IS_WIDER
if (TIMET_MIN == 0) {
uwideint_t wi = (uwideint_t)t;
if (wi <= FIXWV_MAX) {
return WINT2FIXWV(wi);
}
}
else {
wideint_t wi = (wideint_t)t;
if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
return WINT2FIXWV(wi);
}
}
#endif
return v2w(TIMET2NUM(t));
}
#define TIMET2WV(t) timet2wv(t)
static time_t
wv2timet(wideval_t w)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w)) {
wideint_t wi = FIXWV2WINT(w);
if (TIMET_MIN == 0) {
if (wi < 0)
rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
if (TIMET_MAX < (uwideint_t)wi)
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
}
else {
if (wi < TIMET_MIN || TIMET_MAX < wi)
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
}
return (time_t)wi;
}
#endif
return NUM2TIMET(w2v(w));
}
#define WV2TIMET(t) wv2timet(t)
VALUE rb_cTime;
static VALUE time_utc_offset _((VALUE));
static int obj2int(VALUE obj);
static uint32_t obj2ubits(VALUE obj, size_t bits);
static VALUE obj2vint(VALUE obj);
static uint32_t month_arg(VALUE arg);
static VALUE validate_utc_offset(VALUE utc_offset);
static VALUE validate_zone_name(VALUE zone_name);
static void validate_vtm(struct vtm *vtm);
static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx);
static VALUE time_gmtime(VALUE);
static VALUE time_localtime(VALUE);
static VALUE time_fixoff(VALUE);
static time_t timegm_noleapsecond(struct tm *tm);
static int tmcmp(struct tm *a, struct tm *b);
static int vtmcmp(struct vtm *a, struct vtm *b);
static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
static struct vtm *localtimew(wideval_t timew, struct vtm *result);
static int leap_year_p(long y);
#define leap_year_v_p(y) leap_year_p(NUM2LONG(mod((y), INT2FIX(400))))
#ifdef HAVE_GMTIME_R
#define rb_gmtime_r(t, tm) gmtime_r((t), (tm))
#define rb_localtime_r(t, tm) localtime_r((t), (tm))
#else
static inline struct tm *
rb_gmtime_r(const time_t *tp, struct tm *result)
{
struct tm *t = gmtime(tp);
if (t) *result = *t;
return t;
}
static inline struct tm *
rb_localtime_r(const time_t *tp, struct tm *result)
{
struct tm *t = localtime(tp);
if (t) *result = *t;
return t;
}
#endif
static struct tm *
rb_localtime_r2(const time_t *t, struct tm *result)
{
#if defined __APPLE__ && defined __LP64__
if (*t != (time_t)(int)*t) return NULL;
#endif
result = rb_localtime_r(t, result);
#if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
if (result) {
long gmtoff1 = 0;
long gmtoff2 = 0;
struct tm tmp = *result;
time_t t2;
# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
gmtoff1 = result->tm_gmtoff;
# endif
t2 = mktime(&tmp);
# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
gmtoff2 = tmp.tm_gmtoff;
# endif
if (*t + gmtoff1 != t2 + gmtoff2)
result = NULL;
}
#endif
return result;
}
#define LOCALTIME(tm, result) (tzset(),rb_localtime_r2((tm), &(result)))
#if !defined(HAVE_STRUCT_TM_TM_GMTOFF)
static struct tm *
rb_gmtime_r2(const time_t *t, struct tm *result)
{
result = rb_gmtime_r(t, result);
#if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
if (result) {
struct tm tmp = *result;
time_t t2 = timegm(&tmp);
if (*t != t2)
result = NULL;
}
#endif
return result;
}
# define GMTIME(tm, result) rb_gmtime_r2((tm), &(result))
#endif
static const int common_year_yday_offset[] = {
-1,
-1 + 31,
-1 + 31 + 28,
-1 + 31 + 28 + 31,
-1 + 31 + 28 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
/* 1 2 3 4 5 6 7 8 9 10 11 */
};
static const int leap_year_yday_offset[] = {
-1,
-1 + 31,
-1 + 31 + 29,
-1 + 31 + 29 + 31,
-1 + 31 + 29 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
/* 1 2 3 4 5 6 7 8 9 10 11 */
};
static const int common_year_days_in_month[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static const int leap_year_days_in_month[] = {
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static int
calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
{
int tm_year_mod400 = (int)MOD(tm_year, 400);
int tm_yday = tm_mday;
if (leap_year_p(tm_year_mod400 + 1900))
tm_yday += leap_year_yday_offset[tm_mon];
else
tm_yday += common_year_yday_offset[tm_mon];
return tm_yday;
}
static wideval_t
timegmw_noleapsecond(struct vtm *vtm)
{
VALUE year1900;
VALUE q400, r400;
int year_mod400;
int yday;
long days_in400;
VALUE vdays, ret;
wideval_t wret;
year1900 = sub(vtm->year, INT2FIX(1900));
divmodv(year1900, INT2FIX(400), &q400, &r400);
year_mod400 = NUM2INT(r400);
yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
ret = LONG2NUM(vtm->sec
+ vtm->min*60
+ vtm->hour*3600);
days_in400 = yday
- 70*365
+ DIV(year_mod400 - 69, 4)
- DIV(year_mod400 - 1, 100)
+ (year_mod400 + 299) / 400;
vdays = LONG2NUM(days_in400);
vdays = add(vdays, mul(q400, INT2FIX(97)));
vdays = add(vdays, mul(year1900, INT2FIX(365)));
wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
wret = wadd(wret, v2w(vtm->subsecx));
return wret;
}
static st_table *zone_table;
static int
zone_str_update(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
const char *s = (const char *)*key;
const char **ret = (const char **)arg;
if (existing) {
*ret = (const char *)*value;
return ST_STOP;
}
*ret = s = strdup(s);
*key = *value = (st_data_t)s;
return ST_CONTINUE;
}
static const char *
zone_str(const char *s)
{
if (!zone_table)
zone_table = st_init_strtable();
st_update(zone_table, (st_data_t)s, zone_str_update, (st_data_t)&s);
return s;
}
static void
gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
{
VALUE v;
int i, n, x, y;
const int *yday_offset;
int wday;
VALUE timev;
wideval_t timew2, w, w2;
vtm->isdst = 0;
split_second(timew, &timew2, &vtm->subsecx);
wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
timev = w2v(w2);
v = w2v(w);
wday = NUM2INT(mod(timev, INT2FIX(7)));
vtm->wday = (wday + 4) % 7;
n = NUM2INT(v);
vtm->sec = n % 60; n = n / 60;
vtm->min = n % 60; n = n / 60;
vtm->hour = n;
/* 97 leap days in the 400 year cycle */
divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
vtm->year = mul(timev, INT2FIX(400));
/* n is the days in the 400 year cycle.
* the start of the cycle is 1970-01-01. */
n = NUM2INT(v);
y = 1970;
/* 30 years including 7 leap days (1972, 1976, ... 1996),
* 31 days in January 2000 and
* 29 days in February 2000
* from 1970-01-01 to 2000-02-29 */
if (30*365+7+31+29-1 <= n) {
/* 2000-02-29 or after */
if (n < 31*365+8) {
/* 2000-02-29 to 2000-12-31 */
y += 30;
n -= 30*365+7;
goto found;
}
else {
/* 2001-01-01 or after */
n -= 1;
}
}
x = n / (365*100 + 24);
n = n % (365*100 + 24);
y += x * 100;
if (30*365+7+31+29-1 <= n) {
if (n < 31*365+7) {
y += 30;
n -= 30*365+7;
goto found;
}
else
n += 1;
}
x = n / (365*4 + 1);
n = n % (365*4 + 1);
y += x * 4;
if (365*2+31+29-1 <= n) {
if (n < 365*2+366) {
y += 2;
n -= 365*2;
goto found;
}
else
n -= 1;
}
x = n / 365;
n = n % 365;
y += x;
found:
vtm->yday = n+1;
vtm->year = add(vtm->year, INT2NUM(y));
if (leap_year_p(y))
yday_offset = leap_year_yday_offset;
else
yday_offset = common_year_yday_offset;
for (i = 0; i < 12; i++) {
if (yday_offset[i] < n) {
vtm->mon = i+1;
vtm->mday = n - yday_offset[i];
}
else
break;
}
vtm->utc_offset = INT2FIX(0);
vtm->zone = "UTC";
}
static struct tm *
gmtime_with_leapsecond(const time_t *timep, struct tm *result)
{
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
/* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
struct tm *t;
int sign;
int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
long gmtoff;
t = LOCALTIME(timep, *result);
if (t == NULL)
return NULL;
/* subtract gmtoff */
if (t->tm_gmtoff < 0) {
sign = 1;
gmtoff = -t->tm_gmtoff;
}
else {
sign = -1;
gmtoff = t->tm_gmtoff;
}
gmtoff_sec = (int)(gmtoff % 60);
gmtoff = gmtoff / 60;
gmtoff_min = (int)(gmtoff % 60);
gmtoff = gmtoff / 60;
gmtoff_hour = (int)gmtoff; /* <= 12 */
gmtoff_sec *= sign;
gmtoff_min *= sign;
gmtoff_hour *= sign;
gmtoff_day = 0;
if (gmtoff_sec) {
/* If gmtoff_sec == 0, don't change result->tm_sec.
* It may be 60 which is a leap second. */
result->tm_sec += gmtoff_sec;
if (result->tm_sec < 0) {
result->tm_sec += 60;
gmtoff_min -= 1;
}
if (60 <= result->tm_sec) {
result->tm_sec -= 60;
gmtoff_min += 1;
}
}
if (gmtoff_min) {
result->tm_min += gmtoff_min;
if (result->tm_min < 0) {
result->tm_min += 60;
gmtoff_hour -= 1;
}
if (60 <= result->tm_min) {
result->tm_min -= 60;
gmtoff_hour += 1;
}
}
if (gmtoff_hour) {
result->tm_hour += gmtoff_hour;
if (result->tm_hour < 0) {
result->tm_hour += 24;
gmtoff_day = -1;
}
if (24 <= result->tm_hour) {
result->tm_hour -= 24;
gmtoff_day = 1;
}
}
if (gmtoff_day) {
if (gmtoff_day < 0) {
if (result->tm_yday == 0) {
result->tm_mday = 31;
result->tm_mon = 11; /* December */
result->tm_year--;
result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
}
else if (result->tm_mday == 1) {
const int *days_in_month = leap_year_p(result->tm_year + 1900) ?
leap_year_days_in_month :
common_year_days_in_month;
result->tm_mon--;
result->tm_mday = days_in_month[result->tm_mon];
result->tm_yday--;
}
else {
result->tm_mday--;
result->tm_yday--;
}
result->tm_wday = (result->tm_wday + 6) % 7;
}
else {
int leap = leap_year_p(result->tm_year + 1900);
if (result->tm_yday == (leap ? 365 : 364)) {
result->tm_year++;
result->tm_mon = 0; /* January */
result->tm_mday = 1;
result->tm_yday = 0;
}
else if (result->tm_mday == (leap ? leap_year_days_in_month :
common_year_days_in_month)[result->tm_mon]) {
result->tm_mon++;
result->tm_mday = 1;
result->tm_yday++;
}
else {
result->tm_mday++;
result->tm_yday++;
}
result->tm_wday = (result->tm_wday + 1) % 7;
}
}
result->tm_isdst = 0;
result->tm_gmtoff = 0;
#if defined(HAVE_TM_ZONE)
result->tm_zone = (char *)"UTC";
#endif
return result;
#else
return GMTIME(timep, *result);
#endif
}
static long this_year = 0;
static time_t known_leap_seconds_limit;
static int number_of_leap_seconds_known;
static void
init_leap_second_info(void)
{
/*
* leap seconds are determined by IERS.
* It is announced 6 months before the leap second.
* So no one knows leap seconds in the future after the next year.
*/
if (this_year == 0) {
time_t now;
struct tm *tm, result;
struct vtm vtm;
wideval_t timew;
now = time(NULL);
gmtime(&now);
tm = gmtime_with_leapsecond(&now, &result);
if (!tm) return;
this_year = tm->tm_year;
if (TIMET_MAX - now < (time_t)(366*86400))
known_leap_seconds_limit = TIMET_MAX;
else
known_leap_seconds_limit = now + (time_t)(366*86400);
if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
return;
vtm.year = LONG2NUM(result.tm_year + 1900);
vtm.mon = result.tm_mon + 1;
vtm.mday = result.tm_mday;
vtm.hour = result.tm_hour;
vtm.min = result.tm_min;
vtm.sec = result.tm_sec;
vtm.subsecx = INT2FIX(0);
vtm.utc_offset = INT2FIX(0);
timew = timegmw_noleapsecond(&vtm);
number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
}
}
static wideval_t
timegmw(struct vtm *vtm)
{
wideval_t timew;
struct tm tm;
time_t t;
const char *errmsg;
/* The first leap second is 1972-06-30 23:59:60 UTC.
* No leap seconds before. */
if (gt(INT2FIX(1972), vtm->year))
return timegmw_noleapsecond(vtm);
init_leap_second_info();
timew = timegmw_noleapsecond(vtm);
if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
}
tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
tm.tm_mon = vtm->mon - 1;
tm.tm_mday = vtm->mday;
tm.tm_hour = vtm->hour;
tm.tm_min = vtm->min;
tm.tm_sec = vtm->sec;
tm.tm_isdst = 0;
errmsg = find_time_t(&tm, 1, &t);
if (errmsg)
rb_raise(rb_eArgError, "%s", errmsg);
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
}
static struct vtm *
gmtimew(wideval_t timew, struct vtm *result)
{
time_t t;
struct tm tm;
VALUE subsecx;
wideval_t timew2;
if (wlt(timew, WINT2FIXWV(0))) {
gmtimew_noleapsecond(timew, result);
return result;
}
init_leap_second_info();
if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
gmtimew_noleapsecond(timew, result);
return result;
}
split_second(timew, &timew2, &subsecx);
t = WV2TIMET(timew2);
if (!gmtime_with_leapsecond(&t, &tm))
return NULL;
result->year = LONG2NUM((long)tm.tm_year + 1900);
result->mon = tm.tm_mon + 1;
result->mday = tm.tm_mday;
result->hour = tm.tm_hour;
result->min = tm.tm_min;
result->sec = tm.tm_sec;
result->subsecx = subsecx;
result->utc_offset = INT2FIX(0);
result->wday = tm.tm_wday;
result->yday = tm.tm_yday+1;
result->isdst = tm.tm_isdst;
result->zone = "UTC";
return result;
}
static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, const char **zone);
/*
* The idea is borrowed from Perl:
* http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml
*
* compat_common_month_table is generated by the following program.
* This table finds the last month which starts at the same day of a week.
* The year 2037 is not used because:
* http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
*
* #!/usr/bin/ruby
*
* require 'date'
*
* h = {}
* 2036.downto(2010) {|y|
* 1.upto(12) {|m|
* next if m == 2 && y % 4 == 0
* d = Date.new(y,m,1)
* h[m] ||= {}
* h[m][d.wday] ||= y
* }
* }
*
* 1.upto(12) {|m|
* print "{"
* 0.upto(6) {|w|
* y = h[m][w]
* print " #{y},"
* }
* puts "},"
* }
*
*/
static int compat_common_month_table[12][7] = {
/* Sun Mon Tue Wed Thu Fri Sat */
{ 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
{ 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
{ 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
{ 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
{ 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
{ 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
};
/*
* compat_leap_month_table is generated by following program.
*
* #!/usr/bin/ruby
*
* require 'date'
*
* h = {}
* 2037.downto(2010) {|y|
* 1.upto(12) {|m|
* next unless m == 2 && y % 4 == 0
* d = Date.new(y,m,1)
* h[m] ||= {}
* h[m][d.wday] ||= y
* }
* }
*
* 2.upto(2) {|m|
* 0.upto(6) {|w|
* y = h[m][w]
* print " #{y},"
* }
* puts
* }
*/
static int compat_leap_month_table[7] = {
/* Sun Mon Tue Wed Thu Fri Sat */
2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
};
static int
calc_wday(int year, int month, int day)
{
int a, y, m;
int wday;
a = (14 - month) / 12;
y = year + 4800 - a;
m = month + 12 * a - 3;
wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
wday = wday % 7;
return wday;
}
static VALUE
guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, const char **zone_ret)
{
struct tm tm;
long gmtoff;
const char *zone;
time_t t;
struct vtm vtm2;
VALUE timev;
int y, wday;
/* Daylight Saving Time was introduced in 1916.
* So we don't need to care about DST before that. */
if (lt(vtm_utc->year, INT2FIX(1916))) {
VALUE off = INT2FIX(0);
int isdst = 0;
zone = "UTC";
# if defined(NEGATIVE_TIME_T)
# if SIZEOF_TIME_T <= 4
/* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
# define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
# else
/* Since the Royal Greenwich Observatory was commissioned in 1675,
no timezone defined using GMT at 1600. */
# define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
# endif
if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
off = LONG2FIX(gmtoff);
isdst = tm.tm_isdst;
}
else
# endif
/* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
off = LONG2FIX(gmtoff);
isdst = tm.tm_isdst;
}
if (isdst_ret)
*isdst_ret = isdst;
if (zone_ret)
*zone_ret = zone;
return off;
}
/* It is difficult to guess the future. */
vtm2 = *vtm_utc;
/* guess using a year before 2038. */
y = NUM2INT(mod(vtm_utc->year, INT2FIX(400)));
wday = calc_wday(y, vtm_utc->mon, 1);
if (vtm_utc->mon == 2 && leap_year_p(y))
vtm2.year = INT2FIX(compat_leap_month_table[wday]);
else
vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
t = NUM2TIMET(timev);
zone = "UTC";
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
if (isdst_ret)
*isdst_ret = tm.tm_isdst;
if (zone_ret)
*zone_ret = zone;
return LONG2FIX(gmtoff);
}
{
/* Use the current time offset as a last resort. */
static time_t now = 0;
static long now_gmtoff = 0;
static const char *now_zone = "UTC";
if (now == 0) {
now = time(NULL);
localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &now_zone);
}
if (isdst_ret)
*isdst_ret = tm.tm_isdst;
if (zone_ret)
*zone_ret = now_zone;
return LONG2FIX(now_gmtoff);
}
}
static VALUE
small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
{
int off;
off = vtm1->sec - vtm2->sec;
off += (vtm1->min - vtm2->min) * 60;
off += (vtm1->hour - vtm2->hour) * 3600;
if (ne(vtm1->year, vtm2->year))
off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
else if (vtm1->mon != vtm2->mon)
off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
else if (vtm1->mday != vtm2->mday)
off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
return INT2FIX(off);
}
static wideval_t
timelocalw(struct vtm *vtm)
{
time_t t;
struct tm tm;
VALUE v;
wideval_t timew1, timew2;
struct vtm vtm1, vtm2;
int n;
if (FIXNUM_P(vtm->year)) {
long l = FIX2LONG(vtm->year) - 1900;
if (l < INT_MIN || INT_MAX < l)
goto no_localtime;
tm.tm_year = (int)l;
}
else {
v = sub(vtm->year, INT2FIX(1900));
if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
goto no_localtime;
tm.tm_year = NUM2INT(v);
}
tm.tm_mon = vtm->mon-1;
tm.tm_mday = vtm->mday;
tm.tm_hour = vtm->hour;
tm.tm_min = vtm->min;
tm.tm_sec = vtm->sec;
tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst;
if (find_time_t(&tm, 0, &t))
goto no_localtime;
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
no_localtime:
timew1 = timegmw(vtm);
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
n = vtmcmp(vtm, &vtm1);
if (n == 0) {
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
n = 1;
}
if (n < 0) {
timew2 = timew1;
vtm2 = vtm1;
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
}
else {
timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
if (!localtimew(timew2, &vtm2))
rb_raise(rb_eArgError, "localtimew error");
}
timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
if (weq(timew1, timew2))
return timew1;
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
return timew2;
if (!localtimew(timew2, &vtm2))
rb_raise(rb_eArgError, "localtimew error");
if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
return timew1;
if (vtm->isdst)
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
else
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
}
static struct tm *
localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, const char **zone)
{
struct tm tm;
if (LOCALTIME(t, tm)) {
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
*gmtoff = tm.tm_gmtoff;
#else
struct tm *u, *l;
long off;
struct tm tmbuf;
l = &tm;
u = GMTIME(t, tmbuf);
if (!u)
return NULL;
if (l->tm_year != u->tm_year)
off = l->tm_year < u->tm_year ? -1 : 1;
else if (l->tm_mon != u->tm_mon)
off = l->tm_mon < u->tm_mon ? -1 : 1;
else if (l->tm_mday != u->tm_mday)
off = l->tm_mday < u->tm_mday ? -1 : 1;
else
off = 0;
off = off * 24 + l->tm_hour - u->tm_hour;
off = off * 60 + l->tm_min - u->tm_min;
off = off * 60 + l->tm_sec - u->tm_sec;
*gmtoff = off;
#endif
if (zone) {
#if defined(HAVE_TM_ZONE)
if (tm.tm_zone)
*zone = zone_str(tm.tm_zone);
else
*zone = zone_str("(NO-TIMEZONE-ABBREVIATION)");
#elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
# if RUBY_MSVCRT_VERSION >= 140
# define tzname _tzname
# define daylight _daylight
# endif
/* this needs tzset or localtime, instead of localtime_r */
*zone = zone_str(tzname[daylight && tm.tm_isdst]);
#else
{
char buf[64];
strftime(buf, sizeof(buf), "%Z", &tm);
*zone = zone_str(buf);
}
#endif
}
*result = tm;
return result;
}
return NULL;
}
static int
timew_out_of_timet_range(wideval_t timew)
{
VALUE timexv;
#if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
if (FIXWV_P(timew)) {
wideint_t t = FIXWV2WINT(timew);
if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
return 1;
return 0;
}
#endif
#if SIZEOF_TIME_T == SIZEOF_INT64_T
if (FIXWV_P(timew)) {
wideint_t t = FIXWV2WINT(timew);
if (~(time_t)0 <= 0) {
return 0;
}
else {
if (t < 0)
return 1;
return 0;
}
}
#endif
timexv = w2v(timew);
if (lt(timexv, mul(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
le(mul(INT2FIX(TIME_SCALE), add(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
return 1;
return 0;
}
static struct vtm *
localtimew(wideval_t timew, struct vtm *result)
{
VALUE subsecx, offset;
const char *zone;
int isdst;
if (!timew_out_of_timet_range(timew)) {
time_t t;
struct tm tm;
long gmtoff;
wideval_t timew2;
split_second(timew, &timew2, &subsecx);
t = WV2TIMET(timew2);
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
result->year = LONG2NUM((long)tm.tm_year + 1900);
result->mon = tm.tm_mon + 1;
result->mday = tm.tm_mday;
result->hour = tm.tm_hour;
result->min = tm.tm_min;
result->sec = tm.tm_sec;
result->subsecx = subsecx;
result->wday = tm.tm_wday;
result->yday = tm.tm_yday+1;
result->isdst = tm.tm_isdst;
result->utc_offset = LONG2NUM(gmtoff);
result->zone = zone;
return result;
}
}
if (!gmtimew(timew, result))
return NULL;
offset = guess_local_offset(result, &isdst, &zone);
if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
return NULL;
result->utc_offset = offset;
result->isdst = isdst;
result->zone = zone;
return result;
}
PACKED_STRUCT_UNALIGNED(struct time_object {
wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */
struct vtm vtm;
uint8_t gmt:3; /* 0:utc 1:localtime 2:fixoff 3:init */
uint8_t tm_got:1;
});
#define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj))
#define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj))
#define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
#define TIME_INIT_P(tobj) ((tobj)->gmt != TO_GMT_INITVAL)
#define TIME_UTC_P(tobj) ((tobj)->gmt == 1)
#define TIME_SET_UTC(tobj) ((tobj)->gmt = 1)
#define TIME_LOCALTIME_P(tobj) ((tobj)->gmt == 0)
#define TIME_SET_LOCALTIME(tobj) ((tobj)->gmt = 0)
#define TIME_FIXOFF_P(tobj) ((tobj)->gmt == 2)
#define TIME_SET_FIXOFF(tobj, off) \
((tobj)->gmt = 2, \
(tobj)->vtm.utc_offset = (off), \
(tobj)->vtm.zone = NULL)
#define TIME_COPY_GMT(tobj1, tobj2) \
((tobj1)->gmt = (tobj2)->gmt, \
(tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
(tobj1)->vtm.zone = (tobj2)->vtm.zone)
static VALUE time_get_tm(VALUE, struct time_object *);
#define MAKE_TM(time, tobj) \
do { \
if ((tobj)->tm_got == 0) { \
time_get_tm((time), (tobj)); \
} \
} while (0)
static void
time_mark(void *ptr)
{
struct time_object *tobj = ptr;
if (!FIXWV_P(tobj->timew))
rb_gc_mark(w2v(tobj->timew));
rb_gc_mark(tobj->vtm.year);
rb_gc_mark(tobj->vtm.subsecx);
rb_gc_mark(tobj->vtm.utc_offset);
}
static size_t
time_memsize(const void *tobj)
{
return sizeof(struct time_object);
}
static const rb_data_type_t time_data_type = {
"time",
{time_mark, RUBY_TYPED_DEFAULT_FREE, time_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
time_s_alloc(VALUE klass)
{
VALUE obj;
struct time_object *tobj;
obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
tobj->gmt = TO_GMT_INITVAL;
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
return obj;
}
static struct time_object *
get_timeval(VALUE obj)
{
struct time_object *tobj;
TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
if (!TIME_INIT_P(tobj)) {
rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj));
}
return tobj;
}
static struct time_object *
get_new_timeval(VALUE obj)
{
struct time_object *tobj;
TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
if (TIME_INIT_P(tobj)) {
rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj));
}
return tobj;
}
static void
time_modify(VALUE time)
{
rb_check_frozen(time);
rb_check_trusted(time);
}
static wideval_t
timespec2timew(struct timespec *ts)
{
wideval_t timew;
timew = rb_time_magnify(TIMET2WV(ts->tv_sec));
if (ts->tv_nsec)
timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000));
return timew;
}
static struct timespec
timew2timespec(wideval_t timew)
{
VALUE subsecx;
struct timespec ts;
wideval_t timew2;
if (timew_out_of_timet_range(timew))
rb_raise(rb_eArgError, "time out of system range");
split_second(timew, &timew2, &subsecx);
ts.tv_sec = WV2TIMET(timew2);
ts.tv_nsec = NUM2LONG(mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
return ts;
}
static struct timespec *
timew2timespec_exact(wideval_t timew, struct timespec *ts)
{
VALUE subsecx;
wideval_t timew2;
VALUE nsecv;
if (timew_out_of_timet_range(timew))
return NULL;
split_second(timew, &timew2, &subsecx);
ts->tv_sec = WV2TIMET(timew2);
nsecv = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
if (!FIXNUM_P(nsecv))
return NULL;
ts->tv_nsec = NUM2LONG(nsecv);
return ts;
}
static VALUE
time_init_0(VALUE time)
{
struct time_object *tobj;
struct timespec ts;
time_modify(time);
GetNewTimeval(time, tobj);
tobj->gmt = 0;
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
#ifdef HAVE_CLOCK_GETTIME
if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
rb_sys_fail("clock_gettime");
}
#else
{
struct timeval tv;
if (gettimeofday(&tv, 0) < 0) {
rb_sys_fail("gettimeofday");
}
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
}
#endif
tobj->timew = timespec2timew(&ts);
return time;
}
static VALUE
time_set_utc_offset(VALUE time, VALUE off)
{
struct time_object *tobj;
off = num_exact(off);
time_modify(time);
GetTimeval(time, tobj);
tobj->tm_got = 0;
TIME_SET_FIXOFF(tobj, off);
return time;
}
static void
vtm_add_offset(struct vtm *vtm, VALUE off)
{
int sign;
VALUE subsec, v;
int sec, min, hour;
int day;
vtm->utc_offset = sub(vtm->utc_offset, off);
if (lt(off, INT2FIX(0))) {
sign = -1;
off = neg(off);
}
else {
sign = 1;
}
divmodv(off, INT2FIX(1), &off, &subsec);
divmodv(off, INT2FIX(60), &off, &v);
sec = NUM2INT(v);
divmodv(off, INT2FIX(60), &off, &v);
min = NUM2INT(v);
divmodv(off, INT2FIX(24), &off, &v);
hour = NUM2INT(v);
if (sign < 0) {
subsec = neg(subsec);
sec = -sec;
min = -min;
hour = -hour;
}
day = 0;
if (!rb_equal(subsec, INT2FIX(0))) {
vtm->subsecx = add(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
if (lt(vtm->subsecx, INT2FIX(0))) {
vtm->subsecx = add(vtm->subsecx, INT2FIX(TIME_SCALE));
sec -= 1;
}
if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
vtm->subsecx = sub(vtm->subsecx, INT2FIX(TIME_SCALE));
sec += 1;
}
goto not_zero_sec;
}
if (sec) {
not_zero_sec:
/* If sec + subsec == 0, don't change vtm->sec.
* It may be 60 which is a leap second. */
sec += vtm->sec;
if (sec < 0) {
sec += 60;
min -= 1;
}
if (60 <= sec) {
sec -= 60;
min += 1;
}
vtm->sec = sec;
}
if (min) {
min += vtm->min;
if (min < 0) {
min += 60;
hour -= 1;
}
if (60 <= min) {
min -= 60;
hour += 1;
}
vtm->min = min;
}
if (hour) {
hour += vtm->hour;
if (hour < 0) {
hour += 24;
day = -1;
}
if (24 <= hour) {
hour -= 24;
day = 1;
}
vtm->hour = hour;
}
if (day) {
if (day < 0) {
if (vtm->mon == 1 && vtm->mday == 1) {
vtm->mday = 31;
vtm->mon = 12; /* December */
vtm->year = sub(vtm->year, INT2FIX(1));
vtm->yday = leap_year_v_p(vtm->year) ? 365 : 364;
}
else if (vtm->mday == 1) {
const int *days_in_month = leap_year_v_p(vtm->year) ?
leap_year_days_in_month :
common_year_days_in_month;
vtm->mon--;
vtm->mday = days_in_month[vtm->mon-1];
vtm->yday--;
}
else {
vtm->mday--;
vtm->yday--;
}
vtm->wday = (vtm->wday + 6) % 7;
}
else {
int leap = leap_year_v_p(vtm->year);
if (vtm->mon == 12 && vtm->mday == 31) {
vtm->year = add(vtm->year, INT2FIX(1));
vtm->mon = 1; /* January */
vtm->mday = 1;
vtm->yday = 1;
}
else if (vtm->mday == (leap ? leap_year_days_in_month :
common_year_days_in_month)[vtm->mon-1]) {
vtm->mon++;
vtm->mday = 1;
vtm->yday++;
}
else {
vtm->mday++;
vtm->yday++;
}
vtm->wday = (vtm->wday + 1) % 7;
}
}
}
static VALUE
utc_offset_arg(VALUE arg)
{
VALUE tmp;
if (!NIL_P(tmp = rb_check_string_type(arg))) {
int n = 0;
char *s = RSTRING_PTR(tmp);
if (!rb_enc_str_asciicompat_p(tmp)) {
invalid_utc_offset:
rb_raise(rb_eArgError, "\"+HH:MM\" or \"-HH:MM\" expected for utc_offset");
}
switch (RSTRING_LEN(tmp)) {
case 9:
if (s[6] != ':') goto invalid_utc_offset;
if (!ISDIGIT(s[7]) || !ISDIGIT(s[8])) goto invalid_utc_offset;
n += (s[7] * 10 + s[8] - '0' * 11);
case 6:
if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset;
if (s[3] != ':') goto invalid_utc_offset;
if (!ISDIGIT(s[4]) || !ISDIGIT(s[5])) goto invalid_utc_offset;
if (s[4] > '5') goto invalid_utc_offset;
break;
default:
goto invalid_utc_offset;
}
n += (s[1] * 10 + s[2] - '0' * 11) * 3600;
n += (s[4] * 10 + s[5] - '0' * 11) * 60;
if (s[0] == '-')
n = -n;
return INT2FIX(n);
}
else {
return num_exact(arg);
}
}
static VALUE
time_init_1(int argc, VALUE *argv, VALUE time)
{
struct vtm vtm;
VALUE v[7];
struct time_object *tobj;
vtm.wday = VTM_WDAY_INITVAL;
vtm.yday = 0;
vtm.zone = "";
/* year mon mday hour min sec off */
rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]);
vtm.year = obj2vint(v[0]);
vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]);
vtm.mday = NIL_P(v[2]) ? 1 : obj2ubits(v[2], 5);
vtm.hour = NIL_P(v[3]) ? 0 : obj2ubits(v[3], 5);
vtm.min = NIL_P(v[4]) ? 0 : obj2ubits(v[4], 6);
vtm.subsecx = INT2FIX(0);
vtm.sec = NIL_P(v[5]) ? 0 : obj2subsecx(v[5], &vtm.subsecx);
vtm.isdst = VTM_ISDST_INITVAL;
vtm.utc_offset = Qnil;
if (!NIL_P(v[6])) {
VALUE arg = v[6];
if (arg == ID2SYM(rb_intern("dst")))
vtm.isdst = 1;
else if (arg == ID2SYM(rb_intern("std")))
vtm.isdst = 0;
else
vtm.utc_offset = utc_offset_arg(arg);
}
validate_vtm(&vtm);
time_modify(time);
GetNewTimeval(time, tobj);
tobj->gmt = 0;
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
if (!NIL_P(vtm.utc_offset)) {
VALUE off = vtm.utc_offset;
vtm_add_offset(&vtm, neg(off));
vtm.utc_offset = Qnil;
tobj->timew = timegmw(&vtm);
return time_set_utc_offset(time, off);
}
else {
tobj->timew = timelocalw(&vtm);
return time_localtime(time);
}
}
/*
* call-seq:
* Time.new -> time
* Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, utc_offset=nil) -> time
*
* Returns a Time object.
*
* It is initialized to the current system time if no argument is given.
*
* *Note:* The new object will use the resolution available on your
* system clock, and may include fractional seconds.
*
* If one or more arguments specified, the time is initialized to the specified
* time.
*
* +sec+ may have fraction if it is a rational.
*
* +utc_offset+ is the offset from UTC.
* It can be a string such as "+09:00" or a number of seconds such as 32400.
*
* a = Time.new #=> 2007-11-19 07:50:02 -0600
* b = Time.new #=> 2007-11-19 07:50:02 -0600
* a == b #=> false
* "%.6f" % a.to_f #=> "1195480202.282373"
* "%.6f" % b.to_f #=> "1195480202.283415"
*
* Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900
*
* # A trip for RubyConf 2007
* t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita)
* t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis)
* t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis)
* t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte)
* t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte)
* t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit)
* t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit)
* t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita)
* p((t2-t1)/3600.0) #=> 10.666666666666666
* p((t4-t3)/3600.0) #=> 2.466666666666667
* p((t6-t5)/3600.0) #=> 1.95
* p((t8-t7)/3600.0) #=> 13.416666666666666
*
*/
static VALUE
time_init(int argc, VALUE *argv, VALUE time)
{
if (argc == 0)
return time_init_0(time);
else
return time_init_1(argc, argv, time);
}
static void
time_overflow_p(time_t *secp, long *nsecp)
{
time_t sec = *secp;
long nsec = *nsecp;
long sec2;
if (nsec >= 1000000000) { /* nsec positive overflow */
sec2 = nsec / 1000000000;
if (TIMET_MAX - sec2 < sec) {
rb_raise(rb_eRangeError, "out of Time range");
}
nsec -= sec2 * 1000000000;
sec += sec2;
}
else if (nsec < 0) { /* nsec negative overflow */
sec2 = NDIV(nsec,1000000000); /* negative div */
if (sec < TIMET_MIN - sec2) {
rb_raise(rb_eRangeError, "out of Time range");
}
nsec -= sec2 * 1000000000;
sec += sec2;
}
#ifndef NEGATIVE_TIME_T
if (sec < 0)
rb_raise(rb_eArgError, "time must be positive");
#endif
*secp = sec;
*nsecp = nsec;
}
static wideval_t
nsec2timew(time_t sec, long nsec)
{
struct timespec ts;
time_overflow_p(&sec, &nsec);
ts.tv_sec = sec;
ts.tv_nsec = nsec;
return timespec2timew(&ts);
}
static VALUE
time_new_timew(VALUE klass, wideval_t timew)
{
VALUE time = time_s_alloc(klass);
struct time_object *tobj;
tobj = DATA_PTR(time); /* skip type check */
tobj->gmt = 0;
tobj->timew = timew;
return time;
}
VALUE
rb_time_new(time_t sec, long usec)
{
wideval_t timew;
if (usec >= 1000000) {
long sec2 = usec / 1000000;
if (sec > TIMET_MAX - sec2) {
rb_raise(rb_eRangeError, "out of Time range");
}
usec -= sec2 * 1000000;
sec += sec2;
}
else if (usec < 0) {
long sec2 = NDIV(usec,1000000); /* negative div */
if (sec < TIMET_MIN - sec2) {
rb_raise(rb_eRangeError, "out of Time range");
}
usec -= sec2 * 1000000;
sec += sec2;
}
timew = nsec2timew(sec, usec * 1000);
return time_new_timew(rb_cTime, timew);
}
VALUE
rb_time_nano_new(time_t sec, long nsec)
{
return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
}
VALUE
rb_time_num_new(VALUE timev, VALUE off)
{
VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
if (!NIL_P(off)) {
off = utc_offset_arg(off);
validate_utc_offset(off);
time_set_utc_offset(time, off);
return time;
}
return time;
}
static struct timespec
time_timespec(VALUE num, int interval)
{
struct timespec t;
const char *const tstr = interval ? "time interval" : "time";
VALUE i, f, ary;
#ifndef NEGATIVE_TIME_T
interval = 1;
#endif
switch (TYPE(num)) {
case T_FIXNUM:
t.tv_sec = NUM2TIMET(num);
if (interval && t.tv_sec < 0)
rb_raise(rb_eArgError, "%s must be positive", tstr);
t.tv_nsec = 0;
break;
case T_FLOAT:
if (interval && RFLOAT_VALUE(num) < 0.0)
rb_raise(rb_eArgError, "%s must be positive", tstr);
else {
double f, d;
d = modf(RFLOAT_VALUE(num), &f);
if (d >= 0) {
t.tv_nsec = (int)(d*1e9+0.5);
if (t.tv_nsec >= 1000000000) {
t.tv_nsec -= 1000000000;
f += 1;
}
}
else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
t.tv_nsec = 1000000000 - t.tv_nsec;
f -= 1;
}
t.tv_sec = (time_t)f;
if (f != t.tv_sec) {
rb_raise(rb_eRangeError, "%f out of Time range", RFLOAT_VALUE(num));
}
}
break;
case T_BIGNUM:
t.tv_sec = NUM2TIMET(num);
if (interval && t.tv_sec < 0)
rb_raise(rb_eArgError, "%s must be positive", tstr);
t.tv_nsec = 0;
break;
default:
i = INT2FIX(1);
ary = rb_check_funcall(num, id_divmod, 1, &i);
if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
i = rb_ary_entry(ary, 0);
f = rb_ary_entry(ary, 1);
t.tv_sec = NUM2TIMET(i);
if (interval && t.tv_sec < 0)
rb_raise(rb_eArgError, "%s must be positive", tstr);
f = rb_funcall(f, id_mul, 1, INT2FIX(1000000000));
t.tv_nsec = NUM2LONG(f);
}
else {
rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s",
rb_obj_class(num), tstr);
}
break;
}
return t;
}
static struct timeval
time_timeval(VALUE num, int interval)
{
struct timespec ts;
struct timeval tv;
ts = time_timespec(num, interval);
tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
return tv;
}
struct timeval
rb_time_interval(VALUE num)
{
return time_timeval(num, TRUE);
}
struct timeval
rb_time_timeval(VALUE time)
{
struct time_object *tobj;
struct timeval t;
struct timespec ts;
if (IsTimeval(time)) {
GetTimeval(time, tobj);
ts = timew2timespec(tobj->timew);
t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
return t;
}
return time_timeval(time, FALSE);
}
struct timespec
rb_time_timespec(VALUE time)
{
struct time_object *tobj;
struct timespec t;
if (IsTimeval(time)) {
GetTimeval(time, tobj);
t = timew2timespec(tobj->timew);
return t;
}
return time_timespec(time, FALSE);
}
/*
* call-seq:
* Time.now -> time
*
* Creates a new Time object for the current time.
* This is same as Time.new without arguments.
*
* Time.now #=> 2009-06-24 12:39:54 +0900
*/
static VALUE
time_s_now(VALUE klass)
{
return rb_class_new_instance(0, NULL, klass);
}
/*
* call-seq:
* Time.at(time) -> time
* Time.at(seconds_with_frac) -> time
* Time.at(seconds, microseconds_with_frac) -> time
*
* Creates a new Time object with the value given by +time+,
* the given number of +seconds_with_frac+, or
* +seconds+ and +microseconds_with_frac+ since the Epoch.
* +seconds_with_frac+ and +microseconds_with_frac+
* can be an Integer, Float, Rational, or other Numeric.
* non-portable feature allows the offset to be negative on some systems.
*
* If a numeric argument is given, the result is in local time.
*
* Time.at(0) #=> 1969-12-31 18:00:00 -0600
* Time.at(Time.at(0)) #=> 1969-12-31 18:00:00 -0600
* Time.at(946702800) #=> 1999-12-31 23:00:00 -0600
* Time.at(-284061600) #=> 1960-12-31 00:00:00 -0600
* Time.at(946684800.2).usec #=> 200000
* Time.at(946684800, 123456.789).nsec #=> 123456789
*/
static VALUE
time_s_at(int argc, VALUE *argv, VALUE klass)
{
VALUE time, t;
wideval_t timew;
if (rb_scan_args(argc, argv, "11", &time, &t) == 2) {
time = num_exact(time);
t = num_exact(t);
timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, 1000000));
t = time_new_timew(klass, timew);
}
else if (IsTimeval(time)) {
struct time_object *tobj, *tobj2;
GetTimeval(time, tobj);
t = time_new_timew(klass, tobj->timew);
GetTimeval(t, tobj2);
TIME_COPY_GMT(tobj2, tobj);
}
else {
timew = rb_time_magnify(v2w(num_exact(time)));
t = time_new_timew(klass, timew);
}
return t;
}
static const char months[][4] = {
"jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec",
};
static int
obj2int(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, FALSE);
}
return NUM2INT(obj);
}
static uint32_t
obj2ubits(VALUE obj, size_t bits)
{
static const uint32_t u32max = (uint32_t)-1;
const uint32_t usable_mask = ~(u32max << bits);
uint32_t rv;
int tmp = obj2int(obj);
if (tmp < 0)
rb_raise(rb_eArgError, "argument out of range");
rv = tmp;
if ((rv & usable_mask) != rv)
rb_raise(rb_eArgError, "argument out of range");
return rv;
}
static VALUE
obj2vint(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, FALSE);
}
else {
obj = rb_to_int(obj);
}
return obj;
}
static uint32_t
obj2subsecx(VALUE obj, VALUE *subsecx)
{
VALUE subsec;
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, FALSE);
*subsecx = INT2FIX(0);
}
else {
divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
*subsecx = w2v(rb_time_magnify(v2w(subsec)));
}
return obj2ubits(obj, 6); /* vtm->sec */
}
static long
usec2subsecx(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, FALSE);
}
return mulquo(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
}
static uint32_t
month_arg(VALUE arg)
{
int i, mon;
VALUE s = rb_check_string_type(arg);
if (!NIL_P(s) && RSTRING_LEN(s) > 0) {
mon = 0;
for (i=0; i<12; i++) {
if (RSTRING_LEN(s) == 3 &&
STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) {
mon = i+1;
break;
}
}
if (mon == 0) {
char c = RSTRING_PTR(s)[0];
if ('0' <= c && c <= '9') {
mon = obj2ubits(s, 4);
}
}
}
else {
mon = obj2ubits(arg, 4);
}
return mon;
}
static VALUE
validate_utc_offset(VALUE utc_offset)
{
if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
rb_raise(rb_eArgError, "utc_offset out of range");
return utc_offset;
}
static VALUE
validate_zone_name(VALUE zone_name)
{
StringValueCStr(zone_name);
return zone_name;
}
static void
validate_vtm(struct vtm *vtm)
{
if ( vtm->mon < 1 || vtm->mon > 12
|| vtm->mday < 1 || vtm->mday > 31
|| vtm->hour < 0 || vtm->hour > 24
|| (vtm->hour == 24 && (vtm->min > 0 || vtm->sec > 0))
|| vtm->min < 0 || vtm->min > 59
|| vtm->sec < 0 || vtm->sec > 60
|| lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE))
|| (!NIL_P(vtm->utc_offset) && (validate_utc_offset(vtm->utc_offset), 0)))
rb_raise(rb_eArgError, "argument out of range");
}
static void
time_arg(int argc, VALUE *argv, struct vtm *vtm)
{
VALUE v[8];
vtm->year = INT2FIX(0);
vtm->mon = 0;
vtm->mday = 0;
vtm->hour = 0;
vtm->min = 0;
vtm->sec = 0;
vtm->subsecx = INT2FIX(0);
vtm->utc_offset = Qnil;
vtm->wday = 0;
vtm->yday = 0;
vtm->isdst = 0;
vtm->zone = "";
if (argc == 10) {
v[0] = argv[5];
v[1] = argv[4];
v[2] = argv[3];
v[3] = argv[2];
v[4] = argv[1];
v[5] = argv[0];
v[6] = Qnil;
vtm->isdst = RTEST(argv[8]) ? 1 : 0;
}
else {
rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
/* v[6] may be usec or zone (parsedate) */
/* v[7] is wday (parsedate; ignored) */
vtm->wday = VTM_WDAY_INITVAL;
vtm->isdst = VTM_ISDST_INITVAL;
}
vtm->year = obj2vint(v[0]);
if (NIL_P(v[1])) {
vtm->mon = 1;
}
else {
vtm->mon = month_arg(v[1]);
}
if (NIL_P(v[2])) {
vtm->mday = 1;
}
else {
vtm->mday = obj2ubits(v[2], 5);
}
vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5);
vtm->min = NIL_P(v[4])?0:obj2ubits(v[4], 6);
if (!NIL_P(v[6]) && argc == 7) {
vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6);
vtm->subsecx = usec2subsecx(v[6]);
}
else {
/* when argc == 8, v[6] is timezone, but ignored */
vtm->sec = NIL_P(v[5])?0:obj2subsecx(v[5], &vtm->subsecx);
}
validate_vtm(vtm);
}
static int
leap_year_p(long y)
{
return ((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0);
}
static time_t
timegm_noleapsecond(struct tm *tm)
{
long tm_year = tm->tm_year;
int tm_yday = tm->tm_mday;
if (leap_year_p(tm_year + 1900))
tm_yday += leap_year_yday_offset[tm->tm_mon];
else
tm_yday += common_year_yday_offset[tm->tm_mon];
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
(time_t)(tm_yday +
(tm_year-70)*365 +
DIV(tm_year-69,4) -
DIV(tm_year-1,100) +
DIV(tm_year+299,400))*86400;
}
#if 0
#define DEBUG_FIND_TIME_NUMGUESS
#define DEBUG_GUESSRANGE
#endif
#ifdef DEBUG_GUESSRANGE
#define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %"PRI_TIMET_PREFIX"u\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo))
#else
#define DEBUG_REPORT_GUESSRANGE
#endif
#ifdef DEBUG_FIND_TIME_NUMGUESS
#define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++,
static unsigned long long find_time_numguess;
static VALUE find_time_numguess_getter(void)
{
return ULL2NUM(find_time_numguess);
}
#else
#define DEBUG_FIND_TIME_NUMGUESS_INC
#endif
static const char *
find_time_t(struct tm *tptr, int utc_p, time_t *tp)
{
time_t guess, guess0, guess_lo, guess_hi;
struct tm *tm, tm0, tm_lo, tm_hi;
int d;
int find_dst;
struct tm result;
int status;
int tptr_tm_yday;
#define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
guess_lo = TIMET_MIN;
guess_hi = TIMET_MAX;
find_dst = 0 < tptr->tm_isdst;
#if defined(HAVE_MKTIME)
tm0 = *tptr;
if (!utc_p && (guess = mktime(&tm0)) != -1) {
tm = GUESS(&guess);
if (tm && tmcmp(tptr, tm) == 0) {
goto found;
}
}
#endif
tm0 = *tptr;
if (tm0.tm_mon < 0) {
tm0.tm_mon = 0;
tm0.tm_mday = 1;
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (11 < tm0.tm_mon) {
tm0.tm_mon = 11;
tm0.tm_mday = 31;
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_mday < 1) {
tm0.tm_mday = 1;
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if ((d = (leap_year_p(1900 + tm0.tm_year) ?
leap_year_days_in_month :
common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) {
tm0.tm_mday = d;
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_hour < 0) {
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (23 < tm0.tm_hour) {
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_min < 0) {
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (59 < tm0.tm_min) {
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_sec < 0) {
tm0.tm_sec = 0;
}
else if (60 < tm0.tm_sec) {
tm0.tm_sec = 60;
}
DEBUG_REPORT_GUESSRANGE;
guess0 = guess = timegm_noleapsecond(&tm0);
tm = GUESS(&guess);
if (tm) {
d = tmcmp(tptr, tm);
if (d == 0) { goto found; }
if (d < 0) {
guess_hi = guess;
guess -= 24 * 60 * 60;
}
else {
guess_lo = guess;
guess += 24 * 60 * 60;
}
DEBUG_REPORT_GUESSRANGE;
if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
d = tmcmp(tptr, tm);
if (d == 0) { goto found; }
if (d < 0)
guess_hi = guess;
else
guess_lo = guess;
DEBUG_REPORT_GUESSRANGE;
}
}
tm = GUESS(&guess_lo);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d < 0) goto out_of_range;
if (d == 0) { guess = guess_lo; goto found; }
tm_lo = *tm;
tm = GUESS(&guess_hi);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d > 0) goto out_of_range;
if (d == 0) { guess = guess_hi; goto found; }
tm_hi = *tm;
DEBUG_REPORT_GUESSRANGE;
status = 1;
while (guess_lo + 1 < guess_hi) {
if (status == 0) {
binsearch:
guess = guess_lo / 2 + guess_hi / 2;
if (guess <= guess_lo)
guess = guess_lo + 1;
else if (guess >= guess_hi)
guess = guess_hi - 1;
status = 1;
}
else {
if (status == 1) {
time_t guess0_hi = timegm_noleapsecond(&tm_hi);
guess = guess_hi - (guess0_hi - guess0);
if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
guess--;
status = 2;
}
else if (status == 2) {
time_t guess0_lo = timegm_noleapsecond(&tm_lo);
guess = guess_lo + (guess0 - guess0_lo);
if (guess == guess_lo)
guess++;
status = 0;
}
if (guess <= guess_lo || guess_hi <= guess) {
/* Precious guess is invalid. try binary search. */
#ifdef DEBUG_GUESSRANGE
if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo);
if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess);
#endif
goto binsearch;
}
}
tm = GUESS(&guess);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d < 0) {
guess_hi = guess;
tm_hi = *tm;
DEBUG_REPORT_GUESSRANGE;
}
else if (d > 0) {
guess_lo = guess;
tm_lo = *tm;
DEBUG_REPORT_GUESSRANGE;
}
else {
found:
if (!utc_p) {
/* If localtime is nonmonotonic, another result may exist. */
time_t guess2;
if (find_dst) {
guess2 = guess - 2 * 60 * 60;
tm = LOCALTIME(&guess2, result);
if (tm) {
if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
tptr->tm_min != tm->tm_min ||
tptr->tm_sec != tm->tm_sec) {
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
(tm->tm_min - tptr->tm_min) * 60 +
(tm->tm_sec - tptr->tm_sec);
if (tptr->tm_mday != tm->tm_mday)
guess2 += 24 * 60 * 60;
if (guess != guess2) {
tm = LOCALTIME(&guess2, result);
if (tm && tmcmp(tptr, tm) == 0) {
if (guess < guess2)
*tp = guess;
else
*tp = guess2;
return NULL;
}
}
}
}
}
else {
guess2 = guess + 2 * 60 * 60;
tm = LOCALTIME(&guess2, result);
if (tm) {
if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
tptr->tm_min != tm->tm_min ||
tptr->tm_sec != tm->tm_sec) {
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
(tm->tm_min - tptr->tm_min) * 60 +
(tm->tm_sec - tptr->tm_sec);
if (tptr->tm_mday != tm->tm_mday)
guess2 -= 24 * 60 * 60;
if (guess != guess2) {
tm = LOCALTIME(&guess2, result);
if (tm && tmcmp(tptr, tm) == 0) {
if (guess < guess2)
*tp = guess2;
else
*tp = guess;
return NULL;
}
}
}
}
}
}
*tp = guess;
return NULL;
}
}
/* Given argument has no corresponding time_t. Let's extrapolate. */
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
*tp = guess_lo +
((tptr->tm_year - tm_lo.tm_year) * 365 +
((tptr->tm_year-69)/4) -
((tptr->tm_year-1)/100) +
((tptr->tm_year+299)/400) -
((tm_lo.tm_year-69)/4) +
((tm_lo.tm_year-1)/100) -
((tm_lo.tm_year+299)/400) +
tptr_tm_yday -
tm_lo.tm_yday) * 86400 +
(tptr->tm_hour - tm_lo.tm_hour) * 3600 +
(tptr->tm_min - tm_lo.tm_min) * 60 +
(tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
return NULL;
out_of_range:
return "time out of range";
error:
return "gmtime/localtime error";
}
static int
vtmcmp(struct vtm *a, struct vtm *b)
{
if (ne(a->year, b->year))
return lt(a->year, b->year) ? -1 : 1;
else if (a->mon != b->mon)
return a->mon < b->mon ? -1 : 1;
else if (a->mday != b->mday)
return a->mday < b->mday ? -1 : 1;
else if (a->hour != b->hour)
return a->hour < b->hour ? -1 : 1;
else if (a->min != b->min)
return a->min < b->min ? -1 : 1;
else if (a->sec != b->sec)
return a->sec < b->sec ? -1 : 1;
else if (ne(a->subsecx, b->subsecx))
return lt(a->subsecx, b->subsecx) ? -1 : 1;
else
return 0;
}
static int
tmcmp(struct tm *a, struct tm *b)
{
if (a->tm_year != b->tm_year)
return a->tm_year < b->tm_year ? -1 : 1;
else if (a->tm_mon != b->tm_mon)
return a->tm_mon < b->tm_mon ? -1 : 1;
else if (a->tm_mday != b->tm_mday)
return a->tm_mday < b->tm_mday ? -1 : 1;
else if (a->tm_hour != b->tm_hour)
return a->tm_hour < b->tm_hour ? -1 : 1;
else if (a->tm_min != b->tm_min)
return a->tm_min < b->tm_min ? -1 : 1;
else if (a->tm_sec != b->tm_sec)
return a->tm_sec < b->tm_sec ? -1 : 1;
else
return 0;
}
static VALUE
time_utc_or_local(int argc, VALUE *argv, int utc_p, VALUE klass)
{
struct vtm vtm;
VALUE time;
time_arg(argc, argv, &vtm);
if (utc_p)
time = time_new_timew(klass, timegmw(&vtm));
else
time = time_new_timew(klass, timelocalw(&vtm));
if (utc_p) return time_gmtime(time);
return time_localtime(time);
}
/*
* call-seq:
* Time.utc(year) -> time
* Time.utc(year, month) -> time
* Time.utc(year, month, day) -> time
* Time.utc(year, month, day, hour) -> time
* Time.utc(year, month, day, hour, min) -> time
* Time.utc(year, month, day, hour, min, sec_with_frac) -> time
* Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time
* Time.utc(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
* Time.gm(year) -> time
* Time.gm(year, month) -> time
* Time.gm(year, month, day) -> time
* Time.gm(year, month, day, hour) -> time
* Time.gm(year, month, day, hour, min) -> time
* Time.gm(year, month, day, hour, min, sec_with_frac) -> time
* Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time
* Time.gm(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
*
* Creates a Time object based on given values, interpreted as UTC (GMT). The
* year must be specified. Other values default to the minimum value
* for that field (and may be +nil+ or omitted). Months may
* be specified by numbers from 1 to 12, or by the three-letter English
* month names. Hours are specified on a 24-hour clock (0..23). Raises
* an ArgumentError if any values are out of range. Will
* also accept ten arguments in the order output by Time#to_a.
*
* +sec_with_frac+ and +usec_with_frac+ can have a fractional part.
*
* Time.utc(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
* Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
*/
static VALUE
time_s_mkutc(int argc, VALUE *argv, VALUE klass)
{
return time_utc_or_local(argc, argv, TRUE, klass);
}
/*
* call-seq:
* Time.local(year) -> time
* Time.local(year, month) -> time
* Time.local(year, month, day) -> time
* Time.local(year, month, day, hour) -> time
* Time.local(year, month, day, hour, min) -> time
* Time.local(year, month, day, hour, min, sec_with_frac) -> time
* Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time
* Time.local(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
* Time.mktime(year) -> time
* Time.mktime(year, month) -> time
* Time.mktime(year, month, day) -> time
* Time.mktime(year, month, day, hour) -> time
* Time.mktime(year, month, day, hour, min) -> time
* Time.mktime(year, month, day, hour, min, sec_with_frac) -> time
* Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time
* Time.mktime(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
*
* Same as Time::gm, but interprets the values in the
* local time zone.
*
* Time.local(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 -0600
*/
static VALUE
time_s_mktime(int argc, VALUE *argv, VALUE klass)
{
return time_utc_or_local(argc, argv, FALSE, klass);
}
/*
* call-seq:
* time.to_i -> int
* time.tv_sec -> int
*
* Returns the value of _time_ as an integer number of seconds
* since the Epoch.
*
* t = Time.now
* "%10.5f" % t.to_f #=> "1270968656.89607"
* t.to_i #=> 1270968656
*/
static VALUE
time_to_i(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
}
/*
* call-seq:
* time.to_f -> float
*
* Returns the value of _time_ as a floating point number of
* seconds since the Epoch.
*
* t = Time.now
* "%10.5f" % t.to_f #=> "1270968744.77658"
* t.to_i #=> 1270968744
*
* Note that IEEE 754 double is not accurate enough to represent
* the number of nanoseconds since the Epoch.
*/
static VALUE
time_to_f(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
}
/*
* call-seq:
* time.to_r -> a_rational
*
* Returns the value of _time_ as a rational number of seconds
* since the Epoch.
*
* t = Time.now
* p t.to_r #=> (1270968792716287611/1000000000)
*
* This methods is intended to be used to get an accurate value
* representing the nanoseconds since the Epoch. You can use this method
* to convert _time_ to another Epoch.
*/
static VALUE
time_to_r(VALUE time)
{
struct time_object *tobj;
VALUE v;
GetTimeval(time, tobj);
v = w2v(rb_time_unmagnify(tobj->timew));
if (!RB_TYPE_P(v, T_RATIONAL)) {
v = rb_Rational1(v);
}
return v;
}
/*
* call-seq:
* time.usec -> int
* time.tv_usec -> int
*
* Returns the number of microseconds for _time_.
*
* t = Time.now #=> 2007-11-19 08:03:26 -0600
* "%10.6f" % t.to_f #=> "1195481006.775195"
* t.usec #=> 775195
*/
static VALUE
time_usec(VALUE time)
{
struct time_object *tobj;
wideval_t w, q, r;
GetTimeval(time, tobj);
w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
return rb_to_int(w2v(q));
}
/*
* call-seq:
* time.nsec -> int
* time.tv_nsec -> int
*
* Returns the number of nanoseconds for _time_.
*
* t = Time.now #=> 2007-11-17 15:18:03 +0900
* "%10.9f" % t.to_f #=> "1195280283.536151409"
* t.nsec #=> 536151406
*
* The lowest digits of #to_f and #nsec are different because
* IEEE 754 double is not accurate enough to represent
* the exact number of nanoseconds since the Epoch.
*
* The more accurate value is returned by #nsec.
*/
static VALUE
time_nsec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
}
/*
* call-seq:
* time.subsec -> number
*
* Returns the fraction for _time_.
*
* The return value can be a rational number.
*
* t = Time.now #=> 2009-03-26 22:33:12 +0900
* "%10.9f" % t.to_f #=> "1238074392.940563917"
* t.subsec #=> (94056401/100000000)
*
* The lowest digits of #to_f and #subsec are different because
* IEEE 754 double is not accurate enough to represent
* the rational number.
*
* The more accurate value is returned by #subsec.
*/
static VALUE
time_subsec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return quo(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
}
/*
* call-seq:
* time <=> other_time -> -1, 0, +1 or nil
*
* Comparison---Compares +time+ with +other_time+.
*
* -1, 0, +1 or nil depending on whether +time+ is less than, equal to, or
* greater than +other_time+.
*
* +nil+ is returned if the two values are incomparable.
*
* t = Time.now #=> 2007-11-19 08:12:12 -0600
* t2 = t + 2592000 #=> 2007-12-19 08:12:12 -0600
* t <=> t2 #=> -1
* t2 <=> t #=> 1
*
* t = Time.now #=> 2007-11-19 08:13:38 -0600
* t2 = t + 0.1 #=> 2007-11-19 08:13:38 -0600
* t.nsec #=> 98222999
* t2.nsec #=> 198222999
* t <=> t2 #=> -1
* t2 <=> t #=> 1
* t <=> t #=> 0
*/
static VALUE
time_cmp(VALUE time1, VALUE time2)
{
struct time_object *tobj1, *tobj2;
int n;
GetTimeval(time1, tobj1);
if (IsTimeval(time2)) {
GetTimeval(time2, tobj2);
n = wcmp(tobj1->timew, tobj2->timew);
}
else {
return rb_invcmp(time1, time2);
}
if (n == 0) return INT2FIX(0);
if (n > 0) return INT2FIX(1);
return INT2FIX(-1);
}
/*
* call-seq:
* time.eql?(other_time)
*
* Returns +true+ if _time_ and +other_time+ are
* both Time objects with the same seconds and fractional seconds.
*/
static VALUE
time_eql(VALUE time1, VALUE time2)
{
struct time_object *tobj1, *tobj2;
GetTimeval(time1, tobj1);
if (IsTimeval(time2)) {
GetTimeval(time2, tobj2);
return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
}
return Qfalse;
}
/*
* call-seq:
* time.utc? -> true or false
* time.gmt? -> true or false
*
* Returns +true+ if _time_ represents a time in UTC (GMT).
*
* t = Time.now #=> 2007-11-19 08:15:23 -0600
* t.utc? #=> false
* t = Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
* t.utc? #=> true
*
* t = Time.now #=> 2007-11-19 08:16:03 -0600
* t.gmt? #=> false
* t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
* t.gmt? #=> true
*/
static VALUE
time_utc_p(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
if (TIME_UTC_P(tobj)) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* time.hash -> fixnum
*
* Returns a hash code for this Time object.
*
* See also Object#hash.
*/
static VALUE
time_hash(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_hash(w2v(tobj->timew));
}
/* :nodoc: */
static VALUE
time_init_copy(VALUE copy, VALUE time)
{
struct time_object *tobj, *tcopy;
if (!OBJ_INIT_COPY(copy, time)) return copy;
GetTimeval(time, tobj);
GetNewTimeval(copy, tcopy);
MEMCPY(tcopy, tobj, struct time_object, 1);
return copy;
}
static VALUE
time_dup(VALUE time)
{
VALUE dup = time_s_alloc(rb_obj_class(time));
time_init_copy(dup, time);
return dup;
}
static VALUE
time_localtime(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
GetTimeval(time, tobj);
if (TIME_LOCALTIME_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
if (!localtimew(tobj->timew, &vtm))
rb_raise(rb_eArgError, "localtime error");
tobj->vtm = vtm;
tobj->tm_got = 1;
TIME_SET_LOCALTIME(tobj);
return time;
}
/*
* call-seq:
* time.localtime -> time
* time.localtime(utc_offset) -> time
*
* Converts _time_ to local time (using the local time zone in
* effect for this process) modifying the receiver.
*
* If +utc_offset+ is given, it is used instead of the local time.
*
* t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
* t.utc? #=> true
*
* t.localtime #=> 2000-01-01 14:15:01 -0600
* t.utc? #=> false
*
* t.localtime("+09:00") #=> 2000-01-02 05:15:01 +0900
* t.utc? #=> false
*/
static VALUE
time_localtime_m(int argc, VALUE *argv, VALUE time)
{
VALUE off;
rb_scan_args(argc, argv, "01", &off);
if (!NIL_P(off)) {
off = utc_offset_arg(off);
validate_utc_offset(off);
time_set_utc_offset(time, off);
return time_fixoff(time);
}
return time_localtime(time);
}
/*
* call-seq:
* time.gmtime -> time
* time.utc -> time
*
* Converts _time_ to UTC (GMT), modifying the receiver.
*
* t = Time.now #=> 2007-11-19 08:18:31 -0600
* t.gmt? #=> false
* t.gmtime #=> 2007-11-19 14:18:31 UTC
* t.gmt? #=> true
*
* t = Time.now #=> 2007-11-19 08:18:51 -0600
* t.utc? #=> false
* t.utc #=> 2007-11-19 14:18:51 UTC
* t.utc? #=> true
*/
static VALUE
time_gmtime(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
GetTimeval(time, tobj);
if (TIME_UTC_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
if (!gmtimew(tobj->timew, &vtm))
rb_raise(rb_eArgError, "gmtime error");
tobj->vtm = vtm;
tobj->tm_got = 1;
TIME_SET_UTC(tobj);
return time;
}
static VALUE
time_fixoff(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
VALUE off;
GetTimeval(time, tobj);
if (TIME_FIXOFF_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
if (TIME_FIXOFF_P(tobj))
off = tobj->vtm.utc_offset;
else
off = INT2FIX(0);
if (!gmtimew(tobj->timew, &vtm))
rb_raise(rb_eArgError, "gmtime error");
tobj->vtm = vtm;
vtm_add_offset(&tobj->vtm, off);
tobj->tm_got = 1;
TIME_SET_FIXOFF(tobj, off);
return time;
}
/*
* call-seq:
* time.getlocal -> new_time
* time.getlocal(utc_offset) -> new_time
*
* Returns a new Time object representing _time_ in
* local time (using the local time zone in effect for this process).
*
* If +utc_offset+ is given, it is used instead of the local time.
* +utc_offset+ can be given as a human-readable string (eg. <code>"+09:00"</code>)
* or as a number of seconds (eg. <code>32400</code>).
*
* t = Time.utc(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
* t.utc? #=> true
*
* l = t.getlocal #=> 2000-01-01 14:15:01 -0600
* l.utc? #=> false
* t == l #=> true
*
* j = t.getlocal("+09:00") #=> 2000-01-02 05:15:01 +0900
* j.utc? #=> false
* t == j #=> true
*
* k = t.getlocal(9*60*60) #=> 2000-01-02 05:15:01 +0900
* k.utc? #=> false
* t == k #=> true
*/
static VALUE
time_getlocaltime(int argc, VALUE *argv, VALUE time)
{
VALUE off;
rb_scan_args(argc, argv, "01", &off);
if (!NIL_P(off)) {
off = utc_offset_arg(off);
validate_utc_offset(off);
time = time_dup(time);
time_set_utc_offset(time, off);
return time_fixoff(time);
}
return time_localtime(time_dup(time));
}
/*
* call-seq:
* time.getgm -> new_time
* time.getutc -> new_time
*
* Returns a new Time object representing _time_ in UTC.
*
* t = Time.local(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 -0600
* t.gmt? #=> false
* y = t.getgm #=> 2000-01-02 02:15:01 UTC
* y.gmt? #=> true
* t == y #=> true
*/
static VALUE
time_getgmtime(VALUE time)
{
return time_gmtime(time_dup(time));
}
static VALUE
time_get_tm(VALUE time, struct time_object *tobj)
{
if (TIME_UTC_P(tobj)) return time_gmtime(time);
if (TIME_FIXOFF_P(tobj)) return time_fixoff(time);
return time_localtime(time);
}
static VALUE strftimev(const char *fmt, VALUE time, rb_encoding *enc);
/*
* call-seq:
* time.asctime -> string
* time.ctime -> string
*
* Returns a canonical string representation of _time_.
*
* Time.now.asctime #=> "Wed Apr 9 08:56:03 2003"
*/
static VALUE
time_asctime(VALUE time)
{
return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
}
/*
* call-seq:
* time.inspect -> string
* time.to_s -> string
*
* Returns a string representing _time_. Equivalent to calling
* #strftime with the appropriate format string.
*
* t = Time.now
* t.to_s => "2012-11-10 18:16:12 +0100"
* t.strftime "%Y-%m-%d %H:%M:%S %z" => "2012-11-10 18:16:12 +0100"
*
* t.utc.to_s => "2012-11-10 17:16:12 UTC"
* t.strftime "%Y-%m-%d %H:%M:%S UTC" => "2012-11-10 17:16:12 UTC"
*/
static VALUE
time_to_s(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
if (TIME_UTC_P(tobj))
return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
else
return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
}
static VALUE
time_add(struct time_object *tobj, VALUE offset, int sign)
{
VALUE result;
offset = num_exact(offset);
if (sign < 0)
result = time_new_timew(rb_cTime, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
else
result = time_new_timew(rb_cTime, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
if (TIME_UTC_P(tobj)) {
GetTimeval(result, tobj);
TIME_SET_UTC(tobj);
}
else if (TIME_FIXOFF_P(tobj)) {
VALUE off = tobj->vtm.utc_offset;
GetTimeval(result, tobj);
TIME_SET_FIXOFF(tobj, off);
}
return result;
}
/*
* call-seq:
* time + numeric -> time
*
* Addition --- Adds some number of seconds (possibly fractional) to
* _time_ and returns that value as a new Time object.
*
* t = Time.now #=> 2007-11-19 08:22:21 -0600
* t + (60 * 60 * 24) #=> 2007-11-20 08:22:21 -0600
*/
static VALUE
time_plus(VALUE time1, VALUE time2)
{
struct time_object *tobj;
GetTimeval(time1, tobj);
if (IsTimeval(time2)) {
rb_raise(rb_eTypeError, "time + time?");
}
return time_add(tobj, time2, 1);
}
/*
* call-seq:
* time - other_time -> float
* time - numeric -> time
*
* Difference --- Returns a new Time object that represents the difference
* between _time_ and +other_time+, or subtracts the given number
* of seconds in +numeric+ from _time_.
*
* t = Time.now #=> 2007-11-19 08:23:10 -0600
* t2 = t + 2592000 #=> 2007-12-19 08:23:10 -0600
* t2 - t #=> 2592000.0
* t2 - 2592000 #=> 2007-11-19 08:23:10 -0600
*/
static VALUE
time_minus(VALUE time1, VALUE time2)
{
struct time_object *tobj;
GetTimeval(time1, tobj);
if (IsTimeval(time2)) {
struct time_object *tobj2;
GetTimeval(time2, tobj2);
return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
}
return time_add(tobj, time2, -1);
}
/*
* call-seq:
* time.succ -> new_time
*
* Returns a new Time object, one second later than _time_.
* Time#succ is obsolete since 1.9.2 for time is not a discrete value.
*
* t = Time.now #=> 2007-11-19 08:23:57 -0600
* t.succ #=> 2007-11-19 08:23:58 -0600
*
* Use instead <code>time + 1</code>
*
* t + 1 #=> 2007-11-19 08:23:58 -0600
*/
VALUE
rb_time_succ(VALUE time)
{
struct time_object *tobj;
struct time_object *tobj2;
rb_warn("Time#succ is obsolete; use time + 1");
GetTimeval(time, tobj);
time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE)));
GetTimeval(time, tobj2);
TIME_COPY_GMT(tobj2, tobj);
return time;
}
#define time_succ rb_time_succ
/*
* call-seq:
* time.round([ndigits]) -> new_time
*
* Rounds sub seconds to a given precision in decimal digits (0 digits by default).
* It returns a new Time object.
* +ndigits+ should be zero or positive integer.
*
* require 'time'
*
* t = Time.utc(2010,3,30, 5,43,"25.123456789".to_r)
* p t.iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
* p t.round.iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
* p t.round(0).iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
* p t.round(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z"
* p t.round(2).iso8601(10) #=> "2010-03-30T05:43:25.1200000000Z"
* p t.round(3).iso8601(10) #=> "2010-03-30T05:43:25.1230000000Z"
* p t.round(4).iso8601(10) #=> "2010-03-30T05:43:25.1235000000Z"
* p t.round(5).iso8601(10) #=> "2010-03-30T05:43:25.1234600000Z"
* p t.round(6).iso8601(10) #=> "2010-03-30T05:43:25.1234570000Z"
* p t.round(7).iso8601(10) #=> "2010-03-30T05:43:25.1234568000Z"
* p t.round(8).iso8601(10) #=> "2010-03-30T05:43:25.1234567900Z"
* p t.round(9).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
* p t.round(10).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
*
* t = Time.utc(1999,12,31, 23,59,59)
* p((t + 0.4).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z"
* p((t + 0.49).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z"
* p((t + 0.5).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
* p((t + 1.4).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
* p((t + 1.49).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
* p((t + 1.5).round.iso8601(3)) #=> "2000-01-01T00:00:01.000Z"
*
* t = Time.utc(1999,12,31, 23,59,59)
* p (t + 0.123456789).round(4).iso8601(6) #=> "1999-12-31T23:59:59.123500Z"
*/
static VALUE
time_round(int argc, VALUE *argv, VALUE time)
{
VALUE ndigits, v, a, b, den;
long nd;
struct time_object *tobj;
rb_scan_args(argc, argv, "01", &ndigits);
if (NIL_P(ndigits))
ndigits = INT2FIX(0);
else
ndigits = rb_to_int(ndigits);
nd = NUM2LONG(ndigits);
if (nd < 0)
rb_raise(rb_eArgError, "negative ndigits given");
GetTimeval(time, tobj);
v = w2v(rb_time_unmagnify(tobj->timew));
a = INT2FIX(1);
b = INT2FIX(10);
while (0 < nd) {
if (nd & 1)
a = mul(a, b);
b = mul(b, b);
nd = nd >> 1;
}
den = quo(INT2FIX(1), a);
v = mod(v, den);
if (lt(v, quo(den, INT2FIX(2))))
return time_add(tobj, v, -1);
else
return time_add(tobj, sub(den, v), 1);
}
/*
* call-seq:
* time.sec -> fixnum
*
* Returns the second of the minute (0..60) for _time_.
*
* *Note:* Seconds range from zero to 60 to allow the system to inject
* leap seconds. See http://en.wikipedia.org/wiki/Leap_second for further
* details.
*
* t = Time.now #=> 2007-11-19 08:25:02 -0600
* t.sec #=> 2
*/
static VALUE
time_sec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.sec);
}
/*
* call-seq:
* time.min -> fixnum
*
* Returns the minute of the hour (0..59) for _time_.
*
* t = Time.now #=> 2007-11-19 08:25:51 -0600
* t.min #=> 25
*/
static VALUE
time_min(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.min);
}
/*
* call-seq:
* time.hour -> fixnum
*
* Returns the hour of the day (0..23) for _time_.
*
* t = Time.now #=> 2007-11-19 08:26:20 -0600
* t.hour #=> 8
*/
static VALUE
time_hour(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.hour);
}
/*
* call-seq:
* time.day -> fixnum
* time.mday -> fixnum
*
* Returns the day of the month (1..n) for _time_.
*
* t = Time.now #=> 2007-11-19 08:27:03 -0600
* t.day #=> 19
* t.mday #=> 19
*/
static VALUE
time_mday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.mday);
}
/*
* call-seq:
* time.mon -> fixnum
* time.month -> fixnum
*
* Returns the month of the year (1..12) for _time_.
*
* t = Time.now #=> 2007-11-19 08:27:30 -0600
* t.mon #=> 11
* t.month #=> 11
*/
static VALUE
time_mon(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.mon);
}
/*
* call-seq:
* time.year -> fixnum
*
* Returns the year for _time_ (including the century).
*
* t = Time.now #=> 2007-11-19 08:27:51 -0600
* t.year #=> 2007
*/
static VALUE
time_year(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return tobj->vtm.year;
}
/*
* call-seq:
* time.wday -> fixnum
*
* Returns an integer representing the day of the week, 0..6, with
* Sunday == 0.
*
* t = Time.now #=> 2007-11-20 02:35:35 -0600
* t.wday #=> 2
* t.sunday? #=> false
* t.monday? #=> false
* t.tuesday? #=> true
* t.wednesday? #=> false
* t.thursday? #=> false
* t.friday? #=> false
* t.saturday? #=> false
*/
static VALUE
time_wday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX((int)tobj->vtm.wday);
}
#define wday_p(n) {\
struct time_object *tobj;\
GetTimeval(time, tobj);\
MAKE_TM(time, tobj);\
return (tobj->vtm.wday == (n)) ? Qtrue : Qfalse;\
}
/*
* call-seq:
* time.sunday? -> true or false
*
* Returns +true+ if _time_ represents Sunday.
*
* t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600
* t.sunday? #=> true
*/
static VALUE
time_sunday(VALUE time)
{
wday_p(0);
}
/*
* call-seq:
* time.monday? -> true or false
*
* Returns +true+ if _time_ represents Monday.
*
* t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500
* p t.monday? #=> true
*/
static VALUE
time_monday(VALUE time)
{
wday_p(1);
}
/*
* call-seq:
* time.tuesday? -> true or false
*
* Returns +true+ if _time_ represents Tuesday.
*
* t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600
* p t.tuesday? #=> true
*/
static VALUE
time_tuesday(VALUE time)
{
wday_p(2);
}
/*
* call-seq:
* time.wednesday? -> true or false
*
* Returns +true+ if _time_ represents Wednesday.
*
* t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600
* p t.wednesday? #=> true
*/
static VALUE
time_wednesday(VALUE time)
{
wday_p(3);
}
/*
* call-seq:
* time.thursday? -> true or false
*
* Returns +true+ if _time_ represents Thursday.
*
* t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600
* p t.thursday? #=> true
*/
static VALUE
time_thursday(VALUE time)
{
wday_p(4);
}
/*
* call-seq:
* time.friday? -> true or false
*
* Returns +true+ if _time_ represents Friday.
*
* t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600
* t.friday? #=> true
*/
static VALUE
time_friday(VALUE time)
{
wday_p(5);
}
/*
* call-seq:
* time.saturday? -> true or false
*
* Returns +true+ if _time_ represents Saturday.
*
* t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500
* t.saturday? #=> true
*/
static VALUE
time_saturday(VALUE time)
{
wday_p(6);
}
/*
* call-seq:
* time.yday -> fixnum
*
* Returns an integer representing the day of the year, 1..366.
*
* t = Time.now #=> 2007-11-19 08:32:31 -0600
* t.yday #=> 323
*/
static VALUE
time_yday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.yday);
}
/*
* call-seq:
* time.isdst -> true or false
* time.dst? -> true or false
*
* Returns +true+ if _time_ occurs during Daylight
* Saving Time in its time zone.
*
* # CST6CDT:
* Time.local(2000, 1, 1).zone #=> "CST"
* Time.local(2000, 1, 1).isdst #=> false
* Time.local(2000, 1, 1).dst? #=> false
* Time.local(2000, 7, 1).zone #=> "CDT"
* Time.local(2000, 7, 1).isdst #=> true
* Time.local(2000, 7, 1).dst? #=> true
*
* # Asia/Tokyo:
* Time.local(2000, 1, 1).zone #=> "JST"
* Time.local(2000, 1, 1).isdst #=> false
* Time.local(2000, 1, 1).dst? #=> false
* Time.local(2000, 7, 1).zone #=> "JST"
* Time.local(2000, 7, 1).isdst #=> false
* Time.local(2000, 7, 1).dst? #=> false
*/
static VALUE
time_isdst(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return tobj->vtm.isdst ? Qtrue : Qfalse;
}
static VALUE
time_zone_name(const char *zone)
{
VALUE name = rb_str_new_cstr(zone);
if (!rb_enc_str_asciionly_p(name)) {
name = rb_external_str_with_enc(name, rb_locale_encoding());
}
else {
rb_enc_associate(name, rb_usascii_encoding());
}
return name;
}
/*
* call-seq:
* time.zone -> string
*
* Returns the name of the time zone used for _time_. As of Ruby
* 1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
*
* t = Time.gm(2000, "jan", 1, 20, 15, 1)
* t.zone #=> "UTC"
* t = Time.local(2000, "jan", 1, 20, 15, 1)
* t.zone #=> "CST"
*/
static VALUE
time_zone(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
if (TIME_UTC_P(tobj)) {
return rb_usascii_str_new_cstr("UTC");
}
if (tobj->vtm.zone == NULL)
return Qnil;
return time_zone_name(tobj->vtm.zone);
}
/*
* call-seq:
* time.gmt_offset -> fixnum
* time.gmtoff -> fixnum
* time.utc_offset -> fixnum
*
* Returns the offset in seconds between the timezone of _time_
* and UTC.
*
* t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
* t.gmt_offset #=> 0
* l = t.getlocal #=> 2000-01-01 14:15:01 -0600
* l.gmt_offset #=> -21600
*/
static VALUE
time_utc_offset(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
if (TIME_UTC_P(tobj)) {
return INT2FIX(0);
}
else {
return tobj->vtm.utc_offset;
}
}
/*
* call-seq:
* time.to_a -> array
*
* Returns a ten-element _array_ of values for _time_:
*
* [sec, min, hour, day, month, year, wday, yday, isdst, zone]
*
* See the individual methods for an explanation of the
* valid ranges of each value. The ten elements can be passed directly
* to Time::utc or Time::local to create a
* new Time object.
*
* t = Time.now #=> 2007-11-19 08:36:01 -0600
* now = t.to_a #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
*/
static VALUE
time_to_a(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return rb_ary_new3(10,
INT2FIX(tobj->vtm.sec),
INT2FIX(tobj->vtm.min),
INT2FIX(tobj->vtm.hour),
INT2FIX(tobj->vtm.mday),
INT2FIX(tobj->vtm.mon),
tobj->vtm.year,
INT2FIX(tobj->vtm.wday),
INT2FIX(tobj->vtm.yday),
tobj->vtm.isdst?Qtrue:Qfalse,
time_zone(time));
}
#define SMALLBUF 100
static size_t
rb_strftime_alloc(char **buf, VALUE formatv, const char *format, rb_encoding *enc,
struct vtm *vtm, wideval_t timew, int gmt)
{
size_t size, len, flen;
VALUE timev = Qnil;
struct timespec ts;
if (!timew2timespec_exact(timew, &ts))
timev = w2v(rb_time_unmagnify(timew));
(*buf)[0] = '\0';
flen = strlen(format);
if (flen == 0) {
return 0;
}
errno = 0;
if (timev == Qnil)
len = rb_strftime_timespec(*buf, SMALLBUF, format, enc, vtm, &ts, gmt);
else
len = rb_strftime(*buf, SMALLBUF, format, enc, vtm, timev, gmt);
if (len != 0 || (**buf == '\0' && errno != ERANGE)) return len;
for (size=1024; ; size*=2) {
*buf = xmalloc(size);
(*buf)[0] = '\0';
if (timev == Qnil)
len = rb_strftime_timespec(*buf, size, format, enc, vtm, &ts, gmt);
else
len = rb_strftime(*buf, size, format, enc, vtm, timev, gmt);
/*
* buflen can be zero EITHER because there's not enough
* room in the string, or because the control command
* goes to the empty string. Make a reasonable guess that
* if the buffer is 1024 times bigger than the length of the
* format string, it's not failing for lack of room.
*/
if (len > 0) break;
xfree(*buf);
if (size >= 1024 * flen) {
if (!NIL_P(formatv)) rb_sys_fail_str(formatv);
rb_sys_fail(format);
break;
}
}
return len;
}
static VALUE
strftimev(const char *fmt, VALUE time, rb_encoding *enc)
{
struct time_object *tobj;
char buffer[SMALLBUF], *buf = buffer;
long len;
VALUE str;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
len = rb_strftime_alloc(&buf, Qnil, fmt, enc, &tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
str = rb_enc_str_new(buf, len, enc);
if (buf != buffer) xfree(buf);
return str;
}
/*
* call-seq:
* time.strftime( string ) -> string
*
* Formats _time_ according to the directives in the given format string.
*
* The directives begin with a percent (%) character.
* Any text not listed as a directive will be passed through to the
* output string.
*
* The directive consists of a percent (%) character,
* zero or more flags, optional minimum field width,
* optional modifier and a conversion specifier
* as follows:
*
* %<flags><width><modifier><conversion>
*
* Flags:
* - don't pad a numerical output
* _ use spaces for padding
* 0 use zeros for padding
* ^ upcase the result string
* # change case
* : use colons for %z
*
* The minimum field width specifies the minimum width.
*
* The modifiers are "E" and "O".
* They are ignored.
*
* Format directives:
*
* Date (Year, Month, Day):
* %Y - Year with century if provided, will pad result at least 4 digits.
* -0001, 0000, 1995, 2009, 14292, etc.
* %C - year / 100 (rounded down such as 20 in 2009)
* %y - year % 100 (00..99)
*
* %m - Month of the year, zero-padded (01..12)
* %_m blank-padded ( 1..12)
* %-m no-padded (1..12)
* %B - The full month name (``January'')
* %^B uppercased (``JANUARY'')
* %b - The abbreviated month name (``Jan'')
* %^b uppercased (``JAN'')
* %h - Equivalent to %b
*
* %d - Day of the month, zero-padded (01..31)
* %-d no-padded (1..31)
* %e - Day of the month, blank-padded ( 1..31)
*
* %j - Day of the year (001..366)
*
* Time (Hour, Minute, Second, Subsecond):
* %H - Hour of the day, 24-hour clock, zero-padded (00..23)
* %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
* %I - Hour of the day, 12-hour clock, zero-padded (01..12)
* %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
* %P - Meridian indicator, lowercase (``am'' or ``pm'')
* %p - Meridian indicator, uppercase (``AM'' or ``PM'')
*
* %M - Minute of the hour (00..59)
*
* %S - Second of the minute (00..60)
*
* %L - Millisecond of the second (000..999)
* The digits under millisecond are truncated to not produce 1000.
* %N - Fractional seconds digits, default is 9 digits (nanosecond)
* %3N millisecond (3 digits)
* %6N microsecond (6 digits)
* %9N nanosecond (9 digits)
* %12N picosecond (12 digits)
* %15N femtosecond (15 digits)
* %18N attosecond (18 digits)
* %21N zeptosecond (21 digits)
* %24N yoctosecond (24 digits)
* The digits under the specified length are truncated to avoid
* carry up.
*
* Time zone:
* %z - Time zone as hour and minute offset from UTC (e.g. +0900)
* %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
* %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
* %Z - Abbreviated time zone name or similar information. (OS dependent)
*
* Weekday:
* %A - The full weekday name (``Sunday'')
* %^A uppercased (``SUNDAY'')
* %a - The abbreviated name (``Sun'')
* %^a uppercased (``SUN'')
* %u - Day of the week (Monday is 1, 1..7)
* %w - Day of the week (Sunday is 0, 0..6)
*
* ISO 8601 week-based year and week number:
* The first week of YYYY starts with a Monday and includes YYYY-01-04.
* The days in the year before the first week are in the last week of
* the previous year.
* %G - The week-based year
* %g - The last 2 digits of the week-based year (00..99)
* %V - Week number of the week-based year (01..53)
*
* Week number:
* The first week of YYYY that starts with a Sunday or Monday (according to %U
* or %W). The days in the year before the first week are in week 0.
* %U - Week number of the year. The week starts with Sunday. (00..53)
* %W - Week number of the year. The week starts with Monday. (00..53)
*
* Seconds since the Epoch:
* %s - Number of seconds since 1970-01-01 00:00:00 UTC.
*
* Literal string:
* %n - Newline character (\n)
* %t - Tab character (\t)
* %% - Literal ``%'' character
*
* Combination:
* %c - date and time (%a %b %e %T %Y)
* %D - Date (%m/%d/%y)
* %F - The ISO 8601 date format (%Y-%m-%d)
* %v - VMS date (%e-%^b-%4Y)
* %x - Same as %D
* %X - Same as %T
* %r - 12-hour time (%I:%M:%S %p)
* %R - 24-hour time (%H:%M)
* %T - 24-hour time (%H:%M:%S)
*
* This method is similar to strftime() function defined in ISO C and POSIX.
*
* While all directives are locale independent since Ruby 1.9, %Z is platform
* dependent.
* So, the result may differ even if the same format string is used in other
* systems such as C.
*
* %z is recommended over %Z.
* %Z doesn't identify the timezone.
* For example, "CST" is used at America/Chicago (-06:00),
* America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30)
* and Australia/Adelaide (+10:30).
* Also, %Z is highly dependent on the operating system.
* For example, it may generate a non ASCII string on Japanese Windows.
* i.e. the result can be different to "JST".
* So the numeric time zone offset, %z, is recommended.
*
* Examples:
*
* t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600
* t.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
* t.strftime("at %I:%M%p") #=> "at 08:37AM"
*
* Various ISO 8601 formats:
* %Y%m%d => 20071119 Calendar date (basic)
* %F => 2007-11-19 Calendar date (extended)
* %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month
* %Y => 2007 Calendar date, reduced accuracy, specific year
* %C => 20 Calendar date, reduced accuracy, specific century
* %Y%j => 2007323 Ordinal date (basic)
* %Y-%j => 2007-323 Ordinal date (extended)
* %GW%V%u => 2007W471 Week date (basic)
* %G-W%V-%u => 2007-W47-1 Week date (extended)
* %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic)
* %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended)
* %H%M%S => 083748 Local time (basic)
* %T => 08:37:48 Local time (extended)
* %H%M => 0837 Local time, reduced accuracy, specific minute (basic)
* %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended)
* %H => 08 Local time, reduced accuracy, specific hour
* %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic)
* %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended)
* %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic)
* %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended)
* %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic)
* %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended)
* %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic)
* %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
* %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic)
* %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended)
* %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic)
* %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
* %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic)
* %FT%R => 2007-11-19T08:37 Calendar date and local time (extended)
* %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic)
* %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended)
* %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic)
* %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
*
*/
static VALUE
time_strftime(VALUE time, VALUE format)
{
struct time_object *tobj;
char buffer[SMALLBUF], *buf = buffer;
const char *fmt;
long len;
rb_encoding *enc;
VALUE str;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
StringValue(format);
if (!rb_enc_str_asciicompat_p(format)) {
rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
}
format = rb_str_new4(format);
fmt = RSTRING_PTR(format);
len = RSTRING_LEN(format);
enc = rb_enc_get(format);
if (len == 0) {
rb_warning("strftime called with empty format string");
}
else if (fmt[len] || memchr(fmt, '\0', len)) {
/* Ruby string may contain \0's. */
const char *p = fmt, *pe = fmt + len;
str = rb_str_new(0, 0);
while (p < pe) {
len = rb_strftime_alloc(&buf, format, p, enc,
&tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
rb_str_cat(str, buf, len);
p += strlen(p);
if (buf != buffer) {
xfree(buf);
buf = buffer;
}
for (fmt = p; p < pe && !*p; ++p);
if (p > fmt) rb_str_cat(str, fmt, p - fmt);
}
return str;
}
else {
len = rb_strftime_alloc(&buf, format, RSTRING_PTR(format), enc,
&tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
}
str = rb_enc_str_new(buf, len, enc);
if (buf != buffer) xfree(buf);
return str;
}
/* :nodoc: */
static VALUE
time_mdump(VALUE time)
{
struct time_object *tobj;
unsigned long p, s;
char buf[8];
int i;
VALUE str;
struct vtm vtm;
long year;
long usec, nsec;
VALUE subsecx, nano, subnano, v;
GetTimeval(time, tobj);
gmtimew(tobj->timew, &vtm);
if (FIXNUM_P(vtm.year)) {
year = FIX2LONG(vtm.year);
if (year < 1900 || 1900+0xffff < year)
rb_raise(rb_eArgError, "year too big to marshal: %ld UTC", year);
}
else {
rb_raise(rb_eArgError, "year too big to marshal");
}
subsecx = vtm.subsecx;
nano = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
divmodv(nano, INT2FIX(1), &v, &subnano);
nsec = FIX2LONG(v);
usec = nsec / 1000;
nsec = nsec % 1000;
nano = add(LONG2FIX(nsec), subnano);
p = 0x1UL << 31 | /* 1 */
TIME_UTC_P(tobj) << 30 | /* 1 */
(year-1900) << 14 | /* 16 */
(vtm.mon-1) << 10 | /* 4 */
vtm.mday << 5 | /* 5 */
vtm.hour; /* 5 */
s = (unsigned long)vtm.min << 26 | /* 6 */
vtm.sec << 20 | /* 6 */
usec; /* 20 */
for (i=0; i<4; i++) {
buf[i] = (unsigned char)p;
p = RSHIFT(p, 8);
}
for (i=4; i<8; i++) {
buf[i] = (unsigned char)s;
s = RSHIFT(s, 8);
}
str = rb_str_new(buf, 8);
rb_copy_generic_ivar(str, time);
if (!rb_equal(nano, INT2FIX(0))) {
if (RB_TYPE_P(nano, T_RATIONAL)) {
rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
}
else {
rb_ivar_set(str, id_nano_num, nano);
rb_ivar_set(str, id_nano_den, INT2FIX(1));
}
}
if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
/*
* submicro is formatted in fixed-point packed BCD (without sign).
* It represent digits under microsecond.
* For nanosecond resolution, 3 digits (2 bytes) are used.
* However it can be longer.
* Extra digits are ignored for loading.
*/
char buf[2];
int len = (int)sizeof(buf);
buf[1] = (char)((nsec % 10) << 4);
nsec /= 10;
buf[0] = (char)(nsec % 10);
nsec /= 10;
buf[0] |= (char)((nsec % 10) << 4);
if (buf[1] == 0)
len = 1;
rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
}
if (!TIME_UTC_P(tobj)) {
VALUE off = time_utc_offset(time), div, mod;
divmodv(off, INT2FIX(1), &div, &mod);
if (rb_equal(mod, INT2FIX(0)))
off = rb_Integer(div);
rb_ivar_set(str, id_offset, off);
}
if (tobj->vtm.zone) {
rb_ivar_set(str, id_zone, time_zone_name(tobj->vtm.zone));
}
return str;
}
/* :nodoc: */
static VALUE
time_dump(int argc, VALUE *argv, VALUE time)
{
VALUE str;
rb_scan_args(argc, argv, "01", 0);
str = time_mdump(time);
return str;
}
/* :nodoc: */
static VALUE
time_mload(VALUE time, VALUE str)
{
struct time_object *tobj;
unsigned long p, s;
time_t sec;
long usec;
unsigned char *buf;
struct vtm vtm;
int i, gmt;
long nsec;
VALUE submicro, nano_num, nano_den, offset, zone;
wideval_t timew;
time_modify(time);
#define get_attr(attr, iffound) \
attr = rb_attr_delete(str, id_##attr); \
if (!NIL_P(attr)) { \
iffound; \
}
get_attr(nano_num, {});
get_attr(nano_den, {});
get_attr(submicro, {});
get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, NULL, Qnil)));
get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, NULL, Qnil)));
#undef get_attr
rb_copy_generic_ivar(time, str);
StringValue(str);
buf = (unsigned char *)RSTRING_PTR(str);
if (RSTRING_LEN(str) != 8) {
rb_raise(rb_eTypeError, "marshaled time format differ");
}
p = s = 0;
for (i=0; i<4; i++) {
p |= (unsigned long)buf[i]<<(8*i);
}
for (i=4; i<8; i++) {
s |= (unsigned long)buf[i]<<(8*(i-4));
}
if ((p & (1UL<<31)) == 0) {
gmt = 0;
offset = Qnil;
sec = p;
usec = s;
nsec = usec * 1000;
timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
}
else {
p &= ~(1UL<<31);
gmt = (int)((p >> 30) & 0x1);
vtm.year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
vtm.mon = ((int)(p >> 10) & 0xf) + 1;
vtm.mday = (int)(p >> 5) & 0x1f;
vtm.hour = (int) p & 0x1f;
vtm.min = (int)(s >> 26) & 0x3f;
vtm.sec = (int)(s >> 20) & 0x3f;
vtm.utc_offset = INT2FIX(0);
vtm.yday = vtm.wday = 0;
vtm.isdst = 0;
vtm.zone = "";
usec = (long)(s & 0xfffff);
nsec = usec * 1000;
vtm.subsecx = mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
if (nano_num != Qnil) {
VALUE nano = quo(num_exact(nano_num), num_exact(nano_den));
vtm.subsecx = add(vtm.subsecx, mulquo(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
}
else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
unsigned char *ptr;
long len;
int digit;
ptr = (unsigned char*)StringValuePtr(submicro);
len = RSTRING_LEN(submicro);
nsec = 0;
if (0 < len) {
if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
nsec += digit * 100;
if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
nsec += digit * 10;
}
if (1 < len) {
if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
nsec += digit;
}
vtm.subsecx = add(vtm.subsecx, mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
end_submicro: ;
}
timew = timegmw(&vtm);
}
GetNewTimeval(time, tobj);
tobj->gmt = 0;
tobj->tm_got = 0;
tobj->timew = timew;
if (gmt) {
TIME_SET_UTC(tobj);
}
else if (!NIL_P(offset)) {
time_set_utc_offset(time, offset);
time_fixoff(time);
}
if (!NIL_P(zone)) {
zone = rb_str_new_frozen(zone);
tobj->vtm.zone = StringValueCStr(zone);
rb_ivar_set(time, id_zone, zone);
}
return time;
}
/* :nodoc: */
static VALUE
time_load(VALUE klass, VALUE str)
{
VALUE time = time_s_alloc(klass);
time_mload(time, str);
return time;
}
/*
* Time is an abstraction of dates and times. Time is stored internally as
* the number of seconds with fraction since the _Epoch_, January 1, 1970
* 00:00 UTC. Also see the library module Date. The Time class treats GMT
* (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent.
* GMT is the older way of referring to these baseline times but persists in
* the names of calls on POSIX systems.
*
* All times may have fraction. Be aware of this fact when comparing times
* with each other -- times that are apparently equal when displayed may be
* different when compared.
*
* Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer,
* Bignum or Rational.
* The integer is a number of nanoseconds since the _Epoch_ which can
* represent 1823-11-12 to 2116-02-20.
* When Bignum or Rational is used (before 1823, after 2116, under
* nanosecond), Time works slower as when integer is used.
*
* = Examples
*
* All of these examples were done using the EST timezone which is GMT-5.
*
* == Creating a new Time instance
*
* You can create a new instance of Time with Time::new. This will use the
* current system time. Time::now is an alias for this. You can also
* pass parts of the time to Time::new such as year, month, minute, etc. When
* you want to construct a time this way you must pass at least a year. If you
* pass the year with nothing else time will default to January 1 of that year
* at 00:00:00 with the current system timezone. Here are some examples:
*
* Time.new(2002) #=> 2002-01-01 00:00:00 -0500
* Time.new(2002, 10) #=> 2002-10-01 00:00:00 -0500
* Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
* Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200
*
* You can also use #gm, #local and
* #utc to infer GMT, local and UTC timezones instead of using
* the current system setting.
*
* You can also create a new time using Time::at which takes the number of
* seconds (or fraction of seconds) since the {Unix
* Epoch}[http://en.wikipedia.org/wiki/Unix_time].
*
* Time.at(628232400) #=> 1989-11-28 00:00:00 -0500
*
* == Working with an instance of Time
*
* Once you have an instance of Time there is a multitude of things you can
* do with it. Below are some examples. For all of the following examples, we
* will work on the assumption that you have done the following:
*
* t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")
*
* Was that a monday?
*
* t.monday? #=> false
*
* What year was that again?
*
* t.year #=> 1993
*
* Was is daylight savings at the time?
*
* t.dst? #=> false
*
* What's the day a year later?
*
* t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900
*
* How many seconds was that since the Unix Epoch?
*
* t.to_i #=> 730522800
*
* You can also do standard functions like compare two times.
*
* t1 = Time.new(2010)
* t2 = Time.new(2011)
*
* t1 == t2 #=> false
* t1 == t1 #=> true
* t1 < t2 #=> true
* t1 > t2 #=> false
*
* Time.new(2010,10,31).between?(t1, t2) #=> true
*/
void
Init_Time(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
id_eq = rb_intern("==");
id_ne = rb_intern("!=");
id_quo = rb_intern("quo");
id_div = rb_intern("div");
id_cmp = rb_intern("<=>");
id_divmod = rb_intern("divmod");
id_mul = rb_intern("*");
id_submicro = rb_intern("submicro");
id_nano_num = rb_intern("nano_num");
id_nano_den = rb_intern("nano_den");
id_offset = rb_intern("offset");
id_zone = rb_intern("zone");
rb_cTime = rb_define_class("Time", rb_cObject);
rb_include_module(rb_cTime, rb_mComparable);
rb_define_alloc_func(rb_cTime, time_s_alloc);
rb_define_singleton_method(rb_cTime, "now", time_s_now, 0);
rb_define_singleton_method(rb_cTime, "at", time_s_at, -1);
rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1);
rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1);
rb_define_method(rb_cTime, "to_i", time_to_i, 0);
rb_define_method(rb_cTime, "to_f", time_to_f, 0);
rb_define_method(rb_cTime, "to_r", time_to_r, 0);
rb_define_method(rb_cTime, "<=>", time_cmp, 1);
rb_define_method(rb_cTime, "eql?", time_eql, 1);
rb_define_method(rb_cTime, "hash", time_hash, 0);
rb_define_method(rb_cTime, "initialize", time_init, -1);
rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
rb_define_method(rb_cTime, "utc", time_gmtime, 0);
rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
rb_define_method(rb_cTime, "ctime", time_asctime, 0);
rb_define_method(rb_cTime, "asctime", time_asctime, 0);
rb_define_method(rb_cTime, "to_s", time_to_s, 0);
rb_define_method(rb_cTime, "inspect", time_to_s, 0);
rb_define_method(rb_cTime, "to_a", time_to_a, 0);
rb_define_method(rb_cTime, "+", time_plus, 1);
rb_define_method(rb_cTime, "-", time_minus, 1);
rb_define_method(rb_cTime, "succ", time_succ, 0);
rb_define_method(rb_cTime, "round", time_round, -1);
rb_define_method(rb_cTime, "sec", time_sec, 0);
rb_define_method(rb_cTime, "min", time_min, 0);
rb_define_method(rb_cTime, "hour", time_hour, 0);
rb_define_method(rb_cTime, "mday", time_mday, 0);
rb_define_method(rb_cTime, "day", time_mday, 0);
rb_define_method(rb_cTime, "mon", time_mon, 0);
rb_define_method(rb_cTime, "month", time_mon, 0);
rb_define_method(rb_cTime, "year", time_year, 0);
rb_define_method(rb_cTime, "wday", time_wday, 0);
rb_define_method(rb_cTime, "yday", time_yday, 0);
rb_define_method(rb_cTime, "isdst", time_isdst, 0);
rb_define_method(rb_cTime, "dst?", time_isdst, 0);
rb_define_method(rb_cTime, "zone", time_zone, 0);
rb_define_method(rb_cTime, "gmtoff", time_utc_offset, 0);
rb_define_method(rb_cTime, "gmt_offset", time_utc_offset, 0);
rb_define_method(rb_cTime, "utc_offset", time_utc_offset, 0);
rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
rb_define_method(rb_cTime, "monday?", time_monday, 0);
rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
rb_define_method(rb_cTime, "friday?", time_friday, 0);
rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
rb_define_method(rb_cTime, "usec", time_usec, 0);
rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
rb_define_method(rb_cTime, "nsec", time_nsec, 0);
rb_define_method(rb_cTime, "subsec", time_subsec, 0);
rb_define_method(rb_cTime, "strftime", time_strftime, 1);
/* methods for marshaling */
rb_define_private_method(rb_cTime, "_dump", time_dump, -1);
rb_define_private_method(rb_singleton_class(rb_cTime), "_load", time_load, 1);
#if 0
/* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
rb_define_private_method(rb_cTime, "marshal_dump", time_mdump, 0);
rb_define_private_method(rb_cTime, "marshal_load", time_mload, 1);
#endif
#ifdef DEBUG_FIND_TIME_NUMGUESS
rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL);
#endif
}