mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 9c1b3161f2
			
		
	
	
		9c1b3161f2
		
	
	
	
	
		
			
			* complex.c (Init_Complex), time.c (Init_Time): make marshal methods private. [Feature #6539] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38115 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			2252 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2252 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   complex.c: Coded by Tadayoshi Funaba 2008-2012
 | |
| 
 | |
|   This implementation is based on Keiju Ishitsuka's Complex library
 | |
|   which is written in ruby.
 | |
| */
 | |
| 
 | |
| #include "ruby.h"
 | |
| #include "internal.h"
 | |
| #include <math.h>
 | |
| 
 | |
| #define NDEBUG
 | |
| #include <assert.h>
 | |
| 
 | |
| #define ZERO INT2FIX(0)
 | |
| #define ONE INT2FIX(1)
 | |
| #define TWO INT2FIX(2)
 | |
| 
 | |
| VALUE rb_cComplex;
 | |
| 
 | |
| static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert,
 | |
|     id_denominator, id_divmod, id_eqeq_p, id_expt, id_fdiv,  id_floor,
 | |
|     id_idiv, id_imag, id_inspect, id_negate, id_numerator, id_quo,
 | |
|     id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s,
 | |
|     id_i_real, id_i_imag;
 | |
| 
 | |
| #define f_boolcast(x) ((x) ? Qtrue : Qfalse)
 | |
| 
 | |
| #define binop(n,op) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(x, (op), 1, y);\
 | |
| }
 | |
| 
 | |
| #define fun1(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 0);\
 | |
| }
 | |
| 
 | |
| #define fun2(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 1, y);\
 | |
| }
 | |
| 
 | |
| #define math1(n) \
 | |
| inline static VALUE \
 | |
| m_##n(VALUE x)\
 | |
| {\
 | |
|     return rb_funcall(rb_mMath, id_##n, 1, x);\
 | |
| }
 | |
| 
 | |
| #define math2(n) \
 | |
| inline static VALUE \
 | |
| m_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(rb_mMath, id_##n, 2, x, y);\
 | |
| }
 | |
| 
 | |
| #define PRESERVE_SIGNEDZERO
 | |
| 
 | |
| inline static VALUE
 | |
| f_add(VALUE x, VALUE y)
 | |
| {
 | |
| #ifndef PRESERVE_SIGNEDZERO
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 0)
 | |
| 	return x;
 | |
|     else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
 | |
| 	return y;
 | |
| #endif
 | |
|     return rb_funcall(x, '+', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y)) {
 | |
| 	long c = FIX2LONG(x) - FIX2LONG(y);
 | |
| 	if (c > 0)
 | |
| 	    c = 1;
 | |
| 	else if (c < 0)
 | |
| 	    c = -1;
 | |
| 	return INT2FIX(c);
 | |
|     }
 | |
|     return rb_funcall(x, id_cmp, 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 1)
 | |
| 	return x;
 | |
|     return rb_funcall(x, '/', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
 | |
|     return rb_funcall(x, '>', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_lt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
 | |
|     return rb_funcall(x, '<', 1, y);
 | |
| }
 | |
| 
 | |
| binop(mod, '%')
 | |
| 
 | |
| inline static VALUE
 | |
| f_mul(VALUE x, VALUE y)
 | |
| {
 | |
| #ifndef PRESERVE_SIGNEDZERO
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long iy = FIX2LONG(y);
 | |
| 	if (iy == 0) {
 | |
| 	    if (FIXNUM_P(x) || RB_TYPE_P(x, T_BIGNUM))
 | |
| 		return ZERO;
 | |
| 	}
 | |
| 	else if (iy == 1)
 | |
| 	    return x;
 | |
|     }
 | |
|     else if (FIXNUM_P(x)) {
 | |
| 	long ix = FIX2LONG(x);
 | |
| 	if (ix == 0) {
 | |
| 	    if (FIXNUM_P(y) || RB_TYPE_P(y, T_BIGNUM))
 | |
| 		return ZERO;
 | |
| 	}
 | |
| 	else if (ix == 1)
 | |
| 	    return y;
 | |
|     }
 | |
| #endif
 | |
|     return rb_funcall(x, '*', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_sub(VALUE x, VALUE y)
 | |
| {
 | |
| #ifndef PRESERVE_SIGNEDZERO
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 0)
 | |
| 	return x;
 | |
| #endif
 | |
|     return rb_funcall(x, '-', 1, y);
 | |
| }
 | |
| 
 | |
| fun1(abs)
 | |
| fun1(abs2)
 | |
| fun1(arg)
 | |
| fun1(conj)
 | |
| fun1(denominator)
 | |
| fun1(floor)
 | |
| fun1(imag)
 | |
| fun1(inspect)
 | |
| fun1(negate)
 | |
| fun1(numerator)
 | |
| fun1(real)
 | |
| fun1(real_p)
 | |
| 
 | |
| inline static VALUE
 | |
| f_to_i(VALUE x)
 | |
| {
 | |
|     if (RB_TYPE_P(x, T_STRING))
 | |
| 	return rb_str_to_inum(x, 10, 0);
 | |
|     return rb_funcall(x, id_to_i, 0);
 | |
| }
 | |
| inline static VALUE
 | |
| f_to_f(VALUE x)
 | |
| {
 | |
|     if (RB_TYPE_P(x, T_STRING))
 | |
| 	return DBL2NUM(rb_str_to_dbl(x, 0));
 | |
|     return rb_funcall(x, id_to_f, 0);
 | |
| }
 | |
| 
 | |
| fun1(to_r)
 | |
| fun1(to_s)
 | |
| 
 | |
| fun2(divmod)
 | |
| 
 | |
| inline static VALUE
 | |
| f_eqeq_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
 | |
|     return rb_funcall(x, id_eqeq_p, 1, y);
 | |
| }
 | |
| 
 | |
| fun2(expt)
 | |
| fun2(fdiv)
 | |
| fun2(idiv)
 | |
| fun2(quo)
 | |
| 
 | |
| inline static VALUE
 | |
| f_negative_p(VALUE x)
 | |
| {
 | |
|     if (FIXNUM_P(x))
 | |
| 	return f_boolcast(FIX2LONG(x) < 0);
 | |
|     return rb_funcall(x, '<', 1, ZERO);
 | |
| }
 | |
| 
 | |
| #define f_positive_p(x) (!f_negative_p(x))
 | |
| 
 | |
| inline static VALUE
 | |
| f_zero_p(VALUE x)
 | |
| {
 | |
|     switch (TYPE(x)) {
 | |
|       case T_FIXNUM:
 | |
| 	return f_boolcast(FIX2LONG(x) == 0);
 | |
|       case T_BIGNUM:
 | |
| 	return Qfalse;
 | |
|       case T_RATIONAL:
 | |
|       {
 | |
| 	  VALUE num = RRATIONAL(x)->num;
 | |
| 
 | |
| 	  return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
 | |
|       }
 | |
|     }
 | |
|     return rb_funcall(x, id_eqeq_p, 1, ZERO);
 | |
| }
 | |
| 
 | |
| #define f_nonzero_p(x) (!f_zero_p(x))
 | |
| 
 | |
| inline static VALUE
 | |
| f_one_p(VALUE x)
 | |
| {
 | |
|     switch (TYPE(x)) {
 | |
|       case T_FIXNUM:
 | |
| 	return f_boolcast(FIX2LONG(x) == 1);
 | |
|       case T_BIGNUM:
 | |
| 	return Qfalse;
 | |
|       case T_RATIONAL:
 | |
|       {
 | |
| 	  VALUE num = RRATIONAL(x)->num;
 | |
| 	  VALUE den = RRATIONAL(x)->den;
 | |
| 
 | |
| 	  return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
 | |
| 			    FIXNUM_P(den) && FIX2LONG(den) == 1);
 | |
|       }
 | |
|     }
 | |
|     return rb_funcall(x, id_eqeq_p, 1, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_kind_of_p(VALUE x, VALUE c)
 | |
| {
 | |
|     return rb_obj_is_kind_of(x, c);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_numeric_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cNumeric);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_integer_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cInteger);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_fixnum_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cFixnum);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_bignum_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cBignum);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_float_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cFloat);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_rational_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cRational);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_complex_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cComplex);
 | |
| }
 | |
| 
 | |
| #define k_exact_p(x) (!k_float_p(x))
 | |
| #define k_inexact_p(x) k_float_p(x)
 | |
| 
 | |
| #define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
 | |
| #define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
 | |
| 
 | |
| #define get_dat1(x) \
 | |
|     struct RComplex *dat;\
 | |
|     dat = ((struct RComplex *)(x))
 | |
| 
 | |
| #define get_dat2(x,y) \
 | |
|     struct RComplex *adat, *bdat;\
 | |
|     adat = ((struct RComplex *)(x));\
 | |
|     bdat = ((struct RComplex *)(y))
 | |
| 
 | |
| inline static VALUE
 | |
| nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
 | |
| {
 | |
|     NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX);
 | |
| 
 | |
|     obj->real = real;
 | |
|     obj->imag = imag;
 | |
| 
 | |
|     return (VALUE)obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_alloc(VALUE klass)
 | |
| {
 | |
|     return nucomp_s_new_internal(klass, ZERO, ZERO);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE real, imag;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
 | |
|       case 1:
 | |
| 	if (!k_numeric_p(real))
 | |
| 	    real = f_to_i(real);
 | |
| 	imag = ZERO;
 | |
| 	break;
 | |
|       default:
 | |
| 	if (!k_numeric_p(real))
 | |
| 	    real = f_to_i(real);
 | |
| 	if (!k_numeric_p(imag))
 | |
| 	    imag = f_to_i(imag);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return nucomp_s_new_internal(klass, real, imag);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new_bang1(VALUE klass, VALUE x)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     return nucomp_s_new_internal(klass, x, ZERO);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     assert(!k_complex_p(y));
 | |
|     return nucomp_s_new_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| #ifdef CANONICALIZATION_FOR_MATHN
 | |
| #define CANON
 | |
| #endif
 | |
| 
 | |
| #ifdef CANON
 | |
| static int canonicalization = 0;
 | |
| 
 | |
| RUBY_FUNC_EXPORTED void
 | |
| nucomp_canonicalization(int f)
 | |
| {
 | |
|     canonicalization = f;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static void
 | |
| nucomp_real_check(VALUE num)
 | |
| {
 | |
|     switch (TYPE(num)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	break;
 | |
|       default:
 | |
| 	if (!k_numeric_p(num) || !f_real_p(num))
 | |
| 	    rb_raise(rb_eTypeError, "not a real");
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
 | |
| {
 | |
| #ifdef CANON
 | |
| #define CL_CANON
 | |
| #ifdef CL_CANON
 | |
|     if (k_exact_zero_p(imag) && canonicalization)
 | |
| 	return real;
 | |
| #else
 | |
|     if (f_zero_p(imag) && canonicalization)
 | |
| 	return real;
 | |
| #endif
 | |
| #endif
 | |
|     if (f_real_p(real) && f_real_p(imag))
 | |
| 	return nucomp_s_new_internal(klass, real, imag);
 | |
|     else if (f_real_p(real)) {
 | |
| 	get_dat1(imag);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     f_sub(real, dat->imag),
 | |
| 				     f_add(ZERO, dat->real));
 | |
|     }
 | |
|     else if (f_real_p(imag)) {
 | |
| 	get_dat1(real);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     dat->real,
 | |
| 				     f_add(dat->imag, imag));
 | |
|     }
 | |
|     else {
 | |
| 	get_dat2(real, imag);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     f_sub(adat->real, bdat->imag),
 | |
| 				     f_add(adat->imag, bdat->real));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    Complex.rect(real[, imag])         ->  complex
 | |
|  *    Complex.rectangular(real[, imag])  ->  complex
 | |
|  *
 | |
|  * Returns a complex object which denotes the given rectangular form.
 | |
|  *
 | |
|  *    Complex.rectangular(1, 2)  #=> (1+2i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_s_new(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE real, imag;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
 | |
|       case 1:
 | |
| 	nucomp_real_check(real);
 | |
| 	imag = ZERO;
 | |
| 	break;
 | |
|       default:
 | |
| 	nucomp_real_check(real);
 | |
| 	nucomp_real_check(imag);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return nucomp_s_canonicalize_internal(klass, real, imag);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new1(VALUE klass, VALUE x)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     return nucomp_s_canonicalize_internal(klass, x, ZERO);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     return nucomp_s_canonicalize_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    Complex(x[, y])  ->  numeric
 | |
|  *
 | |
|  * Returns x+i*y;
 | |
|  *
 | |
|  *    Complex(1, 2)    #=> (1+2i)
 | |
|  *    Complex('1+2i')  #=> (1+2i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     return rb_funcall2(rb_cComplex, id_convert, argc, argv);
 | |
| }
 | |
| 
 | |
| #define imp1(n) \
 | |
| inline static VALUE \
 | |
| m_##n##_bang(VALUE x)\
 | |
| {\
 | |
|     return rb_math_##n(x);\
 | |
| }
 | |
| 
 | |
| #define imp2(n) \
 | |
| inline static VALUE \
 | |
| m_##n##_bang(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_math_##n(x, y);\
 | |
| }
 | |
| 
 | |
| imp2(atan2)
 | |
| imp1(cos)
 | |
| imp1(cosh)
 | |
| imp1(exp)
 | |
| imp2(hypot)
 | |
| 
 | |
| #define m_hypot(x,y) m_hypot_bang((x),(y))
 | |
| 
 | |
| static VALUE
 | |
| m_log_bang(VALUE x)
 | |
| {
 | |
|     return rb_math_log(1, &x);
 | |
| }
 | |
| 
 | |
| imp1(sin)
 | |
| imp1(sinh)
 | |
| imp1(sqrt)
 | |
| 
 | |
| static VALUE
 | |
| m_cos(VALUE x)
 | |
| {
 | |
|     if (f_real_p(x))
 | |
| 	return m_cos_bang(x);
 | |
|     {
 | |
| 	get_dat1(x);
 | |
| 	return f_complex_new2(rb_cComplex,
 | |
| 			      f_mul(m_cos_bang(dat->real),
 | |
| 				    m_cosh_bang(dat->imag)),
 | |
| 			      f_mul(f_negate(m_sin_bang(dat->real)),
 | |
| 				    m_sinh_bang(dat->imag)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| m_sin(VALUE x)
 | |
| {
 | |
|     if (f_real_p(x))
 | |
| 	return m_sin_bang(x);
 | |
|     {
 | |
| 	get_dat1(x);
 | |
| 	return f_complex_new2(rb_cComplex,
 | |
| 			      f_mul(m_sin_bang(dat->real),
 | |
| 				    m_cosh_bang(dat->imag)),
 | |
| 			      f_mul(m_cos_bang(dat->real),
 | |
| 				    m_sinh_bang(dat->imag)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| m_sqrt(VALUE x)
 | |
| {
 | |
|     if (f_real_p(x)) {
 | |
| 	if (f_positive_p(x))
 | |
| 	    return m_sqrt_bang(x);
 | |
| 	return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
 | |
|     }
 | |
|     else {
 | |
| 	get_dat1(x);
 | |
| 
 | |
| 	if (f_negative_p(dat->imag))
 | |
| 	    return f_conj(m_sqrt(f_conj(x)));
 | |
| 	else {
 | |
| 	    VALUE a = f_abs(x);
 | |
| 	    return f_complex_new2(rb_cComplex,
 | |
| 				  m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
 | |
| 				  m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_polar(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     assert(!k_complex_p(y));
 | |
|     return nucomp_s_canonicalize_internal(klass,
 | |
| 					  f_mul(x, m_cos(y)),
 | |
| 					  f_mul(x, m_sin(y)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    Complex.polar(abs[, arg])  ->  complex
 | |
|  *
 | |
|  * Returns a complex object which denotes the given polar form.
 | |
|  *
 | |
|  *    Complex.polar(3, 0)            #=> (3.0+0.0i)
 | |
|  *    Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
 | |
|  *    Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
 | |
|  *    Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE abs, arg;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
 | |
|       case 1:
 | |
| 	nucomp_real_check(abs);
 | |
| 	arg = ZERO;
 | |
| 	break;
 | |
|       default:
 | |
| 	nucomp_real_check(abs);
 | |
| 	nucomp_real_check(arg);
 | |
| 	break;
 | |
|     }
 | |
|     return f_complex_polar(klass, abs, arg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.real  ->  real
 | |
|  *
 | |
|  * Returns the real part.
 | |
|  *
 | |
|  *    Complex(7).real      #=> 7
 | |
|  *    Complex(9, -4).real  #=> 9
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_real(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->real;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.imag       ->  real
 | |
|  *    cmp.imaginary  ->  real
 | |
|  *
 | |
|  * Returns the imaginary part.
 | |
|  *
 | |
|  *    Complex(7).imaginary      #=> 0
 | |
|  *    Complex(9, -4).imaginary  #=> -4
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_imag(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->imag;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    -cmp  ->  complex
 | |
|  *
 | |
|  * Returns negation of the value.
 | |
|  *
 | |
|  *    -Complex(1, 2)  #=> (-1-2i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_negate(VALUE self)
 | |
| {
 | |
|   get_dat1(self);
 | |
|   return f_complex_new2(CLASS_OF(self),
 | |
| 			f_negate(dat->real), f_negate(dat->imag));
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_addsub(VALUE self, VALUE other,
 | |
| 	 VALUE (*func)(VALUE, VALUE), ID id)
 | |
| {
 | |
|     if (k_complex_p(other)) {
 | |
| 	VALUE real, imag;
 | |
| 
 | |
| 	get_dat2(self, other);
 | |
| 
 | |
| 	real = (*func)(adat->real, bdat->real);
 | |
| 	imag = (*func)(adat->imag, bdat->imag);
 | |
| 
 | |
| 	return f_complex_new2(CLASS_OF(self), real, imag);
 | |
|     }
 | |
|     if (k_numeric_p(other) && f_real_p(other)) {
 | |
| 	get_dat1(self);
 | |
| 
 | |
| 	return f_complex_new2(CLASS_OF(self),
 | |
| 			      (*func)(dat->real, other), dat->imag);
 | |
|     }
 | |
|     return rb_num_coerce_bin(self, other, id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp + numeric  ->  complex
 | |
|  *
 | |
|  * Performs addition.
 | |
|  *
 | |
|  *    Complex(2, 3)  + Complex(2, 3)   #=> (4+6i)
 | |
|  *    Complex(900)   + Complex(1)      #=> (901+0i)
 | |
|  *    Complex(-2, 9) + Complex(-9, 2)  #=> (-11+11i)
 | |
|  *    Complex(9, 8)  + 4               #=> (13+8i)
 | |
|  *    Complex(20, 9) + 9.8             #=> (29.8+9i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_add(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_addsub(self, other, f_add, '+');
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp - numeric  ->  complex
 | |
|  *
 | |
|  * Performs subtraction.
 | |
|  *
 | |
|  *    Complex(2, 3)  - Complex(2, 3)   #=> (0+0i)
 | |
|  *    Complex(900)   - Complex(1)      #=> (899+0i)
 | |
|  *    Complex(-2, 9) - Complex(-9, 2)  #=> (7+7i)
 | |
|  *    Complex(9, 8)  - 4               #=> (5+8i)
 | |
|  *    Complex(20, 9) - 9.8             #=> (10.2+9i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_sub(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_addsub(self, other, f_sub, '-');
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp * numeric  ->  complex
 | |
|  *
 | |
|  * Performs multiplication.
 | |
|  *
 | |
|  *    Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
 | |
|  *    Complex(900)   * Complex(1)      #=> (900+0i)
 | |
|  *    Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
 | |
|  *    Complex(9, 8)  * 4               #=> (36+32i)
 | |
|  *    Complex(20, 9) * 9.8             #=> (196.0+88.2i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_mul(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_complex_p(other)) {
 | |
| 	VALUE real, imag;
 | |
| 
 | |
| 	get_dat2(self, other);
 | |
| 
 | |
| 	real = f_sub(f_mul(adat->real, bdat->real),
 | |
| 		     f_mul(adat->imag, bdat->imag));
 | |
| 	imag = f_add(f_mul(adat->real, bdat->imag),
 | |
| 		     f_mul(adat->imag, bdat->real));
 | |
| 
 | |
| 	return f_complex_new2(CLASS_OF(self), real, imag);
 | |
|     }
 | |
|     if (k_numeric_p(other) && f_real_p(other)) {
 | |
| 	get_dat1(self);
 | |
| 
 | |
| 	return f_complex_new2(CLASS_OF(self),
 | |
| 			      f_mul(dat->real, other),
 | |
| 			      f_mul(dat->imag, other));
 | |
|     }
 | |
|     return rb_num_coerce_bin(self, other, '*');
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_divide(VALUE self, VALUE other,
 | |
| 	 VALUE (*func)(VALUE, VALUE), ID id)
 | |
| {
 | |
|     if (k_complex_p(other)) {
 | |
| 	int flo;
 | |
| 	get_dat2(self, other);
 | |
| 
 | |
| 	flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
 | |
| 	       k_float_p(bdat->real) || k_float_p(bdat->imag));
 | |
| 
 | |
| 	if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
 | |
| 	    VALUE r, n;
 | |
| 
 | |
| 	    r = (*func)(bdat->imag, bdat->real);
 | |
| 	    n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
 | |
| 	    if (flo)
 | |
| 		return f_complex_new2(CLASS_OF(self),
 | |
| 				      (*func)(self, n),
 | |
| 				      (*func)(f_negate(f_mul(self, r)), n));
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  (*func)(f_add(adat->real,
 | |
| 						f_mul(adat->imag, r)), n),
 | |
| 				  (*func)(f_sub(adat->imag,
 | |
| 						f_mul(adat->real, r)), n));
 | |
| 	}
 | |
| 	else {
 | |
| 	    VALUE r, n;
 | |
| 
 | |
| 	    r = (*func)(bdat->real, bdat->imag);
 | |
| 	    n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
 | |
| 	    if (flo)
 | |
| 		return f_complex_new2(CLASS_OF(self),
 | |
| 				      (*func)(f_mul(self, r), n),
 | |
| 				      (*func)(f_negate(self), n));
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  (*func)(f_add(f_mul(adat->real, r),
 | |
| 						adat->imag), n),
 | |
| 				  (*func)(f_sub(f_mul(adat->imag, r),
 | |
| 						adat->real), n));
 | |
| 	}
 | |
|     }
 | |
|     if (k_numeric_p(other) && f_real_p(other)) {
 | |
| 	get_dat1(self);
 | |
| 
 | |
| 	return f_complex_new2(CLASS_OF(self),
 | |
| 			      (*func)(dat->real, other),
 | |
| 			      (*func)(dat->imag, other));
 | |
|     }
 | |
|     return rb_num_coerce_bin(self, other, id);
 | |
| }
 | |
| 
 | |
| #define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp / numeric     ->  complex
 | |
|  *    cmp.quo(numeric)  ->  complex
 | |
|  *
 | |
|  * Performs division.
 | |
|  *
 | |
|  *    Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
 | |
|  *    Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
 | |
|  *    Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
 | |
|  *    Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
 | |
|  *    Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_div(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_divide(self, other, f_quo, id_quo);
 | |
| }
 | |
| 
 | |
| #define nucomp_quo nucomp_div
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.fdiv(numeric)  ->  complex
 | |
|  *
 | |
|  * Performs division as each part is a float, never returns a float.
 | |
|  *
 | |
|  *    Complex(11, 22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_fdiv(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_divide(self, other, f_fdiv, id_fdiv);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_reciprocal(VALUE x)
 | |
| {
 | |
|     return f_quo(ONE, x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp ** numeric  ->  complex
 | |
|  *
 | |
|  * Performs exponentiation.
 | |
|  *
 | |
|  *    Complex('i') ** 2              #=> (-1+0i)
 | |
|  *    Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_expt(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_numeric_p(other) && k_exact_zero_p(other))
 | |
| 	return f_complex_new_bang1(CLASS_OF(self), ONE);
 | |
| 
 | |
|     if (k_rational_p(other) && f_one_p(f_denominator(other)))
 | |
| 	other = f_numerator(other); /* c14n */
 | |
| 
 | |
|     if (k_complex_p(other)) {
 | |
| 	get_dat1(other);
 | |
| 
 | |
| 	if (k_exact_zero_p(dat->imag))
 | |
| 	    other = dat->real; /* c14n */
 | |
|     }
 | |
| 
 | |
|     if (k_complex_p(other)) {
 | |
| 	VALUE r, theta, nr, ntheta;
 | |
| 
 | |
| 	get_dat1(other);
 | |
| 
 | |
| 	r = f_abs(self);
 | |
| 	theta = f_arg(self);
 | |
| 
 | |
| 	nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
 | |
| 			      f_mul(dat->imag, theta)));
 | |
| 	ntheta = f_add(f_mul(theta, dat->real),
 | |
| 		       f_mul(dat->imag, m_log_bang(r)));
 | |
| 	return f_complex_polar(CLASS_OF(self), nr, ntheta);
 | |
|     }
 | |
|     if (k_fixnum_p(other)) {
 | |
| 	if (f_gt_p(other, ZERO)) {
 | |
| 	    VALUE x, z;
 | |
| 	    long n;
 | |
| 
 | |
| 	    x = self;
 | |
| 	    z = x;
 | |
| 	    n = FIX2LONG(other) - 1;
 | |
| 
 | |
| 	    while (n) {
 | |
| 		long q, r;
 | |
| 
 | |
| 		while (1) {
 | |
| 		    get_dat1(x);
 | |
| 
 | |
| 		    q = n / 2;
 | |
| 		    r = n % 2;
 | |
| 
 | |
| 		    if (r)
 | |
| 			break;
 | |
| 
 | |
| 		    x = nucomp_s_new_internal(CLASS_OF(self),
 | |
| 				       f_sub(f_mul(dat->real, dat->real),
 | |
| 					     f_mul(dat->imag, dat->imag)),
 | |
| 				       f_mul(f_mul(TWO, dat->real), dat->imag));
 | |
| 		    n = q;
 | |
| 		}
 | |
| 		z = f_mul(z, x);
 | |
| 		n--;
 | |
| 	    }
 | |
| 	    return z;
 | |
| 	}
 | |
| 	return f_expt(f_reciprocal(self), f_negate(other));
 | |
|     }
 | |
|     if (k_numeric_p(other) && f_real_p(other)) {
 | |
| 	VALUE r, theta;
 | |
| 
 | |
| 	if (k_bignum_p(other))
 | |
| 	    rb_warn("in a**b, b may be too big");
 | |
| 
 | |
| 	r = f_abs(self);
 | |
| 	theta = f_arg(self);
 | |
| 
 | |
| 	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
 | |
| 			       f_mul(theta, other));
 | |
|     }
 | |
|     return rb_num_coerce_bin(self, other, id_expt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp == object  ->  true or false
 | |
|  *
 | |
|  * Returns true if cmp equals object numerically.
 | |
|  *
 | |
|  *    Complex(2, 3)  == Complex(2, 3)   #=> true
 | |
|  *    Complex(5)     == 5               #=> true
 | |
|  *    Complex(0)     == 0.0             #=> true
 | |
|  *    Complex('1/3') == 0.33            #=> false
 | |
|  *    Complex('1/2') == '1/2'           #=> false
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_eqeq_p(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_complex_p(other)) {
 | |
| 	get_dat2(self, other);
 | |
| 
 | |
| 	return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
 | |
| 			  f_eqeq_p(adat->imag, bdat->imag));
 | |
|     }
 | |
|     if (k_numeric_p(other) && f_real_p(other)) {
 | |
| 	get_dat1(self);
 | |
| 
 | |
| 	return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
 | |
|     }
 | |
|     return f_eqeq_p(other, self);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_coerce(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_numeric_p(other) && f_real_p(other))
 | |
| 	return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
 | |
|     if (RB_TYPE_P(other, T_COMPLEX))
 | |
| 	return rb_assoc_new(other, self);
 | |
| 
 | |
|     rb_raise(rb_eTypeError, "%s can't be coerced into %s",
 | |
| 	     rb_obj_classname(other), rb_obj_classname(self));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.abs        ->  real
 | |
|  *    cmp.magnitude  ->  real
 | |
|  *
 | |
|  * Returns the absolute part of its polar form.
 | |
|  *
 | |
|  *    Complex(-1).abs         #=> 1
 | |
|  *    Complex(3.0, -4.0).abs  #=> 5.0
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_abs(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (f_zero_p(dat->real)) {
 | |
| 	VALUE a = f_abs(dat->imag);
 | |
| 	if (k_float_p(dat->real) && !k_float_p(dat->imag))
 | |
| 	    a = f_to_f(a);
 | |
| 	return a;
 | |
|     }
 | |
|     if (f_zero_p(dat->imag)) {
 | |
| 	VALUE a = f_abs(dat->real);
 | |
| 	if (!k_float_p(dat->real) && k_float_p(dat->imag))
 | |
| 	    a = f_to_f(a);
 | |
| 	return a;
 | |
|     }
 | |
|     return m_hypot(dat->real, dat->imag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.abs2  ->  real
 | |
|  *
 | |
|  * Returns square of the absolute value.
 | |
|  *
 | |
|  *    Complex(-1).abs2         #=> 1
 | |
|  *    Complex(3.0, -4.0).abs2  #=> 25.0
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_abs2(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_add(f_mul(dat->real, dat->real),
 | |
| 		 f_mul(dat->imag, dat->imag));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.arg    ->  float
 | |
|  *    cmp.angle  ->  float
 | |
|  *    cmp.phase  ->  float
 | |
|  *
 | |
|  * Returns the angle part of its polar form.
 | |
|  *
 | |
|  *    Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_arg(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return m_atan2_bang(dat->imag, dat->real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.rect         ->  array
 | |
|  *    cmp.rectangular  ->  array
 | |
|  *
 | |
|  * Returns an array; [cmp.real, cmp.imag].
 | |
|  *
 | |
|  *    Complex(1, 2).rectangular  #=> [1, 2]
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_rect(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_assoc_new(dat->real, dat->imag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.polar  ->  array
 | |
|  *
 | |
|  * Returns an array; [cmp.abs, cmp.arg].
 | |
|  *
 | |
|  *    Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_polar(VALUE self)
 | |
| {
 | |
|     return rb_assoc_new(f_abs(self), f_arg(self));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.conj       ->  complex
 | |
|  *    cmp.conjugate  ->  complex
 | |
|  *
 | |
|  * Returns the complex conjugate.
 | |
|  *
 | |
|  *    Complex(1, 2).conjugate  #=> (1-2i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_conj(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_true(VALUE self)
 | |
| {
 | |
|     return Qtrue;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.real?  ->  false
 | |
|  *
 | |
|  * Returns false.
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_false(VALUE self)
 | |
| {
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_exact_p(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_inexact_p(VALUE self)
 | |
| {
 | |
|     return f_boolcast(!nucomp_exact_p(self));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.denominator  ->  integer
 | |
|  *
 | |
|  * Returns the denominator (lcm of both denominator - real and imag).
 | |
|  *
 | |
|  * See numerator.
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_denominator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.numerator  ->  numeric
 | |
|  *
 | |
|  * Returns the numerator.
 | |
|  *
 | |
|  *        1   2       3+4i  <-  numerator
 | |
|  *        - + -i  ->  ----
 | |
|  *        2   3        6    <-  denominator
 | |
|  *
 | |
|  *    c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
 | |
|  *    n = c.numerator          #=> (3+4i)
 | |
|  *    d = c.denominator        #=> 6
 | |
|  *    n / d                    #=> ((1/2)+(2/3)*i)
 | |
|  *    Complex(Rational(n.real, d), Rational(n.imag, d))
 | |
|  *                             #=> ((1/2)+(2/3)*i)
 | |
|  * See denominator.
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_numerator(VALUE self)
 | |
| {
 | |
|     VALUE cd;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     cd = f_denominator(self);
 | |
|     return f_complex_new2(CLASS_OF(self),
 | |
| 			  f_mul(f_numerator(dat->real),
 | |
| 				f_div(cd, f_denominator(dat->real))),
 | |
| 			  f_mul(f_numerator(dat->imag),
 | |
| 				f_div(cd, f_denominator(dat->imag))));
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_hash(VALUE self)
 | |
| {
 | |
|     st_index_t v, h[2];
 | |
|     VALUE n;
 | |
| 
 | |
|     get_dat1(self);
 | |
|     n = rb_hash(dat->real);
 | |
|     h[0] = NUM2LONG(n);
 | |
|     n = rb_hash(dat->imag);
 | |
|     h[1] = NUM2LONG(n);
 | |
|     v = rb_memhash(h, sizeof(h));
 | |
|     return LONG2FIX(v);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_eql_p(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_complex_p(other)) {
 | |
| 	get_dat2(self, other);
 | |
| 
 | |
| 	return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
 | |
| 			  (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
 | |
| 			  f_eqeq_p(self, other));
 | |
| 
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_signbit(VALUE x)
 | |
| {
 | |
| #if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
 | |
|     !defined(signbit)
 | |
|     extern int signbit(double);
 | |
| #endif
 | |
|     switch (TYPE(x)) {
 | |
|       case T_FLOAT: {
 | |
| 	double f = RFLOAT_VALUE(x);
 | |
| 	return f_boolcast(!isnan(f) && signbit(f));
 | |
|       }
 | |
|     }
 | |
|     return f_negative_p(x);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_tpositive_p(VALUE x)
 | |
| {
 | |
|     return f_boolcast(!f_signbit(x));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| f_format(VALUE self, VALUE (*func)(VALUE))
 | |
| {
 | |
|     VALUE s, impos;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     impos = f_tpositive_p(dat->imag);
 | |
| 
 | |
|     s = (*func)(dat->real);
 | |
|     rb_str_cat2(s, !impos ? "-" : "+");
 | |
| 
 | |
|     rb_str_concat(s, (*func)(f_abs(dat->imag)));
 | |
|     if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
 | |
| 	rb_str_cat2(s, "*");
 | |
|     rb_str_cat2(s, "i");
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.to_s  ->  string
 | |
|  *
 | |
|  * Returns the value as a string.
 | |
|  *
 | |
|  *    Complex(2).to_s                       #=> "2+0i"
 | |
|  *    Complex('-8/6').to_s                  #=> "-4/3+0i"
 | |
|  *    Complex('1/2i').to_s                  #=> "0+1/2i"
 | |
|  *    Complex(0, Float::INFINITY).to_s      #=> "0+Infinity*i"
 | |
|  *    Complex(Float::NAN, Float::NAN).to_s  #=> "NaN+NaN*i"
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_to_s(VALUE self)
 | |
| {
 | |
|     return f_format(self, f_to_s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.inspect  ->  string
 | |
|  *
 | |
|  * Returns the value as a string for inspection.
 | |
|  *
 | |
|  *    Complex(2).inspect                       #=> "(2+0i)"
 | |
|  *    Complex('-8/6').inspect                  #=> "((-4/3)+0i)"
 | |
|  *    Complex('1/2i').inspect                  #=> "(0+(1/2)*i)"
 | |
|  *    Complex(0, Float::INFINITY).inspect      #=> "(0+Infinity*i)"
 | |
|  *    Complex(Float::NAN, Float::NAN).inspect  #=> "(NaN+NaN*i)"
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_inspect(VALUE self)
 | |
| {
 | |
|     VALUE s;
 | |
| 
 | |
|     s = rb_usascii_str_new2("(");
 | |
|     rb_str_concat(s, f_format(self, f_inspect));
 | |
|     rb_str_cat2(s, ")");
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_dumper(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_loader(VALUE self, VALUE a)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     dat->real = rb_ivar_get(a, id_i_real);
 | |
|     dat->imag = rb_ivar_get(a, id_i_imag);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_marshal_dump(VALUE self)
 | |
| {
 | |
|     VALUE a;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     a = rb_assoc_new(dat->real, dat->imag);
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nucomp_marshal_load(VALUE self, VALUE a)
 | |
| {
 | |
|     Check_Type(a, T_ARRAY);
 | |
|     if (RARRAY_LEN(a) != 2)
 | |
| 	rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
 | |
|     rb_ivar_set(self, id_i_real, RARRAY_PTR(a)[0]);
 | |
|     rb_ivar_set(self, id_i_imag, RARRAY_PTR(a)[1]);
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* --- */
 | |
| 
 | |
| VALUE
 | |
| rb_complex_raw(VALUE x, VALUE y)
 | |
| {
 | |
|     return nucomp_s_new_internal(rb_cComplex, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_complex_new(VALUE x, VALUE y)
 | |
| {
 | |
|     return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_complex_polar(VALUE x, VALUE y)
 | |
| {
 | |
|     return f_complex_polar(rb_cComplex, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
 | |
| 
 | |
| VALUE
 | |
| rb_Complex(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE a[2];
 | |
|     a[0] = x;
 | |
|     a[1] = y;
 | |
|     return nucomp_s_convert(2, a, rb_cComplex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.to_i  ->  integer
 | |
|  *
 | |
|  * Returns the value as an integer if possible (the imaginary part
 | |
|  * should be exactly zero).
 | |
|  *
 | |
|  *    Complex(1, 0).to_i    #=> 1
 | |
|  *    Complex(1, 0.0).to_i  # RangeError
 | |
|  *    Complex(1, 2).to_i    # RangeError
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_to_i(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Integer",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_i(dat->real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.to_f  ->  float
 | |
|  *
 | |
|  * Returns the value as a float if possible (the imaginary part should
 | |
|  * be exactly zero).
 | |
|  *
 | |
|  *    Complex(1, 0).to_f    #=> 1.0
 | |
|  *    Complex(1, 0.0).to_f  # RangeError
 | |
|  *    Complex(1, 2).to_f    # RangeError
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_to_f(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Float",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_f(dat->real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.to_r  ->  rational
 | |
|  *
 | |
|  * Returns the value as a rational if possible (the imaginary part
 | |
|  * should be exactly zero).
 | |
|  *
 | |
|  *    Complex(1, 0).to_r    #=> (1/1)
 | |
|  *    Complex(1, 0.0).to_r  # RangeError
 | |
|  *    Complex(1, 2).to_r    # RangeError
 | |
|  *
 | |
|  * See rationalize.
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_to_r(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Rational",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_r(dat->real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    cmp.rationalize([eps])  ->  rational
 | |
|  *
 | |
|  * Returns the value as a rational if possible (the imaginary part
 | |
|  * should be exactly zero).
 | |
|  *
 | |
|  *    Complex(1.0/3, 0).rationalize  #=> (1/3)
 | |
|  *    Complex(1, 0.0).rationalize    # RangeError
 | |
|  *    Complex(1, 2).rationalize      # RangeError
 | |
|  *
 | |
|  * See to_r.
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_rationalize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", NULL);
 | |
| 
 | |
|     if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
 | |
|        VALUE s = f_to_s(self);
 | |
|        rb_raise(rb_eRangeError, "can't convert %s into Rational",
 | |
|                 StringValuePtr(s));
 | |
|     }
 | |
|     return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    complex.to_c  ->  self
 | |
|  *
 | |
|  * Returns self.
 | |
|  *
 | |
|  *    Complex(2).to_c      #=> (2+0i)
 | |
|  *    Complex(-8, 6).to_c  #=> (-8+6i)
 | |
|  */
 | |
| static VALUE
 | |
| nucomp_to_c(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    nil.to_c  ->  (0+0i)
 | |
|  *
 | |
|  * Returns zero as a complex.
 | |
|  */
 | |
| static VALUE
 | |
| nilclass_to_c(VALUE self)
 | |
| {
 | |
|     return rb_complex_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.to_c  ->  complex
 | |
|  *
 | |
|  * Returns the value as a complex.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_to_c(VALUE self)
 | |
| {
 | |
|     return rb_complex_new1(self);
 | |
| }
 | |
| 
 | |
| #include <ctype.h>
 | |
| 
 | |
| inline static int
 | |
| issign(int c)
 | |
| {
 | |
|     return (c == '-' || c == '+');
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_sign(const char **s,
 | |
| 	  char **b)
 | |
| {
 | |
|     int sign = '?';
 | |
| 
 | |
|     if (issign(**s)) {
 | |
| 	sign = **b = **s;
 | |
| 	(*s)++;
 | |
| 	(*b)++;
 | |
|     }
 | |
|     return sign;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| isdecimal(int c)
 | |
| {
 | |
|     return isdigit((unsigned char)c);
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_digits(const char **s, int strict,
 | |
| 	    char **b)
 | |
| {
 | |
|     int us = 1;
 | |
| 
 | |
|     if (!isdecimal(**s))
 | |
| 	return 0;
 | |
| 
 | |
|     while (isdecimal(**s) || **s == '_') {
 | |
| 	if (**s == '_') {
 | |
| 	    if (strict) {
 | |
| 		if (us)
 | |
| 		    return 0;
 | |
| 	    }
 | |
| 	    us = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 	    **b = **s;
 | |
| 	    (*b)++;
 | |
| 	    us = 0;
 | |
| 	}
 | |
| 	(*s)++;
 | |
|     }
 | |
|     if (us)
 | |
| 	do {
 | |
| 	    (*s)--;
 | |
| 	} while (**s == '_');
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| islettere(int c)
 | |
| {
 | |
|     return (c == 'e' || c == 'E');
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_num(const char **s, int strict,
 | |
| 	 char **b)
 | |
| {
 | |
|     if (**s != '.') {
 | |
| 	if (!read_digits(s, strict, b))
 | |
| 	    return 0;
 | |
|     }
 | |
| 
 | |
|     if (**s == '.') {
 | |
| 	**b = **s;
 | |
| 	(*s)++;
 | |
| 	(*b)++;
 | |
| 	if (!read_digits(s, strict, b)) {
 | |
| 	    (*b)--;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (islettere(**s)) {
 | |
| 	**b = **s;
 | |
| 	(*s)++;
 | |
| 	(*b)++;
 | |
| 	read_sign(s, b);
 | |
| 	if (!read_digits(s, strict, b)) {
 | |
| 	    (*b)--;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| read_den(const char **s, int strict,
 | |
| 	 char **b)
 | |
| {
 | |
|     if (!read_digits(s, strict, b))
 | |
| 	return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_rat_nos(const char **s, int strict,
 | |
| 	     char **b)
 | |
| {
 | |
|     if (!read_num(s, strict, b))
 | |
| 	return 0;
 | |
|     if (**s == '/') {
 | |
| 	**b = **s;
 | |
| 	(*s)++;
 | |
| 	(*b)++;
 | |
| 	if (!read_den(s, strict, b)) {
 | |
| 	    (*b)--;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_rat(const char **s, int strict,
 | |
| 	 char **b)
 | |
| {
 | |
|     read_sign(s, b);
 | |
|     if (!read_rat_nos(s, strict, b))
 | |
| 	return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| isimagunit(int c)
 | |
| {
 | |
|     return (c == 'i' || c == 'I' ||
 | |
| 	    c == 'j' || c == 'J');
 | |
| }
 | |
| 
 | |
| VALUE rb_cstr_to_rat(const char *, int);
 | |
| 
 | |
| static VALUE
 | |
| str2num(char *s)
 | |
| {
 | |
|     if (strchr(s, '/'))
 | |
| 	return rb_cstr_to_rat(s, 0);
 | |
|     if (strpbrk(s, ".eE"))
 | |
| 	return DBL2NUM(rb_cstr_to_dbl(s, 0));
 | |
|     return rb_cstr_to_inum(s, 10, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_comp(const char **s, int strict,
 | |
| 	  VALUE *ret, char **b)
 | |
| {
 | |
|     char *bb;
 | |
|     int sign;
 | |
|     VALUE num, num2;
 | |
| 
 | |
|     bb = *b;
 | |
| 
 | |
|     sign = read_sign(s, b);
 | |
| 
 | |
|     if (isimagunit(**s)) {
 | |
| 	(*s)++;
 | |
| 	num = INT2FIX((sign == '-') ? -1 : + 1);
 | |
| 	*ret = rb_complex_new2(ZERO, num);
 | |
| 	return 1; /* e.g. "i" */
 | |
|     }
 | |
| 
 | |
|     if (!read_rat_nos(s, strict, b)) {
 | |
| 	**b = '\0';
 | |
| 	num = str2num(bb);
 | |
| 	*ret = rb_complex_new2(num, ZERO);
 | |
| 	return 0; /* e.g. "-" */
 | |
|     }
 | |
|     **b = '\0';
 | |
|     num = str2num(bb);
 | |
| 
 | |
|     if (isimagunit(**s)) {
 | |
| 	(*s)++;
 | |
| 	*ret = rb_complex_new2(ZERO, num);
 | |
| 	return 1; /* e.g. "3i" */
 | |
|     }
 | |
| 
 | |
|     if (**s == '@') {
 | |
| 	int st;
 | |
| 
 | |
| 	(*s)++;
 | |
| 	bb = *b;
 | |
| 	st = read_rat(s, strict, b);
 | |
| 	**b = '\0';
 | |
| 	if (strlen(bb) < 1 ||
 | |
| 	    !isdecimal(*(bb + strlen(bb) - 1))) {
 | |
| 	    *ret = rb_complex_new2(num, ZERO);
 | |
| 	    return 0; /* e.g. "1@-" */
 | |
| 	}
 | |
| 	num2 = str2num(bb);
 | |
| 	*ret = rb_complex_polar(num, num2);
 | |
| 	if (!st)
 | |
| 	    return 0; /* e.g. "1@2." */
 | |
| 	else
 | |
| 	    return 1; /* e.g. "1@2" */
 | |
|     }
 | |
| 
 | |
|     if (issign(**s)) {
 | |
| 	bb = *b;
 | |
| 	sign = read_sign(s, b);
 | |
| 	if (isimagunit(**s))
 | |
| 	    num2 = INT2FIX((sign == '-') ? -1 : + 1);
 | |
| 	else {
 | |
| 	    if (!read_rat_nos(s, strict, b)) {
 | |
| 		*ret = rb_complex_new2(num, ZERO);
 | |
| 		return 0; /* e.g. "1+xi" */
 | |
| 	    }
 | |
| 	    **b = '\0';
 | |
| 	    num2 = str2num(bb);
 | |
| 	}
 | |
| 	if (!isimagunit(**s)) {
 | |
| 	    *ret = rb_complex_new2(num, ZERO);
 | |
| 	    return 0; /* e.g. "1+3x" */
 | |
| 	}
 | |
| 	(*s)++;
 | |
| 	*ret = rb_complex_new2(num, num2);
 | |
| 	return 1; /* e.g. "1+2i" */
 | |
|     }
 | |
|     /* !(@, - or +) */
 | |
|     {
 | |
| 	*ret = rb_complex_new2(num, ZERO);
 | |
| 	return 1; /* e.g. "3" */
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static void
 | |
| skip_ws(const char **s)
 | |
| {
 | |
|     while (isspace((unsigned char)**s))
 | |
| 	(*s)++;
 | |
| }
 | |
| 
 | |
| static int
 | |
| parse_comp(const char *s, int strict,
 | |
| 	   VALUE *num)
 | |
| {
 | |
|     char *buf, *b;
 | |
| 
 | |
|     buf = ALLOCA_N(char, strlen(s) + 1);
 | |
|     b = buf;
 | |
| 
 | |
|     skip_ws(&s);
 | |
|     if (!read_comp(&s, strict, num, &b))
 | |
| 	return 0;
 | |
|     skip_ws(&s);
 | |
| 
 | |
|     if (strict)
 | |
| 	if (*s != '\0')
 | |
| 	    return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| string_to_c_strict(VALUE self)
 | |
| {
 | |
|     char *s;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_must_asciicompat(self);
 | |
| 
 | |
|     s = RSTRING_PTR(self);
 | |
| 
 | |
|     if (!s || memchr(s, '\0', RSTRING_LEN(self)))
 | |
| 	rb_raise(rb_eArgError, "string contains null byte");
 | |
| 
 | |
|     if (s && s[RSTRING_LEN(self)]) {
 | |
| 	rb_str_modify(self);
 | |
| 	s = RSTRING_PTR(self);
 | |
| 	s[RSTRING_LEN(self)] = '\0';
 | |
|     }
 | |
| 
 | |
|     if (!s)
 | |
| 	s = (char *)"";
 | |
| 
 | |
|     if (!parse_comp(s, 1, &num)) {
 | |
| 	VALUE ins = f_inspect(self);
 | |
| 	rb_raise(rb_eArgError, "invalid value for convert(): %s",
 | |
| 		 StringValuePtr(ins));
 | |
|     }
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    str.to_c  ->  complex
 | |
|  *
 | |
|  * Returns a complex which denotes the string form.  The parser
 | |
|  * ignores leading whitespaces and trailing garbage.  Any digit
 | |
|  * sequences can be separated by an underscore.  Returns zero for null
 | |
|  * or garbage string.
 | |
|  *
 | |
|  *    '9'.to_c           #=> (9+0i)
 | |
|  *    '2.5'.to_c         #=> (2.5+0i)
 | |
|  *    '2.5/1'.to_c       #=> ((5/2)+0i)
 | |
|  *    '-3/2'.to_c        #=> ((-3/2)+0i)
 | |
|  *    '-i'.to_c          #=> (0-1i)
 | |
|  *    '45i'.to_c         #=> (0+45i)
 | |
|  *    '3-4i'.to_c        #=> (3-4i)
 | |
|  *    '-4e2-4e-2i'.to_c  #=> (-400.0-0.04i)
 | |
|  *    '-0.0-0.0i'.to_c   #=> (-0.0-0.0i)
 | |
|  *    '1/2+3/4i'.to_c    #=> ((1/2)+(3/4)*i)
 | |
|  *    'ruby'.to_c        #=> (0+0i)
 | |
|  */
 | |
| static VALUE
 | |
| string_to_c(VALUE self)
 | |
| {
 | |
|     char *s;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_must_asciicompat(self);
 | |
| 
 | |
|     s = RSTRING_PTR(self);
 | |
| 
 | |
|     if (s && s[RSTRING_LEN(self)]) {
 | |
| 	rb_str_modify(self);
 | |
| 	s = RSTRING_PTR(self);
 | |
| 	s[RSTRING_LEN(self)] = '\0';
 | |
|     }
 | |
| 
 | |
|     if (!s)
 | |
| 	s = (char *)"";
 | |
| 
 | |
|     (void)parse_comp(s, 0, &num);
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE a1, a2, backref;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &a1, &a2);
 | |
| 
 | |
|     if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
 | |
| 	rb_raise(rb_eTypeError, "can't convert nil into Complex");
 | |
| 
 | |
|     backref = rb_backref_get();
 | |
|     rb_match_busy(backref);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a1 = string_to_c_strict(a1);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a2 = string_to_c_strict(a2);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     rb_backref_set(backref);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat1(a1);
 | |
| 
 | |
| 	    if (k_exact_zero_p(dat->imag))
 | |
| 		a1 = dat->real;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat1(a2);
 | |
| 
 | |
| 	    if (k_exact_zero_p(dat->imag))
 | |
| 		a2 = dat->real;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_COMPLEX:
 | |
| 	if (argc == 1 || (k_exact_zero_p(a2)))
 | |
| 	    return a1;
 | |
|     }
 | |
| 
 | |
|     if (argc == 1) {
 | |
| 	if (k_numeric_p(a1) && !f_real_p(a1))
 | |
| 	    return a1;
 | |
| 	/* should raise exception for consistency */
 | |
| 	if (!k_numeric_p(a1))
 | |
| 	    return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
 | |
|     }
 | |
|     else {
 | |
| 	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
 | |
| 	    (!f_real_p(a1) || !f_real_p(a2)))
 | |
| 	    return f_add(a1,
 | |
| 			 f_mul(a2,
 | |
| 			       f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
 | |
|     }
 | |
| 
 | |
|     {
 | |
| 	VALUE argv2[2];
 | |
| 	argv2[0] = a1;
 | |
| 	argv2[1] = a2;
 | |
| 	return nucomp_s_new(argc, argv2, klass);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* --- */
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.real  ->  self
 | |
|  *
 | |
|  * Returns self.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_real(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.imag       ->  0
 | |
|  *    num.imaginary  ->  0
 | |
|  *
 | |
|  * Returns zero.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_imag(VALUE self)
 | |
| {
 | |
|     return INT2FIX(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.abs2  ->  real
 | |
|  *
 | |
|  * Returns square of self.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_abs2(VALUE self)
 | |
| {
 | |
|     return f_mul(self, self);
 | |
| }
 | |
| 
 | |
| #define id_PI rb_intern("PI")
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.arg    ->  0 or float
 | |
|  *    num.angle  ->  0 or float
 | |
|  *    num.phase  ->  0 or float
 | |
|  *
 | |
|  * Returns 0 if the value is positive, pi otherwise.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_arg(VALUE self)
 | |
| {
 | |
|     if (f_positive_p(self))
 | |
| 	return INT2FIX(0);
 | |
|     return rb_const_get(rb_mMath, id_PI);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.rect  ->  array
 | |
|  *
 | |
|  * Returns an array; [num, 0].
 | |
|  */
 | |
| static VALUE
 | |
| numeric_rect(VALUE self)
 | |
| {
 | |
|     return rb_assoc_new(self, INT2FIX(0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.polar  ->  array
 | |
|  *
 | |
|  * Returns an array; [num.abs, num.arg].
 | |
|  */
 | |
| static VALUE
 | |
| numeric_polar(VALUE self)
 | |
| {
 | |
|     return rb_assoc_new(f_abs(self), f_arg(self));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.conj       ->  self
 | |
|  *    num.conjugate  ->  self
 | |
|  *
 | |
|  * Returns self.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_conj(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    flo.arg    ->  0 or float
 | |
|  *    flo.angle  ->  0 or float
 | |
|  *    flo.phase  ->  0 or float
 | |
|  *
 | |
|  * Returns 0 if the value is positive, pi otherwise.
 | |
|  */
 | |
| static VALUE
 | |
| float_arg(VALUE self)
 | |
| {
 | |
|     if (isnan(RFLOAT_VALUE(self)))
 | |
| 	return self;
 | |
|     if (f_tpositive_p(self))
 | |
| 	return INT2FIX(0);
 | |
|     return rb_const_get(rb_mMath, id_PI);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A complex number can be represented as a paired real number with
 | |
|  * imaginary unit; a+bi.  Where a is real part, b is imaginary part
 | |
|  * and i is imaginary unit.  Real a equals complex a+0i
 | |
|  * mathematically.
 | |
|  *
 | |
|  * In ruby, you can create complex object with Complex, Complex::rect,
 | |
|  * Complex::polar or to_c method.
 | |
|  *
 | |
|  *    Complex(1)           #=> (1+0i)
 | |
|  *    Complex(2, 3)        #=> (2+3i)
 | |
|  *    Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
 | |
|  *    3.to_c               #=> (3+0i)
 | |
|  *
 | |
|  * You can also create complex object from floating-point numbers or
 | |
|  * strings.
 | |
|  *
 | |
|  *    Complex(0.3)         #=> (0.3+0i)
 | |
|  *    Complex('0.3-0.5i')  #=> (0.3-0.5i)
 | |
|  *    Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
 | |
|  *    Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)
 | |
|  *
 | |
|  *    0.3.to_c             #=> (0.3+0i)
 | |
|  *    '0.3-0.5i'.to_c      #=> (0.3-0.5i)
 | |
|  *    '2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
 | |
|  *    '1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)
 | |
|  *
 | |
|  * A complex object is either an exact or an inexact number.
 | |
|  *
 | |
|  *    Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
 | |
|  *    Complex(1, 1) / 2.0  #=> (0.5+0.5i)
 | |
|  */
 | |
| void
 | |
| Init_Complex(void)
 | |
| {
 | |
|     VALUE compat;
 | |
| #undef rb_intern
 | |
| #define rb_intern(str) rb_intern_const(str)
 | |
| 
 | |
|     assert(fprintf(stderr, "assert() is now active\n"));
 | |
| 
 | |
|     id_abs = rb_intern("abs");
 | |
|     id_abs2 = rb_intern("abs2");
 | |
|     id_arg = rb_intern("arg");
 | |
|     id_cmp = rb_intern("<=>");
 | |
|     id_conj = rb_intern("conj");
 | |
|     id_convert = rb_intern("convert");
 | |
|     id_denominator = rb_intern("denominator");
 | |
|     id_divmod = rb_intern("divmod");
 | |
|     id_eqeq_p = rb_intern("==");
 | |
|     id_expt = rb_intern("**");
 | |
|     id_fdiv = rb_intern("fdiv");
 | |
|     id_floor = rb_intern("floor");
 | |
|     id_idiv = rb_intern("div");
 | |
|     id_imag = rb_intern("imag");
 | |
|     id_inspect = rb_intern("inspect");
 | |
|     id_negate = rb_intern("-@");
 | |
|     id_numerator = rb_intern("numerator");
 | |
|     id_quo = rb_intern("quo");
 | |
|     id_real = rb_intern("real");
 | |
|     id_real_p = rb_intern("real?");
 | |
|     id_to_f = rb_intern("to_f");
 | |
|     id_to_i = rb_intern("to_i");
 | |
|     id_to_r = rb_intern("to_r");
 | |
|     id_to_s = rb_intern("to_s");
 | |
|     id_i_real = rb_intern("@real");
 | |
|     id_i_imag = rb_intern("@image"); /* @image, not @imag */
 | |
| 
 | |
|     rb_cComplex = rb_define_class("Complex", rb_cNumeric);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
 | |
|     rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
 | |
| 
 | |
| #if 0
 | |
|     rb_define_private_method(CLASS_OF(rb_cComplex), "new!", nucomp_s_new_bang, -1);
 | |
|     rb_define_private_method(CLASS_OF(rb_cComplex), "new", nucomp_s_new, -1);
 | |
| #else
 | |
|     rb_undef_method(CLASS_OF(rb_cComplex), "new");
 | |
| #endif
 | |
| 
 | |
|     rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
 | |
|     rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
 | |
|     rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
 | |
| 
 | |
|     rb_define_global_function("Complex", nucomp_f_complex, -1);
 | |
| 
 | |
|     rb_undef_method(rb_cComplex, "%");
 | |
|     rb_undef_method(rb_cComplex, "<");
 | |
|     rb_undef_method(rb_cComplex, "<=");
 | |
|     rb_undef_method(rb_cComplex, "<=>");
 | |
|     rb_undef_method(rb_cComplex, ">");
 | |
|     rb_undef_method(rb_cComplex, ">=");
 | |
|     rb_undef_method(rb_cComplex, "between?");
 | |
|     rb_undef_method(rb_cComplex, "div");
 | |
|     rb_undef_method(rb_cComplex, "divmod");
 | |
|     rb_undef_method(rb_cComplex, "floor");
 | |
|     rb_undef_method(rb_cComplex, "ceil");
 | |
|     rb_undef_method(rb_cComplex, "modulo");
 | |
|     rb_undef_method(rb_cComplex, "remainder");
 | |
|     rb_undef_method(rb_cComplex, "round");
 | |
|     rb_undef_method(rb_cComplex, "step");
 | |
|     rb_undef_method(rb_cComplex, "truncate");
 | |
|     rb_undef_method(rb_cComplex, "i");
 | |
| 
 | |
| #if 0 /* NUBY */
 | |
|     rb_undef_method(rb_cComplex, "//");
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "real", nucomp_real, 0);
 | |
|     rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0);
 | |
|     rb_define_method(rb_cComplex, "imag", nucomp_imag, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "-@", nucomp_negate, 0);
 | |
|     rb_define_method(rb_cComplex, "+", nucomp_add, 1);
 | |
|     rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
 | |
|     rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
 | |
|     rb_define_method(rb_cComplex, "/", nucomp_div, 1);
 | |
|     rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
 | |
|     rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
 | |
|     rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
 | |
|     rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
 | |
|     rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
 | |
|     rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
 | |
|     rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
 | |
|     rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
 | |
|     rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
 | |
|     rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
 | |
|     rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
 | |
|     rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
 | |
|     rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0);
 | |
|     rb_define_method(rb_cComplex, "conj", nucomp_conj, 0);
 | |
| #if 0
 | |
|     rb_define_method(rb_cComplex, "~", nucomp_conj, 0); /* gcc */
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "real?", nucomp_false, 0);
 | |
| #if 0
 | |
|     rb_define_method(rb_cComplex, "complex?", nucomp_true, 0);
 | |
|     rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
 | |
|     rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
 | |
|     rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
 | |
|     rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
 | |
|     rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
 | |
| 
 | |
|     rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
 | |
|     compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
 | |
|     rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
 | |
|     rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
 | |
| 
 | |
|     /* --- */
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
 | |
|     rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
 | |
|     rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
 | |
|     rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
 | |
|     rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
 | |
|     rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
 | |
|     rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
 | |
| 
 | |
|     rb_define_method(rb_cString, "to_c", string_to_c, 0);
 | |
| 
 | |
|     rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
 | |
| 
 | |
|     /* --- */
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "real", numeric_real, 0);
 | |
|     rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
 | |
|     rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
 | |
|     rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
 | |
|     rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
 | |
|     rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
 | |
|     rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
 | |
|     rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
 | |
|     rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
 | |
|     rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
 | |
|     rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
 | |
|     rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "arg", float_arg, 0);
 | |
|     rb_define_method(rb_cFloat, "angle", float_arg, 0);
 | |
|     rb_define_method(rb_cFloat, "phase", float_arg, 0);
 | |
| 
 | |
|     /*
 | |
|      * The imaginary unit.
 | |
|      */
 | |
|     rb_define_const(rb_cComplex, "I",
 | |
| 		    f_complex_new_bang2(rb_cComplex, ZERO, ONE));
 | |
| }
 | |
| 
 | |
| /*
 | |
| Local variables:
 | |
| c-file-style: "ruby"
 | |
| End:
 | |
| */
 |