1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/hash.c
marcandre 4afa9ed041 * array.c: Harmonize documentation, in particular regarding:
- methods returning enumerators
    - array methods and argument naming (array -> ary, an_array -> new_ary)
    - minor improvements, typo fixed and styling issues

  Other documentation errors fixed:
    - return value was self instead of a new array (or vice-versa) for
      Array#{pop,shift,permutation,repeated_permutation,keep_if}
    - Array#rindex was missing the form with a block.

* dir.c: ditto.

* enum.c: ditto. Modified Enumerable#reverse_each' documentation to clarify
  that #each will be finish before any element is yielded.

* error.c: ditto.

* gc.c: ditto.

* hash.c: ditto.

* io.c: ditto. IO#{codepoints,each_codepoint} fixed as per [ruby-core:23948]

* numeric.c: ditto.

* range.c: ditto.

* string.c: ditto.

* struct.c: ditto.

* vm_eval.c: ditto.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@27777 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2010-05-13 05:49:55 +00:00

2939 lines
67 KiB
C

/**********************************************************************
hash.c -
$Author$
created at: Mon Nov 22 18:51:18 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include <errno.h>
#ifdef __APPLE__
#include <crt_externs.h>
#endif
static VALUE rb_hash_s_try_convert(VALUE, VALUE);
#define HASH_DELETED FL_USER1
#define HASH_PROC_DEFAULT FL_USER2
VALUE
rb_hash_freeze(VALUE hash)
{
return rb_obj_freeze(hash);
}
VALUE rb_cHash;
static VALUE envtbl;
static ID id_hash, id_yield, id_default;
static int
rb_any_cmp(VALUE a, VALUE b)
{
if (a == b) return 0;
if (FIXNUM_P(a) && FIXNUM_P(b)) {
return a != b;
}
if (TYPE(a) == T_STRING && RBASIC(a)->klass == rb_cString &&
TYPE(b) == T_STRING && RBASIC(b)->klass == rb_cString) {
return rb_str_hash_cmp(a, b);
}
if (a == Qundef || b == Qundef) return -1;
if (SYMBOL_P(a) && SYMBOL_P(b)) {
return a != b;
}
return !rb_eql(a, b);
}
VALUE
rb_hash(VALUE obj)
{
VALUE hval = rb_funcall(obj, id_hash, 0);
retry:
switch (TYPE(hval)) {
case T_FIXNUM:
return hval;
case T_BIGNUM:
return LONG2FIX(((long*)(RBIGNUM_DIGITS(hval)))[0]);
default:
hval = rb_to_int(hval);
goto retry;
}
}
static st_index_t
rb_any_hash(VALUE a)
{
VALUE hval;
st_index_t hnum;
switch (TYPE(a)) {
case T_FIXNUM:
case T_SYMBOL:
case T_NIL:
case T_FALSE:
case T_TRUE:
hnum = rb_hash_end(rb_hash_start((unsigned int)a));
break;
case T_STRING:
hnum = rb_str_hash(a);
break;
default:
hval = rb_hash(a);
hnum = FIX2LONG(hval);
}
hnum <<= 1;
return (st_index_t)RSHIFT(hnum, 1);
}
static const struct st_hash_type objhash = {
rb_any_cmp,
rb_any_hash,
};
static const struct st_hash_type identhash = {
st_numcmp,
st_numhash,
};
typedef int st_foreach_func(st_data_t, st_data_t, st_data_t);
struct foreach_safe_arg {
st_table *tbl;
st_foreach_func *func;
st_data_t arg;
};
static int
foreach_safe_i(st_data_t key, st_data_t value, struct foreach_safe_arg *arg)
{
int status;
if (key == Qundef) return ST_CONTINUE;
status = (*arg->func)(key, value, arg->arg);
if (status == ST_CONTINUE) {
return ST_CHECK;
}
return status;
}
void
st_foreach_safe(st_table *table, int (*func)(ANYARGS), st_data_t a)
{
struct foreach_safe_arg arg;
arg.tbl = table;
arg.func = (st_foreach_func *)func;
arg.arg = a;
if (st_foreach(table, foreach_safe_i, (st_data_t)&arg)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
}
typedef int rb_foreach_func(VALUE, VALUE, VALUE);
struct hash_foreach_arg {
VALUE hash;
rb_foreach_func *func;
VALUE arg;
};
static int
hash_foreach_iter(st_data_t key, st_data_t value, struct hash_foreach_arg *arg)
{
int status;
st_table *tbl;
tbl = RHASH(arg->hash)->ntbl;
if ((VALUE)key == Qundef) return ST_CONTINUE;
status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg);
if (RHASH(arg->hash)->ntbl != tbl) {
rb_raise(rb_eRuntimeError, "rehash occurred during iteration");
}
switch (status) {
case ST_DELETE:
st_delete_safe(tbl, &key, 0, Qundef);
FL_SET(arg->hash, HASH_DELETED);
case ST_CONTINUE:
break;
case ST_STOP:
return ST_STOP;
}
return ST_CHECK;
}
static VALUE
hash_foreach_ensure(VALUE hash)
{
RHASH(hash)->iter_lev--;
if (RHASH(hash)->iter_lev == 0) {
if (FL_TEST(hash, HASH_DELETED)) {
st_cleanup_safe(RHASH(hash)->ntbl, Qundef);
FL_UNSET(hash, HASH_DELETED);
}
}
return 0;
}
static VALUE
hash_foreach_call(struct hash_foreach_arg *arg)
{
if (st_foreach(RHASH(arg->hash)->ntbl, hash_foreach_iter, (st_data_t)arg)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
return Qnil;
}
void
rb_hash_foreach(VALUE hash, int (*func)(ANYARGS), VALUE farg)
{
struct hash_foreach_arg arg;
if (!RHASH(hash)->ntbl)
return;
RHASH(hash)->iter_lev++;
arg.hash = hash;
arg.func = (rb_foreach_func *)func;
arg.arg = farg;
rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash);
}
static VALUE
hash_alloc(VALUE klass)
{
NEWOBJ(hash, struct RHash);
OBJSETUP(hash, klass, T_HASH);
RHASH_IFNONE(hash) = Qnil;
return (VALUE)hash;
}
VALUE
rb_hash_new(void)
{
return hash_alloc(rb_cHash);
}
VALUE
rb_hash_dup(VALUE hash)
{
NEWOBJ(ret, struct RHash);
DUPSETUP(ret, hash);
if (!RHASH_EMPTY_P(hash))
ret->ntbl = st_copy(RHASH(hash)->ntbl);
if (FL_TEST(hash, HASH_PROC_DEFAULT)) {
FL_SET(ret, HASH_PROC_DEFAULT);
}
RHASH_IFNONE(ret) = RHASH_IFNONE(hash);
return (VALUE)ret;
}
static void
rb_hash_modify_check(VALUE hash)
{
if (OBJ_FROZEN(hash)) rb_error_frozen("hash");
if (!OBJ_UNTRUSTED(hash) && rb_safe_level() >= 4)
rb_raise(rb_eSecurityError, "Insecure: can't modify hash");
}
struct st_table *
rb_hash_tbl(VALUE hash)
{
if (!RHASH(hash)->ntbl) {
RHASH(hash)->ntbl = st_init_table(&objhash);
}
return RHASH(hash)->ntbl;
}
static void
rb_hash_modify(VALUE hash)
{
rb_hash_modify_check(hash);
rb_hash_tbl(hash);
}
static void
hash_update(VALUE hash, VALUE key)
{
if (RHASH(hash)->iter_lev > 0 && !st_lookup(RHASH(hash)->ntbl, key, 0)) {
rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration");
}
}
static void
default_proc_arity_check(VALUE proc)
{
int n = rb_proc_arity(proc);
if (rb_proc_lambda_p(proc) && n != 2 && (n >= 0 || n < -3)) {
if (n < 0) n = -n-1;
rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n);
}
}
/*
* call-seq:
* Hash.new => hash
* Hash.new(obj) => aHash
* Hash.new {|hash, key| block } => aHash
*
* Returns a new, empty hash. If this hash is subsequently accessed by
* a key that doesn't correspond to a hash entry, the value returned
* depends on the style of <code>new</code> used to create the hash. In
* the first form, the access returns <code>nil</code>. If
* <i>obj</i> is specified, this single object will be used for
* all <em>default values</em>. If a block is specified, it will be
* called with the hash object and the key, and should return the
* default value. It is the block's responsibility to store the value
* in the hash if required.
*
* h = Hash.new("Go Fish")
* h["a"] = 100
* h["b"] = 200
* h["a"] #=> 100
* h["c"] #=> "Go Fish"
* # The following alters the single default object
* h["c"].upcase! #=> "GO FISH"
* h["d"] #=> "GO FISH"
* h.keys #=> ["a", "b"]
*
* # While this creates a new default object each time
* h = Hash.new { |hash, key| hash[key] = "Go Fish: #{key}" }
* h["c"] #=> "Go Fish: c"
* h["c"].upcase! #=> "GO FISH: C"
* h["d"] #=> "Go Fish: d"
* h.keys #=> ["c", "d"]
*
*/
static VALUE
rb_hash_initialize(int argc, VALUE *argv, VALUE hash)
{
VALUE ifnone;
rb_hash_modify(hash);
if (rb_block_given_p()) {
if (argc > 0) {
rb_raise(rb_eArgError, "wrong number of arguments");
}
ifnone = rb_block_proc();
default_proc_arity_check(ifnone);
RHASH_IFNONE(hash) = ifnone;
FL_SET(hash, HASH_PROC_DEFAULT);
}
else {
rb_scan_args(argc, argv, "01", &ifnone);
RHASH_IFNONE(hash) = ifnone;
}
return hash;
}
/*
* call-seq:
* Hash[ key, value, ... ] => hash
* Hash[ [ [key, value], ... ] ] => hash
* Hash[ object ] => hash
*
* Creates a new hash populated with the given objects. Equivalent to
* the literal <code>{ <i>key</i> => <i>value</i>, ... }</code>. In the first
* form, keys and values occur in pairs, so there must be an even number of arguments.
* The second and third form take a single argument which is either
* an array of key-value pairs or an object convertible to a hash.
*
* Hash["a", 100, "b", 200] #=> {"a"=>100, "b"=>200}
* Hash[ [ ["a", 100], ["b", 200] ] ] #=> {"a"=>100, "b"=>200}
* Hash["a" => 100, "b" => 200] #=> {"a"=>100, "b"=>200}
*/
static VALUE
rb_hash_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE hash, tmp;
int i;
if (argc == 1) {
tmp = rb_hash_s_try_convert(Qnil, argv[0]);
if (!NIL_P(tmp)) {
hash = hash_alloc(klass);
if (RHASH(tmp)->ntbl) {
RHASH(hash)->ntbl = st_copy(RHASH(tmp)->ntbl);
}
return hash;
}
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
long i;
hash = hash_alloc(klass);
for (i = 0; i < RARRAY_LEN(tmp); ++i) {
VALUE v = rb_check_array_type(RARRAY_PTR(tmp)[i]);
VALUE key, val = Qnil;
if (NIL_P(v)) continue;
switch (RARRAY_LEN(v)) {
case 2:
val = RARRAY_PTR(v)[1];
case 1:
key = RARRAY_PTR(v)[0];
rb_hash_aset(hash, key, val);
}
}
return hash;
}
}
if (argc % 2 != 0) {
rb_raise(rb_eArgError, "odd number of arguments for Hash");
}
hash = hash_alloc(klass);
for (i=0; i<argc; i+=2) {
rb_hash_aset(hash, argv[i], argv[i + 1]);
}
return hash;
}
static VALUE
to_hash(VALUE hash)
{
return rb_convert_type(hash, T_HASH, "Hash", "to_hash");
}
/*
* call-seq:
* Hash.try_convert(obj) -> hash or nil
*
* Try to convert <i>obj</i> into a hash, using to_hash method.
* Returns converted hash or nil if <i>obj</i> cannot be converted
* for any reason.
*
* Hash.try_convert({1=>2}) # => {1=>2}
* Hash.try_convert("1=>2") # => nil
*/
static VALUE
rb_hash_s_try_convert(VALUE dummy, VALUE hash)
{
return rb_check_convert_type(hash, T_HASH, "Hash", "to_hash");
}
static int
rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg)
{
st_table *tbl = (st_table *)arg;
if (key != Qundef) st_insert(tbl, key, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.rehash -> hsh
*
* Rebuilds the hash based on the current hash values for each key. If
* values of key objects have changed since they were inserted, this
* method will reindex <i>hsh</i>. If <code>Hash#rehash</code> is
* called while an iterator is traversing the hash, an
* <code>RuntimeError</code> will be raised in the iterator.
*
* a = [ "a", "b" ]
* c = [ "c", "d" ]
* h = { a => 100, c => 300 }
* h[a] #=> 100
* a[0] = "z"
* h[a] #=> nil
* h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300}
* h[a] #=> 100
*/
static VALUE
rb_hash_rehash(VALUE hash)
{
st_table *tbl;
if (RHASH(hash)->iter_lev > 0) {
rb_raise(rb_eRuntimeError, "rehash during iteration");
}
rb_hash_modify_check(hash);
if (!RHASH(hash)->ntbl)
return hash;
tbl = st_init_table_with_size(RHASH(hash)->ntbl->type, RHASH(hash)->ntbl->num_entries);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tbl);
st_free_table(RHASH(hash)->ntbl);
RHASH(hash)->ntbl = tbl;
return hash;
}
/*
* call-seq:
* hsh[key] => value
*
* Element Reference---Retrieves the <i>value</i> object corresponding
* to the <i>key</i> object. If not found, returns the default value (see
* <code>Hash::new</code> for details).
*
* h = { "a" => 100, "b" => 200 }
* h["a"] #=> 100
* h["c"] #=> nil
*
*/
VALUE
rb_hash_aref(VALUE hash, VALUE key)
{
VALUE val;
if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) {
return rb_funcall(hash, id_default, 1, key);
}
return val;
}
VALUE
rb_hash_lookup2(VALUE hash, VALUE key, VALUE def)
{
VALUE val;
if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) {
return def; /* without Hash#default */
}
return val;
}
VALUE
rb_hash_lookup(VALUE hash, VALUE key)
{
return rb_hash_lookup2(hash, key, Qnil);
}
/*
* call-seq:
* hsh.fetch(key [, default] ) => obj
* hsh.fetch(key) {| key | block } => obj
*
* Returns a value from the hash for the given key. If the key can't be
* found, there are several options: With no other arguments, it will
* raise an <code>KeyError</code> exception; if <i>default</i> is
* given, then that will be returned; if the optional code block is
* specified, then that will be run and its result returned.
*
* h = { "a" => 100, "b" => 200 }
* h.fetch("a") #=> 100
* h.fetch("z", "go fish") #=> "go fish"
* h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z"
*
* The following example shows that an exception is raised if the key
* is not found and a default value is not supplied.
*
* h = { "a" => 100, "b" => 200 }
* h.fetch("z")
*
* <em>produces:</em>
*
* prog.rb:2:in `fetch': key not found (KeyError)
* from prog.rb:2
*
*/
static VALUE
rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash)
{
VALUE key, if_none;
VALUE val;
long block_given;
rb_scan_args(argc, argv, "11", &key, &if_none);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) {
if (block_given) return rb_yield(key);
if (argc == 1) {
VALUE desc = rb_protect(rb_inspect, key, 0);
if (NIL_P(desc) || RSTRING_LEN(desc) > 65) {
desc = rb_any_to_s(key);
}
rb_raise(rb_eKeyError, "key not found: %s", RSTRING_PTR(desc));
}
return if_none;
}
return val;
}
VALUE
rb_hash_fetch(VALUE hash, VALUE key)
{
return rb_hash_fetch_m(1, &key, hash);
}
/*
* call-seq:
* hsh.default(key=nil) => obj
*
* Returns the default value, the value that would be returned by
* <i>hsh</i>[<i>key</i>] if <i>key</i> did not exist in <i>hsh</i>.
* See also <code>Hash::new</code> and <code>Hash#default=</code>.
*
* h = Hash.new #=> {}
* h.default #=> nil
* h.default(2) #=> nil
*
* h = Hash.new("cat") #=> {}
* h.default #=> "cat"
* h.default(2) #=> "cat"
*
* h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {}
* h.default #=> nil
* h.default(2) #=> 20
*/
static VALUE
rb_hash_default(int argc, VALUE *argv, VALUE hash)
{
VALUE key, ifnone;
rb_scan_args(argc, argv, "01", &key);
ifnone = RHASH_IFNONE(hash);
if (FL_TEST(hash, HASH_PROC_DEFAULT)) {
if (argc == 0) return Qnil;
return rb_funcall(ifnone, id_yield, 2, hash, key);
}
return ifnone;
}
/*
* call-seq:
* hsh.default = obj => obj
*
* Sets the default value, the value returned for a key that does not
* exist in the hash. It is not possible to set the default to a
* <code>Proc</code> that will be executed on each key lookup.
*
* h = { "a" => 100, "b" => 200 }
* h.default = "Go fish"
* h["a"] #=> 100
* h["z"] #=> "Go fish"
* # This doesn't do what you might hope...
* h.default = proc do |hash, key|
* hash[key] = key + key
* end
* h[2] #=> #<Proc:0x401b3948@-:6>
* h["cat"] #=> #<Proc:0x401b3948@-:6>
*/
static VALUE
rb_hash_set_default(VALUE hash, VALUE ifnone)
{
rb_hash_modify(hash);
RHASH_IFNONE(hash) = ifnone;
FL_UNSET(hash, HASH_PROC_DEFAULT);
return ifnone;
}
/*
* call-seq:
* hsh.default_proc -> anObject
*
* If <code>Hash::new</code> was invoked with a block, return that
* block, otherwise return <code>nil</code>.
*
* h = Hash.new {|h,k| h[k] = k*k } #=> {}
* p = h.default_proc #=> #<Proc:0x401b3d08@-:1>
* a = [] #=> []
* p.call(a, 2)
* a #=> [nil, nil, 4]
*/
static VALUE
rb_hash_default_proc(VALUE hash)
{
if (FL_TEST(hash, HASH_PROC_DEFAULT)) {
return RHASH_IFNONE(hash);
}
return Qnil;
}
VALUE rb_obj_is_proc(VALUE proc);
/*
* call-seq:
* hsh.default_proc = proc_obj => proc_obj
*
* Sets the default proc to be executed on each key lookup.
*
* h.default_proc = proc do |hash, key|
* hash[key] = key + key
* end
* h[2] #=> 4
* h["cat"] #=> "catcat"
*/
static VALUE
rb_hash_set_default_proc(VALUE hash, VALUE proc)
{
VALUE b;
rb_hash_modify(hash);
b = rb_check_convert_type(proc, T_DATA, "Proc", "to_proc");
if (NIL_P(b) || !rb_obj_is_proc(b)) {
rb_raise(rb_eTypeError,
"wrong default_proc type %s (expected Proc)",
rb_obj_classname(proc));
}
proc = b;
default_proc_arity_check(proc);
RHASH_IFNONE(hash) = proc;
FL_SET(hash, HASH_PROC_DEFAULT);
return proc;
}
static int
key_i(VALUE key, VALUE value, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (rb_equal(value, args[0])) {
args[1] = key;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.key(value) => key
*
* Returns the key for a given value. If not found, returns <code>nil</code>.
*
* h = { "a" => 100, "b" => 200 }
* h.key(200) #=> "b"
* h.key(999) #=> nil
*
*/
static VALUE
rb_hash_key(VALUE hash, VALUE value)
{
VALUE args[2];
args[0] = value;
args[1] = Qnil;
rb_hash_foreach(hash, key_i, (VALUE)args);
return args[1];
}
/* :nodoc: */
static VALUE
rb_hash_index(VALUE hash, VALUE value)
{
rb_warn("Hash#index is deprecated; use Hash#key");
return rb_hash_key(hash, value);
}
static VALUE
rb_hash_delete_key(VALUE hash, VALUE key)
{
st_data_t ktmp = (st_data_t)key, val;
if (!RHASH(hash)->ntbl)
return Qundef;
if (RHASH(hash)->iter_lev > 0) {
if (st_delete_safe(RHASH(hash)->ntbl, &ktmp, &val, Qundef)) {
FL_SET(hash, HASH_DELETED);
return (VALUE)val;
}
}
else if (st_delete(RHASH(hash)->ntbl, &ktmp, &val))
return (VALUE)val;
return Qundef;
}
/*
* call-seq:
* hsh.delete(key) => value
* hsh.delete(key) {| key | block } => value
*
* Deletes and returns a key-value pair from <i>hsh</i> whose key is
* equal to <i>key</i>. If the key is not found, returns the
* <em>default value</em>. If the optional code block is given and the
* key is not found, pass in the key and return the result of
* <i>block</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.delete("a") #=> 100
* h.delete("z") #=> nil
* h.delete("z") { |el| "#{el} not found" } #=> "z not found"
*
*/
VALUE
rb_hash_delete(VALUE hash, VALUE key)
{
VALUE val;
rb_hash_modify(hash);
val = rb_hash_delete_key(hash, key);
if (val != Qundef) return val;
if (rb_block_given_p()) {
return rb_yield(key);
}
return Qnil;
}
struct shift_var {
VALUE key;
VALUE val;
};
static int
shift_i(VALUE key, VALUE value, VALUE arg)
{
struct shift_var *var = (struct shift_var *)arg;
if (key == Qundef) return ST_CONTINUE;
if (var->key != Qundef) return ST_STOP;
var->key = key;
var->val = value;
return ST_DELETE;
}
static int
shift_i_safe(VALUE key, VALUE value, VALUE arg)
{
struct shift_var *var = (struct shift_var *)arg;
if (key == Qundef) return ST_CONTINUE;
var->key = key;
var->val = value;
return ST_STOP;
}
/*
* call-seq:
* hsh.shift -> anArray or obj
*
* Removes a key-value pair from <i>hsh</i> and returns it as the
* two-item array <code>[</code> <i>key, value</i> <code>]</code>, or
* the hash's default value if the hash is empty.
*
* h = { 1 => "a", 2 => "b", 3 => "c" }
* h.shift #=> [1, "a"]
* h #=> {2=>"b", 3=>"c"}
*/
static VALUE
rb_hash_shift(VALUE hash)
{
struct shift_var var;
rb_hash_modify(hash);
var.key = Qundef;
rb_hash_foreach(hash, RHASH(hash)->iter_lev > 0 ? shift_i_safe : shift_i,
(VALUE)&var);
if (var.key != Qundef) {
if (RHASH(hash)->iter_lev > 0) {
rb_hash_delete_key(hash, var.key);
}
return rb_assoc_new(var.key, var.val);
}
else if (FL_TEST(hash, HASH_PROC_DEFAULT)) {
return rb_funcall(RHASH_IFNONE(hash), id_yield, 2, hash, Qnil);
}
else {
return RHASH_IFNONE(hash);
}
}
static int
delete_if_i(VALUE key, VALUE value, VALUE hash)
{
if (key == Qundef) return ST_CONTINUE;
if (RTEST(rb_yield_values(2, key, value))) {
rb_hash_delete_key(hash, key);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.delete_if {| key, value | block } -> hsh
* hsh.delete_if -> an_enumerator
*
* Deletes every key-value pair from <i>hsh</i> for which <i>block</i>
* evaluates to <code>true</code>.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.delete_if {|key, value| key >= "b" } #=> {"a"=>100}
*
*/
VALUE
rb_hash_delete_if(VALUE hash)
{
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_modify(hash);
rb_hash_foreach(hash, delete_if_i, hash);
return hash;
}
/*
* call-seq:
* hsh.reject! {| key, value | block } -> hsh or nil
* hsh.reject! -> an_enumerator
*
* Equivalent to <code>Hash#delete_if</code>, but returns
* <code>nil</code> if no changes were made.
*/
VALUE
rb_hash_reject_bang(VALUE hash)
{
st_index_t n;
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_modify(hash);
if (!RHASH(hash)->ntbl)
return Qnil;
n = RHASH(hash)->ntbl->num_entries;
rb_hash_foreach(hash, delete_if_i, hash);
if (n == RHASH(hash)->ntbl->num_entries) return Qnil;
return hash;
}
/*
* call-seq:
* hsh.reject {| key, value | block } -> a_hash
*
* Same as <code>Hash#delete_if</code>, but works on (and returns) a
* copy of the <i>hsh</i>. Equivalent to
* <code><i>hsh</i>.dup.delete_if</code>.
*
*/
static VALUE
rb_hash_reject(VALUE hash)
{
return rb_hash_delete_if(rb_obj_dup(hash));
}
/*
* call-seq:
* hsh.values_at(key, ...) => array
*
* Return an array containing the values associated with the given keys.
* Also see <code>Hash.select</code>.
*
* h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" }
* h.values_at("cow", "cat") #=> ["bovine", "feline"]
*/
VALUE
rb_hash_values_at(int argc, VALUE *argv, VALUE hash)
{
VALUE result = rb_ary_new2(argc);
long i;
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_hash_aref(hash, argv[i]));
}
return result;
}
static int
select_i(VALUE key, VALUE value, VALUE result)
{
if (key == Qundef) return ST_CONTINUE;
if (RTEST(rb_yield_values(2, key, value)))
rb_hash_aset(result, key, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.select {|key, value| block} => a_hash
* hsh.select => an_enumerator
*
* Returns a new hash consisting of entries for which the block returns true.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300}
* h.select {|k,v| v < 200} #=> {"a" => 100}
*/
VALUE
rb_hash_select(VALUE hash)
{
VALUE result;
RETURN_ENUMERATOR(hash, 0, 0);
result = rb_hash_new();
rb_hash_foreach(hash, select_i, result);
return result;
}
static int
keep_if_i(VALUE key, VALUE value, VALUE hash)
{
if (key == Qundef) return ST_CONTINUE;
if (!RTEST(rb_yield_values(2, key, value))) {
return ST_DELETE;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.select! {| key, value | block } -> hsh or nil
* hsh.select! -> an_enumerator
*
* Equivalent to <code>Hash#keep_if</code>, but returns
* <code>nil</code> if no changes were made.
*/
VALUE
rb_hash_select_bang(VALUE hash)
{
st_index_t n;
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_modify(hash);
if (!RHASH(hash)->ntbl)
return Qnil;
n = RHASH(hash)->ntbl->num_entries;
rb_hash_foreach(hash, keep_if_i, hash);
if (n == RHASH(hash)->ntbl->num_entries) return Qnil;
return hash;
}
/*
* call-seq:
* hsh.keep_if {| key, value | block } -> hsh
* hsh.keep_if -> an_enumerator
*
* Deletes every key-value pair from <i>hsh</i> for which <i>block</i>
* evaluates to false.
*
* If no block is given, an enumerator is returned instead.
*
*/
VALUE
rb_hash_keep_if(VALUE hash)
{
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_modify(hash);
rb_hash_foreach(hash, keep_if_i, hash);
return hash;
}
static int
clear_i(VALUE key, VALUE value, VALUE dummy)
{
return ST_DELETE;
}
/*
* call-seq:
* hsh.clear -> hsh
*
* Removes all key-value pairs from <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200}
* h.clear #=> {}
*
*/
static VALUE
rb_hash_clear(VALUE hash)
{
rb_hash_modify_check(hash);
if (!RHASH(hash)->ntbl)
return hash;
if (RHASH(hash)->ntbl->num_entries > 0) {
if (RHASH(hash)->iter_lev > 0)
rb_hash_foreach(hash, clear_i, 0);
else
st_clear(RHASH(hash)->ntbl);
}
return hash;
}
/*
* call-seq:
* hsh[key] = value => value
* hsh.store(key, value) => value
*
* Element Assignment---Associates the value given by
* <i>value</i> with the key given by <i>key</i>.
* <i>key</i> should not have its value changed while it is in
* use as a key (a <code>String</code> passed as a key will be
* duplicated and frozen).
*
* h = { "a" => 100, "b" => 200 }
* h["a"] = 9
* h["c"] = 4
* h #=> {"a"=>9, "b"=>200, "c"=>4}
*
*/
VALUE
rb_hash_aset(VALUE hash, VALUE key, VALUE val)
{
rb_hash_modify(hash);
hash_update(hash, key);
if (RHASH(hash)->ntbl->type == &identhash || rb_obj_class(key) != rb_cString) {
st_insert(RHASH(hash)->ntbl, key, val);
}
else {
st_insert2(RHASH(hash)->ntbl, key, val, rb_str_new4);
}
return val;
}
static int
replace_i(VALUE key, VALUE val, VALUE hash)
{
if (key != Qundef) {
rb_hash_aset(hash, key, val);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.replace(other_hash) -> hsh
*
* Replaces the contents of <i>hsh</i> with the contents of
* <i>other_hash</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400}
*
*/
static VALUE
rb_hash_replace(VALUE hash, VALUE hash2)
{
rb_hash_modify_check(hash);
hash2 = to_hash(hash2);
if (hash == hash2) return hash;
rb_hash_clear(hash);
if (RHASH(hash2)->ntbl) {
rb_hash_tbl(hash);
RHASH(hash)->ntbl->type = RHASH(hash2)->ntbl->type;
}
rb_hash_foreach(hash2, replace_i, hash);
RHASH_IFNONE(hash) = RHASH_IFNONE(hash2);
if (FL_TEST(hash2, HASH_PROC_DEFAULT)) {
FL_SET(hash, HASH_PROC_DEFAULT);
}
else {
FL_UNSET(hash, HASH_PROC_DEFAULT);
}
return hash;
}
/*
* call-seq:
* hsh.length => fixnum
* hsh.size => fixnum
*
* Returns the number of key-value pairs in the hash.
*
* h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }
* h.length #=> 4
* h.delete("a") #=> 200
* h.length #=> 3
*/
static VALUE
rb_hash_size(VALUE hash)
{
if (!RHASH(hash)->ntbl)
return INT2FIX(0);
return INT2FIX(RHASH(hash)->ntbl->num_entries);
}
/*
* call-seq:
* hsh.empty? => true or false
*
* Returns <code>true</code> if <i>hsh</i> contains no key-value pairs.
*
* {}.empty? #=> true
*
*/
static VALUE
rb_hash_empty_p(VALUE hash)
{
return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse;
}
static int
each_value_i(VALUE key, VALUE value)
{
if (key == Qundef) return ST_CONTINUE;
rb_yield(value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each_value {| value | block } -> hsh
* hsh.each_value -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the
* value as a parameter.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each_value {|value| puts value }
*
* <em>produces:</em>
*
* 100
* 200
*/
static VALUE
rb_hash_each_value(VALUE hash)
{
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_foreach(hash, each_value_i, 0);
return hash;
}
static int
each_key_i(VALUE key, VALUE value)
{
if (key == Qundef) return ST_CONTINUE;
rb_yield(key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each_key {| key | block } -> hsh
* hsh.each_key -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the key
* as a parameter.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each_key {|key| puts key }
*
* <em>produces:</em>
*
* a
* b
*/
static VALUE
rb_hash_each_key(VALUE hash)
{
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_foreach(hash, each_key_i, 0);
return hash;
}
static int
each_pair_i(VALUE key, VALUE value)
{
if (key == Qundef) return ST_CONTINUE;
rb_yield(rb_assoc_new(key, value));
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each {| key, value | block } -> hsh
* hsh.each_pair {| key, value | block } -> hsh
* hsh.each -> an_enumerator
* hsh.each_pair -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the key-value
* pair as parameters.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each {|key, value| puts "#{key} is #{value}" }
*
* <em>produces:</em>
*
* a is 100
* b is 200
*
*/
static VALUE
rb_hash_each_pair(VALUE hash)
{
RETURN_ENUMERATOR(hash, 0, 0);
rb_hash_foreach(hash, each_pair_i, 0);
return hash;
}
static int
to_a_i(VALUE key, VALUE value, VALUE ary)
{
if (key == Qundef) return ST_CONTINUE;
rb_ary_push(ary, rb_assoc_new(key, value));
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.to_a -> array
*
* Converts <i>hsh</i> to a nested array of <code>[</code> <i>key,
* value</i> <code>]</code> arrays.
*
* h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
* h.to_a #=> [["c", 300], ["a", 100], ["d", 400]]
*/
static VALUE
rb_hash_to_a(VALUE hash)
{
VALUE ary;
ary = rb_ary_new();
rb_hash_foreach(hash, to_a_i, ary);
OBJ_INFECT(ary, hash);
return ary;
}
static int
inspect_i(VALUE key, VALUE value, VALUE str)
{
VALUE str2;
if (key == Qundef) return ST_CONTINUE;
if (RSTRING_LEN(str) > 1) {
rb_str_cat2(str, ", ");
}
str2 = rb_inspect(key);
rb_str_buf_append(str, str2);
OBJ_INFECT(str, str2);
rb_str_buf_cat2(str, "=>");
str2 = rb_inspect(value);
rb_str_buf_append(str, str2);
OBJ_INFECT(str, str2);
return ST_CONTINUE;
}
static VALUE
inspect_hash(VALUE hash, VALUE dummy, int recur)
{
VALUE str;
if (recur) return rb_usascii_str_new2("{...}");
str = rb_str_buf_new2("{");
rb_hash_foreach(hash, inspect_i, str);
rb_str_buf_cat2(str, "}");
OBJ_INFECT(str, hash);
return str;
}
/*
* call-seq:
* hsh.to_s => string
* hsh.inspect => string
*
* Return the contents of this hash as a string.
*
* h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
* h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}"
*/
static VALUE
rb_hash_inspect(VALUE hash)
{
if (RHASH_EMPTY_P(hash))
return rb_usascii_str_new2("{}");
return rb_exec_recursive(inspect_hash, hash, 0);
}
/*
* call-seq:
* hsh.to_hash => hsh
*
* Returns +self+.
*/
static VALUE
rb_hash_to_hash(VALUE hash)
{
return hash;
}
static int
keys_i(VALUE key, VALUE value, VALUE ary)
{
if (key == Qundef) return ST_CONTINUE;
rb_ary_push(ary, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.keys => array
*
* Returns a new array populated with the keys from this hash. See also
* <code>Hash#values</code>.
*
* h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }
* h.keys #=> ["a", "b", "c", "d"]
*
*/
static VALUE
rb_hash_keys(VALUE hash)
{
VALUE ary;
ary = rb_ary_new();
rb_hash_foreach(hash, keys_i, ary);
return ary;
}
static int
values_i(VALUE key, VALUE value, VALUE ary)
{
if (key == Qundef) return ST_CONTINUE;
rb_ary_push(ary, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.values => array
*
* Returns a new array populated with the values from <i>hsh</i>. See
* also <code>Hash#keys</code>.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.values #=> [100, 200, 300]
*
*/
static VALUE
rb_hash_values(VALUE hash)
{
VALUE ary;
ary = rb_ary_new();
rb_hash_foreach(hash, values_i, ary);
return ary;
}
/*
* call-seq:
* hsh.has_key?(key) => true or false
* hsh.include?(key) => true or false
* hsh.key?(key) => true or false
* hsh.member?(key) => true or false
*
* Returns <code>true</code> if the given key is present in <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.has_key?("a") #=> true
* h.has_key?("z") #=> false
*
*/
static VALUE
rb_hash_has_key(VALUE hash, VALUE key)
{
if (!RHASH(hash)->ntbl)
return Qfalse;
if (st_lookup(RHASH(hash)->ntbl, key, 0)) {
return Qtrue;
}
return Qfalse;
}
static int
rb_hash_search_value(VALUE key, VALUE value, VALUE arg)
{
VALUE *data = (VALUE *)arg;
if (key == Qundef) return ST_CONTINUE;
if (rb_equal(value, data[1])) {
data[0] = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.has_value?(value) => true or false
* hsh.value?(value) => true or false
*
* Returns <code>true</code> if the given value is present for some key
* in <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.has_value?(100) #=> true
* h.has_value?(999) #=> false
*/
static VALUE
rb_hash_has_value(VALUE hash, VALUE val)
{
VALUE data[2];
data[0] = Qfalse;
data[1] = val;
rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data);
return data[0];
}
struct equal_data {
VALUE result;
st_table *tbl;
int eql;
};
static int
eql_i(VALUE key, VALUE val1, VALUE arg)
{
struct equal_data *data = (struct equal_data *)arg;
VALUE val2;
if (key == Qundef) return ST_CONTINUE;
if (!st_lookup(data->tbl, key, &val2)) {
data->result = Qfalse;
return ST_STOP;
}
if (!(data->eql ? rb_eql(val1, val2) : (int)rb_equal(val1, val2))) {
data->result = Qfalse;
return ST_STOP;
}
return ST_CONTINUE;
}
static VALUE
recursive_eql(VALUE hash, VALUE dt, int recur)
{
struct equal_data *data;
if (recur) return Qtrue; /* Subtle! */
data = (struct equal_data*)dt;
data->result = Qtrue;
rb_hash_foreach(hash, eql_i, dt);
return data->result;
}
static VALUE
hash_equal(VALUE hash1, VALUE hash2, int eql)
{
struct equal_data data;
if (hash1 == hash2) return Qtrue;
if (TYPE(hash2) != T_HASH) {
if (!rb_respond_to(hash2, rb_intern("to_hash"))) {
return Qfalse;
}
if (eql)
return rb_eql(hash2, hash1);
else
return rb_equal(hash2, hash1);
}
if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2))
return Qfalse;
if (!RHASH(hash1)->ntbl || !RHASH(hash2)->ntbl)
return Qtrue;
if (RHASH(hash1)->ntbl->type != RHASH(hash2)->ntbl->type)
return Qfalse;
#if 0
if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) &&
FL_TEST(hash1, HASH_PROC_DEFAULT) == FL_TEST(hash2, HASH_PROC_DEFAULT)))
return Qfalse;
#endif
data.tbl = RHASH(hash2)->ntbl;
data.eql = eql;
return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data);
}
/*
* call-seq:
* hsh == other_hash => true or false
*
* Equality---Two hashes are equal if they each contain the same number
* of keys and if each key-value pair is equal to (according to
* <code>Object#==</code>) the corresponding elements in the other
* hash.
*
* h1 = { "a" => 1, "c" => 2 }
* h2 = { 7 => 35, "c" => 2, "a" => 1 }
* h3 = { "a" => 1, "c" => 2, 7 => 35 }
* h4 = { "a" => 1, "d" => 2, "f" => 35 }
* h1 == h2 #=> false
* h2 == h3 #=> true
* h3 == h4 #=> false
*
*/
static VALUE
rb_hash_equal(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, FALSE);
}
/*
* call-seq:
* hash.eql?(other) -> true or false
*
* Returns <code>true</code> if <i>hash</i> and <i>other</i> are
* both hashes with the same content.
*/
static VALUE
rb_hash_eql(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, TRUE);
}
static int
hash_i(VALUE key, VALUE val, VALUE arg)
{
st_index_t *hval = (st_index_t *)arg;
if (key == Qundef) return ST_CONTINUE;
*hval ^= rb_hash_end(rb_hash_uint(rb_hash_start(rb_hash(key)), rb_hash(val)));
return ST_CONTINUE;
}
static VALUE
recursive_hash(VALUE hash, VALUE dummy, int recur)
{
st_index_t hval;
if (!RHASH(hash)->ntbl)
return LONG2FIX(0);
hval = RHASH(hash)->ntbl->num_entries;
if (recur)
hval = rb_hash_end(rb_hash_uint(rb_hash_start(rb_hash(rb_cHash)), hval));
else
rb_hash_foreach(hash, hash_i, (VALUE)&hval);
return INT2FIX(hval);
}
/*
* call-seq:
* hsh.hash -> fixnum
*
* Compute a hash-code for this hash. Two hashes with the same content
* will have the same hash code (and will compare using <code>eql?</code>).
*/
static VALUE
rb_hash_hash(VALUE hash)
{
return rb_exec_recursive_outer(recursive_hash, hash, 0);
}
static int
rb_hash_invert_i(VALUE key, VALUE value, VALUE hash)
{
if (key == Qundef) return ST_CONTINUE;
rb_hash_aset(hash, value, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.invert -> aHash
*
* Returns a new hash created by using <i>hsh</i>'s values as keys, and
* the keys as values.
*
* h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }
* h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"}
*
*/
static VALUE
rb_hash_invert(VALUE hash)
{
VALUE h = rb_hash_new();
rb_hash_foreach(hash, rb_hash_invert_i, h);
return h;
}
static int
rb_hash_update_i(VALUE key, VALUE value, VALUE hash)
{
if (key == Qundef) return ST_CONTINUE;
hash_update(hash, key);
st_insert(RHASH(hash)->ntbl, key, value);
return ST_CONTINUE;
}
static int
rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash)
{
if (key == Qundef) return ST_CONTINUE;
if (rb_hash_has_key(hash, key)) {
value = rb_yield_values(3, key, rb_hash_aref(hash, key), value);
}
hash_update(hash, key);
st_insert(RHASH(hash)->ntbl, key, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.merge!(other_hash) => hsh
* hsh.update(other_hash) => hsh
* hsh.merge!(other_hash){|key, oldval, newval| block} => hsh
* hsh.update(other_hash){|key, oldval, newval| block} => hsh
*
* Adds the contents of <i>other_hash</i> to <i>hsh</i>. If no
* block is specified, entries with duplicate keys are overwritten
* with the values from <i>other_hash</i>, otherwise the value
* of each duplicate key is determined by calling the block with
* the key, its value in <i>hsh</i> and its value in <i>other_hash</i>.
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 254, "c" => 300 }
* h1.merge!(h2) #=> {"a"=>100, "b"=>254, "c"=>300}
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 254, "c" => 300 }
* h1.merge!(h2) { |key, v1, v2| v1 }
* #=> {"a"=>100, "b"=>200, "c"=>300}
*/
static VALUE
rb_hash_update(VALUE hash1, VALUE hash2)
{
rb_hash_modify(hash1);
hash2 = to_hash(hash2);
if (rb_block_given_p()) {
rb_hash_foreach(hash2, rb_hash_update_block_i, hash1);
}
else {
rb_hash_foreach(hash2, rb_hash_update_i, hash1);
}
return hash1;
}
/*
* call-seq:
* hsh.merge(other_hash) -> a_hash
* hsh.merge(other_hash){|key, oldval, newval| block} -> a_hash
*
* Returns a new hash containing the contents of <i>other_hash</i> and
* the contents of <i>hsh</i>. If no block is specified, the value for
* entries with duplicate keys will be that of <i>other_hash</i>. Otherwise
* the value for each duplicate key is determined by calling the block
* with the key, its value in <i>hsh</i> and its value in <i>other_hash</i>.
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 254, "c" => 300 }
* h1.merge(h2) #=> {"a"=>100, "b"=>254, "c"=>300}
* h1.merge(h2){|key, oldval, newval| newval - oldval}
* #=> {"a"=>100, "b"=>54, "c"=>300}
* h1 #=> {"a"=>100, "b"=>200}
*
*/
static VALUE
rb_hash_merge(VALUE hash1, VALUE hash2)
{
return rb_hash_update(rb_obj_dup(hash1), hash2);
}
static int
assoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (key == Qundef) return ST_CONTINUE;
if (RTEST(rb_equal(args[0], key))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.assoc(obj) -> an_array or nil
*
* Searches through the hash comparing _obj_ with the key using <code>==</code>.
* Returns the key-value pair (two elements array) or +nil+
* if no match is found. See <code>Array#assoc</code>.
*
* h = {"colors" => ["red", "blue", "green"],
* "letters" => ["a", "b", "c" ]}
* h.assoc("letters") #=> ["letters", ["a", "b", "c"]]
* h.assoc("foo") #=> nil
*/
VALUE
rb_hash_assoc(VALUE hash, VALUE obj)
{
VALUE args[2];
args[0] = obj;
args[1] = Qnil;
rb_hash_foreach(hash, assoc_i, (VALUE)args);
return args[1];
}
static int
rassoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (key == Qundef) return ST_CONTINUE;
if (RTEST(rb_equal(args[0], val))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.rassoc(key) -> an_array or nil
*
* Searches through the hash comparing _obj_ with the value using <code>==</code>.
* Returns the first key-value pair (two-element array) that matches. See
* also <code>Array#rassoc</code>.
*
* a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"}
* a.rassoc("two") #=> [2, "two"]
* a.rassoc("four") #=> nil
*/
VALUE
rb_hash_rassoc(VALUE hash, VALUE obj)
{
VALUE args[2];
args[0] = obj;
args[1] = Qnil;
rb_hash_foreach(hash, rassoc_i, (VALUE)args);
return args[1];
}
/*
* call-seq:
* hash.flatten -> an_array
* hash.flatten(level) -> an_array
*
* Returns a new array that is a one-dimensional flattening of this
* hash. That is, for every key or value that is an array, extract
* its elements into the new array. Unlike Array#flatten, this
* method does not flatten recursively by default. The optional
* <i>level</i> argument determines the level of recursion to flatten.
*
* a = {1=> "one", 2 => [2,"two"], 3 => "three"}
* a.flatten # => [1, "one", 2, [2, "two"], 3, "three"]
* a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"]
*/
static VALUE
rb_hash_flatten(int argc, VALUE *argv, VALUE hash)
{
VALUE ary, tmp;
ary = rb_hash_to_a(hash);
if (argc == 0) {
argc = 1;
tmp = INT2FIX(1);
argv = &tmp;
}
rb_funcall2(ary, rb_intern("flatten!"), argc, argv);
return ary;
}
/*
* call-seq:
* hsh.compare_by_identity => hsh
*
* Makes <i>hsh</i> compare its keys by their identity, i.e. it
* will consider exact same objects as same keys.
*
* h1 = { "a" => 100, "b" => 200, :c => "c" }
* h1["a"] #=> 100
* h1.compare_by_identity
* h1.compare_by_identity? #=> true
* h1["a"] #=> nil # different objects.
* h1[:c] #=> "c" # same symbols are all same.
*
*/
static VALUE
rb_hash_compare_by_id(VALUE hash)
{
rb_hash_modify(hash);
RHASH(hash)->ntbl->type = &identhash;
rb_hash_rehash(hash);
return hash;
}
/*
* call-seq:
* hsh.compare_by_identity? => true or false
*
* Returns <code>true</code> if <i>hsh</i> will compare its keys by
* their identity. Also see <code>Hash#compare_by_identity</code>.
*
*/
static VALUE
rb_hash_compare_by_id_p(VALUE hash)
{
if (!RHASH(hash)->ntbl)
return Qfalse;
if (RHASH(hash)->ntbl->type == &identhash) {
return Qtrue;
}
return Qfalse;
}
static int path_tainted = -1;
static char **origenviron;
#ifdef _WIN32
#define GET_ENVIRON(e) (e = rb_w32_get_environ())
#define FREE_ENVIRON(e) rb_w32_free_environ(e)
static char **my_environ;
#undef environ
#define environ my_environ
#elif defined(__APPLE__)
#undef environ
#define environ (*_NSGetEnviron())
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#else
extern char **environ;
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#endif
#ifdef ENV_IGNORECASE
#define ENVMATCH(s1, s2) (STRCASECMP(s1, s2) == 0)
#define ENVNMATCH(s1, s2, n) (STRNCASECMP(s1, s2, n) == 0)
#else
#define ENVMATCH(n1, n2) (strcmp(n1, n2) == 0)
#define ENVNMATCH(s1, s2, n) (memcmp(s1, s2, n) == 0)
#endif
static VALUE
env_str_new(const char *ptr, long len)
{
VALUE str = rb_locale_str_new(ptr, len);
rb_obj_freeze(str);
return str;
}
static VALUE
env_str_new2(const char *ptr)
{
if (!ptr) return Qnil;
return env_str_new(ptr, strlen(ptr));
}
static VALUE
env_delete(VALUE obj, VALUE name)
{
char *nam, *val;
rb_secure(4);
SafeStringValue(name);
nam = RSTRING_PTR(name);
if (memchr(nam, '\0', RSTRING_LEN(name))) {
rb_raise(rb_eArgError, "bad environment variable name");
}
val = getenv(nam);
if (val) {
VALUE value = env_str_new2(val);
ruby_setenv(nam, 0);
if (ENVMATCH(nam, PATH_ENV)) {
path_tainted = 0;
}
return value;
}
return Qnil;
}
static VALUE
env_delete_m(VALUE obj, VALUE name)
{
VALUE val;
val = env_delete(obj, name);
if (NIL_P(val) && rb_block_given_p()) rb_yield(name);
return val;
}
static int env_path_tainted(const char *);
static VALUE
rb_f_getenv(VALUE obj, VALUE name)
{
char *nam, *env;
rb_secure(4);
SafeStringValue(name);
nam = RSTRING_PTR(name);
if (memchr(nam, '\0', RSTRING_LEN(name))) {
rb_raise(rb_eArgError, "bad environment variable name");
}
env = getenv(nam);
if (env) {
if (ENVMATCH(nam, PATH_ENV) && !env_path_tainted(env)) {
VALUE str = rb_filesystem_str_new_cstr(env);
rb_obj_freeze(str);
return str;
}
return env_str_new2(env);
}
return Qnil;
}
static VALUE
env_fetch(int argc, VALUE *argv)
{
VALUE key, if_none;
long block_given;
char *nam, *env;
rb_secure(4);
rb_scan_args(argc, argv, "11", &key, &if_none);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
SafeStringValue(key);
nam = RSTRING_PTR(key);
if (memchr(nam, '\0', RSTRING_LEN(key))) {
rb_raise(rb_eArgError, "bad environment variable name");
}
env = getenv(nam);
if (!env) {
if (block_given) return rb_yield(key);
if (argc == 1) {
rb_raise(rb_eKeyError, "key not found");
}
return if_none;
}
if (ENVMATCH(nam, PATH_ENV) && !env_path_tainted(env))
return rb_filesystem_str_new_cstr(env);
return env_str_new2(env);
}
static void
path_tainted_p(const char *path)
{
path_tainted = rb_path_check(path)?0:1;
}
static int
env_path_tainted(const char *path)
{
if (path_tainted < 0) {
path_tainted_p(path);
}
return path_tainted;
}
int
rb_env_path_tainted(void)
{
if (path_tainted < 0) {
path_tainted_p(getenv(PATH_ENV));
}
return path_tainted;
}
#if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV))
#elif defined __sun__
static int
in_origenv(const char *str)
{
char **env;
for (env = origenviron; *env; ++env) {
if (*env == str) return 1;
}
return 0;
}
#else
static int
envix(const char *nam)
{
register int i, len = strlen(nam);
char **env;
env = GET_ENVIRON(environ);
for (i = 0; env[i]; i++) {
if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=')
break; /* memcmp must come first to avoid */
} /* potential SEGV's */
FREE_ENVIRON(environ);
return i;
}
#endif
void
ruby_setenv(const char *name, const char *value)
{
#if defined(_WIN32)
int len;
char *buf;
if (strchr(name, '=')) {
errno = EINVAL;
rb_sys_fail("ruby_setenv");
}
if (value) {
len = strlen(name) + 1 + strlen(value) + 1;
buf = ALLOCA_N(char, len);
snprintf(buf, len, "%s=%s", name, value);
putenv(buf);
/* putenv() doesn't handle empty value */
if (!*value)
SetEnvironmentVariable(name,value);
}
else {
len = strlen(name) + 1 + 1;
buf = ALLOCA_N(char, len);
snprintf(buf, len, "%s=", name);
putenv(buf);
SetEnvironmentVariable(name, 0);
}
#elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV)
#undef setenv
#undef unsetenv
if (value) {
if (setenv(name, value, 1))
rb_sys_fail("setenv");
} else {
#ifdef VOID_UNSETENV
unsetenv(name);
#else
if (unsetenv(name))
rb_sys_fail("unsetenv");
#endif
}
#elif defined __sun__
size_t len;
char **env_ptr, *str;
if (strchr(name, '=')) {
errno = EINVAL;
rb_sys_fail("ruby_setenv");
}
len = strlen(name);
for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) {
if (!strncmp(str, name, len) && str[len] == '=') {
if (!in_origenv(str)) free(str);
while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++;
break;
}
}
if (value) {
str = malloc(len += strlen(value) + 2);
snprintf(str, len, "%s=%s", name, value);
if (putenv(str))
rb_sys_fail("putenv");
}
#else /* WIN32 */
size_t len;
int i;
if (strchr(name, '=')) {
errno = EINVAL;
rb_sys_fail("ruby_setenv");
}
i=envix(name); /* where does it go? */
if (environ == origenviron) { /* need we copy environment? */
int j;
int max;
char **tmpenv;
for (max = i; environ[max]; max++) ;
tmpenv = ALLOC_N(char*, max+2);
for (j=0; j<max; j++) /* copy environment */
tmpenv[j] = ruby_strdup(environ[j]);
tmpenv[max] = 0;
environ = tmpenv; /* tell exec where it is now */
}
if (environ[i]) {
char **envp = origenviron;
while (*envp && *envp != environ[i]) envp++;
if (!*envp)
xfree(environ[i]);
if (!value) {
while (environ[i]) {
environ[i] = environ[i+1];
i++;
}
return;
}
}
else { /* does not exist yet */
if (!value) return;
REALLOC_N(environ, char*, i+2); /* just expand it a bit */
environ[i+1] = 0; /* make sure it's null terminated */
}
len = strlen(name) + strlen(value) + 2;
environ[i] = ALLOC_N(char, len);
snprintf(environ[i],len,"%s=%s",name,value); /* all that work just for this */
#endif /* WIN32 */
}
void
ruby_unsetenv(const char *name)
{
ruby_setenv(name, 0);
}
static VALUE
env_aset(VALUE obj, VALUE nm, VALUE val)
{
char *name, *value;
if (rb_safe_level() >= 4) {
rb_raise(rb_eSecurityError, "can't change environment variable");
}
if (NIL_P(val)) {
env_delete(obj, nm);
return Qnil;
}
StringValue(nm);
StringValue(val);
name = RSTRING_PTR(nm);
value = RSTRING_PTR(val);
if (memchr(name, '\0', RSTRING_LEN(nm)))
rb_raise(rb_eArgError, "bad environment variable name");
if (memchr(value, '\0', RSTRING_LEN(val)))
rb_raise(rb_eArgError, "bad environment variable value");
ruby_setenv(name, value);
if (ENVMATCH(name, PATH_ENV)) {
if (OBJ_TAINTED(val)) {
/* already tainted, no check */
path_tainted = 1;
return val;
}
else {
path_tainted_p(value);
}
}
return val;
}
static VALUE
env_keys(void)
{
char **env;
VALUE ary;
rb_secure(4);
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new(*env, s-*env));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
static VALUE
env_each_key(VALUE ehash)
{
VALUE keys;
long i;
RETURN_ENUMERATOR(ehash, 0, 0);
keys = env_keys(); /* rb_secure(4); */
for (i=0; i<RARRAY_LEN(keys); i++) {
rb_yield(RARRAY_PTR(keys)[i]);
}
return ehash;
}
static VALUE
env_values(void)
{
VALUE ary;
char **env;
rb_secure(4);
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
static VALUE
env_each_value(VALUE ehash)
{
VALUE values;
long i;
RETURN_ENUMERATOR(ehash, 0, 0);
values = env_values(); /* rb_secure(4); */
for (i=0; i<RARRAY_LEN(values); i++) {
rb_yield(RARRAY_PTR(values)[i]);
}
return ehash;
}
static VALUE
env_each_pair(VALUE ehash)
{
char **env;
VALUE ary;
long i;
RETURN_ENUMERATOR(ehash, 0, 0);
rb_secure(4);
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new(*env, s-*env));
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
for (i=0; i<RARRAY_LEN(ary); i+=2) {
rb_yield(rb_assoc_new(RARRAY_PTR(ary)[i], RARRAY_PTR(ary)[i+1]));
}
return ehash;
}
static VALUE
env_reject_bang(VALUE ehash)
{
volatile VALUE keys;
long i;
int del = 0;
RETURN_ENUMERATOR(ehash, 0, 0);
keys = env_keys(); /* rb_secure(4); */
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_PTR(keys)[i]);
if (!NIL_P(val)) {
if (RTEST(rb_yield_values(2, RARRAY_PTR(keys)[i], val))) {
FL_UNSET(RARRAY_PTR(keys)[i], FL_TAINT);
env_delete(Qnil, RARRAY_PTR(keys)[i]);
del++;
}
}
}
if (del == 0) return Qnil;
return envtbl;
}
static VALUE
env_delete_if(VALUE ehash)
{
RETURN_ENUMERATOR(ehash, 0, 0);
env_reject_bang(ehash);
return envtbl;
}
static VALUE
env_values_at(int argc, VALUE *argv)
{
VALUE result;
long i;
rb_secure(4);
result = rb_ary_new();
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_f_getenv(Qnil, argv[i]));
}
return result;
}
static VALUE
env_select(VALUE ehash)
{
VALUE result;
char **env;
RETURN_ENUMERATOR(ehash, 0, 0);
rb_secure(4);
result = rb_hash_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
VALUE k = env_str_new(*env, s-*env);
VALUE v = env_str_new2(s+1);
if (RTEST(rb_yield_values(2, k, v))) {
rb_hash_aset(result, k, v);
}
}
env++;
}
FREE_ENVIRON(environ);
return result;
}
static VALUE
env_select_bang(VALUE ehash)
{
volatile VALUE keys;
long i;
int del = 0;
RETURN_ENUMERATOR(ehash, 0, 0);
keys = env_keys(); /* rb_secure(4); */
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_PTR(keys)[i]);
if (!NIL_P(val)) {
if (!RTEST(rb_yield_values(2, RARRAY_PTR(keys)[i], val))) {
FL_UNSET(RARRAY_PTR(keys)[i], FL_TAINT);
env_delete(Qnil, RARRAY_PTR(keys)[i]);
del++;
}
}
}
if (del == 0) return Qnil;
return envtbl;
}
static VALUE
env_keep_if(VALUE ehash)
{
RETURN_ENUMERATOR(ehash, 0, 0);
env_select_bang(ehash);
return envtbl;
}
VALUE
rb_env_clear(void)
{
volatile VALUE keys;
long i;
keys = env_keys(); /* rb_secure(4); */
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_PTR(keys)[i]);
if (!NIL_P(val)) {
env_delete(Qnil, RARRAY_PTR(keys)[i]);
}
}
return envtbl;
}
static VALUE
env_to_s(void)
{
return rb_usascii_str_new2("ENV");
}
static VALUE
env_inspect(void)
{
char **env;
VALUE str, i;
rb_secure(4);
str = rb_str_buf_new2("{");
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (env != environ) {
rb_str_buf_cat2(str, ", ");
}
if (s) {
rb_str_buf_cat2(str, "\"");
rb_str_buf_cat(str, *env, s-*env);
rb_str_buf_cat2(str, "\"=>");
i = rb_inspect(rb_str_new2(s+1));
rb_str_buf_append(str, i);
}
env++;
}
FREE_ENVIRON(environ);
rb_str_buf_cat2(str, "}");
OBJ_TAINT(str);
return str;
}
static VALUE
env_to_a(void)
{
char **env;
VALUE ary;
rb_secure(4);
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env),
env_str_new2(s+1)));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
static VALUE
env_none(void)
{
return Qnil;
}
static VALUE
env_size(void)
{
int i;
char **env;
rb_secure(4);
env = GET_ENVIRON(environ);
for(i=0; env[i]; i++)
;
FREE_ENVIRON(environ);
return INT2FIX(i);
}
static VALUE
env_empty_p(void)
{
char **env;
rb_secure(4);
env = GET_ENVIRON(environ);
if (env[0] == 0) {
FREE_ENVIRON(environ);
return Qtrue;
}
FREE_ENVIRON(environ);
return Qfalse;
}
static VALUE
env_has_key(VALUE env, VALUE key)
{
char *s;
rb_secure(4);
s = StringValuePtr(key);
if (memchr(s, '\0', RSTRING_LEN(key)))
rb_raise(rb_eArgError, "bad environment variable name");
if (getenv(s)) return Qtrue;
return Qfalse;
}
static VALUE
env_assoc(VALUE env, VALUE key)
{
char *s, *e;
rb_secure(4);
s = StringValuePtr(key);
if (memchr(s, '\0', RSTRING_LEN(key)))
rb_raise(rb_eArgError, "bad environment variable name");
e = getenv(s);
if (e) return rb_assoc_new(key, rb_tainted_str_new2(e));
return Qnil;
}
static VALUE
env_has_value(VALUE dmy, VALUE obj)
{
char **env;
rb_secure(4);
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
FREE_ENVIRON(environ);
return Qtrue;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qfalse;
}
static VALUE
env_rassoc(VALUE dmy, VALUE obj)
{
char **env;
rb_secure(4);
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
VALUE result = rb_assoc_new(rb_tainted_str_new(*env, s-*env-1), obj);
FREE_ENVIRON(environ);
return result;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qnil;
}
static VALUE
env_key(VALUE dmy, VALUE value)
{
char **env;
VALUE str;
rb_secure(4);
StringValue(value);
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) {
str = env_str_new(*env, s-*env-1);
FREE_ENVIRON(environ);
return str;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qnil;
}
static VALUE
env_index(VALUE dmy, VALUE value)
{
rb_warn("ENV.index is deprecated; use ENV.key");
return env_key(dmy, value);
}
static VALUE
env_to_hash(void)
{
char **env;
VALUE hash;
rb_secure(4);
hash = rb_hash_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_hash_aset(hash, env_str_new(*env, s-*env),
env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
return hash;
}
static VALUE
env_reject(void)
{
return rb_hash_delete_if(env_to_hash());
}
static VALUE
env_shift(void)
{
char **env;
rb_secure(4);
env = GET_ENVIRON(environ);
if (*env) {
char *s = strchr(*env, '=');
if (s) {
VALUE key = env_str_new(*env, s-*env);
VALUE val = env_str_new2(getenv(RSTRING_PTR(key)));
env_delete(Qnil, key);
return rb_assoc_new(key, val);
}
}
FREE_ENVIRON(environ);
return Qnil;
}
static VALUE
env_invert(void)
{
return rb_hash_invert(env_to_hash());
}
static int
env_replace_i(VALUE key, VALUE val, VALUE keys)
{
if (key != Qundef) {
env_aset(Qnil, key, val);
if (rb_ary_includes(keys, key)) {
rb_ary_delete(keys, key);
}
}
return ST_CONTINUE;
}
static VALUE
env_replace(VALUE env, VALUE hash)
{
volatile VALUE keys;
long i;
keys = env_keys(); /* rb_secure(4); */
if (env == hash) return env;
hash = to_hash(hash);
rb_hash_foreach(hash, env_replace_i, keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
env_delete(env, RARRAY_PTR(keys)[i]);
}
return env;
}
static int
env_update_i(VALUE key, VALUE val)
{
if (key != Qundef) {
if (rb_block_given_p()) {
val = rb_yield_values(3, key, rb_f_getenv(Qnil, key), val);
}
env_aset(Qnil, key, val);
}
return ST_CONTINUE;
}
static VALUE
env_update(VALUE env, VALUE hash)
{
rb_secure(4);
if (env == hash) return env;
hash = to_hash(hash);
rb_hash_foreach(hash, env_update_i, 0);
return env;
}
/*
* A <code>Hash</code> is a collection of key-value pairs. It is
* similar to an <code>Array</code>, except that indexing is done via
* arbitrary keys of any object type, not an integer index. Hashes enumerate
* their values in the order that the corresponding keys were inserted.
*
* Hashes have a <em>default value</em> that is returned when accessing
* keys that do not exist in the hash. By default, that value is
* <code>nil</code>.
*
*/
void
Init_Hash(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
id_hash = rb_intern("hash");
id_yield = rb_intern("yield");
id_default = rb_intern("default");
rb_cHash = rb_define_class("Hash", rb_cObject);
rb_include_module(rb_cHash, rb_mEnumerable);
rb_define_alloc_func(rb_cHash, hash_alloc);
rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1);
rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1);
rb_define_method(rb_cHash,"initialize", rb_hash_initialize, -1);
rb_define_method(rb_cHash,"initialize_copy", rb_hash_replace, 1);
rb_define_method(rb_cHash,"rehash", rb_hash_rehash, 0);
rb_define_method(rb_cHash,"to_hash", rb_hash_to_hash, 0);
rb_define_method(rb_cHash,"to_a", rb_hash_to_a, 0);
rb_define_method(rb_cHash,"inspect", rb_hash_inspect, 0);
rb_define_alias(rb_cHash, "to_s", "inspect");
rb_define_method(rb_cHash,"==", rb_hash_equal, 1);
rb_define_method(rb_cHash,"[]", rb_hash_aref, 1);
rb_define_method(rb_cHash,"hash", rb_hash_hash, 0);
rb_define_method(rb_cHash,"eql?", rb_hash_eql, 1);
rb_define_method(rb_cHash,"fetch", rb_hash_fetch_m, -1);
rb_define_method(rb_cHash,"[]=", rb_hash_aset, 2);
rb_define_method(rb_cHash,"store", rb_hash_aset, 2);
rb_define_method(rb_cHash,"default", rb_hash_default, -1);
rb_define_method(rb_cHash,"default=", rb_hash_set_default, 1);
rb_define_method(rb_cHash,"default_proc", rb_hash_default_proc, 0);
rb_define_method(rb_cHash,"default_proc=", rb_hash_set_default_proc, 1);
rb_define_method(rb_cHash,"key", rb_hash_key, 1);
rb_define_method(rb_cHash,"index", rb_hash_index, 1);
rb_define_method(rb_cHash,"size", rb_hash_size, 0);
rb_define_method(rb_cHash,"length", rb_hash_size, 0);
rb_define_method(rb_cHash,"empty?", rb_hash_empty_p, 0);
rb_define_method(rb_cHash,"each_value", rb_hash_each_value, 0);
rb_define_method(rb_cHash,"each_key", rb_hash_each_key, 0);
rb_define_method(rb_cHash,"each_pair", rb_hash_each_pair, 0);
rb_define_method(rb_cHash,"each", rb_hash_each_pair, 0);
rb_define_method(rb_cHash,"keys", rb_hash_keys, 0);
rb_define_method(rb_cHash,"values", rb_hash_values, 0);
rb_define_method(rb_cHash,"values_at", rb_hash_values_at, -1);
rb_define_method(rb_cHash,"shift", rb_hash_shift, 0);
rb_define_method(rb_cHash,"delete", rb_hash_delete, 1);
rb_define_method(rb_cHash,"delete_if", rb_hash_delete_if, 0);
rb_define_method(rb_cHash,"keep_if", rb_hash_keep_if, 0);
rb_define_method(rb_cHash,"select", rb_hash_select, 0);
rb_define_method(rb_cHash,"select!", rb_hash_select_bang, 0);
rb_define_method(rb_cHash,"reject", rb_hash_reject, 0);
rb_define_method(rb_cHash,"reject!", rb_hash_reject_bang, 0);
rb_define_method(rb_cHash,"clear", rb_hash_clear, 0);
rb_define_method(rb_cHash,"invert", rb_hash_invert, 0);
rb_define_method(rb_cHash,"update", rb_hash_update, 1);
rb_define_method(rb_cHash,"replace", rb_hash_replace, 1);
rb_define_method(rb_cHash,"merge!", rb_hash_update, 1);
rb_define_method(rb_cHash,"merge", rb_hash_merge, 1);
rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1);
rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1);
rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1);
rb_define_method(rb_cHash,"include?", rb_hash_has_key, 1);
rb_define_method(rb_cHash,"member?", rb_hash_has_key, 1);
rb_define_method(rb_cHash,"has_key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash,"has_value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash,"key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash,"value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash,"compare_by_identity", rb_hash_compare_by_id, 0);
rb_define_method(rb_cHash,"compare_by_identity?", rb_hash_compare_by_id_p, 0);
origenviron = environ;
envtbl = rb_obj_alloc(rb_cObject);
rb_extend_object(envtbl, rb_mEnumerable);
rb_define_singleton_method(envtbl,"[]", rb_f_getenv, 1);
rb_define_singleton_method(envtbl,"fetch", env_fetch, -1);
rb_define_singleton_method(envtbl,"[]=", env_aset, 2);
rb_define_singleton_method(envtbl,"store", env_aset, 2);
rb_define_singleton_method(envtbl,"each", env_each_pair, 0);
rb_define_singleton_method(envtbl,"each_pair", env_each_pair, 0);
rb_define_singleton_method(envtbl,"each_key", env_each_key, 0);
rb_define_singleton_method(envtbl,"each_value", env_each_value, 0);
rb_define_singleton_method(envtbl,"delete", env_delete_m, 1);
rb_define_singleton_method(envtbl,"delete_if", env_delete_if, 0);
rb_define_singleton_method(envtbl,"keep_if", env_keep_if, 0);
rb_define_singleton_method(envtbl,"clear", rb_env_clear, 0);
rb_define_singleton_method(envtbl,"reject", env_reject, 0);
rb_define_singleton_method(envtbl,"reject!", env_reject_bang, 0);
rb_define_singleton_method(envtbl,"select", env_select, 0);
rb_define_singleton_method(envtbl,"select!", env_select_bang, 0);
rb_define_singleton_method(envtbl,"shift", env_shift, 0);
rb_define_singleton_method(envtbl,"invert", env_invert, 0);
rb_define_singleton_method(envtbl,"replace", env_replace, 1);
rb_define_singleton_method(envtbl,"update", env_update, 1);
rb_define_singleton_method(envtbl,"inspect", env_inspect, 0);
rb_define_singleton_method(envtbl,"rehash", env_none, 0);
rb_define_singleton_method(envtbl,"to_a", env_to_a, 0);
rb_define_singleton_method(envtbl,"to_s", env_to_s, 0);
rb_define_singleton_method(envtbl,"key", env_key, 1);
rb_define_singleton_method(envtbl,"index", env_index, 1);
rb_define_singleton_method(envtbl,"size", env_size, 0);
rb_define_singleton_method(envtbl,"length", env_size, 0);
rb_define_singleton_method(envtbl,"empty?", env_empty_p, 0);
rb_define_singleton_method(envtbl,"keys", env_keys, 0);
rb_define_singleton_method(envtbl,"values", env_values, 0);
rb_define_singleton_method(envtbl,"values_at", env_values_at, -1);
rb_define_singleton_method(envtbl,"include?", env_has_key, 1);
rb_define_singleton_method(envtbl,"member?", env_has_key, 1);
rb_define_singleton_method(envtbl,"has_key?", env_has_key, 1);
rb_define_singleton_method(envtbl,"has_value?", env_has_value, 1);
rb_define_singleton_method(envtbl,"key?", env_has_key, 1);
rb_define_singleton_method(envtbl,"value?", env_has_value, 1);
rb_define_singleton_method(envtbl,"to_hash", env_to_hash, 0);
rb_define_singleton_method(envtbl,"assoc", env_assoc, 1);
rb_define_singleton_method(envtbl,"rassoc", env_rassoc, 1);
rb_define_global_const("ENV", envtbl);
}