mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 beae6cbf0f
			
		
	
	
		beae6cbf0f
		
	
	
	
	
		
			
			This removes the warnings added in 2.7, and changes the behavior so that a final positional hash is not treated as keywords or vice-versa. To handle the arg_setup_block splat case correctly with keyword arguments, we need to check if we are taking a keyword hash. That case didn't have a test, but it affects real-world code, so add a test for it. This removes rb_empty_keyword_given_p() and related code, as that is not needed in Ruby 3. The empty keyword case is the same as the no keyword case in Ruby 3. This changes rb_scan_args to implement keyword argument separation for C functions when the : character is used. For backwards compatibility, it returns a duped hash. This is a bad idea for performance, but not duping the hash breaks at least Enumerator::ArithmeticSequence#inspect. Instead of having RB_PASS_CALLED_KEYWORDS be a number, simplify the code by just making it be rb_keyword_given_p().
		
			
				
	
	
		
			4116 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4116 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /************************************************
 | |
| 
 | |
|   enumerator.c - provides Enumerator class
 | |
| 
 | |
|   $Author$
 | |
| 
 | |
|   Copyright (C) 2001-2003 Akinori MUSHA
 | |
| 
 | |
|   $Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $
 | |
|   $RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $
 | |
|   $Id$
 | |
| 
 | |
| ************************************************/
 | |
| 
 | |
| #include "ruby/config.h"
 | |
| 
 | |
| #ifdef HAVE_FLOAT_H
 | |
| #include <float.h>
 | |
| #endif
 | |
| 
 | |
| #include "id.h"
 | |
| #include "internal.h"
 | |
| #include "internal/enumerator.h"
 | |
| #include "internal/error.h"
 | |
| #include "internal/hash.h"
 | |
| #include "internal/imemo.h"
 | |
| #include "internal/numeric.h"
 | |
| #include "internal/range.h"
 | |
| #include "ruby/ruby.h"
 | |
| 
 | |
| /*
 | |
|  * Document-class: Enumerator
 | |
|  *
 | |
|  * A class which allows both internal and external iteration.
 | |
|  *
 | |
|  * An Enumerator can be created by the following methods.
 | |
|  * - Object#to_enum
 | |
|  * - Object#enum_for
 | |
|  * - Enumerator.new
 | |
|  *
 | |
|  * Most methods have two forms: a block form where the contents
 | |
|  * are evaluated for each item in the enumeration, and a non-block form
 | |
|  * which returns a new Enumerator wrapping the iteration.
 | |
|  *
 | |
|  *   enumerator = %w(one two three).each
 | |
|  *   puts enumerator.class # => Enumerator
 | |
|  *
 | |
|  *   enumerator.each_with_object("foo") do |item, obj|
 | |
|  *     puts "#{obj}: #{item}"
 | |
|  *   end
 | |
|  *
 | |
|  *   # foo: one
 | |
|  *   # foo: two
 | |
|  *   # foo: three
 | |
|  *
 | |
|  *   enum_with_obj = enumerator.each_with_object("foo")
 | |
|  *   puts enum_with_obj.class # => Enumerator
 | |
|  *
 | |
|  *   enum_with_obj.each do |item, obj|
 | |
|  *     puts "#{obj}: #{item}"
 | |
|  *   end
 | |
|  *
 | |
|  *   # foo: one
 | |
|  *   # foo: two
 | |
|  *   # foo: three
 | |
|  *
 | |
|  * This allows you to chain Enumerators together.  For example, you
 | |
|  * can map a list's elements to strings containing the index
 | |
|  * and the element as a string via:
 | |
|  *
 | |
|  *   puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
 | |
|  *   # => ["0:foo", "1:bar", "2:baz"]
 | |
|  *
 | |
|  * An Enumerator can also be used as an external iterator.
 | |
|  * For example, Enumerator#next returns the next value of the iterator
 | |
|  * or raises StopIteration if the Enumerator is at the end.
 | |
|  *
 | |
|  *   e = [1,2,3].each   # returns an enumerator object.
 | |
|  *   puts e.next   # => 1
 | |
|  *   puts e.next   # => 2
 | |
|  *   puts e.next   # => 3
 | |
|  *   puts e.next   # raises StopIteration
 | |
|  *
 | |
|  * You can use this to implement an internal iterator as follows:
 | |
|  *
 | |
|  *   def ext_each(e)
 | |
|  *     while true
 | |
|  *       begin
 | |
|  *         vs = e.next_values
 | |
|  *       rescue StopIteration
 | |
|  *         return $!.result
 | |
|  *       end
 | |
|  *       y = yield(*vs)
 | |
|  *       e.feed y
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   o = Object.new
 | |
|  *
 | |
|  *   def o.each
 | |
|  *     puts yield
 | |
|  *     puts yield(1)
 | |
|  *     puts yield(1, 2)
 | |
|  *     3
 | |
|  *   end
 | |
|  *
 | |
|  *   # use o.each as an internal iterator directly.
 | |
|  *   puts o.each {|*x| puts x; [:b, *x] }
 | |
|  *   # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
 | |
|  *
 | |
|  *   # convert o.each to an external iterator for
 | |
|  *   # implementing an internal iterator.
 | |
|  *   puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
 | |
|  *   # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
 | |
|  *
 | |
|  */
 | |
| VALUE rb_cEnumerator;
 | |
| static VALUE rb_cLazy;
 | |
| static ID id_rewind, id_new, id_to_enum;
 | |
| static ID id_next, id_result, id_receiver, id_arguments, id_memo, id_method, id_force;
 | |
| static ID id_begin, id_end, id_step, id_exclude_end;
 | |
| static VALUE sym_each, sym_cycle, sym_yield;
 | |
| 
 | |
| static VALUE lazy_use_super_method;
 | |
| 
 | |
| #define id_call idCall
 | |
| #define id_each idEach
 | |
| #define id_eqq idEqq
 | |
| #define id_initialize idInitialize
 | |
| #define id_size idSize
 | |
| 
 | |
| VALUE rb_eStopIteration;
 | |
| 
 | |
| struct enumerator {
 | |
|     VALUE obj;
 | |
|     ID    meth;
 | |
|     VALUE args;
 | |
|     VALUE fib;
 | |
|     VALUE dst;
 | |
|     VALUE lookahead;
 | |
|     VALUE feedvalue;
 | |
|     VALUE stop_exc;
 | |
|     VALUE size;
 | |
|     VALUE procs;
 | |
|     rb_enumerator_size_func *size_fn;
 | |
|     int kw_splat;
 | |
| };
 | |
| 
 | |
| static VALUE rb_cGenerator, rb_cYielder, rb_cEnumProducer;
 | |
| 
 | |
| struct generator {
 | |
|     VALUE proc;
 | |
|     VALUE obj;
 | |
| };
 | |
| 
 | |
| struct yielder {
 | |
|     VALUE proc;
 | |
| };
 | |
| 
 | |
| struct producer {
 | |
|     VALUE init;
 | |
|     VALUE proc;
 | |
| };
 | |
| 
 | |
| typedef struct MEMO *lazyenum_proc_func(VALUE, struct MEMO *, VALUE, long);
 | |
| typedef VALUE lazyenum_size_func(VALUE, VALUE);
 | |
| typedef struct {
 | |
|     lazyenum_proc_func *proc;
 | |
|     lazyenum_size_func *size;
 | |
| } lazyenum_funcs;
 | |
| 
 | |
| struct proc_entry {
 | |
|     VALUE proc;
 | |
|     VALUE memo;
 | |
|     const lazyenum_funcs *fn;
 | |
| };
 | |
| 
 | |
| static VALUE generator_allocate(VALUE klass);
 | |
| static VALUE generator_init(VALUE obj, VALUE proc);
 | |
| 
 | |
| static VALUE rb_cEnumChain;
 | |
| 
 | |
| struct enum_chain {
 | |
|     VALUE enums;
 | |
|     long pos;
 | |
| };
 | |
| 
 | |
| VALUE rb_cArithSeq;
 | |
| 
 | |
| /*
 | |
|  * Enumerator
 | |
|  */
 | |
| static void
 | |
| enumerator_mark(void *p)
 | |
| {
 | |
|     struct enumerator *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->obj);
 | |
|     rb_gc_mark_movable(ptr->args);
 | |
|     rb_gc_mark_movable(ptr->fib);
 | |
|     rb_gc_mark_movable(ptr->dst);
 | |
|     rb_gc_mark_movable(ptr->lookahead);
 | |
|     rb_gc_mark_movable(ptr->feedvalue);
 | |
|     rb_gc_mark_movable(ptr->stop_exc);
 | |
|     rb_gc_mark_movable(ptr->size);
 | |
|     rb_gc_mark_movable(ptr->procs);
 | |
| }
 | |
| 
 | |
| static void
 | |
| enumerator_compact(void *p)
 | |
| {
 | |
|     struct enumerator *ptr = p;
 | |
|     ptr->obj = rb_gc_location(ptr->obj);
 | |
|     ptr->args = rb_gc_location(ptr->args);
 | |
|     ptr->fib = rb_gc_location(ptr->fib);
 | |
|     ptr->dst = rb_gc_location(ptr->dst);
 | |
|     ptr->lookahead = rb_gc_location(ptr->lookahead);
 | |
|     ptr->feedvalue = rb_gc_location(ptr->feedvalue);
 | |
|     ptr->stop_exc = rb_gc_location(ptr->stop_exc);
 | |
|     ptr->size = rb_gc_location(ptr->size);
 | |
|     ptr->procs = rb_gc_location(ptr->procs);
 | |
| }
 | |
| 
 | |
| #define enumerator_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| enumerator_memsize(const void *p)
 | |
| {
 | |
|     return sizeof(struct enumerator);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t enumerator_data_type = {
 | |
|     "enumerator",
 | |
|     {
 | |
| 	enumerator_mark,
 | |
| 	enumerator_free,
 | |
| 	enumerator_memsize,
 | |
|         enumerator_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static struct enumerator *
 | |
| enumerator_ptr(VALUE obj)
 | |
| {
 | |
|     struct enumerator *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr);
 | |
|     if (!ptr || ptr->obj == Qundef) {
 | |
| 	rb_raise(rb_eArgError, "uninitialized enumerator");
 | |
|     }
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void
 | |
| proc_entry_mark(void *p)
 | |
| {
 | |
|     struct proc_entry *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->proc);
 | |
|     rb_gc_mark_movable(ptr->memo);
 | |
| }
 | |
| 
 | |
| static void
 | |
| proc_entry_compact(void *p)
 | |
| {
 | |
|     struct proc_entry *ptr = p;
 | |
|     ptr->proc = rb_gc_location(ptr->proc);
 | |
|     ptr->memo = rb_gc_location(ptr->memo);
 | |
| }
 | |
| 
 | |
| #define proc_entry_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| proc_entry_memsize(const void *p)
 | |
| {
 | |
|     return p ? sizeof(struct proc_entry) : 0;
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t proc_entry_data_type = {
 | |
|     "proc_entry",
 | |
|     {
 | |
| 	proc_entry_mark,
 | |
| 	proc_entry_free,
 | |
| 	proc_entry_memsize,
 | |
|         proc_entry_compact,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static struct proc_entry *
 | |
| proc_entry_ptr(VALUE proc_entry)
 | |
| {
 | |
|     struct proc_entry *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(proc_entry, struct proc_entry, &proc_entry_data_type, ptr);
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   obj.to_enum(method = :each, *args)                 -> enum
 | |
|  *   obj.enum_for(method = :each, *args)                -> enum
 | |
|  *   obj.to_enum(method = :each, *args) {|*args| block} -> enum
 | |
|  *   obj.enum_for(method = :each, *args){|*args| block} -> enum
 | |
|  *
 | |
|  * Creates a new Enumerator which will enumerate by calling +method+ on
 | |
|  * +obj+, passing +args+ if any. What was _yielded_ by method becomes
 | |
|  * values of enumerator.
 | |
|  *
 | |
|  * If a block is given, it will be used to calculate the size of
 | |
|  * the enumerator without the need to iterate it (see Enumerator#size).
 | |
|  *
 | |
|  * === Examples
 | |
|  *
 | |
|  *   str = "xyz"
 | |
|  *
 | |
|  *   enum = str.enum_for(:each_byte)
 | |
|  *   enum.each { |b| puts b }
 | |
|  *   # => 120
 | |
|  *   # => 121
 | |
|  *   # => 122
 | |
|  *
 | |
|  *   # protect an array from being modified by some_method
 | |
|  *   a = [1, 2, 3]
 | |
|  *   some_method(a.to_enum)
 | |
|  *
 | |
|  *   # String#split in block form is more memory-effective:
 | |
|  *   very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }
 | |
|  *   # This could be rewritten more idiomatically with to_enum:
 | |
|  *   very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first
 | |
|  *
 | |
|  * It is typical to call to_enum when defining methods for
 | |
|  * a generic Enumerable, in case no block is passed.
 | |
|  *
 | |
|  * Here is such an example, with parameter passing and a sizing block:
 | |
|  *
 | |
|  *   module Enumerable
 | |
|  *     # a generic method to repeat the values of any enumerable
 | |
|  *     def repeat(n)
 | |
|  *       raise ArgumentError, "#{n} is negative!" if n < 0
 | |
|  *       unless block_given?
 | |
|  *         return to_enum(__method__, n) do # __method__ is :repeat here
 | |
|  *           sz = size     # Call size and multiply by n...
 | |
|  *           sz * n if sz  # but return nil if size itself is nil
 | |
|  *         end
 | |
|  *       end
 | |
|  *       each do |*val|
 | |
|  *         n.times { yield *val }
 | |
|  *       end
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   %i[hello world].repeat(2) { |w| puts w }
 | |
|  *     # => Prints 'hello', 'hello', 'world', 'world'
 | |
|  *   enum = (1..14).repeat(3)
 | |
|  *     # => returns an Enumerator when called without a block
 | |
|  *   enum.first(4) # => [1, 1, 1, 2]
 | |
|  *   enum.size # => 42
 | |
|  */
 | |
| static VALUE
 | |
| obj_to_enum(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE enumerator, meth = sym_each;
 | |
| 
 | |
|     if (argc > 0) {
 | |
| 	--argc;
 | |
| 	meth = *argv++;
 | |
|     }
 | |
|     enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
 | |
|     if (rb_block_given_p()) {
 | |
| 	enumerator_ptr(enumerator)->size = rb_block_proc();
 | |
|     }
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_allocate(VALUE klass)
 | |
| {
 | |
|     struct enumerator *ptr;
 | |
|     VALUE enum_obj;
 | |
| 
 | |
|     enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr);
 | |
|     ptr->obj = Qundef;
 | |
| 
 | |
|     return enum_obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, VALUE size, int kw_splat)
 | |
| {
 | |
|     struct enumerator *ptr;
 | |
| 
 | |
|     rb_check_frozen(enum_obj);
 | |
|     TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr);
 | |
| 
 | |
|     if (!ptr) {
 | |
| 	rb_raise(rb_eArgError, "unallocated enumerator");
 | |
|     }
 | |
| 
 | |
|     ptr->obj  = obj;
 | |
|     ptr->meth = rb_to_id(meth);
 | |
|     if (argc) ptr->args = rb_ary_new4(argc, argv);
 | |
|     ptr->fib = 0;
 | |
|     ptr->dst = Qnil;
 | |
|     ptr->lookahead = Qundef;
 | |
|     ptr->feedvalue = Qundef;
 | |
|     ptr->stop_exc = Qfalse;
 | |
|     ptr->size = size;
 | |
|     ptr->size_fn = size_fn;
 | |
|     ptr->kw_splat = kw_splat;
 | |
| 
 | |
|     return enum_obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   Enumerator.new(size = nil) { |yielder| ... }
 | |
|  *   Enumerator.new(obj, method = :each, *args)
 | |
|  *
 | |
|  * Creates a new Enumerator object, which can be used as an
 | |
|  * Enumerable.
 | |
|  *
 | |
|  * In the first form, iteration is defined by the given block, in
 | |
|  * which a "yielder" object, given as block parameter, can be used to
 | |
|  * yield a value by calling the +yield+ method (aliased as <code><<</code>):
 | |
|  *
 | |
|  *   fib = Enumerator.new do |y|
 | |
|  *     a = b = 1
 | |
|  *     loop do
 | |
|  *       y << a
 | |
|  *       a, b = b, a + b
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
 | |
|  *
 | |
|  * The optional parameter can be used to specify how to calculate the size
 | |
|  * in a lazy fashion (see Enumerator#size). It can either be a value or
 | |
|  * a callable object.
 | |
|  *
 | |
|  * In the deprecated second form, a generated Enumerator iterates over the
 | |
|  * given object using the given method with the given arguments passed.
 | |
|  *
 | |
|  * Use of this form is discouraged.  Use Object#enum_for or Object#to_enum
 | |
|  * instead.
 | |
|  *
 | |
|  *   e = Enumerator.new(ObjectSpace, :each_object)
 | |
|  *       #-> ObjectSpace.enum_for(:each_object)
 | |
|  *
 | |
|  *   e.select { |obj| obj.is_a?(Class) }  # => array of all classes
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_initialize(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE recv, meth = sym_each;
 | |
|     VALUE size = Qnil;
 | |
|     int kw_splat = 0;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
| 	rb_check_arity(argc, 0, 1);
 | |
| 	recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc());
 | |
| 	if (argc) {
 | |
|             if (NIL_P(argv[0]) || rb_respond_to(argv[0], id_call) ||
 | |
|                 (RB_TYPE_P(argv[0], T_FLOAT) && RFLOAT_VALUE(argv[0]) == HUGE_VAL)) {
 | |
|                 size = argv[0];
 | |
|             }
 | |
|             else {
 | |
|                 size = rb_to_int(argv[0]);
 | |
|             }
 | |
|             argc = 0;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
| 	rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
 | |
| 	rb_warn_deprecated("Enumerator.new without a block", "Object#to_enum");
 | |
| 	recv = *argv++;
 | |
| 	if (--argc) {
 | |
| 	    meth = *argv++;
 | |
| 	    --argc;
 | |
| 	}
 | |
|         kw_splat = rb_keyword_given_p();
 | |
|     }
 | |
| 
 | |
|     return enumerator_init(obj, recv, meth, argc, argv, 0, size, kw_splat);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| enumerator_init_copy(VALUE obj, VALUE orig)
 | |
| {
 | |
|     struct enumerator *ptr0, *ptr1;
 | |
| 
 | |
|     if (!OBJ_INIT_COPY(obj, orig)) return obj;
 | |
|     ptr0 = enumerator_ptr(orig);
 | |
|     if (ptr0->fib) {
 | |
| 	/* Fibers cannot be copied */
 | |
| 	rb_raise(rb_eTypeError, "can't copy execution context");
 | |
|     }
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1);
 | |
| 
 | |
|     if (!ptr1) {
 | |
| 	rb_raise(rb_eArgError, "unallocated enumerator");
 | |
|     }
 | |
| 
 | |
|     ptr1->obj  = ptr0->obj;
 | |
|     ptr1->meth = ptr0->meth;
 | |
|     ptr1->args = ptr0->args;
 | |
|     ptr1->fib  = 0;
 | |
|     ptr1->lookahead  = Qundef;
 | |
|     ptr1->feedvalue  = Qundef;
 | |
|     ptr1->size  = ptr0->size;
 | |
|     ptr1->size_fn  = ptr0->size_fn;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For backwards compatibility; use rb_enumeratorize_with_size
 | |
|  */
 | |
| VALUE
 | |
| rb_enumeratorize(VALUE obj, VALUE meth, int argc, const VALUE *argv)
 | |
| {
 | |
|     return rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_to_enum_i(VALUE self, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat);
 | |
| 
 | |
| VALUE
 | |
| rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn)
 | |
| {
 | |
|     /* Similar effect as calling obj.to_enum, i.e. dispatching to either
 | |
|        Kernel#to_enum vs Lazy#to_enum */
 | |
|     if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy)))
 | |
|         return lazy_to_enum_i(obj, meth, argc, argv, size_fn, rb_keyword_given_p());
 | |
|     else
 | |
| 	return enumerator_init(enumerator_allocate(rb_cEnumerator),
 | |
|                                obj, meth, argc, argv, size_fn, Qnil, rb_keyword_given_p());
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_enumeratorize_with_size_kw(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat)
 | |
| {
 | |
|     /* Similar effect as calling obj.to_enum, i.e. dispatching to either
 | |
|        Kernel#to_enum vs Lazy#to_enum */
 | |
|     if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy)))
 | |
|         return lazy_to_enum_i(obj, meth, argc, argv, size_fn, kw_splat);
 | |
|     else
 | |
|         return enumerator_init(enumerator_allocate(rb_cEnumerator),
 | |
|                                obj, meth, argc, argv, size_fn, Qnil, kw_splat);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg)
 | |
| {
 | |
|     int argc = 0;
 | |
|     const VALUE *argv = 0;
 | |
|     const struct enumerator *e = enumerator_ptr(obj);
 | |
|     ID meth = e->meth;
 | |
| 
 | |
|     if (e->args) {
 | |
| 	argc = RARRAY_LENINT(e->args);
 | |
| 	argv = RARRAY_CONST_PTR(e->args);
 | |
|     }
 | |
|     return rb_block_call_kw(e->obj, meth, argc, argv, func, arg, e->kw_splat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   enum.each { |elm| block }                    -> obj
 | |
|  *   enum.each                                    -> enum
 | |
|  *   enum.each(*appending_args) { |elm| block }   -> obj
 | |
|  *   enum.each(*appending_args)                   -> an_enumerator
 | |
|  *
 | |
|  * Iterates over the block according to how this Enumerator was constructed.
 | |
|  * If no block and no arguments are given, returns self.
 | |
|  *
 | |
|  * === Examples
 | |
|  *
 | |
|  *   "Hello, world!".scan(/\w+/)                     #=> ["Hello", "world"]
 | |
|  *   "Hello, world!".to_enum(:scan, /\w+/).to_a      #=> ["Hello", "world"]
 | |
|  *   "Hello, world!".to_enum(:scan).each(/\w+/).to_a #=> ["Hello", "world"]
 | |
|  *
 | |
|  *   obj = Object.new
 | |
|  *
 | |
|  *   def obj.each_arg(a, b=:b, *rest)
 | |
|  *     yield a
 | |
|  *     yield b
 | |
|  *     yield rest
 | |
|  *     :method_returned
 | |
|  *   end
 | |
|  *
 | |
|  *   enum = obj.to_enum :each_arg, :a, :x
 | |
|  *
 | |
|  *   enum.each.to_a                  #=> [:a, :x, []]
 | |
|  *   enum.each.equal?(enum)          #=> true
 | |
|  *   enum.each { |elm| elm }         #=> :method_returned
 | |
|  *
 | |
|  *   enum.each(:y, :z).to_a          #=> [:a, :x, [:y, :z]]
 | |
|  *   enum.each(:y, :z).equal?(enum)  #=> false
 | |
|  *   enum.each(:y, :z) { |elm| elm } #=> :method_returned
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_each(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     if (argc > 0) {
 | |
| 	struct enumerator *e = enumerator_ptr(obj = rb_obj_dup(obj));
 | |
| 	VALUE args = e->args;
 | |
| 	if (args) {
 | |
| #if SIZEOF_INT < SIZEOF_LONG
 | |
| 	    /* check int range overflow */
 | |
| 	    rb_long2int(RARRAY_LEN(args) + argc);
 | |
| #endif
 | |
| 	    args = rb_ary_dup(args);
 | |
| 	    rb_ary_cat(args, argv, argc);
 | |
| 	}
 | |
| 	else {
 | |
| 	    args = rb_ary_new4(argc, argv);
 | |
| 	}
 | |
| 	e->args = args;
 | |
|         e->size = Qnil;
 | |
|         e->size_fn = 0;
 | |
|     }
 | |
|     if (!rb_block_given_p()) return obj;
 | |
|     return enumerator_block_call(obj, 0, obj);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
 | |
| {
 | |
|     struct MEMO *memo = (struct MEMO *)m;
 | |
|     VALUE idx = memo->v1;
 | |
|     MEMO_V1_SET(memo, rb_int_succ(idx));
 | |
| 
 | |
|     if (argc <= 1)
 | |
| 	return rb_yield_values(2, val, idx);
 | |
| 
 | |
|     return rb_yield_values(2, rb_ary_new4(argc, argv), idx);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_size(VALUE obj);
 | |
| 
 | |
| static VALUE
 | |
| enumerator_enum_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return enumerator_size(obj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.with_index(offset = 0) {|(*args), idx| ... }
 | |
|  *   e.with_index(offset = 0)
 | |
|  *
 | |
|  * Iterates the given block for each element with an index, which
 | |
|  * starts from +offset+.  If no block is given, returns a new Enumerator
 | |
|  * that includes the index, starting from +offset+
 | |
|  *
 | |
|  * +offset+:: the starting index to use
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_with_index(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size);
 | |
|     memo = (!argc || NIL_P(memo = argv[0])) ? INT2FIX(0) : rb_to_int(memo);
 | |
|     return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)MEMO_NEW(memo, 0, 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.each_with_index {|(*args), idx| ... }
 | |
|  *   e.each_with_index
 | |
|  *
 | |
|  * Same as Enumerator#with_index(0), i.e. there is no starting offset.
 | |
|  *
 | |
|  * If no block is given, a new Enumerator is returned that includes the index.
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_each_with_index(VALUE obj)
 | |
| {
 | |
|     return enumerator_with_index(0, NULL, obj);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memo))
 | |
| {
 | |
|     if (argc <= 1)
 | |
| 	return rb_yield_values(2, val, memo);
 | |
| 
 | |
|     return rb_yield_values(2, rb_ary_new4(argc, argv), memo);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.each_with_object(obj) {|(*args), obj| ... }
 | |
|  *   e.each_with_object(obj)
 | |
|  *   e.with_object(obj) {|(*args), obj| ... }
 | |
|  *   e.with_object(obj)
 | |
|  *
 | |
|  * Iterates the given block for each element with an arbitrary object, +obj+,
 | |
|  * and returns +obj+
 | |
|  *
 | |
|  * If no block is given, returns a new Enumerator.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  *   to_three = Enumerator.new do |y|
 | |
|  *     3.times do |x|
 | |
|  *       y << x
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   to_three_with_string = to_three.with_object("foo")
 | |
|  *   to_three_with_string.each do |x,string|
 | |
|  *     puts "#{string}: #{x}"
 | |
|  *   end
 | |
|  *
 | |
|  *   # => foo:0
 | |
|  *   # => foo:1
 | |
|  *   # => foo:2
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_with_object(VALUE obj, VALUE memo)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size);
 | |
|     enumerator_block_call(obj, enumerator_with_object_i, memo);
 | |
| 
 | |
|     return memo;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| next_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, obj))
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
|     VALUE feedvalue = Qnil;
 | |
|     VALUE args = rb_ary_new4(argc, argv);
 | |
|     rb_fiber_yield(1, &args);
 | |
|     if (e->feedvalue != Qundef) {
 | |
|         feedvalue = e->feedvalue;
 | |
|         e->feedvalue = Qundef;
 | |
|     }
 | |
|     return feedvalue;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| next_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, obj))
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
|     VALUE nil = Qnil;
 | |
|     VALUE result;
 | |
| 
 | |
|     result = rb_block_call(obj, id_each, 0, 0, next_ii, obj);
 | |
|     e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached an end");
 | |
|     rb_ivar_set(e->stop_exc, id_result, result);
 | |
|     return rb_fiber_yield(1, &nil);
 | |
| }
 | |
| 
 | |
| static void
 | |
| next_init(VALUE obj, struct enumerator *e)
 | |
| {
 | |
|     VALUE curr = rb_fiber_current();
 | |
|     e->dst = curr;
 | |
|     e->fib = rb_fiber_new(next_i, obj);
 | |
|     e->lookahead = Qundef;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| get_next_values(VALUE obj, struct enumerator *e)
 | |
| {
 | |
|     VALUE curr, vs;
 | |
| 
 | |
|     if (e->stop_exc)
 | |
| 	rb_exc_raise(e->stop_exc);
 | |
| 
 | |
|     curr = rb_fiber_current();
 | |
| 
 | |
|     if (!e->fib || !rb_fiber_alive_p(e->fib)) {
 | |
| 	next_init(obj, e);
 | |
|     }
 | |
| 
 | |
|     vs = rb_fiber_resume(e->fib, 1, &curr);
 | |
|     if (e->stop_exc) {
 | |
| 	e->fib = 0;
 | |
| 	e->dst = Qnil;
 | |
| 	e->lookahead = Qundef;
 | |
| 	e->feedvalue = Qundef;
 | |
| 	rb_exc_raise(e->stop_exc);
 | |
|     }
 | |
|     return vs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.next_values   -> array
 | |
|  *
 | |
|  * Returns the next object as an array in the enumerator, and move the
 | |
|  * internal position forward.  When the position reached at the end,
 | |
|  * StopIteration is raised.
 | |
|  *
 | |
|  * This method can be used to distinguish <code>yield</code> and <code>yield
 | |
|  * nil</code>.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  *   o = Object.new
 | |
|  *   def o.each
 | |
|  *     yield
 | |
|  *     yield 1
 | |
|  *     yield 1, 2
 | |
|  *     yield nil
 | |
|  *     yield [1, 2]
 | |
|  *   end
 | |
|  *   e = o.to_enum
 | |
|  *   p e.next_values
 | |
|  *   p e.next_values
 | |
|  *   p e.next_values
 | |
|  *   p e.next_values
 | |
|  *   p e.next_values
 | |
|  *   e = o.to_enum
 | |
|  *   p e.next
 | |
|  *   p e.next
 | |
|  *   p e.next
 | |
|  *   p e.next
 | |
|  *   p e.next
 | |
|  *
 | |
|  *   ## yield args       next_values      next
 | |
|  *   #  yield            []               nil
 | |
|  *   #  yield 1          [1]              1
 | |
|  *   #  yield 1, 2       [1, 2]           [1, 2]
 | |
|  *   #  yield nil        [nil]            nil
 | |
|  *   #  yield [1, 2]     [[1, 2]]         [1, 2]
 | |
|  *
 | |
|  * Note that +next_values+ does not affect other non-external enumeration
 | |
|  * methods unless underlying iteration method itself has side-effect, e.g.
 | |
|  * IO#each_line.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_next_values(VALUE obj)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
|     VALUE vs;
 | |
| 
 | |
|     if (e->lookahead != Qundef) {
 | |
|         vs = e->lookahead;
 | |
|         e->lookahead = Qundef;
 | |
|         return vs;
 | |
|     }
 | |
| 
 | |
|     return get_next_values(obj, e);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary2sv(VALUE args, int dup)
 | |
| {
 | |
|     if (!RB_TYPE_P(args, T_ARRAY))
 | |
|         return args;
 | |
| 
 | |
|     switch (RARRAY_LEN(args)) {
 | |
|       case 0:
 | |
|         return Qnil;
 | |
| 
 | |
|       case 1:
 | |
|         return RARRAY_AREF(args, 0);
 | |
| 
 | |
|       default:
 | |
|         if (dup)
 | |
|             return rb_ary_dup(args);
 | |
|         return args;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.next   -> object
 | |
|  *
 | |
|  * Returns the next object in the enumerator, and move the internal position
 | |
|  * forward.  When the position reached at the end, StopIteration is raised.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  *   a = [1,2,3]
 | |
|  *   e = a.to_enum
 | |
|  *   p e.next   #=> 1
 | |
|  *   p e.next   #=> 2
 | |
|  *   p e.next   #=> 3
 | |
|  *   p e.next   #raises StopIteration
 | |
|  *
 | |
|  * Note that enumeration sequence by +next+ does not affect other non-external
 | |
|  * enumeration methods, unless the underlying iteration methods itself has
 | |
|  * side-effect, e.g. IO#each_line.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_next(VALUE obj)
 | |
| {
 | |
|     VALUE vs = enumerator_next_values(obj);
 | |
|     return ary2sv(vs, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enumerator_peek_values(VALUE obj)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
| 
 | |
|     if (e->lookahead == Qundef) {
 | |
|         e->lookahead = get_next_values(obj, e);
 | |
|     }
 | |
|     return e->lookahead;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.peek_values   -> array
 | |
|  *
 | |
|  * Returns the next object as an array, similar to Enumerator#next_values, but
 | |
|  * doesn't move the internal position forward.  If the position is already at
 | |
|  * the end, StopIteration is raised.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  *   o = Object.new
 | |
|  *   def o.each
 | |
|  *     yield
 | |
|  *     yield 1
 | |
|  *     yield 1, 2
 | |
|  *   end
 | |
|  *   e = o.to_enum
 | |
|  *   p e.peek_values    #=> []
 | |
|  *   e.next
 | |
|  *   p e.peek_values    #=> [1]
 | |
|  *   p e.peek_values    #=> [1]
 | |
|  *   e.next
 | |
|  *   p e.peek_values    #=> [1, 2]
 | |
|  *   e.next
 | |
|  *   p e.peek_values    # raises StopIteration
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_peek_values_m(VALUE obj)
 | |
| {
 | |
|     return rb_ary_dup(enumerator_peek_values(obj));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.peek   -> object
 | |
|  *
 | |
|  * Returns the next object in the enumerator, but doesn't move the internal
 | |
|  * position forward.  If the position is already at the end, StopIteration
 | |
|  * is raised.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  *   a = [1,2,3]
 | |
|  *   e = a.to_enum
 | |
|  *   p e.next   #=> 1
 | |
|  *   p e.peek   #=> 2
 | |
|  *   p e.peek   #=> 2
 | |
|  *   p e.peek   #=> 2
 | |
|  *   p e.next   #=> 2
 | |
|  *   p e.next   #=> 3
 | |
|  *   p e.peek   #raises StopIteration
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_peek(VALUE obj)
 | |
| {
 | |
|     VALUE vs = enumerator_peek_values(obj);
 | |
|     return ary2sv(vs, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.feed obj   -> nil
 | |
|  *
 | |
|  * Sets the value to be returned by the next yield inside +e+.
 | |
|  *
 | |
|  * If the value is not set, the yield returns nil.
 | |
|  *
 | |
|  * This value is cleared after being yielded.
 | |
|  *
 | |
|  *   # Array#map passes the array's elements to "yield" and collects the
 | |
|  *   # results of "yield" as an array.
 | |
|  *   # Following example shows that "next" returns the passed elements and
 | |
|  *   # values passed to "feed" are collected as an array which can be
 | |
|  *   # obtained by StopIteration#result.
 | |
|  *   e = [1,2,3].map
 | |
|  *   p e.next           #=> 1
 | |
|  *   e.feed "a"
 | |
|  *   p e.next           #=> 2
 | |
|  *   e.feed "b"
 | |
|  *   p e.next           #=> 3
 | |
|  *   e.feed "c"
 | |
|  *   begin
 | |
|  *     e.next
 | |
|  *   rescue StopIteration
 | |
|  *     p $!.result      #=> ["a", "b", "c"]
 | |
|  *   end
 | |
|  *
 | |
|  *   o = Object.new
 | |
|  *   def o.each
 | |
|  *     x = yield         # (2) blocks
 | |
|  *     p x               # (5) => "foo"
 | |
|  *     x = yield         # (6) blocks
 | |
|  *     p x               # (8) => nil
 | |
|  *     x = yield         # (9) blocks
 | |
|  *     p x               # not reached w/o another e.next
 | |
|  *   end
 | |
|  *
 | |
|  *   e = o.to_enum
 | |
|  *   e.next              # (1)
 | |
|  *   e.feed "foo"        # (3)
 | |
|  *   e.next              # (4)
 | |
|  *   e.next              # (7)
 | |
|  *                       # (10)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_feed(VALUE obj, VALUE v)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
| 
 | |
|     if (e->feedvalue != Qundef) {
 | |
| 	rb_raise(rb_eTypeError, "feed value already set");
 | |
|     }
 | |
|     e->feedvalue = v;
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.rewind   -> e
 | |
|  *
 | |
|  * Rewinds the enumeration sequence to the beginning.
 | |
|  *
 | |
|  * If the enclosed object responds to a "rewind" method, it is called.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_rewind(VALUE obj)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
| 
 | |
|     rb_check_funcall(e->obj, id_rewind, 0, 0);
 | |
| 
 | |
|     e->fib = 0;
 | |
|     e->dst = Qnil;
 | |
|     e->lookahead = Qundef;
 | |
|     e->feedvalue = Qundef;
 | |
|     e->stop_exc = Qfalse;
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static struct generator *generator_ptr(VALUE obj);
 | |
| static VALUE append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args);
 | |
| 
 | |
| static VALUE
 | |
| inspect_enumerator(VALUE obj, VALUE dummy, int recur)
 | |
| {
 | |
|     struct enumerator *e;
 | |
|     VALUE eobj, str, cname;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e);
 | |
| 
 | |
|     cname = rb_obj_class(obj);
 | |
| 
 | |
|     if (!e || e->obj == Qundef) {
 | |
| 	return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(cname));
 | |
|     }
 | |
| 
 | |
|     if (recur) {
 | |
| 	str = rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(cname));
 | |
| 	return str;
 | |
|     }
 | |
| 
 | |
|     if (e->procs) {
 | |
| 	long i;
 | |
| 
 | |
| 	eobj = generator_ptr(e->obj)->obj;
 | |
| 	/* In case procs chained enumerator traversing all proc entries manually */
 | |
| 	if (rb_obj_class(eobj) == cname) {
 | |
| 	    str = rb_inspect(eobj);
 | |
| 	}
 | |
| 	else {
 | |
| 	    str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(cname), eobj);
 | |
| 	}
 | |
| 	for (i = 0; i < RARRAY_LEN(e->procs); i++) {
 | |
| 	    str = rb_sprintf("#<%"PRIsVALUE": %"PRIsVALUE, cname, str);
 | |
| 	    append_method(RARRAY_AREF(e->procs, i), str, e->meth, e->args);
 | |
| 	    rb_str_buf_cat2(str, ">");
 | |
| 	}
 | |
| 	return str;
 | |
|     }
 | |
| 
 | |
|     eobj = rb_attr_get(obj, id_receiver);
 | |
|     if (NIL_P(eobj)) {
 | |
| 	eobj = e->obj;
 | |
|     }
 | |
| 
 | |
|     /* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */
 | |
|     str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE, rb_class_path(cname), eobj);
 | |
|     append_method(obj, str, e->meth, e->args);
 | |
| 
 | |
|     rb_str_buf_cat2(str, ">");
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| static int
 | |
| key_symbol_p(VALUE key, VALUE val, VALUE arg)
 | |
| {
 | |
|     if (SYMBOL_P(key)) return ST_CONTINUE;
 | |
|     *(int *)arg = FALSE;
 | |
|     return ST_STOP;
 | |
| }
 | |
| 
 | |
| static int
 | |
| kwd_append(VALUE key, VALUE val, VALUE str)
 | |
| {
 | |
|     if (!SYMBOL_P(key)) rb_raise(rb_eRuntimeError, "non-symbol key inserted");
 | |
|     rb_str_catf(str, "% "PRIsVALUE": %"PRIsVALUE", ", key, val);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args)
 | |
| {
 | |
|     VALUE method, eargs;
 | |
| 
 | |
|     method = rb_attr_get(obj, id_method);
 | |
|     if (method != Qfalse) {
 | |
| 	if (!NIL_P(method)) {
 | |
| 	    Check_Type(method, T_SYMBOL);
 | |
| 	    method = rb_sym2str(method);
 | |
| 	}
 | |
| 	else {
 | |
| 	    method = rb_id2str(default_method);
 | |
| 	}
 | |
| 	rb_str_buf_cat2(str, ":");
 | |
| 	rb_str_buf_append(str, method);
 | |
|     }
 | |
| 
 | |
|     eargs = rb_attr_get(obj, id_arguments);
 | |
|     if (NIL_P(eargs)) {
 | |
| 	eargs = default_args;
 | |
|     }
 | |
|     if (eargs != Qfalse) {
 | |
| 	long   argc = RARRAY_LEN(eargs);
 | |
| 	const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */
 | |
| 
 | |
| 	if (argc > 0) {
 | |
| 	    VALUE kwds = Qnil;
 | |
| 
 | |
| 	    rb_str_buf_cat2(str, "(");
 | |
| 
 | |
|             if (RB_TYPE_P(argv[argc-1], T_HASH) && !RHASH_EMPTY_P(argv[argc-1])) {
 | |
| 		int all_key = TRUE;
 | |
| 		rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key);
 | |
| 		if (all_key) kwds = argv[--argc];
 | |
| 	    }
 | |
| 
 | |
| 	    while (argc--) {
 | |
| 		VALUE arg = *argv++;
 | |
| 
 | |
| 		rb_str_append(str, rb_inspect(arg));
 | |
| 		rb_str_buf_cat2(str, ", ");
 | |
| 	    }
 | |
| 	    if (!NIL_P(kwds)) {
 | |
| 		rb_hash_foreach(kwds, kwd_append, str);
 | |
| 	    }
 | |
| 	    rb_str_set_len(str, RSTRING_LEN(str)-2);
 | |
| 	    rb_str_buf_cat2(str, ")");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.inspect  -> string
 | |
|  *
 | |
|  * Creates a printable version of <i>e</i>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_inspect(VALUE obj)
 | |
| {
 | |
|     return rb_exec_recursive(inspect_enumerator, obj, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.size          -> int, Float::INFINITY or nil
 | |
|  *
 | |
|  * Returns the size of the enumerator, or +nil+ if it can't be calculated lazily.
 | |
|  *
 | |
|  *   (1..100).to_a.permutation(4).size # => 94109400
 | |
|  *   loop.size # => Float::INFINITY
 | |
|  *   (1..100).drop_while.size # => nil
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enumerator_size(VALUE obj)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
|     int argc = 0;
 | |
|     const VALUE *argv = NULL;
 | |
|     VALUE size;
 | |
| 
 | |
|     if (e->procs) {
 | |
| 	struct generator *g = generator_ptr(e->obj);
 | |
| 	VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0);
 | |
| 	long i = 0;
 | |
| 
 | |
| 	for (i = 0; i < RARRAY_LEN(e->procs); i++) {
 | |
| 	    VALUE proc = RARRAY_AREF(e->procs, i);
 | |
| 	    struct proc_entry *entry = proc_entry_ptr(proc);
 | |
| 	    lazyenum_size_func *size_fn = entry->fn->size;
 | |
| 	    if (!size_fn) {
 | |
| 		return Qnil;
 | |
| 	    }
 | |
| 	    receiver = (*size_fn)(proc, receiver);
 | |
| 	}
 | |
| 	return receiver;
 | |
|     }
 | |
| 
 | |
|     if (e->size_fn) {
 | |
| 	return (*e->size_fn)(e->obj, e->args, obj);
 | |
|     }
 | |
|     if (e->args) {
 | |
| 	argc = (int)RARRAY_LEN(e->args);
 | |
| 	argv = RARRAY_CONST_PTR(e->args);
 | |
|     }
 | |
|     size = rb_check_funcall_kw(e->size, id_call, argc, argv, e->kw_splat);
 | |
|     if (size != Qundef) return size;
 | |
|     return e->size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Yielder
 | |
|  */
 | |
| static void
 | |
| yielder_mark(void *p)
 | |
| {
 | |
|     struct yielder *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->proc);
 | |
| }
 | |
| 
 | |
| static void
 | |
| yielder_compact(void *p)
 | |
| {
 | |
|     struct yielder *ptr = p;
 | |
|     ptr->proc = rb_gc_location(ptr->proc);
 | |
| }
 | |
| 
 | |
| #define yielder_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| yielder_memsize(const void *p)
 | |
| {
 | |
|     return sizeof(struct yielder);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t yielder_data_type = {
 | |
|     "yielder",
 | |
|     {
 | |
| 	yielder_mark,
 | |
| 	yielder_free,
 | |
| 	yielder_memsize,
 | |
|         yielder_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static struct yielder *
 | |
| yielder_ptr(VALUE obj)
 | |
| {
 | |
|     struct yielder *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
 | |
|     if (!ptr || ptr->proc == Qundef) {
 | |
| 	rb_raise(rb_eArgError, "uninitialized yielder");
 | |
|     }
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| yielder_allocate(VALUE klass)
 | |
| {
 | |
|     struct yielder *ptr;
 | |
|     VALUE obj;
 | |
| 
 | |
|     obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr);
 | |
|     ptr->proc = Qundef;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| yielder_init(VALUE obj, VALUE proc)
 | |
| {
 | |
|     struct yielder *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
 | |
| 
 | |
|     if (!ptr) {
 | |
| 	rb_raise(rb_eArgError, "unallocated yielder");
 | |
|     }
 | |
| 
 | |
|     ptr->proc = proc;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| yielder_initialize(VALUE obj)
 | |
| {
 | |
|     rb_need_block();
 | |
| 
 | |
|     return yielder_init(obj, rb_block_proc());
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| yielder_yield(VALUE obj, VALUE args)
 | |
| {
 | |
|     struct yielder *ptr = yielder_ptr(obj);
 | |
| 
 | |
|     return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| yielder_yield_push(VALUE obj, VALUE arg)
 | |
| {
 | |
|     struct yielder *ptr = yielder_ptr(obj);
 | |
| 
 | |
|     rb_proc_call_with_block(ptr->proc, 1, &arg, Qnil);
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a Proc object that takes an argument and yields it.
 | |
|  *
 | |
|  * This method is implemented so that a Yielder object can be directly
 | |
|  * passed to another method as a block argument.
 | |
|  *
 | |
|  *   enum = Enumerator.new { |y|
 | |
|  *     Dir.glob("*.rb") { |file|
 | |
|  *       File.open(file) { |f| f.each_line(&y) }
 | |
|  *     }
 | |
|  *   }
 | |
|  */
 | |
| static VALUE
 | |
| yielder_to_proc(VALUE obj)
 | |
| {
 | |
|     VALUE method = rb_obj_method(obj, sym_yield);
 | |
| 
 | |
|     return rb_funcall(method, idTo_proc, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| yielder_yield_i(RB_BLOCK_CALL_FUNC_ARGLIST(obj, memo))
 | |
| {
 | |
|     return rb_yield_values_kw(argc, argv, RB_PASS_CALLED_KEYWORDS);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| yielder_new(void)
 | |
| {
 | |
|     return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generator
 | |
|  */
 | |
| static void
 | |
| generator_mark(void *p)
 | |
| {
 | |
|     struct generator *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->proc);
 | |
|     rb_gc_mark_movable(ptr->obj);
 | |
| }
 | |
| 
 | |
| static void
 | |
| generator_compact(void *p)
 | |
| {
 | |
|     struct generator *ptr = p;
 | |
|     ptr->proc = rb_gc_location(ptr->proc);
 | |
|     ptr->obj = rb_gc_location(ptr->obj);
 | |
| }
 | |
| 
 | |
| #define generator_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| generator_memsize(const void *p)
 | |
| {
 | |
|     return sizeof(struct generator);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t generator_data_type = {
 | |
|     "generator",
 | |
|     {
 | |
| 	generator_mark,
 | |
| 	generator_free,
 | |
| 	generator_memsize,
 | |
|         generator_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static struct generator *
 | |
| generator_ptr(VALUE obj)
 | |
| {
 | |
|     struct generator *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
 | |
|     if (!ptr || ptr->proc == Qundef) {
 | |
| 	rb_raise(rb_eArgError, "uninitialized generator");
 | |
|     }
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| generator_allocate(VALUE klass)
 | |
| {
 | |
|     struct generator *ptr;
 | |
|     VALUE obj;
 | |
| 
 | |
|     obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr);
 | |
|     ptr->proc = Qundef;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| generator_init(VALUE obj, VALUE proc)
 | |
| {
 | |
|     struct generator *ptr;
 | |
| 
 | |
|     rb_check_frozen(obj);
 | |
|     TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
 | |
| 
 | |
|     if (!ptr) {
 | |
| 	rb_raise(rb_eArgError, "unallocated generator");
 | |
|     }
 | |
| 
 | |
|     ptr->proc = proc;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| generator_initialize(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE proc;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	rb_need_block();
 | |
| 
 | |
| 	proc = rb_block_proc();
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "1", &proc);
 | |
| 
 | |
| 	if (!rb_obj_is_proc(proc))
 | |
| 	    rb_raise(rb_eTypeError,
 | |
| 		     "wrong argument type %"PRIsVALUE" (expected Proc)",
 | |
| 		     rb_obj_class(proc));
 | |
| 
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return generator_init(obj, proc);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| generator_init_copy(VALUE obj, VALUE orig)
 | |
| {
 | |
|     struct generator *ptr0, *ptr1;
 | |
| 
 | |
|     if (!OBJ_INIT_COPY(obj, orig)) return obj;
 | |
| 
 | |
|     ptr0 = generator_ptr(orig);
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1);
 | |
| 
 | |
|     if (!ptr1) {
 | |
| 	rb_raise(rb_eArgError, "unallocated generator");
 | |
|     }
 | |
| 
 | |
|     ptr1->proc = ptr0->proc;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| generator_each(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct generator *ptr = generator_ptr(obj);
 | |
|     VALUE args = rb_ary_new2(argc + 1);
 | |
| 
 | |
|     rb_ary_push(args, yielder_new());
 | |
|     if (argc > 0) {
 | |
| 	rb_ary_cat(args, argv, argc);
 | |
|     }
 | |
| 
 | |
|     return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS);
 | |
| }
 | |
| 
 | |
| /* Lazy Enumerator methods */
 | |
| static VALUE
 | |
| enum_size(VALUE self)
 | |
| {
 | |
|     VALUE r = rb_check_funcall(self, id_size, 0, 0);
 | |
|     return (r == Qundef) ? Qnil : r;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazyenum_size(VALUE self, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return enum_size(self);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_size(VALUE self)
 | |
| {
 | |
|     return enum_size(rb_ivar_get(self, id_receiver));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_receiver_size(VALUE generator, VALUE args, VALUE lazy)
 | |
| {
 | |
|     return lazy_size(lazy);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_init_iterator(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
 | |
| {
 | |
|     VALUE result;
 | |
|     if (argc == 1) {
 | |
| 	VALUE args[2];
 | |
| 	args[0] = m;
 | |
| 	args[1] = val;
 | |
| 	result = rb_yield_values2(2, args);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE args;
 | |
| 	int len = rb_long2int((long)argc + 1);
 | |
| 	VALUE *nargv = ALLOCV_N(VALUE, args, len);
 | |
| 
 | |
| 	nargv[0] = m;
 | |
| 	if (argc > 0) {
 | |
| 	    MEMCPY(nargv + 1, argv, VALUE, argc);
 | |
| 	}
 | |
| 	result = rb_yield_values2(len, nargv);
 | |
| 	ALLOCV_END(args);
 | |
|     }
 | |
|     if (result == Qundef) rb_iter_break();
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_init_block_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
 | |
| {
 | |
|     rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| #define memo_value v2
 | |
| #define memo_flags u3.state
 | |
| #define LAZY_MEMO_BREAK 1
 | |
| #define LAZY_MEMO_PACKED 2
 | |
| #define LAZY_MEMO_BREAK_P(memo) ((memo)->memo_flags & LAZY_MEMO_BREAK)
 | |
| #define LAZY_MEMO_PACKED_P(memo) ((memo)->memo_flags & LAZY_MEMO_PACKED)
 | |
| #define LAZY_MEMO_SET_BREAK(memo) ((memo)->memo_flags |= LAZY_MEMO_BREAK)
 | |
| #define LAZY_MEMO_SET_VALUE(memo, value) MEMO_V2_SET(memo, value)
 | |
| #define LAZY_MEMO_SET_PACKED(memo) ((memo)->memo_flags |= LAZY_MEMO_PACKED)
 | |
| #define LAZY_MEMO_RESET_PACKED(memo) ((memo)->memo_flags &= ~LAZY_MEMO_PACKED)
 | |
| 
 | |
| static VALUE
 | |
| lazy_init_yielder(RB_BLOCK_CALL_FUNC_ARGLIST(_, m))
 | |
| {
 | |
|     VALUE yielder = RARRAY_AREF(m, 0);
 | |
|     VALUE procs_array = RARRAY_AREF(m, 1);
 | |
|     VALUE memos = rb_attr_get(yielder, id_memo);
 | |
|     long i = 0;
 | |
|     struct MEMO *result;
 | |
|     int cont = 1;
 | |
| 
 | |
|     result = MEMO_NEW(Qnil, rb_enum_values_pack(argc, argv),
 | |
| 		      argc > 1 ? LAZY_MEMO_PACKED : 0);
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(procs_array); i++) {
 | |
| 	VALUE proc = RARRAY_AREF(procs_array, i);
 | |
| 	struct proc_entry *entry = proc_entry_ptr(proc);
 | |
| 	if (!(*entry->fn->proc)(proc, result, memos, i)) {
 | |
| 	    cont = 0;
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (cont) {
 | |
| 	rb_funcall2(yielder, idLTLT, 1, &(result->memo_value));
 | |
|     }
 | |
|     if (LAZY_MEMO_BREAK_P(result)) {
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return result->memo_value;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_init_block(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
 | |
| {
 | |
|     VALUE procs = RARRAY_AREF(m, 1);
 | |
| 
 | |
|     rb_ivar_set(val, id_memo, rb_ary_new2(RARRAY_LEN(procs)));
 | |
|     rb_block_call(RARRAY_AREF(m, 0), id_each, 0, 0,
 | |
| 		  lazy_init_yielder, rb_ary_new3(2, val, procs));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_generator_init(VALUE enumerator, VALUE procs)
 | |
| {
 | |
|     VALUE generator;
 | |
|     VALUE obj;
 | |
|     struct generator *gen_ptr;
 | |
|     struct enumerator *e = enumerator_ptr(enumerator);
 | |
| 
 | |
|     if (RARRAY_LEN(procs) > 0) {
 | |
| 	struct generator *old_gen_ptr = generator_ptr(e->obj);
 | |
| 	obj = old_gen_ptr->obj;
 | |
|     }
 | |
|     else {
 | |
| 	obj = enumerator;
 | |
|     }
 | |
| 
 | |
|     generator = generator_allocate(rb_cGenerator);
 | |
| 
 | |
|     rb_block_call(generator, id_initialize, 0, 0,
 | |
| 		  lazy_init_block, rb_ary_new3(2, obj, procs));
 | |
| 
 | |
|     gen_ptr = generator_ptr(generator);
 | |
|     gen_ptr->obj = obj;
 | |
| 
 | |
|     return generator;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: Enumerator::Lazy
 | |
|  *
 | |
|  * Enumerator::Lazy is a special type of Enumerator, that allows constructing
 | |
|  * chains of operations without evaluating them immediately, and evaluating
 | |
|  * values on as-needed basis. In order to do so it redefines most of Enumerable
 | |
|  * methods so that they just construct another lazy enumerator.
 | |
|  *
 | |
|  * Enumerator::Lazy can be constructed from any Enumerable with the
 | |
|  * Enumerable#lazy method.
 | |
|  *
 | |
|  *    lazy = (1..Float::INFINITY).lazy.select(&:odd?).drop(10).take_while { |i| i < 30 }
 | |
|  *    # => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:select>:drop(10)>:take_while>
 | |
|  *
 | |
|  * The real enumeration is performed when any non-redefined Enumerable method
 | |
|  * is called, like Enumerable#first or Enumerable#to_a (the latter is aliased
 | |
|  * as #force for more semantic code):
 | |
|  *
 | |
|  *    lazy.first(2)
 | |
|  *    #=> [21, 23]
 | |
|  *
 | |
|  *    lazy.force
 | |
|  *    #=> [21, 23, 25, 27, 29]
 | |
|  *
 | |
|  * Note that most Enumerable methods that could be called with or without
 | |
|  * a block, on Enumerator::Lazy will always require a block:
 | |
|  *
 | |
|  *    [1, 2, 3].map       #=> #<Enumerator: [1, 2, 3]:map>
 | |
|  *    [1, 2, 3].lazy.map  # ArgumentError: tried to call lazy map without a block
 | |
|  *
 | |
|  * This class allows idiomatic calculations on long or infinite sequences, as well
 | |
|  * as chaining of calculations without constructing intermediate arrays.
 | |
|  *
 | |
|  * Example for working with a slowly calculated sequence:
 | |
|  *
 | |
|  *    require 'open-uri'
 | |
|  *
 | |
|  *    # This will fetch all URLs before selecting
 | |
|  *    # necessary data
 | |
|  *    URLS.map { |u| JSON.parse(open(u).read) }
 | |
|  *      .select { |data| data.key?('stats') }
 | |
|  *      .first(5)
 | |
|  *
 | |
|  *    # This will fetch URLs one-by-one, only till
 | |
|  *    # there is enough data to satisfy the condition
 | |
|  *    URLS.lazy.map { |u| JSON.parse(open(u).read) }
 | |
|  *      .select { |data| data.key?('stats') }
 | |
|  *      .first(5)
 | |
|  *
 | |
|  * Ending a chain with ".eager" generates a non-lazy enumerator, which
 | |
|  * is suitable for returning or passing to another method that expects
 | |
|  * a normal enumerator.
 | |
|  *
 | |
|  *    def active_items
 | |
|  *      groups
 | |
|  *        .lazy
 | |
|  *        .flat_map(&:items)
 | |
|  *        .reject(&:disabled)
 | |
|  *        .eager
 | |
|  *    end
 | |
|  *
 | |
|  *    # This works lazily; if a checked item is found, it stops
 | |
|  *    # iteration and does not look into remaining groups.
 | |
|  *    first_checked = active_items.find(&:checked)
 | |
|  *
 | |
|  *    # This returns an array of items like a normal enumerator does.
 | |
|  *    all_checked = active_items.select(&:checked)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   Lazy.new(obj, size=nil) { |yielder, *values| block }
 | |
|  *
 | |
|  * Creates a new Lazy enumerator. When the enumerator is actually enumerated
 | |
|  * (e.g. by calling #force), +obj+ will be enumerated and each value passed
 | |
|  * to the given block. The block can yield values back using +yielder+.
 | |
|  * For example, to create a "filter+map" enumerator:
 | |
|  *
 | |
|  *   def filter_map(sequence)
 | |
|  *     Lazy.new(sequence) do |yielder, *values|
 | |
|  *       result = yield *values
 | |
|  *       yielder << result if result
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   filter_map(1..Float::INFINITY) {|i| i*i if i.even?}.first(5)
 | |
|  *   #=> [4, 16, 36, 64, 100]
 | |
|  */
 | |
| static VALUE
 | |
| lazy_initialize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE obj, size = Qnil;
 | |
|     VALUE generator;
 | |
| 
 | |
|     rb_check_arity(argc, 1, 2);
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy new without a block");
 | |
|     }
 | |
|     obj = argv[0];
 | |
|     if (argc > 1) {
 | |
| 	size = argv[1];
 | |
|     }
 | |
|     generator = generator_allocate(rb_cGenerator);
 | |
|     rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj);
 | |
|     enumerator_init(self, generator, sym_each, 0, 0, 0, size, 0);
 | |
|     rb_ivar_set(self, id_receiver, obj);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| #if 0 /* for RDoc */
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   lazy.to_a  -> array
 | |
|  *   lazy.force -> array
 | |
|  *
 | |
|  * Expands +lazy+ enumerator to an array.
 | |
|  * See Enumerable#to_a.
 | |
|  */
 | |
| static VALUE lazy_to_a(VALUE self)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| lazy_set_args(VALUE lazy, VALUE args)
 | |
| {
 | |
|     ID id = rb_frame_this_func();
 | |
|     rb_ivar_set(lazy, id_method, ID2SYM(id));
 | |
|     if (NIL_P(args)) {
 | |
| 	/* Qfalse indicates that the arguments are empty */
 | |
| 	rb_ivar_set(lazy, id_arguments, Qfalse);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ivar_set(lazy, id_arguments, args);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_set_method(VALUE lazy, VALUE args, rb_enumerator_size_func *size_fn)
 | |
| {
 | |
|     struct enumerator *e = enumerator_ptr(lazy);
 | |
|     lazy_set_args(lazy, args);
 | |
|     e->size_fn = size_fn;
 | |
|     return lazy;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_add_method(VALUE obj, int argc, VALUE *argv, VALUE args, VALUE memo,
 | |
| 		const lazyenum_funcs *fn)
 | |
| {
 | |
|     struct enumerator *new_e;
 | |
|     VALUE new_obj;
 | |
|     VALUE new_generator;
 | |
|     VALUE new_procs;
 | |
|     struct enumerator *e = enumerator_ptr(obj);
 | |
|     struct proc_entry *entry;
 | |
|     VALUE entry_obj = TypedData_Make_Struct(rb_cObject, struct proc_entry,
 | |
| 					    &proc_entry_data_type, entry);
 | |
|     if (rb_block_given_p()) {
 | |
| 	entry->proc = rb_block_proc();
 | |
|     }
 | |
|     entry->fn = fn;
 | |
|     entry->memo = args;
 | |
| 
 | |
|     lazy_set_args(entry_obj, memo);
 | |
| 
 | |
|     new_procs = RTEST(e->procs) ? rb_ary_dup(e->procs) : rb_ary_new();
 | |
|     new_generator = lazy_generator_init(obj, new_procs);
 | |
|     rb_ary_push(new_procs, entry_obj);
 | |
| 
 | |
|     new_obj = enumerator_init_copy(enumerator_allocate(rb_cLazy), obj);
 | |
|     new_e = DATA_PTR(new_obj);
 | |
|     new_e->obj = new_generator;
 | |
|     new_e->procs = new_procs;
 | |
| 
 | |
|     if (argc > 0) {
 | |
| 	new_e->meth = rb_to_id(*argv++);
 | |
| 	--argc;
 | |
|     }
 | |
|     else {
 | |
| 	new_e->meth = id_each;
 | |
|     }
 | |
|     new_e->args = rb_ary_new4(argc, argv);
 | |
|     return new_obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.lazy -> lazy_enumerator
 | |
|  *
 | |
|  * Returns an Enumerator::Lazy, which redefines most Enumerable
 | |
|  * methods to postpone enumeration and enumerate values only on an
 | |
|  * as-needed basis.
 | |
|  *
 | |
|  * === Example
 | |
|  *
 | |
|  * The following program finds pythagorean triples:
 | |
|  *
 | |
|  *   def pythagorean_triples
 | |
|  *     (1..Float::INFINITY).lazy.flat_map {|z|
 | |
|  *       (1..z).flat_map {|x|
 | |
|  *         (x..z).select {|y|
 | |
|  *           x**2 + y**2 == z**2
 | |
|  *         }.map {|y|
 | |
|  *           [x, y, z]
 | |
|  *         }
 | |
|  *       }
 | |
|  *     }
 | |
|  *   end
 | |
|  *   # show first ten pythagorean triples
 | |
|  *   p pythagorean_triples.take(10).force # take is lazy, so force is needed
 | |
|  *   p pythagorean_triples.first(10)      # first is eager
 | |
|  *   # show pythagorean triples less than 100
 | |
|  *   p pythagorean_triples.take_while { |*, z| z < 100 }.force
 | |
|  */
 | |
| static VALUE
 | |
| enumerable_lazy(VALUE obj)
 | |
| {
 | |
|     VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size, rb_keyword_given_p());
 | |
|     /* Qfalse indicates that the Enumerator::Lazy has no method name */
 | |
|     rb_ivar_set(result, id_method, Qfalse);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_to_enum_i(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat)
 | |
| {
 | |
|     return enumerator_init(enumerator_allocate(rb_cLazy),
 | |
|                            obj, meth, argc, argv, size_fn, Qnil, kw_splat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   lzy.to_enum(method = :each, *args)                   -> lazy_enum
 | |
|  *   lzy.enum_for(method = :each, *args)                  -> lazy_enum
 | |
|  *   lzy.to_enum(method = :each, *args) {|*args| block }  -> lazy_enum
 | |
|  *   lzy.enum_for(method = :each, *args) {|*args| block } -> lazy_enum
 | |
|  *
 | |
|  * Similar to Object#to_enum, except it returns a lazy enumerator.
 | |
|  * This makes it easy to define Enumerable methods that will
 | |
|  * naturally remain lazy if called from a lazy enumerator.
 | |
|  *
 | |
|  * For example, continuing from the example in Object#to_enum:
 | |
|  *
 | |
|  *   # See Object#to_enum for the definition of repeat
 | |
|  *   r = 1..Float::INFINITY
 | |
|  *   r.repeat(2).first(5) # => [1, 1, 2, 2, 3]
 | |
|  *   r.repeat(2).class # => Enumerator
 | |
|  *   r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop!
 | |
|  *   # works naturally on lazy enumerator:
 | |
|  *   r.lazy.repeat(2).class # => Enumerator::Lazy
 | |
|  *   r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_to_enum(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE lazy, meth = sym_each, super_meth;
 | |
| 
 | |
|     if (argc > 0) {
 | |
| 	--argc;
 | |
| 	meth = *argv++;
 | |
|     }
 | |
|     if (RTEST((super_meth = rb_hash_aref(lazy_use_super_method, meth)))) {
 | |
|         meth = super_meth;
 | |
|     }
 | |
|     lazy = lazy_to_enum_i(self, meth, argc, argv, 0, rb_keyword_given_p());
 | |
|     if (rb_block_given_p()) {
 | |
| 	enumerator_ptr(lazy)->size = rb_block_proc();
 | |
|     }
 | |
|     return lazy;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_eager_size(VALUE self, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return enum_size(self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   lzy.eager -> enum
 | |
|  *
 | |
|  * Returns a non-lazy Enumerator converted from the lazy enumerator.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_eager(VALUE self)
 | |
| {
 | |
|     return enumerator_init(enumerator_allocate(rb_cEnumerator),
 | |
|                            self, sym_each, 0, 0, lazy_eager_size, Qnil, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazyenum_yield(VALUE proc_entry, struct MEMO *result)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     return rb_proc_call_with_block(entry->proc, 1, &result->memo_value, Qnil);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazyenum_yield_values(VALUE proc_entry, struct MEMO *result)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     int argc = 1;
 | |
|     const VALUE *argv = &result->memo_value;
 | |
|     if (LAZY_MEMO_PACKED_P(result)) {
 | |
| 	const VALUE args = *argv;
 | |
| 	argc = RARRAY_LENINT(args);
 | |
| 	argv = RARRAY_CONST_PTR(args);
 | |
|     }
 | |
|     return rb_proc_call_with_block(entry->proc, argc, argv, Qnil);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE value = lazyenum_yield_values(proc_entry, result);
 | |
|     LAZY_MEMO_SET_VALUE(result, value);
 | |
|     LAZY_MEMO_RESET_PACKED(result);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_map_size(VALUE entry, VALUE receiver)
 | |
| {
 | |
|     return receiver;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_map_funcs = {
 | |
|     lazy_map_proc, lazy_map_size,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.collect { |obj| block } -> lazy_enumerator
 | |
|  *     lazy.map     { |obj| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#map, but chains operation to be lazy-evaluated.
 | |
|  *
 | |
|  *     (1..Float::INFINITY).lazy.map {|i| i**2 }
 | |
|  *     #=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map>
 | |
|  *     (1..Float::INFINITY).lazy.map {|i| i**2 }.first(3)
 | |
|  *     #=> [1, 4, 9]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_map(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy map without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_map_funcs);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, yielder))
 | |
| {
 | |
|     VALUE arg = rb_enum_values_pack(argc, argv);
 | |
| 
 | |
|     return rb_funcallv(yielder, idLTLT, 1, &arg);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_flat_map_each(VALUE obj, VALUE yielder)
 | |
| {
 | |
|     rb_block_call(obj, id_each, 0, 0, lazy_flat_map_i, yielder);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_flat_map_to_ary(VALUE obj, VALUE yielder)
 | |
| {
 | |
|     VALUE ary = rb_check_array_type(obj);
 | |
|     if (NIL_P(ary)) {
 | |
| 	rb_funcall(yielder, idLTLT, 1, obj);
 | |
|     }
 | |
|     else {
 | |
| 	long i;
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_funcall(yielder, idLTLT, 1, RARRAY_AREF(ary, i));
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_flat_map_proc(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
 | |
| {
 | |
|     VALUE result = rb_yield_values2(argc - 1, &argv[1]);
 | |
|     if (RB_TYPE_P(result, T_ARRAY)) {
 | |
| 	long i;
 | |
| 	for (i = 0; i < RARRAY_LEN(result); i++) {
 | |
| 	    rb_funcall(argv[0], idLTLT, 1, RARRAY_AREF(result, i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (rb_respond_to(result, id_force) && rb_respond_to(result, id_each)) {
 | |
| 	    lazy_flat_map_each(result, argv[0]);
 | |
| 	}
 | |
| 	else {
 | |
| 	    lazy_flat_map_to_ary(result, argv[0]);
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.collect_concat { |obj| block } -> a_lazy_enumerator
 | |
|  *     lazy.flat_map       { |obj| block } -> a_lazy_enumerator
 | |
|  *
 | |
|  *  Returns a new lazy enumerator with the concatenated results of running
 | |
|  *  +block+ once for every element in the lazy enumerator.
 | |
|  *
 | |
|  *    ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force
 | |
|  *    #=> ["f", "o", "o", "b", "a", "r"]
 | |
|  *
 | |
|  *  A value +x+ returned by +block+ is decomposed if either of
 | |
|  *  the following conditions is true:
 | |
|  *
 | |
|  *  * +x+ responds to both each and force, which means that
 | |
|  *    +x+ is a lazy enumerator.
 | |
|  *  * +x+ is an array or responds to to_ary.
 | |
|  *
 | |
|  *  Otherwise, +x+ is contained as-is in the return value.
 | |
|  *
 | |
|  *    [{a:1}, {b:2}].lazy.flat_map {|i| i}.force
 | |
|  *    #=> [{:a=>1}, {:b=>2}]
 | |
|  */
 | |
| static VALUE
 | |
| lazy_flat_map(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy flat_map without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
 | |
| 					 lazy_flat_map_proc, 0),
 | |
| 			   Qnil, 0);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_select_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE chain = lazyenum_yield(proc_entry, result);
 | |
|     if (!RTEST(chain)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_select_funcs = {
 | |
|     lazy_select_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.find_all { |obj| block } -> lazy_enumerator
 | |
|  *     lazy.select   { |obj| block } -> lazy_enumerator
 | |
|  *     lazy.filter   { |obj| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#select, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE
 | |
| lazy_select(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy select without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_select_funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_filter_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE value = lazyenum_yield_values(proc_entry, result);
 | |
|     if (!RTEST(value)) return 0;
 | |
|     LAZY_MEMO_SET_VALUE(result, value);
 | |
|     LAZY_MEMO_RESET_PACKED(result);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_filter_map_funcs = {
 | |
|     lazy_filter_map_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.filter_map { |obj| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#filter_map, but chains operation to be lazy-evaluated.
 | |
|  *
 | |
|  *    (1..).lazy.filter_map { |i| i * 2 if i.even? }.first(5)
 | |
|  *    #=> [4, 8, 12, 16, 20]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_filter_map(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
|         rb_raise(rb_eArgError, "tried to call lazy filter_map without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_filter_map_funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_reject_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE chain = lazyenum_yield(proc_entry, result);
 | |
|     if (RTEST(chain)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_reject_funcs = {
 | |
|     lazy_reject_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.reject { |obj| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#reject, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_reject(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy reject without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_reject_funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_grep_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
 | |
|     if (!RTEST(chain)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_grep_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
 | |
| 
 | |
|     if (!RTEST(chain)) return 0;
 | |
|     value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil);
 | |
|     LAZY_MEMO_SET_VALUE(result, value);
 | |
|     LAZY_MEMO_RESET_PACKED(result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_grep_iter_funcs = {
 | |
|     lazy_grep_iter_proc, 0,
 | |
| };
 | |
| 
 | |
| static const lazyenum_funcs lazy_grep_funcs = {
 | |
|     lazy_grep_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.grep(pattern)                  -> lazy_enumerator
 | |
|  *     lazy.grep(pattern) { |obj| block }  -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#grep, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_grep(VALUE obj, VALUE pattern)
 | |
| {
 | |
|     const lazyenum_funcs *const funcs = rb_block_given_p() ?
 | |
| 	&lazy_grep_iter_funcs : &lazy_grep_funcs;
 | |
|     return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_grep_v_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
 | |
|     if (RTEST(chain)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_grep_v_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
 | |
| 
 | |
|     if (RTEST(chain)) return 0;
 | |
|     value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil);
 | |
|     LAZY_MEMO_SET_VALUE(result, value);
 | |
|     LAZY_MEMO_RESET_PACKED(result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_grep_v_iter_funcs = {
 | |
|     lazy_grep_v_iter_proc, 0,
 | |
| };
 | |
| 
 | |
| static const lazyenum_funcs lazy_grep_v_funcs = {
 | |
|     lazy_grep_v_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.grep_v(pattern)                  -> lazy_enumerator
 | |
|  *     lazy.grep_v(pattern) { |obj| block }  -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#grep_v, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_grep_v(VALUE obj, VALUE pattern)
 | |
| {
 | |
|     const lazyenum_funcs *const funcs = rb_block_given_p() ?
 | |
|         &lazy_grep_v_iter_funcs : &lazy_grep_v_funcs;
 | |
|     return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| call_next(VALUE obj)
 | |
| {
 | |
|     return rb_funcall(obj, id_next, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| next_stopped(VALUE obj, VALUE _)
 | |
| {
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_zip_arrays_func(RB_BLOCK_CALL_FUNC_ARGLIST(val, arrays))
 | |
| {
 | |
|     VALUE yielder, ary, memo;
 | |
|     long i, count;
 | |
| 
 | |
|     yielder = argv[0];
 | |
|     memo = rb_attr_get(yielder, id_memo);
 | |
|     count = NIL_P(memo) ? 0 : NUM2LONG(memo);
 | |
| 
 | |
|     ary = rb_ary_new2(RARRAY_LEN(arrays) + 1);
 | |
|     rb_ary_push(ary, argv[1]);
 | |
|     for (i = 0; i < RARRAY_LEN(arrays); i++) {
 | |
| 	rb_ary_push(ary, rb_ary_entry(RARRAY_AREF(arrays, i), count));
 | |
|     }
 | |
|     rb_funcall(yielder, idLTLT, 1, ary);
 | |
|     rb_ivar_set(yielder, id_memo, LONG2NUM(++count));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_zip_func(RB_BLOCK_CALL_FUNC_ARGLIST(val, zip_args))
 | |
| {
 | |
|     VALUE yielder, ary, arg, v;
 | |
|     long i;
 | |
| 
 | |
|     yielder = argv[0];
 | |
|     arg = rb_attr_get(yielder, id_memo);
 | |
|     if (NIL_P(arg)) {
 | |
| 	arg = rb_ary_new2(RARRAY_LEN(zip_args));
 | |
| 	for (i = 0; i < RARRAY_LEN(zip_args); i++) {
 | |
| 	    rb_ary_push(arg, rb_funcall(RARRAY_AREF(zip_args, i), id_to_enum, 0));
 | |
| 	}
 | |
| 	rb_ivar_set(yielder, id_memo, arg);
 | |
|     }
 | |
| 
 | |
|     ary = rb_ary_new2(RARRAY_LEN(arg) + 1);
 | |
|     v = Qnil;
 | |
|     if (--argc > 0) {
 | |
| 	++argv;
 | |
| 	v = argc > 1 ? rb_ary_new_from_values(argc, argv) : *argv;
 | |
|     }
 | |
|     rb_ary_push(ary, v);
 | |
|     for (i = 0; i < RARRAY_LEN(arg); i++) {
 | |
| 	v = rb_rescue2(call_next, RARRAY_AREF(arg, i), next_stopped, 0,
 | |
| 		       rb_eStopIteration, (VALUE)0);
 | |
| 	rb_ary_push(ary, v);
 | |
|     }
 | |
|     rb_funcall(yielder, idLTLT, 1, ary);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.zip(arg, ...)                  -> lazy_enumerator
 | |
|  *     lazy.zip(arg, ...) { |arr| block }  -> nil
 | |
|  *
 | |
|  *  Like Enumerable#zip, but chains operation to be lazy-evaluated.
 | |
|  *  However, if a block is given to zip, values are enumerated immediately.
 | |
|  */
 | |
| static VALUE
 | |
| lazy_zip(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE ary, v;
 | |
|     long i;
 | |
|     rb_block_call_func *func = lazy_zip_arrays_func;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
| 	return rb_call_super(argc, argv);
 | |
|     }
 | |
| 
 | |
|     ary = rb_ary_new2(argc);
 | |
|     for (i = 0; i < argc; i++) {
 | |
| 	v = rb_check_array_type(argv[i]);
 | |
| 	if (NIL_P(v)) {
 | |
| 	    for (; i < argc; i++) {
 | |
| 		if (!rb_respond_to(argv[i], id_each)) {
 | |
| 		    rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
 | |
| 			     rb_obj_class(argv[i]));
 | |
| 		}
 | |
| 	    }
 | |
| 	    ary = rb_ary_new4(argc, argv);
 | |
| 	    func = lazy_zip_func;
 | |
| 	    break;
 | |
| 	}
 | |
| 	rb_ary_push(ary, v);
 | |
|     }
 | |
| 
 | |
|     return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
 | |
| 					 func, ary),
 | |
| 			   ary, lazy_receiver_size);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_take_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     long remain;
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE memo = rb_ary_entry(memos, memo_index);
 | |
| 
 | |
|     if (NIL_P(memo)) {
 | |
| 	memo = entry->memo;
 | |
|     }
 | |
| 
 | |
|     remain = NUM2LONG(memo);
 | |
|     if (remain == 0) {
 | |
| 	LAZY_MEMO_SET_BREAK(result);
 | |
|     }
 | |
|     else {
 | |
| 	if (--remain == 0) LAZY_MEMO_SET_BREAK(result);
 | |
| 	rb_ary_store(memos, memo_index, LONG2NUM(remain));
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_take_size(VALUE entry, VALUE receiver)
 | |
| {
 | |
|     long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(entry, id_arguments), 0));
 | |
|     if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len))
 | |
| 	return receiver;
 | |
|     return LONG2NUM(len);
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_take_funcs = {
 | |
|     lazy_take_proc, lazy_take_size,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.take(n)               -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#take, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_take(VALUE obj, VALUE n)
 | |
| {
 | |
|     long len = NUM2LONG(n);
 | |
|     int argc = 0;
 | |
|     VALUE argv[2];
 | |
| 
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to take negative size");
 | |
|     }
 | |
| 
 | |
|     if (len == 0) {
 | |
|        argv[0] = sym_cycle;
 | |
|        argv[1] = INT2NUM(0);
 | |
|        argc = 2;
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, argc, argv, n, rb_ary_new3(1, n), &lazy_take_funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_take_while_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE take = lazyenum_yield_values(proc_entry, result);
 | |
|     if (!RTEST(take)) {
 | |
| 	LAZY_MEMO_SET_BREAK(result);
 | |
| 	return 0;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_take_while_funcs = {
 | |
|     lazy_take_while_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.take_while { |obj| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#take_while, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_take_while(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy take_while without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_take_while_funcs);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| lazy_drop_size(VALUE proc_entry, VALUE receiver)
 | |
| {
 | |
|     long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(proc_entry, id_arguments), 0));
 | |
|     if (NIL_P(receiver))
 | |
| 	return receiver;
 | |
|     if (FIXNUM_P(receiver)) {
 | |
| 	len = FIX2LONG(receiver) - len;
 | |
| 	return LONG2FIX(len < 0 ? 0 : len);
 | |
|     }
 | |
|     return rb_funcall(receiver, '-', 1, LONG2NUM(len));
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_drop_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     long remain;
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE memo = rb_ary_entry(memos, memo_index);
 | |
| 
 | |
|     if (NIL_P(memo)) {
 | |
| 	memo = entry->memo;
 | |
|     }
 | |
|     remain = NUM2LONG(memo);
 | |
|     if (remain > 0) {
 | |
| 	--remain;
 | |
| 	rb_ary_store(memos, memo_index, LONG2NUM(remain));
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_drop_funcs = {
 | |
|     lazy_drop_proc, lazy_drop_size,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.drop(n)               -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#drop, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_drop(VALUE obj, VALUE n)
 | |
| {
 | |
|     long len = NUM2LONG(n);
 | |
|     VALUE argv[2];
 | |
|     argv[0] = sym_each;
 | |
|     argv[1] = n;
 | |
| 
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to drop negative size");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 2, argv, n, rb_ary_new3(1, n), &lazy_drop_funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_drop_while_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE memo = rb_ary_entry(memos, memo_index);
 | |
| 
 | |
|     if (NIL_P(memo)) {
 | |
| 	memo = entry->memo;
 | |
|     }
 | |
| 
 | |
|     if (!RTEST(memo)) {
 | |
| 	VALUE drop = lazyenum_yield_values(proc_entry, result);
 | |
| 	if (RTEST(drop)) return 0;
 | |
| 	rb_ary_store(memos, memo_index, Qtrue);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_drop_while_funcs = {
 | |
|     lazy_drop_while_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.drop_while { |obj| block }  -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#drop_while, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_drop_while(VALUE obj)
 | |
| {
 | |
|     if (!rb_block_given_p()) {
 | |
| 	rb_raise(rb_eArgError, "tried to call lazy drop_while without a block");
 | |
|     }
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, Qfalse, Qnil, &lazy_drop_while_funcs);
 | |
| }
 | |
| 
 | |
| static int
 | |
| lazy_uniq_check(VALUE chain, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE hash = rb_ary_entry(memos, memo_index);
 | |
| 
 | |
|     if (NIL_P(hash)) {
 | |
|         hash = rb_obj_hide(rb_hash_new());
 | |
|         rb_ary_store(memos, memo_index, hash);
 | |
|     }
 | |
| 
 | |
|     return rb_hash_add_new_element(hash, chain, Qfalse);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_uniq_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     if (lazy_uniq_check(result->memo_value, memos, memo_index)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_uniq_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
 | |
| {
 | |
|     VALUE chain = lazyenum_yield(proc_entry, result);
 | |
| 
 | |
|     if (lazy_uniq_check(chain, memos, memo_index)) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_uniq_iter_funcs = {
 | |
|     lazy_uniq_iter_proc, 0,
 | |
| };
 | |
| 
 | |
| static const lazyenum_funcs lazy_uniq_funcs = {
 | |
|     lazy_uniq_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.uniq                  -> lazy_enumerator
 | |
|  *     lazy.uniq { |item| block } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#uniq, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_uniq(VALUE obj)
 | |
| {
 | |
|     const lazyenum_funcs *const funcs =
 | |
|         rb_block_given_p() ? &lazy_uniq_iter_funcs : &lazy_uniq_funcs;
 | |
|     return lazy_add_method(obj, 0, 0, Qnil, Qnil, funcs);
 | |
| }
 | |
| 
 | |
| static struct MEMO *
 | |
| lazy_with_index_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index)
 | |
| {
 | |
|     struct proc_entry *entry = proc_entry_ptr(proc_entry);
 | |
|     VALUE memo = rb_ary_entry(memos, memo_index);
 | |
|     VALUE argv[2];
 | |
| 
 | |
|     if (NIL_P(memo)) {
 | |
|         memo = entry->memo;
 | |
|     }
 | |
| 
 | |
|     argv[0] = result->memo_value;
 | |
|     argv[1] = memo;
 | |
|     if (entry->proc) {
 | |
|         rb_proc_call_with_block(entry->proc, 2, argv, Qnil);
 | |
|         LAZY_MEMO_RESET_PACKED(result);
 | |
|     } else {
 | |
|         LAZY_MEMO_SET_VALUE(result, rb_ary_new_from_values(2, argv));
 | |
|         LAZY_MEMO_SET_PACKED(result);
 | |
|     }
 | |
|     rb_ary_store(memos, memo_index, LONG2NUM(NUM2LONG(memo) + 1));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const lazyenum_funcs lazy_with_index_funcs = {
 | |
|     lazy_with_index_proc, 0,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   lazy.with_index(offset = 0) {|(*args), idx| block }
 | |
|  *   lazy.with_index(offset = 0)
 | |
|  *
 | |
|  * If a block is given, iterates the given block for each element
 | |
|  * with an index, which starts from +offset+, and returns a
 | |
|  * lazy enumerator that yields the same values (without the index).
 | |
|  *
 | |
|  * If a block is not given, returns a new lazy enumerator that
 | |
|  * includes the index, starting from +offset+.
 | |
|  *
 | |
|  * +offset+:: the starting index to use
 | |
|  *
 | |
|  * See Enumerator#with_index.
 | |
|  */
 | |
| static VALUE
 | |
| lazy_with_index(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &memo);
 | |
|     if (NIL_P(memo))
 | |
|         memo = LONG2NUM(0);
 | |
| 
 | |
|     return lazy_add_method(obj, 0, 0, memo, rb_ary_new_from_values(1, &memo), &lazy_with_index_funcs);
 | |
| }
 | |
| 
 | |
| #if 0 /* for RDoc */
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.chunk { |elt| ... }                       -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#chunk, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE lazy_chunk(VALUE self)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.chunk_while {|elt_before, elt_after| bool } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#chunk_while, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE lazy_chunk_while(VALUE self)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.slice_after(pattern)       -> lazy_enumerator
 | |
|  *     lazy.slice_after { |elt| bool } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#slice_after, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE lazy_slice_after(VALUE self)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.slice_before(pattern)       -> lazy_enumerator
 | |
|  *     lazy.slice_before { |elt| bool } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#slice_before, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE lazy_slice_before(VALUE self)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     lazy.slice_when {|elt_before, elt_after| bool } -> lazy_enumerator
 | |
|  *
 | |
|  *  Like Enumerable#slice_when, but chains operation to be lazy-evaluated.
 | |
|  */
 | |
| static VALUE lazy_slice_when(VALUE self)
 | |
| {
 | |
| }
 | |
| # endif
 | |
| 
 | |
| static VALUE
 | |
| lazy_super(int argc, VALUE *argv, VALUE lazy)
 | |
| {
 | |
|     return enumerable_lazy(rb_call_super(argc, argv));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.lazy -> lazy_enumerator
 | |
|  *
 | |
|  *  Returns self.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| lazy_lazy(VALUE obj)
 | |
| {
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: StopIteration
 | |
|  *
 | |
|  * Raised to stop the iteration, in particular by Enumerator#next. It is
 | |
|  * rescued by Kernel#loop.
 | |
|  *
 | |
|  *   loop do
 | |
|  *     puts "Hello"
 | |
|  *     raise StopIteration
 | |
|  *     puts "World"
 | |
|  *   end
 | |
|  *   puts "Done!"
 | |
|  *
 | |
|  * <em>produces:</em>
 | |
|  *
 | |
|  *   Hello
 | |
|  *   Done!
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   result       -> value
 | |
|  *
 | |
|  * Returns the return value of the iterator.
 | |
|  *
 | |
|  *   o = Object.new
 | |
|  *   def o.each
 | |
|  *     yield 1
 | |
|  *     yield 2
 | |
|  *     yield 3
 | |
|  *     100
 | |
|  *   end
 | |
|  *
 | |
|  *   e = o.to_enum
 | |
|  *
 | |
|  *   puts e.next                   #=> 1
 | |
|  *   puts e.next                   #=> 2
 | |
|  *   puts e.next                   #=> 3
 | |
|  *
 | |
|  *   begin
 | |
|  *     e.next
 | |
|  *   rescue StopIteration => ex
 | |
|  *     puts ex.result              #=> 100
 | |
|  *   end
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| stop_result(VALUE self)
 | |
| {
 | |
|     return rb_attr_get(self, id_result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Producer
 | |
|  */
 | |
| 
 | |
| static void
 | |
| producer_mark(void *p)
 | |
| {
 | |
|     struct producer *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->init);
 | |
|     rb_gc_mark_movable(ptr->proc);
 | |
| }
 | |
| 
 | |
| static void
 | |
| producer_compact(void *p)
 | |
| {
 | |
|     struct producer *ptr = p;
 | |
|     ptr->init = rb_gc_location(ptr->init);
 | |
|     ptr->proc = rb_gc_location(ptr->proc);
 | |
| }
 | |
| 
 | |
| #define producer_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| producer_memsize(const void *p)
 | |
| {
 | |
|     return sizeof(struct producer);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t producer_data_type = {
 | |
|     "producer",
 | |
|     {
 | |
|         producer_mark,
 | |
|         producer_free,
 | |
|         producer_memsize,
 | |
|         producer_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static struct producer *
 | |
| producer_ptr(VALUE obj)
 | |
| {
 | |
|     struct producer *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr);
 | |
|     if (!ptr || ptr->proc == Qundef) {
 | |
|         rb_raise(rb_eArgError, "uninitialized producer");
 | |
|     }
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| producer_allocate(VALUE klass)
 | |
| {
 | |
|     struct producer *ptr;
 | |
|     VALUE obj;
 | |
| 
 | |
|     obj = TypedData_Make_Struct(klass, struct producer, &producer_data_type, ptr);
 | |
|     ptr->init = Qundef;
 | |
|     ptr->proc = Qundef;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| producer_init(VALUE obj, VALUE init, VALUE proc)
 | |
| {
 | |
|     struct producer *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr);
 | |
| 
 | |
|     if (!ptr) {
 | |
|         rb_raise(rb_eArgError, "unallocated producer");
 | |
|     }
 | |
| 
 | |
|     ptr->init = init;
 | |
|     ptr->proc = proc;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| producer_each_stop(VALUE dummy, VALUE exc)
 | |
| {
 | |
|     return rb_attr_get(exc, id_result);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| producer_each_i(VALUE obj)
 | |
| {
 | |
|     struct producer *ptr;
 | |
|     VALUE init, proc, curr;
 | |
| 
 | |
|     ptr = producer_ptr(obj);
 | |
|     init = ptr->init;
 | |
|     proc = ptr->proc;
 | |
| 
 | |
|     if (init == Qundef) {
 | |
|         curr = Qnil;
 | |
|     } else {
 | |
|         rb_yield(init);
 | |
|         curr = init;
 | |
|     }
 | |
| 
 | |
|     for (;;) {
 | |
|         curr = rb_funcall(proc, id_call, 1, curr);
 | |
|         rb_yield(curr);
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| producer_each(VALUE obj)
 | |
| {
 | |
|     rb_need_block();
 | |
| 
 | |
|     return rb_rescue2(producer_each_i, obj, producer_each_stop, (VALUE)0, rb_eStopIteration, (VALUE)0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| producer_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return DBL2NUM(HUGE_VAL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    Enumerator.produce(initial = nil) { |prev| block } -> enumerator
 | |
|  *
 | |
|  * Creates an infinite enumerator from any block, just called over and
 | |
|  * over.  The result of the previous iteration is passed to the next one.
 | |
|  * If +initial+ is provided, it is passed to the first iteration, and
 | |
|  * becomes the first element of the enumerator; if it is not provided,
 | |
|  * the first iteration receives +nil+, and its result becomes the first
 | |
|  * element of the iterator.
 | |
|  *
 | |
|  * Raising StopIteration from the block stops an iteration.
 | |
|  *
 | |
|  *   Enumerator.produce(1, &:succ)   # => enumerator of 1, 2, 3, 4, ....
 | |
|  *
 | |
|  *   Enumerator.produce { rand(10) } # => infinite random number sequence
 | |
|  *
 | |
|  *   ancestors = Enumerator.produce(node) { |prev| node = prev.parent or raise StopIteration }
 | |
|  *   enclosing_section = ancestors.find { |n| n.type == :section }
 | |
|  *
 | |
|  * Using ::produce together with Enumerable methods like Enumerable#detect,
 | |
|  * Enumerable#slice, Enumerable#take_while can provide Enumerator-based alternatives
 | |
|  * for +while+ and +until+ cycles:
 | |
|  *
 | |
|  *   # Find next Tuesday
 | |
|  *   require "date"
 | |
|  *   Enumerator.produce(Date.today, &:succ).detect(&:tuesday?)
 | |
|  *
 | |
|  *   # Simple lexer:
 | |
|  *   require "strscan"
 | |
|  *   scanner = StringScanner.new("7+38/6")
 | |
|  *   PATTERN = %r{\d+|[-/+*]}
 | |
|  *   Enumerator.produce { scanner.scan(PATTERN) }.slice_after { scanner.eos? }.first
 | |
|  *   # => ["7", "+", "38", "/", "6"]
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_s_produce(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE init, producer;
 | |
| 
 | |
|     if (!rb_block_given_p()) rb_raise(rb_eArgError, "no block given");
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "01", &init) == 0) {
 | |
|         init = Qundef;
 | |
|     }
 | |
| 
 | |
|     producer = producer_init(producer_allocate(rb_cEnumProducer), init, rb_block_proc());
 | |
| 
 | |
|     return rb_enumeratorize_with_size_kw(producer, sym_each, 0, 0, producer_size, RB_NO_KEYWORDS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: Enumerator::Chain
 | |
|  *
 | |
|  * Enumerator::Chain is a subclass of Enumerator, which represents a
 | |
|  * chain of enumerables that works as a single enumerator.
 | |
|  *
 | |
|  * This type of objects can be created by Enumerable#chain and
 | |
|  * Enumerator#+.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| enum_chain_mark(void *p)
 | |
| {
 | |
|     struct enum_chain *ptr = p;
 | |
|     rb_gc_mark_movable(ptr->enums);
 | |
| }
 | |
| 
 | |
| static void
 | |
| enum_chain_compact(void *p)
 | |
| {
 | |
|     struct enum_chain *ptr = p;
 | |
|     ptr->enums = rb_gc_location(ptr->enums);
 | |
| }
 | |
| 
 | |
| #define enum_chain_free RUBY_TYPED_DEFAULT_FREE
 | |
| 
 | |
| static size_t
 | |
| enum_chain_memsize(const void *p)
 | |
| {
 | |
|     return sizeof(struct enum_chain);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t enum_chain_data_type = {
 | |
|     "chain",
 | |
|     {
 | |
|         enum_chain_mark,
 | |
|         enum_chain_free,
 | |
|         enum_chain_memsize,
 | |
|         enum_chain_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static struct enum_chain *
 | |
| enum_chain_ptr(VALUE obj)
 | |
| {
 | |
|     struct enum_chain *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
 | |
|     if (!ptr || ptr->enums == Qundef) {
 | |
|         rb_raise(rb_eArgError, "uninitialized chain");
 | |
|     }
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| enum_chain_allocate(VALUE klass)
 | |
| {
 | |
|     struct enum_chain *ptr;
 | |
|     VALUE obj;
 | |
| 
 | |
|     obj = TypedData_Make_Struct(klass, struct enum_chain, &enum_chain_data_type, ptr);
 | |
|     ptr->enums = Qundef;
 | |
|     ptr->pos = -1;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   Enumerator::Chain.new(*enums) -> enum
 | |
|  *
 | |
|  * Generates a new enumerator object that iterates over the elements
 | |
|  * of given enumerable objects in sequence.
 | |
|  *
 | |
|  *   e = Enumerator::Chain.new(1..3, [4, 5])
 | |
|  *   e.to_a #=> [1, 2, 3, 4, 5]
 | |
|  *   e.size #=> 5
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain_initialize(VALUE obj, VALUE enums)
 | |
| {
 | |
|     struct enum_chain *ptr;
 | |
| 
 | |
|     rb_check_frozen(obj);
 | |
|     TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
 | |
| 
 | |
|     if (!ptr) rb_raise(rb_eArgError, "unallocated chain");
 | |
| 
 | |
|     ptr->enums = rb_obj_freeze(enums);
 | |
|     ptr->pos = -1;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| enum_chain_init_copy(VALUE obj, VALUE orig)
 | |
| {
 | |
|     struct enum_chain *ptr0, *ptr1;
 | |
| 
 | |
|     if (!OBJ_INIT_COPY(obj, orig)) return obj;
 | |
|     ptr0 = enum_chain_ptr(orig);
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr1);
 | |
| 
 | |
|     if (!ptr1) rb_raise(rb_eArgError, "unallocated chain");
 | |
| 
 | |
|     ptr1->enums = ptr0->enums;
 | |
|     ptr1->pos = ptr0->pos;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_chain_total_size(VALUE enums)
 | |
| {
 | |
|     VALUE total = INT2FIX(0);
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(enums); i++) {
 | |
|         VALUE size = enum_size(RARRAY_AREF(enums, i));
 | |
| 
 | |
|         if (NIL_P(size) || (RB_TYPE_P(size, T_FLOAT) && isinf(NUM2DBL(size)))) {
 | |
|             return size;
 | |
|         }
 | |
|         if (!RB_INTEGER_TYPE_P(size)) {
 | |
|             return Qnil;
 | |
|         }
 | |
| 
 | |
|         total = rb_funcall(total, '+', 1, size);
 | |
|     }
 | |
| 
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   obj.size -> int, Float::INFINITY or nil
 | |
|  *
 | |
|  * Returns the total size of the enumerator chain calculated by
 | |
|  * summing up the size of each enumerable in the chain.  If any of the
 | |
|  * enumerables reports its size as nil or Float::INFINITY, that value
 | |
|  * is returned as the total size.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain_size(VALUE obj)
 | |
| {
 | |
|     return enum_chain_total_size(enum_chain_ptr(obj)->enums);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_chain_enum_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return enum_chain_size(obj);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_chain_enum_no_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   obj.each(*args) { |...| ... } -> obj
 | |
|  *   obj.each(*args) -> enumerator
 | |
|  *
 | |
|  * Iterates over the elements of the first enumerable by calling the
 | |
|  * "each" method on it with the given arguments, then proceeds to the
 | |
|  * following enumerables in sequence until all of the enumerables are
 | |
|  * exhausted.
 | |
|  *
 | |
|  * If no block is given, returns an enumerator.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain_each(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE enums, block;
 | |
|     struct enum_chain *objptr;
 | |
|     long i;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, argc > 0 ? enum_chain_enum_no_size : enum_chain_enum_size);
 | |
| 
 | |
|     objptr = enum_chain_ptr(obj);
 | |
|     enums = objptr->enums;
 | |
|     block = rb_block_proc();
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(enums); i++) {
 | |
|         objptr->pos = i;
 | |
|         rb_funcall_with_block(RARRAY_AREF(enums, i), id_each, argc, argv, block);
 | |
|     }
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   obj.rewind -> obj
 | |
|  *
 | |
|  * Rewinds the enumerator chain by calling the "rewind" method on each
 | |
|  * enumerable in reverse order.  Each call is performed only if the
 | |
|  * enumerable responds to the method.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain_rewind(VALUE obj)
 | |
| {
 | |
|     struct enum_chain *objptr = enum_chain_ptr(obj);
 | |
|     VALUE enums = objptr->enums;
 | |
|     long i;
 | |
| 
 | |
|     for (i = objptr->pos; 0 <= i && i < RARRAY_LEN(enums); objptr->pos = --i) {
 | |
|         rb_check_funcall(RARRAY_AREF(enums, i), id_rewind, 0, 0);
 | |
|     }
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| inspect_enum_chain(VALUE obj, VALUE dummy, int recur)
 | |
| {
 | |
|     VALUE klass = rb_obj_class(obj);
 | |
|     struct enum_chain *ptr;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
 | |
| 
 | |
|     if (!ptr || ptr->enums == Qundef) {
 | |
|         return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(klass));
 | |
|     }
 | |
| 
 | |
|     if (recur) {
 | |
|         return rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(klass));
 | |
|     }
 | |
| 
 | |
|     return rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(klass), ptr->enums);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   obj.inspect -> string
 | |
|  *
 | |
|  * Returns a printable version of the enumerator chain.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain_inspect(VALUE obj)
 | |
| {
 | |
|     return rb_exec_recursive(inspect_enum_chain, obj, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e.chain(*enums) -> enumerator
 | |
|  *
 | |
|  * Returns an enumerator object generated from this enumerator and
 | |
|  * given enumerables.
 | |
|  *
 | |
|  *   e = (1..3).chain([4, 5])
 | |
|  *   e.to_a #=> [1, 2, 3, 4, 5]
 | |
|  */
 | |
| static VALUE
 | |
| enum_chain(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE enums = rb_ary_new_from_values(1, &obj);
 | |
|     rb_ary_cat(enums, argv, argc);
 | |
| 
 | |
|     return enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   e + enum -> enumerator
 | |
|  *
 | |
|  * Returns an enumerator object generated from this enumerator and a
 | |
|  * given enumerable.
 | |
|  *
 | |
|  *   e = (1..3).each + [4, 5]
 | |
|  *   e.to_a #=> [1, 2, 3, 4, 5]
 | |
|  */
 | |
| static VALUE
 | |
| enumerator_plus(VALUE obj, VALUE eobj)
 | |
| {
 | |
|     VALUE enums = rb_ary_new_from_args(2, obj, eobj);
 | |
| 
 | |
|     return enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: Enumerator::ArithmeticSequence
 | |
|  *
 | |
|  * Enumerator::ArithmeticSequence is a subclass of Enumerator,
 | |
|  * that is a representation of sequences of numbers with common difference.
 | |
|  * Instances of this class can be generated by the Range#step and Numeric#step
 | |
|  * methods.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_arith_seq_new(VALUE obj, VALUE meth, int argc, VALUE const *argv,
 | |
|                  rb_enumerator_size_func *size_fn,
 | |
|                  VALUE beg, VALUE end, VALUE step, int excl)
 | |
| {
 | |
|     VALUE aseq = enumerator_init(enumerator_allocate(rb_cArithSeq),
 | |
|                                  obj, meth, argc, argv, size_fn, Qnil, rb_keyword_given_p());
 | |
|     rb_ivar_set(aseq, id_begin, beg);
 | |
|     rb_ivar_set(aseq, id_end, end);
 | |
|     rb_ivar_set(aseq, id_step, step);
 | |
|     rb_ivar_set(aseq, id_exclude_end, excl ? Qtrue : Qfalse);
 | |
|     return aseq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: aseq.begin -> num or nil
 | |
|  *
 | |
|  * Returns the number that defines the first element of this arithmetic
 | |
|  * sequence.
 | |
|  */
 | |
| static inline VALUE
 | |
| arith_seq_begin(VALUE self)
 | |
| {
 | |
|     return rb_ivar_get(self, id_begin);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: aseq.end -> num or nil
 | |
|  *
 | |
|  * Returns the number that defines the end of this arithmetic sequence.
 | |
|  */
 | |
| static inline VALUE
 | |
| arith_seq_end(VALUE self)
 | |
| {
 | |
|     return rb_ivar_get(self, id_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: aseq.step -> num
 | |
|  *
 | |
|  * Returns the number that defines the common difference between
 | |
|  * two adjacent elements in this arithmetic sequence.
 | |
|  */
 | |
| static inline VALUE
 | |
| arith_seq_step(VALUE self)
 | |
| {
 | |
|     return rb_ivar_get(self, id_step);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: aseq.exclude_end? -> true or false
 | |
|  *
 | |
|  * Returns <code>true</code> if this arithmetic sequence excludes its end value.
 | |
|  */
 | |
| static inline VALUE
 | |
| arith_seq_exclude_end(VALUE self)
 | |
| {
 | |
|     return rb_ivar_get(self, id_exclude_end);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| arith_seq_exclude_end_p(VALUE self)
 | |
| {
 | |
|     return RTEST(arith_seq_exclude_end(self));
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_arithmetic_sequence_extract(VALUE obj, rb_arithmetic_sequence_components_t *component)
 | |
| {
 | |
|     if (rb_obj_is_kind_of(obj, rb_cArithSeq)) {
 | |
|         component->begin = arith_seq_begin(obj);
 | |
|         component->end   = arith_seq_end(obj);
 | |
|         component->step  = arith_seq_step(obj);
 | |
|         component->exclude_end = arith_seq_exclude_end_p(obj);
 | |
|         return 1;
 | |
|     }
 | |
|     else if (rb_obj_is_kind_of(obj, rb_cRange)) {
 | |
|         component->begin = RANGE_BEG(obj);
 | |
|         component->end   = RANGE_END(obj);
 | |
|         component->step  = INT2FIX(1);
 | |
|         component->exclude_end = RTEST(RANGE_EXCL(obj));
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.first -> num or nil
 | |
|  *   aseq.first(n) -> an_array
 | |
|  *
 | |
|  * Returns the first number in this arithmetic sequence,
 | |
|  * or an array of the first +n+ elements.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_first(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE b, e, s, ary;
 | |
|     long n;
 | |
|     int x;
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
| 
 | |
|     b = arith_seq_begin(self);
 | |
|     e = arith_seq_end(self);
 | |
|     s = arith_seq_step(self);
 | |
|     if (argc == 0) {
 | |
|         if (NIL_P(b)) {
 | |
|             return Qnil;
 | |
|         }
 | |
|         if (!NIL_P(e)) {
 | |
|             VALUE zero = INT2FIX(0);
 | |
|             int r = rb_cmpint(rb_num_coerce_cmp(s, zero, idCmp), s, zero);
 | |
|             if (r > 0 && RTEST(rb_funcall(b, '>', 1, e))) {
 | |
|                 return Qnil;
 | |
|             }
 | |
|             if (r < 0 && RTEST(rb_funcall(b, '<', 1, e))) {
 | |
|                 return Qnil;
 | |
|             }
 | |
|         }
 | |
|         return b;
 | |
|     }
 | |
| 
 | |
|     // TODO: the following code should be extracted as arith_seq_take
 | |
| 
 | |
|     n = NUM2LONG(argv[0]);
 | |
|     if (n < 0) {
 | |
|         rb_raise(rb_eArgError, "attempt to take negative size");
 | |
|     }
 | |
|     if (n == 0) {
 | |
|         return rb_ary_new_capa(0);
 | |
|     }
 | |
| 
 | |
|     x = arith_seq_exclude_end_p(self);
 | |
| 
 | |
|     if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(s)) {
 | |
|         long i = FIX2LONG(b), unit = FIX2LONG(s);
 | |
|         ary = rb_ary_new_capa(n);
 | |
|         while (n > 0 && FIXABLE(i)) {
 | |
|             rb_ary_push(ary, LONG2FIX(i));
 | |
|             i += unit;  // FIXABLE + FIXABLE never overflow;
 | |
|             --n;
 | |
|         }
 | |
|         if (n > 0) {
 | |
|             b = LONG2NUM(i);
 | |
|             while (n > 0) {
 | |
|                 rb_ary_push(ary, b);
 | |
|                 b = rb_big_plus(b, s);
 | |
|                 --n;
 | |
|             }
 | |
|         }
 | |
|         return ary;
 | |
|     }
 | |
|     else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(s)) {
 | |
|         long i = FIX2LONG(b);
 | |
|         long end = FIX2LONG(e);
 | |
|         long unit = FIX2LONG(s);
 | |
|         long len;
 | |
| 
 | |
|         if (unit >= 0) {
 | |
|             if (!x) end += 1;
 | |
| 
 | |
|             len = end - i;
 | |
|             if (len < 0) len = 0;
 | |
|             ary = rb_ary_new_capa((n < len) ? n : len);
 | |
|             while (n > 0 && i < end) {
 | |
|                 rb_ary_push(ary, LONG2FIX(i));
 | |
|                 if (i + unit < i) break;
 | |
|                 i += unit;
 | |
|                 --n;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             if (!x) end -= 1;
 | |
| 
 | |
|             len = i - end;
 | |
|             if (len < 0) len = 0;
 | |
|             ary = rb_ary_new_capa((n < len) ? n : len);
 | |
|             while (n > 0 && i > end) {
 | |
|                 rb_ary_push(ary, LONG2FIX(i));
 | |
|                 if (i + unit > i) break;
 | |
|                 i += unit;
 | |
|                 --n;
 | |
|             }
 | |
|         }
 | |
|         return ary;
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
 | |
|         /* generate values like ruby_float_step */
 | |
| 
 | |
|         double unit = NUM2DBL(s);
 | |
|         double beg = NUM2DBL(b);
 | |
|         double end = NIL_P(e) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(e);
 | |
|         double len = ruby_float_step_size(beg, end, unit, x);
 | |
|         long i;
 | |
| 
 | |
|         if (n > len)
 | |
|             n = (long)len;
 | |
| 
 | |
|         if (isinf(unit)) {
 | |
|             if (len > 0) {
 | |
|                 ary = rb_ary_new_capa(1);
 | |
|                 rb_ary_push(ary, DBL2NUM(beg));
 | |
|             }
 | |
|             else {
 | |
|                 ary = rb_ary_new_capa(0);
 | |
|             }
 | |
|         }
 | |
|         else if (unit == 0) {
 | |
|             VALUE val = DBL2NUM(beg);
 | |
|             ary = rb_ary_new_capa(n);
 | |
|             for (i = 0; i < len; ++i) {
 | |
|                 rb_ary_push(ary, val);
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             ary = rb_ary_new_capa(n);
 | |
|             for (i = 0; i < n; ++i) {
 | |
|                 double d = i*unit+beg;
 | |
|                 if (unit >= 0 ? end < d : d < end) d = end;
 | |
|                 rb_ary_push(ary, DBL2NUM(d));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return ary;
 | |
|     }
 | |
| 
 | |
|     return rb_call_super(argc, argv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.last    -> num or nil
 | |
|  *   aseq.last(n) -> an_array
 | |
|  *
 | |
|  * Returns the last number in this arithmetic sequence,
 | |
|  * or an array of the last +n+ elements.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_last(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE b, e, s, len_1, len, last, nv, ary;
 | |
|     int last_is_adjusted;
 | |
|     long n;
 | |
| 
 | |
|     e = arith_seq_end(self);
 | |
|     if (NIL_P(e)) {
 | |
|         rb_raise(rb_eRangeError,
 | |
|                  "cannot get the last element of endless arithmetic sequence");
 | |
|     }
 | |
| 
 | |
|     b = arith_seq_begin(self);
 | |
|     s = arith_seq_step(self);
 | |
| 
 | |
|     len_1 = rb_int_idiv(rb_int_minus(e, b), s);
 | |
|     if (rb_num_negative_int_p(len_1)) {
 | |
|         if (argc == 0) {
 | |
|             return Qnil;
 | |
|         }
 | |
|         return rb_ary_new_capa(0);
 | |
|     }
 | |
| 
 | |
|     last = rb_int_plus(b, rb_int_mul(s, len_1));
 | |
|     if ((last_is_adjusted = arith_seq_exclude_end_p(self) && rb_equal(last, e))) {
 | |
|         last = rb_int_minus(last, s);
 | |
|     }
 | |
| 
 | |
|     if (argc == 0) {
 | |
|         return last;
 | |
|     }
 | |
| 
 | |
|     if (last_is_adjusted) {
 | |
|         len = len_1;
 | |
|     }
 | |
|     else {
 | |
|         len = rb_int_plus(len_1, INT2FIX(1));
 | |
|     }
 | |
| 
 | |
|     rb_scan_args(argc, argv, "1", &nv);
 | |
|     if (!RB_INTEGER_TYPE_P(nv)) {
 | |
|         nv = rb_to_int(nv);
 | |
|     }
 | |
|     if (RTEST(rb_int_gt(nv, len))) {
 | |
|         nv = len;
 | |
|     }
 | |
|     n = NUM2LONG(nv);
 | |
|     if (n < 0) {
 | |
|         rb_raise(rb_eArgError, "negative array size");
 | |
|     }
 | |
| 
 | |
|     ary = rb_ary_new_capa(n);
 | |
|     b = rb_int_minus(last, rb_int_mul(s, nv));
 | |
|     while (n) {
 | |
|         b = rb_int_plus(b, s);
 | |
|         rb_ary_push(ary, b);
 | |
|         --n;
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.inspect -> string
 | |
|  *
 | |
|  * Convert this arithmetic sequence to a printable form.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_inspect(VALUE self)
 | |
| {
 | |
|     struct enumerator *e;
 | |
|     VALUE eobj, str, eargs;
 | |
|     int range_p;
 | |
| 
 | |
|     TypedData_Get_Struct(self, struct enumerator, &enumerator_data_type, e);
 | |
| 
 | |
|     eobj = rb_attr_get(self, id_receiver);
 | |
|     if (NIL_P(eobj)) {
 | |
|         eobj = e->obj;
 | |
|     }
 | |
| 
 | |
|     range_p = RTEST(rb_obj_is_kind_of(eobj, rb_cRange));
 | |
|     str = rb_sprintf("(%s%"PRIsVALUE"%s.", range_p ? "(" : "", eobj, range_p ? ")" : "");
 | |
| 
 | |
|     rb_str_buf_append(str, rb_id2str(e->meth));
 | |
| 
 | |
|     eargs = rb_attr_get(eobj, id_arguments);
 | |
|     if (NIL_P(eargs)) {
 | |
|         eargs = e->args;
 | |
|     }
 | |
|     if (eargs != Qfalse) {
 | |
|         long argc = RARRAY_LEN(eargs);
 | |
|         const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */
 | |
| 
 | |
|         if (argc > 0) {
 | |
|             VALUE kwds = Qnil;
 | |
| 
 | |
|             rb_str_buf_cat2(str, "(");
 | |
| 
 | |
|             if (RB_TYPE_P(argv[argc-1], T_HASH)) {
 | |
|                 int all_key = TRUE;
 | |
|                 rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key);
 | |
|                 if (all_key) kwds = argv[--argc];
 | |
|             }
 | |
| 
 | |
|             while (argc--) {
 | |
|                 VALUE arg = *argv++;
 | |
| 
 | |
|                 rb_str_append(str, rb_inspect(arg));
 | |
|                 rb_str_buf_cat2(str, ", ");
 | |
|             }
 | |
|             if (!NIL_P(kwds)) {
 | |
|                 rb_hash_foreach(kwds, kwd_append, str);
 | |
|             }
 | |
|             rb_str_set_len(str, RSTRING_LEN(str)-2); /* drop the last ", " */
 | |
|             rb_str_buf_cat2(str, ")");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rb_str_buf_cat2(str, ")");
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq == obj  -> true or false
 | |
|  *
 | |
|  * Returns <code>true</code> only if +obj+ is an Enumerator::ArithmeticSequence,
 | |
|  * has equivalent begin, end, step, and exclude_end? settings.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_eq(VALUE self, VALUE other)
 | |
| {
 | |
|     if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.hash  -> integer
 | |
|  *
 | |
|  * Compute a hash-value for this arithmetic sequence.
 | |
|  * Two arithmetic sequences with same begin, end, step, and exclude_end?
 | |
|  * values will generate the same hash-value.
 | |
|  *
 | |
|  * See also Object#hash.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_hash(VALUE self)
 | |
| {
 | |
|     st_index_t hash;
 | |
|     VALUE v;
 | |
| 
 | |
|     hash = rb_hash_start(arith_seq_exclude_end_p(self));
 | |
|     v = rb_hash(arith_seq_begin(self));
 | |
|     hash = rb_hash_uint(hash, NUM2LONG(v));
 | |
|     v = rb_hash(arith_seq_end(self));
 | |
|     hash = rb_hash_uint(hash, NUM2LONG(v));
 | |
|     v = rb_hash(arith_seq_step(self));
 | |
|     hash = rb_hash_uint(hash, NUM2LONG(v));
 | |
|     hash = rb_hash_end(hash);
 | |
| 
 | |
|     return ST2FIX(hash);
 | |
| }
 | |
| 
 | |
| #define NUM_GE(x, y) RTEST(rb_num_coerce_relop((x), (y), idGE))
 | |
| 
 | |
| struct arith_seq_gen {
 | |
|     VALUE current;
 | |
|     VALUE end;
 | |
|     VALUE step;
 | |
|     int excl;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.each {|i| block } -> aseq
 | |
|  *   aseq.each              -> aseq
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_each(VALUE self)
 | |
| {
 | |
|     VALUE c, e, s, len_1, last;
 | |
|     int x;
 | |
| 
 | |
|     if (!rb_block_given_p()) return self;
 | |
| 
 | |
|     c = arith_seq_begin(self);
 | |
|     e = arith_seq_end(self);
 | |
|     s = arith_seq_step(self);
 | |
|     x = arith_seq_exclude_end_p(self);
 | |
| 
 | |
|     if (!RB_TYPE_P(s, T_COMPLEX) && ruby_float_step(c, e, s, x, TRUE)) {
 | |
|         return self;
 | |
|     }
 | |
| 
 | |
|     if (NIL_P(e)) {
 | |
|         while (1) {
 | |
|             rb_yield(c);
 | |
|             c = rb_int_plus(c, s);
 | |
|         }
 | |
| 
 | |
|         return self;
 | |
|     }
 | |
| 
 | |
|     if (rb_equal(s, INT2FIX(0))) {
 | |
|         while (1) {
 | |
|             rb_yield(c);
 | |
|         }
 | |
| 
 | |
|         return self;
 | |
|     }
 | |
| 
 | |
|     len_1 = rb_int_idiv(rb_int_minus(e, c), s);
 | |
|     last = rb_int_plus(c, rb_int_mul(s, len_1));
 | |
|     if (x && rb_equal(last, e)) {
 | |
|         last = rb_int_minus(last, s);
 | |
|     }
 | |
| 
 | |
|     if (rb_num_negative_int_p(s)) {
 | |
|         while (NUM_GE(c, last)) {
 | |
|             rb_yield(c);
 | |
|             c = rb_int_plus(c, s);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         while (NUM_GE(last, c)) {
 | |
|             rb_yield(c);
 | |
|             c = rb_int_plus(c, s);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static double
 | |
| arith_seq_float_step_size(double beg, double end, double step, int excl)
 | |
| {
 | |
|     double const epsilon = DBL_EPSILON;
 | |
|     double n, err;
 | |
| 
 | |
|     if (step == 0) {
 | |
|         return HUGE_VAL;
 | |
|     }
 | |
|     n = (end - beg) / step;
 | |
|     err = (fabs(beg) + fabs(end) + fabs(end - beg)) / fabs(step) * epsilon;
 | |
|     if (isinf(step)) {
 | |
|         return step > 0 ? beg <= end : beg >= end;
 | |
|     }
 | |
|     if (err > 0.5) err = 0.5;
 | |
|     if (excl) {
 | |
|         if (n <= 0) return 0;
 | |
|         if (n < 1)
 | |
|             n = 0;
 | |
|         else
 | |
|             n = floor(n - err);
 | |
|     }
 | |
|     else {
 | |
|         if (n < 0) return 0;
 | |
|         n = floor(n + err);
 | |
|     }
 | |
|     return n + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   aseq.size -> num or nil
 | |
|  *
 | |
|  * Returns the number of elements in this arithmetic sequence if it is a finite
 | |
|  * sequence.  Otherwise, returns <code>nil</code>.
 | |
|  */
 | |
| static VALUE
 | |
| arith_seq_size(VALUE self)
 | |
| {
 | |
|     VALUE b, e, s, len_1, len, last;
 | |
|     int x;
 | |
| 
 | |
|     b = arith_seq_begin(self);
 | |
|     e = arith_seq_end(self);
 | |
|     s = arith_seq_step(self);
 | |
|     x = arith_seq_exclude_end_p(self);
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
 | |
|         double ee, n;
 | |
| 
 | |
|         if (NIL_P(e)) {
 | |
|             if (rb_num_negative_int_p(s)) {
 | |
|                 ee = -HUGE_VAL;
 | |
|             }
 | |
|             else {
 | |
|                 ee = HUGE_VAL;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             ee = NUM2DBL(e);
 | |
|         }
 | |
| 
 | |
|         n = arith_seq_float_step_size(NUM2DBL(b), ee, NUM2DBL(s), x);
 | |
|         if (isinf(n)) return DBL2NUM(n);
 | |
|         if (POSFIXABLE(n)) return LONG2FIX(n);
 | |
|         return rb_dbl2big(n);
 | |
|     }
 | |
| 
 | |
|     if (NIL_P(e)) {
 | |
|         return DBL2NUM(HUGE_VAL);
 | |
|     }
 | |
| 
 | |
|     if (!rb_obj_is_kind_of(s, rb_cNumeric)) {
 | |
|         s = rb_to_int(s);
 | |
|     }
 | |
| 
 | |
|     if (rb_equal(s, INT2FIX(0))) {
 | |
|         return DBL2NUM(HUGE_VAL);
 | |
|     }
 | |
| 
 | |
|     len_1 = rb_int_idiv(rb_int_minus(e, b), s);
 | |
|     if (rb_num_negative_int_p(len_1)) {
 | |
|         return INT2FIX(0);
 | |
|     }
 | |
| 
 | |
|     last = rb_int_plus(b, rb_int_mul(s, len_1));
 | |
|     if (x && rb_equal(last, e)) {
 | |
|         len = len_1;
 | |
|     }
 | |
|     else {
 | |
|         len = rb_int_plus(len_1, INT2FIX(1));
 | |
|     }
 | |
| 
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| void
 | |
| InitVM_Enumerator(void)
 | |
| {
 | |
|     ID id_private = rb_intern("private");
 | |
| 
 | |
|     rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1);
 | |
|     rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1);
 | |
| 
 | |
|     rb_cEnumerator = rb_define_class("Enumerator", rb_cObject);
 | |
|     rb_include_module(rb_cEnumerator, rb_mEnumerable);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cEnumerator, enumerator_allocate);
 | |
|     rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1);
 | |
|     rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1);
 | |
|     rb_define_method(rb_cEnumerator, "each", enumerator_each, -1);
 | |
|     rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0);
 | |
|     rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1);
 | |
|     rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1);
 | |
|     rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1);
 | |
|     rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0);
 | |
|     rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0);
 | |
|     rb_define_method(rb_cEnumerator, "next", enumerator_next, 0);
 | |
|     rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0);
 | |
|     rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1);
 | |
|     rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0);
 | |
|     rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0);
 | |
|     rb_define_method(rb_cEnumerator, "size", enumerator_size, 0);
 | |
|     rb_define_method(rb_cEnumerator, "+", enumerator_plus, 1);
 | |
|     rb_define_method(rb_mEnumerable, "chain", enum_chain, -1);
 | |
| 
 | |
|     /* Lazy */
 | |
|     rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator);
 | |
|     rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0);
 | |
| 
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_map", "map");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_collect", "collect");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_flat_map", "flat_map");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_collect_concat", "collect_concat");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_select", "select");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_find_all", "find_all");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_filter", "filter");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_filter_map", "filter_map");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_reject", "reject");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_grep", "grep");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_grep_v", "grep_v");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_zip", "zip");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_take", "take");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_take_while", "take_while");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_drop", "drop");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_drop_while", "drop_while");
 | |
|     rb_define_alias(rb_cLazy, "_enumerable_uniq", "uniq");
 | |
|     rb_define_private_method(rb_cLazy, "_enumerable_with_index", enumerator_with_index, -1);
 | |
| 
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_map")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_collect")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_flat_map")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_collect_concat")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_select")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_find_all")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_filter")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_filter_map")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_reject")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_grep")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_grep_v")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_zip")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_take")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_take_while")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_drop")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_drop_while")));
 | |
|     rb_funcall(rb_cLazy, id_private, 1, ID2SYM(rb_intern("_enumerable_uniq")));
 | |
| 
 | |
|     rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1);
 | |
|     rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1);
 | |
|     rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1);
 | |
|     rb_define_method(rb_cLazy, "eager", lazy_eager, 0);
 | |
|     rb_define_method(rb_cLazy, "map", lazy_map, 0);
 | |
|     rb_define_method(rb_cLazy, "collect", lazy_map, 0);
 | |
|     rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0);
 | |
|     rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0);
 | |
|     rb_define_method(rb_cLazy, "select", lazy_select, 0);
 | |
|     rb_define_method(rb_cLazy, "find_all", lazy_select, 0);
 | |
|     rb_define_method(rb_cLazy, "filter", lazy_select, 0);
 | |
|     rb_define_method(rb_cLazy, "filter_map", lazy_filter_map, 0);
 | |
|     rb_define_method(rb_cLazy, "reject", lazy_reject, 0);
 | |
|     rb_define_method(rb_cLazy, "grep", lazy_grep, 1);
 | |
|     rb_define_method(rb_cLazy, "grep_v", lazy_grep_v, 1);
 | |
|     rb_define_method(rb_cLazy, "zip", lazy_zip, -1);
 | |
|     rb_define_method(rb_cLazy, "take", lazy_take, 1);
 | |
|     rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0);
 | |
|     rb_define_method(rb_cLazy, "drop", lazy_drop, 1);
 | |
|     rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0);
 | |
|     rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0);
 | |
|     rb_define_method(rb_cLazy, "chunk", lazy_super, -1);
 | |
|     rb_define_method(rb_cLazy, "slice_before", lazy_super, -1);
 | |
|     rb_define_method(rb_cLazy, "slice_after", lazy_super, -1);
 | |
|     rb_define_method(rb_cLazy, "slice_when", lazy_super, -1);
 | |
|     rb_define_method(rb_cLazy, "chunk_while", lazy_super, -1);
 | |
|     rb_define_method(rb_cLazy, "uniq", lazy_uniq, 0);
 | |
|     rb_define_method(rb_cLazy, "with_index", lazy_with_index, -1);
 | |
| 
 | |
|     lazy_use_super_method = rb_hash_new_with_size(18);
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("map")), ID2SYM(rb_intern("_enumerable_map")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("collect")), ID2SYM(rb_intern("_enumerable_collect")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("flat_map")), ID2SYM(rb_intern("_enumerable_flat_map")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("collect_concat")), ID2SYM(rb_intern("_enumerable_collect_concat")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("select")), ID2SYM(rb_intern("_enumerable_select")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("find_all")), ID2SYM(rb_intern("_enumerable_find_all")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("filter")), ID2SYM(rb_intern("_enumerable_filter")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("filter_map")), ID2SYM(rb_intern("_enumerable_filter_map")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("reject")), ID2SYM(rb_intern("_enumerable_reject")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("grep")), ID2SYM(rb_intern("_enumerable_grep")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("grep_v")), ID2SYM(rb_intern("_enumerable_grep_v")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("zip")), ID2SYM(rb_intern("_enumerable_zip")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("take")), ID2SYM(rb_intern("_enumerable_take")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("take_while")), ID2SYM(rb_intern("_enumerable_take_while")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("drop")), ID2SYM(rb_intern("_enumerable_drop")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("drop_while")), ID2SYM(rb_intern("_enumerable_drop_while")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("uniq")), ID2SYM(rb_intern("_enumerable_uniq")));
 | |
|     rb_hash_aset(lazy_use_super_method, ID2SYM(rb_intern("with_index")), ID2SYM(rb_intern("_enumerable_with_index")));
 | |
|     rb_obj_freeze(lazy_use_super_method);
 | |
|     rb_gc_register_mark_object(lazy_use_super_method);
 | |
| 
 | |
| #if 0 /* for RDoc */
 | |
|     rb_define_method(rb_cLazy, "to_a", lazy_to_a, 0);
 | |
|     rb_define_method(rb_cLazy, "chunk", lazy_chunk, 0);
 | |
|     rb_define_method(rb_cLazy, "chunk_while", lazy_chunk_while, 0);
 | |
|     rb_define_method(rb_cLazy, "slice_after", lazy_slice_after, 0);
 | |
|     rb_define_method(rb_cLazy, "slice_before", lazy_slice_before, 0);
 | |
|     rb_define_method(rb_cLazy, "slice_when", lazy_slice_when, 0);
 | |
| #endif
 | |
|     rb_define_alias(rb_cLazy, "force", "to_a");
 | |
| 
 | |
|     rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError);
 | |
|     rb_define_method(rb_eStopIteration, "result", stop_result, 0);
 | |
| 
 | |
|     /* Generator */
 | |
|     rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject);
 | |
|     rb_include_module(rb_cGenerator, rb_mEnumerable);
 | |
|     rb_define_alloc_func(rb_cGenerator, generator_allocate);
 | |
|     rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1);
 | |
|     rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1);
 | |
|     rb_define_method(rb_cGenerator, "each", generator_each, -1);
 | |
| 
 | |
|     /* Yielder */
 | |
|     rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject);
 | |
|     rb_define_alloc_func(rb_cYielder, yielder_allocate);
 | |
|     rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0);
 | |
|     rb_define_method(rb_cYielder, "yield", yielder_yield, -2);
 | |
|     rb_define_method(rb_cYielder, "<<", yielder_yield_push, 1);
 | |
|     rb_define_method(rb_cYielder, "to_proc", yielder_to_proc, 0);
 | |
| 
 | |
|     /* Producer */
 | |
|     rb_cEnumProducer = rb_define_class_under(rb_cEnumerator, "Producer", rb_cObject);
 | |
|     rb_define_alloc_func(rb_cEnumProducer, producer_allocate);
 | |
|     rb_define_method(rb_cEnumProducer, "each", producer_each, 0);
 | |
|     rb_define_singleton_method(rb_cEnumerator, "produce", enumerator_s_produce, -1);
 | |
| 
 | |
|     /* Chain */
 | |
|     rb_cEnumChain = rb_define_class_under(rb_cEnumerator, "Chain", rb_cEnumerator);
 | |
|     rb_define_alloc_func(rb_cEnumChain, enum_chain_allocate);
 | |
|     rb_define_method(rb_cEnumChain, "initialize", enum_chain_initialize, -2);
 | |
|     rb_define_method(rb_cEnumChain, "initialize_copy", enum_chain_init_copy, 1);
 | |
|     rb_define_method(rb_cEnumChain, "each", enum_chain_each, -1);
 | |
|     rb_define_method(rb_cEnumChain, "size", enum_chain_size, 0);
 | |
|     rb_define_method(rb_cEnumChain, "rewind", enum_chain_rewind, 0);
 | |
|     rb_define_method(rb_cEnumChain, "inspect", enum_chain_inspect, 0);
 | |
| 
 | |
|     /* ArithmeticSequence */
 | |
|     rb_cArithSeq = rb_define_class_under(rb_cEnumerator, "ArithmeticSequence", rb_cEnumerator);
 | |
|     rb_undef_alloc_func(rb_cArithSeq);
 | |
|     rb_undef_method(CLASS_OF(rb_cArithSeq), "new");
 | |
|     rb_define_method(rb_cArithSeq, "begin", arith_seq_begin, 0);
 | |
|     rb_define_method(rb_cArithSeq, "end", arith_seq_end, 0);
 | |
|     rb_define_method(rb_cArithSeq, "exclude_end?", arith_seq_exclude_end, 0);
 | |
|     rb_define_method(rb_cArithSeq, "step", arith_seq_step, 0);
 | |
|     rb_define_method(rb_cArithSeq, "first", arith_seq_first, -1);
 | |
|     rb_define_method(rb_cArithSeq, "last", arith_seq_last, -1);
 | |
|     rb_define_method(rb_cArithSeq, "inspect", arith_seq_inspect, 0);
 | |
|     rb_define_method(rb_cArithSeq, "==", arith_seq_eq, 1);
 | |
|     rb_define_method(rb_cArithSeq, "===", arith_seq_eq, 1);
 | |
|     rb_define_method(rb_cArithSeq, "eql?", arith_seq_eq, 1);
 | |
|     rb_define_method(rb_cArithSeq, "hash", arith_seq_hash, 0);
 | |
|     rb_define_method(rb_cArithSeq, "each", arith_seq_each, 0);
 | |
|     rb_define_method(rb_cArithSeq, "size", arith_seq_size, 0);
 | |
| 
 | |
|     rb_provide("enumerator.so");	/* for backward compatibility */
 | |
| }
 | |
| 
 | |
| #undef rb_intern
 | |
| void
 | |
| Init_Enumerator(void)
 | |
| {
 | |
|     id_rewind = rb_intern("rewind");
 | |
|     id_new = rb_intern("new");
 | |
|     id_next = rb_intern("next");
 | |
|     id_result = rb_intern("result");
 | |
|     id_receiver = rb_intern("receiver");
 | |
|     id_arguments = rb_intern("arguments");
 | |
|     id_memo = rb_intern("memo");
 | |
|     id_method = rb_intern("method");
 | |
|     id_force = rb_intern("force");
 | |
|     id_to_enum = rb_intern("to_enum");
 | |
|     id_begin = rb_intern("begin");
 | |
|     id_end = rb_intern("end");
 | |
|     id_step = rb_intern("step");
 | |
|     id_exclude_end = rb_intern("exclude_end");
 | |
|     sym_each = ID2SYM(id_each);
 | |
|     sym_cycle = ID2SYM(rb_intern("cycle"));
 | |
|     sym_yield = ID2SYM(rb_intern("yield"));
 | |
| 
 | |
|     InitVM(Enumerator);
 | |
| }
 |