mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 d8a13e5049
			
		
	
	
		d8a13e5049
		
	
	
	
	
		
			
			Method#super_method crashes for aliased module methods because they are
not defined on a class. This bug was introduced in
c60aaed185 as part of bug #17130.
		
	
			
		
			
				
	
	
		
			4271 lines
		
	
	
	
		
			117 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4271 lines
		
	
	
	
		
			117 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   proc.c - Proc, Binding, Env
 | |
| 
 | |
|   $Author$
 | |
|   created at: Wed Jan 17 12:13:14 2007
 | |
| 
 | |
|   Copyright (C) 2004-2007 Koichi Sasada
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "eval_intern.h"
 | |
| #include "gc.h"
 | |
| #include "internal.h"
 | |
| #include "internal/class.h"
 | |
| #include "internal/error.h"
 | |
| #include "internal/eval.h"
 | |
| #include "internal/object.h"
 | |
| #include "internal/proc.h"
 | |
| #include "internal/symbol.h"
 | |
| #include "method.h"
 | |
| #include "iseq.h"
 | |
| #include "vm_core.h"
 | |
| 
 | |
| #if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__)
 | |
| # define NO_CLOBBERED(v) (*(volatile VALUE *)&(v))
 | |
| #else
 | |
| # define NO_CLOBBERED(v) (v)
 | |
| #endif
 | |
| 
 | |
| #define UPDATE_TYPED_REFERENCE(_type, _ref) *(_type*)&_ref = (_type)rb_gc_location((VALUE)_ref)
 | |
| #define UPDATE_REFERENCE(_ref) UPDATE_TYPED_REFERENCE(VALUE, _ref)
 | |
| 
 | |
| const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
 | |
| 
 | |
| struct METHOD {
 | |
|     const VALUE recv;
 | |
|     const VALUE klass;
 | |
|     const VALUE iclass;
 | |
|     const rb_method_entry_t * const me;
 | |
|     /* for bound methods, `me' should be rb_callable_method_entry_t * */
 | |
| };
 | |
| 
 | |
| VALUE rb_cUnboundMethod;
 | |
| VALUE rb_cMethod;
 | |
| VALUE rb_cBinding;
 | |
| VALUE rb_cProc;
 | |
| 
 | |
| static rb_block_call_func bmcall;
 | |
| static int method_arity(VALUE);
 | |
| static int method_min_max_arity(VALUE, int *max);
 | |
| static VALUE proc_binding(VALUE self);
 | |
| 
 | |
| #define attached id__attached__
 | |
| 
 | |
| /* Proc */
 | |
| 
 | |
| #define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
 | |
| 
 | |
| /* :FIXME: The way procs are cloned has been historically different from the
 | |
|  * way everything else are.  @shyouhei is not sure for the intention though.
 | |
|  */
 | |
| #undef CLONESETUP
 | |
| static inline void
 | |
| CLONESETUP(VALUE clone, VALUE obj)
 | |
| {
 | |
|     RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(obj));
 | |
|     RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(clone));
 | |
| 
 | |
|     const VALUE flags = RUBY_FL_PROMOTED0 | RUBY_FL_PROMOTED1 | RUBY_FL_FINALIZE;
 | |
|     rb_obj_setup(clone, rb_singleton_class_clone(obj),
 | |
|                  RB_FL_TEST_RAW(obj, ~flags));
 | |
|     rb_singleton_class_attached(RBASIC_CLASS(clone), clone);
 | |
|     if (RB_FL_TEST(obj, RUBY_FL_EXIVAR)) rb_copy_generic_ivar(clone, obj);
 | |
| }
 | |
| 
 | |
| static void
 | |
| block_mark(const struct rb_block *block)
 | |
| {
 | |
|     switch (vm_block_type(block)) {
 | |
|       case block_type_iseq:
 | |
|       case block_type_ifunc:
 | |
| 	{
 | |
| 	    const struct rb_captured_block *captured = &block->as.captured;
 | |
| 	    RUBY_MARK_MOVABLE_UNLESS_NULL(captured->self);
 | |
| 	    RUBY_MARK_MOVABLE_UNLESS_NULL((VALUE)captured->code.val);
 | |
| 	    if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) {
 | |
|                 rb_gc_mark(VM_ENV_ENVVAL(captured->ep));
 | |
| 	    }
 | |
| 	}
 | |
| 	break;
 | |
|       case block_type_symbol:
 | |
| 	RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.symbol);
 | |
| 	break;
 | |
|       case block_type_proc:
 | |
| 	RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.proc);
 | |
| 	break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| block_compact(struct rb_block *block)
 | |
| {
 | |
|     switch (block->type) {
 | |
|       case block_type_iseq:
 | |
|       case block_type_ifunc:
 | |
| 	{
 | |
| 	    struct rb_captured_block *captured = &block->as.captured;
 | |
|             captured->self = rb_gc_location(captured->self);
 | |
|             captured->code.val = rb_gc_location(captured->code.val);
 | |
| 	}
 | |
| 	break;
 | |
|       case block_type_symbol:
 | |
|         block->as.symbol = rb_gc_location(block->as.symbol);
 | |
| 	break;
 | |
|       case block_type_proc:
 | |
|         block->as.proc = rb_gc_location(block->as.proc);
 | |
| 	break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| proc_compact(void *ptr)
 | |
| {
 | |
|     rb_proc_t *proc = ptr;
 | |
|     block_compact((struct rb_block *)&proc->block);
 | |
| }
 | |
| 
 | |
| static void
 | |
| proc_mark(void *ptr)
 | |
| {
 | |
|     rb_proc_t *proc = ptr;
 | |
|     block_mark(&proc->block);
 | |
|     RUBY_MARK_LEAVE("proc");
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     rb_proc_t basic;
 | |
|     VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
 | |
| } cfunc_proc_t;
 | |
| 
 | |
| static size_t
 | |
| proc_memsize(const void *ptr)
 | |
| {
 | |
|     const rb_proc_t *proc = ptr;
 | |
|     if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
 | |
| 	return sizeof(cfunc_proc_t);
 | |
|     return sizeof(rb_proc_t);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t proc_data_type = {
 | |
|     "proc",
 | |
|     {
 | |
| 	proc_mark,
 | |
| 	RUBY_TYPED_DEFAULT_FREE,
 | |
| 	proc_memsize,
 | |
| 	proc_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
 | |
| };
 | |
| 
 | |
| VALUE
 | |
| rb_proc_alloc(VALUE klass)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_obj_is_proc(VALUE proc)
 | |
| {
 | |
|     if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     else {
 | |
| 	return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| proc_clone(VALUE self)
 | |
| {
 | |
|     VALUE procval = rb_proc_dup(self);
 | |
|     CLONESETUP(procval, self);
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   prc.lambda? -> true or false
 | |
|  *
 | |
|  * Returns +true+ if a Proc object is lambda.
 | |
|  * +false+ if non-lambda.
 | |
|  *
 | |
|  * The lambda-ness affects argument handling and the behavior of +return+ and +break+.
 | |
|  *
 | |
|  * A Proc object generated by +proc+ ignores extra arguments.
 | |
|  *
 | |
|  *   proc {|a,b| [a,b] }.call(1,2,3)    #=> [1,2]
 | |
|  *
 | |
|  * It provides +nil+ for missing arguments.
 | |
|  *
 | |
|  *   proc {|a,b| [a,b] }.call(1)        #=> [1,nil]
 | |
|  *
 | |
|  * It expands a single array argument.
 | |
|  *
 | |
|  *   proc {|a,b| [a,b] }.call([1,2])    #=> [1,2]
 | |
|  *
 | |
|  * A Proc object generated by +lambda+ doesn't have such tricks.
 | |
|  *
 | |
|  *   lambda {|a,b| [a,b] }.call(1,2,3)  #=> ArgumentError
 | |
|  *   lambda {|a,b| [a,b] }.call(1)      #=> ArgumentError
 | |
|  *   lambda {|a,b| [a,b] }.call([1,2])  #=> ArgumentError
 | |
|  *
 | |
|  * Proc#lambda? is a predicate for the tricks.
 | |
|  * It returns +true+ if no tricks apply.
 | |
|  *
 | |
|  *   lambda {}.lambda?            #=> true
 | |
|  *   proc {}.lambda?              #=> false
 | |
|  *
 | |
|  * Proc.new is the same as +proc+.
 | |
|  *
 | |
|  *   Proc.new {}.lambda?          #=> false
 | |
|  *
 | |
|  * +lambda+, +proc+ and Proc.new preserve the tricks of
 | |
|  * a Proc object given by <code>&</code> argument.
 | |
|  *
 | |
|  *   lambda(&lambda {}).lambda?   #=> true
 | |
|  *   proc(&lambda {}).lambda?     #=> true
 | |
|  *   Proc.new(&lambda {}).lambda? #=> true
 | |
|  *
 | |
|  *   lambda(&proc {}).lambda?     #=> false
 | |
|  *   proc(&proc {}).lambda?       #=> false
 | |
|  *   Proc.new(&proc {}).lambda?   #=> false
 | |
|  *
 | |
|  * A Proc object generated by <code>&</code> argument has the tricks
 | |
|  *
 | |
|  *   def n(&b) b.lambda? end
 | |
|  *   n {}                         #=> false
 | |
|  *
 | |
|  * The <code>&</code> argument preserves the tricks if a Proc object
 | |
|  * is given by <code>&</code> argument.
 | |
|  *
 | |
|  *   n(&lambda {})                #=> true
 | |
|  *   n(&proc {})                  #=> false
 | |
|  *   n(&Proc.new {})              #=> false
 | |
|  *
 | |
|  * A Proc object converted from a method has no tricks.
 | |
|  *
 | |
|  *   def m() end
 | |
|  *   method(:m).to_proc.lambda?   #=> true
 | |
|  *
 | |
|  *   n(&method(:m))               #=> true
 | |
|  *   n(&method(:m).to_proc)       #=> true
 | |
|  *
 | |
|  * +define_method+ is treated the same as method definition.
 | |
|  * The defined method has no tricks.
 | |
|  *
 | |
|  *   class C
 | |
|  *     define_method(:d) {}
 | |
|  *   end
 | |
|  *   C.new.d(1,2)       #=> ArgumentError
 | |
|  *   C.new.method(:d).to_proc.lambda?   #=> true
 | |
|  *
 | |
|  * +define_method+ always defines a method without the tricks,
 | |
|  * even if a non-lambda Proc object is given.
 | |
|  * This is the only exception for which the tricks are not preserved.
 | |
|  *
 | |
|  *   class C
 | |
|  *     define_method(:e, &proc {})
 | |
|  *   end
 | |
|  *   C.new.e(1,2)       #=> ArgumentError
 | |
|  *   C.new.method(:e).to_proc.lambda?   #=> true
 | |
|  *
 | |
|  * This exception ensures that methods never have tricks
 | |
|  * and makes it easy to have wrappers to define methods that behave as usual.
 | |
|  *
 | |
|  *   class C
 | |
|  *     def self.def2(name, &body)
 | |
|  *       define_method(name, &body)
 | |
|  *     end
 | |
|  *
 | |
|  *     def2(:f) {}
 | |
|  *   end
 | |
|  *   C.new.f(1,2)       #=> ArgumentError
 | |
|  *
 | |
|  * The wrapper <i>def2</i> defines a method which has no tricks.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_proc_lambda_p(VALUE procval)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(procval, proc);
 | |
| 
 | |
|     return proc->is_lambda ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /* Binding */
 | |
| 
 | |
| static void
 | |
| binding_free(void *ptr)
 | |
| {
 | |
|     RUBY_FREE_ENTER("binding");
 | |
|     ruby_xfree(ptr);
 | |
|     RUBY_FREE_LEAVE("binding");
 | |
| }
 | |
| 
 | |
| static void
 | |
| binding_mark(void *ptr)
 | |
| {
 | |
|     rb_binding_t *bind = ptr;
 | |
| 
 | |
|     RUBY_MARK_ENTER("binding");
 | |
|     block_mark(&bind->block);
 | |
|     rb_gc_mark_movable(bind->pathobj);
 | |
|     RUBY_MARK_LEAVE("binding");
 | |
| }
 | |
| 
 | |
| static void
 | |
| binding_compact(void *ptr)
 | |
| {
 | |
|     rb_binding_t *bind = ptr;
 | |
| 
 | |
|     block_compact((struct rb_block *)&bind->block);
 | |
|     UPDATE_REFERENCE(bind->pathobj);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| binding_memsize(const void *ptr)
 | |
| {
 | |
|     return sizeof(rb_binding_t);
 | |
| }
 | |
| 
 | |
| const rb_data_type_t ruby_binding_data_type = {
 | |
|     "binding",
 | |
|     {
 | |
| 	binding_mark,
 | |
| 	binding_free,
 | |
| 	binding_memsize,
 | |
| 	binding_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| VALUE
 | |
| rb_binding_alloc(VALUE klass)
 | |
| {
 | |
|     VALUE obj;
 | |
|     rb_binding_t *bind;
 | |
|     obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| binding_dup(VALUE self)
 | |
| {
 | |
|     VALUE bindval = rb_binding_alloc(rb_cBinding);
 | |
|     rb_binding_t *src, *dst;
 | |
|     GetBindingPtr(self, src);
 | |
|     GetBindingPtr(bindval, dst);
 | |
|     rb_vm_block_copy(bindval, &dst->block, &src->block);
 | |
|     RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
 | |
|     dst->first_lineno = src->first_lineno;
 | |
|     return bindval;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| binding_clone(VALUE self)
 | |
| {
 | |
|     VALUE bindval = binding_dup(self);
 | |
|     CLONESETUP(bindval, self);
 | |
|     return bindval;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_binding_new(void)
 | |
| {
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
|     return rb_vm_make_binding(ec, ec->cfp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding -> a_binding
 | |
|  *
 | |
|  *  Returns a +Binding+ object, describing the variable and
 | |
|  *  method bindings at the point of call. This object can be used when
 | |
|  *  calling +eval+ to execute the evaluated command in this
 | |
|  *  environment. See also the description of class +Binding+.
 | |
|  *
 | |
|  *     def get_binding(param)
 | |
|  *       binding
 | |
|  *     end
 | |
|  *     b = get_binding("hello")
 | |
|  *     eval("param", b)   #=> "hello"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_f_binding(VALUE self)
 | |
| {
 | |
|     return rb_binding_new();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.eval(string [, filename [,lineno]])  -> obj
 | |
|  *
 | |
|  *  Evaluates the Ruby expression(s) in <em>string</em>, in the
 | |
|  *  <em>binding</em>'s context.  If the optional <em>filename</em> and
 | |
|  *  <em>lineno</em> parameters are present, they will be used when
 | |
|  *  reporting syntax errors.
 | |
|  *
 | |
|  *     def get_binding(param)
 | |
|  *       binding
 | |
|  *     end
 | |
|  *     b = get_binding("hello")
 | |
|  *     b.eval("param")   #=> "hello"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| bind_eval(int argc, VALUE *argv, VALUE bindval)
 | |
| {
 | |
|     VALUE args[4];
 | |
| 
 | |
|     rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
 | |
|     args[1] = bindval;
 | |
|     return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
 | |
| }
 | |
| 
 | |
| static const VALUE *
 | |
| get_local_variable_ptr(const rb_env_t **envp, ID lid)
 | |
| {
 | |
|     const rb_env_t *env = *envp;
 | |
|     do {
 | |
| 	if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
 | |
|             if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) {
 | |
|                 return NULL;
 | |
|             }
 | |
| 
 | |
|             const rb_iseq_t *iseq = env->iseq;
 | |
| 	    unsigned int i;
 | |
| 
 | |
| 	    VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
 | |
| 
 | |
| 	    for (i=0; i<iseq->body->local_table_size; i++) {
 | |
| 		if (iseq->body->local_table[i] == lid) {
 | |
| 		    if (iseq->body->local_iseq == iseq &&
 | |
| 			iseq->body->param.flags.has_block &&
 | |
| 			(unsigned int)iseq->body->param.block_start == i) {
 | |
| 			const VALUE *ep = env->ep;
 | |
| 			if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
 | |
| 			    RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
 | |
| 			    VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    *envp = env;
 | |
| 		    return &env->env[i];
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    *envp = NULL;
 | |
| 	    return NULL;
 | |
| 	}
 | |
|     } while ((env = rb_vm_env_prev_env(env)) != NULL);
 | |
| 
 | |
|     *envp = NULL;
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check local variable name.
 | |
|  * returns ID if it's an already interned symbol, or 0 with setting
 | |
|  * local name in String to *namep.
 | |
|  */
 | |
| static ID
 | |
| check_local_id(VALUE bindval, volatile VALUE *pname)
 | |
| {
 | |
|     ID lid = rb_check_id(pname);
 | |
|     VALUE name = *pname;
 | |
| 
 | |
|     if (lid) {
 | |
| 	if (!rb_is_local_id(lid)) {
 | |
| 	    rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
 | |
| 			      bindval, ID2SYM(lid));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (!rb_is_local_name(name)) {
 | |
| 	    rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
 | |
| 			      bindval, name);
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
|     return lid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.local_variables -> Array
 | |
|  *
 | |
|  *  Returns the names of the binding's local variables as symbols.
 | |
|  *
 | |
|  *	def foo
 | |
|  *  	  a = 1
 | |
|  *  	  2.times do |n|
 | |
|  *  	    binding.local_variables #=> [:a, :n]
 | |
|  *  	  end
 | |
|  *  	end
 | |
|  *
 | |
|  *  This method is the short version of the following code:
 | |
|  *
 | |
|  *	binding.eval("local_variables")
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| bind_local_variables(VALUE bindval)
 | |
| {
 | |
|     const rb_binding_t *bind;
 | |
|     const rb_env_t *env;
 | |
| 
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
 | |
|     return rb_vm_env_local_variables(env);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.local_variable_get(symbol) -> obj
 | |
|  *
 | |
|  *  Returns the value of the local variable +symbol+.
 | |
|  *
 | |
|  *	def foo
 | |
|  *  	  a = 1
 | |
|  *  	  binding.local_variable_get(:a) #=> 1
 | |
|  *  	  binding.local_variable_get(:b) #=> NameError
 | |
|  *  	end
 | |
|  *
 | |
|  *  This method is the short version of the following code:
 | |
|  *
 | |
|  *	binding.eval("#{symbol}")
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| bind_local_variable_get(VALUE bindval, VALUE sym)
 | |
| {
 | |
|     ID lid = check_local_id(bindval, &sym);
 | |
|     const rb_binding_t *bind;
 | |
|     const VALUE *ptr;
 | |
|     const rb_env_t *env;
 | |
| 
 | |
|     if (!lid) goto undefined;
 | |
| 
 | |
|     GetBindingPtr(bindval, bind);
 | |
| 
 | |
|     env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
 | |
|     if ((ptr = get_local_variable_ptr(&env, lid)) != NULL) {
 | |
|         return *ptr;
 | |
|     }
 | |
| 
 | |
|     sym = ID2SYM(lid);
 | |
|   undefined:
 | |
|     rb_name_err_raise("local variable `%1$s' is not defined for %2$s",
 | |
|                       bindval, sym);
 | |
|     UNREACHABLE_RETURN(Qundef);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.local_variable_set(symbol, obj) -> obj
 | |
|  *
 | |
|  *  Set local variable named +symbol+ as +obj+.
 | |
|  *
 | |
|  *	def foo
 | |
|  *  	  a = 1
 | |
|  *  	  bind = binding
 | |
|  *  	  bind.local_variable_set(:a, 2) # set existing local variable `a'
 | |
|  *  	  bind.local_variable_set(:b, 3) # create new local variable `b'
 | |
|  *  	                                 # `b' exists only in binding
 | |
|  *
 | |
|  *  	  p bind.local_variable_get(:a)  #=> 2
 | |
|  *  	  p bind.local_variable_get(:b)  #=> 3
 | |
|  *  	  p a                            #=> 2
 | |
|  *  	  p b                            #=> NameError
 | |
|  *  	end
 | |
|  *
 | |
|  *  This method behaves similarly to the following code:
 | |
|  *
 | |
|  *    binding.eval("#{symbol} = #{obj}")
 | |
|  *
 | |
|  *  if +obj+ can be dumped in Ruby code.
 | |
|  */
 | |
| static VALUE
 | |
| bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
 | |
| {
 | |
|     ID lid = check_local_id(bindval, &sym);
 | |
|     rb_binding_t *bind;
 | |
|     const VALUE *ptr;
 | |
|     const rb_env_t *env;
 | |
| 
 | |
|     if (!lid) lid = rb_intern_str(sym);
 | |
| 
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
 | |
|     if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
 | |
| 	/* not found. create new env */
 | |
| 	ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
 | |
| 	env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
 | |
|     }
 | |
| 
 | |
|     RB_OBJ_WRITE(env, ptr, val);
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.local_variable_defined?(symbol) -> obj
 | |
|  *
 | |
|  *  Returns +true+ if a local variable +symbol+ exists.
 | |
|  *
 | |
|  *	def foo
 | |
|  *  	  a = 1
 | |
|  *  	  binding.local_variable_defined?(:a) #=> true
 | |
|  *  	  binding.local_variable_defined?(:b) #=> false
 | |
|  *  	end
 | |
|  *
 | |
|  *  This method is the short version of the following code:
 | |
|  *
 | |
|  *	binding.eval("defined?(#{symbol}) == 'local-variable'")
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| bind_local_variable_defined_p(VALUE bindval, VALUE sym)
 | |
| {
 | |
|     ID lid = check_local_id(bindval, &sym);
 | |
|     const rb_binding_t *bind;
 | |
|     const rb_env_t *env;
 | |
| 
 | |
|     if (!lid) return Qfalse;
 | |
| 
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
 | |
|     return get_local_variable_ptr(&env, lid) ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.receiver    -> object
 | |
|  *
 | |
|  *  Returns the bound receiver of the binding object.
 | |
|  */
 | |
| static VALUE
 | |
| bind_receiver(VALUE bindval)
 | |
| {
 | |
|     const rb_binding_t *bind;
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     return vm_block_self(&bind->block);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     binding.source_location  -> [String, Integer]
 | |
|  *
 | |
|  *  Returns the Ruby source filename and line number of the binding object.
 | |
|  */
 | |
| static VALUE
 | |
| bind_location(VALUE bindval)
 | |
| {
 | |
|     VALUE loc[2];
 | |
|     const rb_binding_t *bind;
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     loc[0] = pathobj_path(bind->pathobj);
 | |
|     loc[1] = INT2FIX(bind->first_lineno);
 | |
| 
 | |
|     return rb_ary_new4(2, loc);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| cfunc_proc_new(VALUE klass, VALUE ifunc)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     cfunc_proc_t *sproc;
 | |
|     VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
 | |
|     VALUE *ep;
 | |
| 
 | |
|     proc = &sproc->basic;
 | |
|     vm_block_type_set(&proc->block, block_type_ifunc);
 | |
| 
 | |
|     *(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
 | |
|     ep[VM_ENV_DATA_INDEX_FLAGS]   = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
 | |
|     ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
 | |
|     ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
 | |
|     ep[VM_ENV_DATA_INDEX_ENV]     = Qundef; /* envval */
 | |
| 
 | |
|     /* self? */
 | |
|     RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
 | |
|     proc->is_lambda = TRUE;
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| sym_proc_new(VALUE klass, VALUE sym)
 | |
| {
 | |
|     VALUE procval = rb_proc_alloc(klass);
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(procval, proc);
 | |
| 
 | |
|     vm_block_type_set(&proc->block, block_type_symbol);
 | |
|     proc->is_lambda = TRUE;
 | |
|     RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| struct vm_ifunc *
 | |
| rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
 | |
| {
 | |
|     union {
 | |
| 	struct vm_ifunc_argc argc;
 | |
| 	VALUE packed;
 | |
|     } arity;
 | |
| 
 | |
|     if (min_argc < UNLIMITED_ARGUMENTS ||
 | |
| #if SIZEOF_INT * 2 > SIZEOF_VALUE
 | |
| 	min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
 | |
| #endif
 | |
| 	0) {
 | |
| 	rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
 | |
| 		 min_argc);
 | |
|     }
 | |
|     if (max_argc < UNLIMITED_ARGUMENTS ||
 | |
| #if SIZEOF_INT * 2 > SIZEOF_VALUE
 | |
| 	max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
 | |
| #endif
 | |
| 	0) {
 | |
| 	rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
 | |
| 		 max_argc);
 | |
|     }
 | |
|     arity.argc.min = min_argc;
 | |
|     arity.argc.max = max_argc;
 | |
|     VALUE ret = rb_imemo_new(imemo_ifunc, (VALUE)func, (VALUE)data, arity.packed, 0);
 | |
|     return (struct vm_ifunc *)ret;
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_func_proc_new(rb_block_call_func_t func, VALUE val)
 | |
| {
 | |
|     struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
 | |
|     return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
 | |
| {
 | |
|     struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
 | |
|     return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
 | |
| }
 | |
| 
 | |
| static const char proc_without_block[] = "tried to create Proc object without a block";
 | |
| 
 | |
| static VALUE
 | |
| proc_new(VALUE klass, int8_t is_lambda, int8_t kernel)
 | |
| {
 | |
|     VALUE procval;
 | |
|     const rb_execution_context_t *ec = GET_EC();
 | |
|     rb_control_frame_t *cfp = ec->cfp;
 | |
|     VALUE block_handler;
 | |
| 
 | |
|     if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
 | |
|         rb_raise(rb_eArgError, proc_without_block);
 | |
|     }
 | |
| 
 | |
|     /* block is in cf */
 | |
|     switch (vm_block_handler_type(block_handler)) {
 | |
|       case block_handler_type_proc:
 | |
| 	procval = VM_BH_TO_PROC(block_handler);
 | |
| 
 | |
| 	if (RBASIC_CLASS(procval) == klass) {
 | |
| 	    return procval;
 | |
| 	}
 | |
| 	else {
 | |
| 	    VALUE newprocval = rb_proc_dup(procval);
 | |
|             RBASIC_SET_CLASS(newprocval, klass);
 | |
| 	    return newprocval;
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case block_handler_type_symbol:
 | |
| 	return (klass != rb_cProc) ?
 | |
| 	  sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
 | |
| 	  rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
 | |
| 	break;
 | |
| 
 | |
|       case block_handler_type_ifunc:
 | |
| 	return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
 | |
|       case block_handler_type_iseq:
 | |
|         {
 | |
|             const struct rb_captured_block *captured = VM_BH_TO_CAPT_BLOCK(block_handler);
 | |
|             rb_control_frame_t *last_ruby_cfp = rb_vm_get_ruby_level_next_cfp(ec, cfp);
 | |
|             if (is_lambda && last_ruby_cfp && vm_cfp_forwarded_bh_p(last_ruby_cfp, block_handler)) {
 | |
|                 is_lambda = false;
 | |
|             }
 | |
|             return rb_vm_make_proc_lambda(ec, captured, klass, is_lambda);
 | |
|         }
 | |
|     }
 | |
|     VM_UNREACHABLE(proc_new);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Proc.new {|...| block } -> a_proc
 | |
|  *
 | |
|  *  Creates a new Proc object, bound to the current context.
 | |
|  *
 | |
|  *     proc = Proc.new { "hello" }
 | |
|  *     proc.call   #=> "hello"
 | |
|  *
 | |
|  *  Raises ArgumentError if called without a block.
 | |
|  *
 | |
|  *     Proc.new    #=> ArgumentError
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE block = proc_new(klass, FALSE, FALSE);
 | |
| 
 | |
|     rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_block_proc(void)
 | |
| {
 | |
|     return proc_new(rb_cProc, FALSE, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   proc   { |...| block }  -> a_proc
 | |
|  *
 | |
|  * Equivalent to Proc.new.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| f_proc(VALUE _)
 | |
| {
 | |
|     return proc_new(rb_cProc, FALSE, TRUE);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_block_lambda(void)
 | |
| {
 | |
|     return proc_new(rb_cProc, TRUE, FALSE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| f_lambda_warn(void)
 | |
| {
 | |
|     rb_control_frame_t *cfp = GET_EC()->cfp;
 | |
|     VALUE block_handler = rb_vm_frame_block_handler(cfp);
 | |
| 
 | |
|     if (block_handler != VM_BLOCK_HANDLER_NONE) {
 | |
|         switch (vm_block_handler_type(block_handler)) {
 | |
|           case block_handler_type_iseq:
 | |
|             if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) {
 | |
|                 return;
 | |
|             }
 | |
|             break;
 | |
|           case block_handler_type_symbol:
 | |
|             return;
 | |
|           case block_handler_type_proc:
 | |
|             if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) {
 | |
|                 return;
 | |
|             }
 | |
|             break;
 | |
|           case block_handler_type_ifunc:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rb_warn_deprecated("lambda without a literal block", "the proc without lambda");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   lambda { |...| block }  -> a_proc
 | |
|  *
 | |
|  * Equivalent to Proc.new, except the resulting Proc objects check the
 | |
|  * number of parameters passed when called.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| f_lambda(VALUE _)
 | |
| {
 | |
|     f_lambda_warn();
 | |
|     return rb_block_lambda();
 | |
| }
 | |
| 
 | |
| /*  Document-method: Proc#===
 | |
|  *
 | |
|  *  call-seq:
 | |
|  *     proc === obj   -> result_of_proc
 | |
|  *
 | |
|  *  Invokes the block with +obj+ as the proc's parameter like Proc#call.
 | |
|  *  This allows a proc object to be the target of a +when+ clause
 | |
|  *  in a case statement.
 | |
|  */
 | |
| 
 | |
| /* CHECKME: are the argument checking semantics correct? */
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Proc#[]
 | |
|  *  Document-method: Proc#call
 | |
|  *  Document-method: Proc#yield
 | |
|  *
 | |
|  *  call-seq:
 | |
|  *     prc.call(params,...)   -> obj
 | |
|  *     prc[params,...]        -> obj
 | |
|  *     prc.(params,...)       -> obj
 | |
|  *     prc.yield(params,...)  -> obj
 | |
|  *
 | |
|  *  Invokes the block, setting the block's parameters to the values in
 | |
|  *  <i>params</i> using something close to method calling semantics.
 | |
|  *  Returns the value of the last expression evaluated in the block.
 | |
|  *
 | |
|  *     a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
 | |
|  *     a_proc.call(9, 1, 2, 3)    #=> [9, 18, 27]
 | |
|  *     a_proc[9, 1, 2, 3]         #=> [9, 18, 27]
 | |
|  *     a_proc.(9, 1, 2, 3)        #=> [9, 18, 27]
 | |
|  *     a_proc.yield(9, 1, 2, 3)   #=> [9, 18, 27]
 | |
|  *
 | |
|  *  Note that <code>prc.()</code> invokes <code>prc.call()</code> with
 | |
|  *  the parameters given.  It's syntactic sugar to hide "call".
 | |
|  *
 | |
|  *  For procs created using #lambda or <code>->()</code> an error is
 | |
|  *  generated if the wrong number of parameters are passed to the
 | |
|  *  proc.  For procs created using Proc.new or Kernel.proc, extra
 | |
|  *  parameters are silently discarded and missing parameters are set
 | |
|  *  to +nil+.
 | |
|  *
 | |
|  *     a_proc = proc {|a,b| [a,b] }
 | |
|  *     a_proc.call(1)   #=> [1, nil]
 | |
|  *
 | |
|  *     a_proc = lambda {|a,b| [a,b] }
 | |
|  *     a_proc.call(1)   # ArgumentError: wrong number of arguments (given 1, expected 2)
 | |
|  *
 | |
|  *  See also Proc#lambda?.
 | |
|  */
 | |
| #if 0
 | |
| static VALUE
 | |
| proc_call(int argc, VALUE *argv, VALUE procval)
 | |
| {
 | |
|     /* removed */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if SIZEOF_LONG > SIZEOF_INT
 | |
| static inline int
 | |
| check_argc(long argc)
 | |
| {
 | |
|     if (argc > INT_MAX || argc < 0) {
 | |
| 	rb_raise(rb_eArgError, "too many arguments (%lu)",
 | |
| 		 (unsigned long)argc);
 | |
|     }
 | |
|     return (int)argc;
 | |
| }
 | |
| #else
 | |
| #define check_argc(argc) (argc)
 | |
| #endif
 | |
| 
 | |
| VALUE
 | |
| rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
 | |
| {
 | |
|     VALUE vret;
 | |
|     rb_proc_t *proc;
 | |
|     int argc = check_argc(RARRAY_LEN(args));
 | |
|     const VALUE *argv = RARRAY_CONST_PTR(args);
 | |
|     GetProcPtr(self, proc);
 | |
|     vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
 | |
|                              kw_splat, VM_BLOCK_HANDLER_NONE);
 | |
|     RB_GC_GUARD(self);
 | |
|     RB_GC_GUARD(args);
 | |
|     return vret;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_proc_call(VALUE self, VALUE args)
 | |
| {
 | |
|     VALUE vret;
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(self, proc);
 | |
|     vret = rb_vm_invoke_proc(GET_EC(), proc,
 | |
| 			     check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args),
 | |
|                              RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE);
 | |
|     RB_GC_GUARD(self);
 | |
|     RB_GC_GUARD(args);
 | |
|     return vret;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| proc_to_block_handler(VALUE procval)
 | |
| {
 | |
|     return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
 | |
| {
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
|     VALUE vret;
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(self, proc);
 | |
|     vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
 | |
|     RB_GC_GUARD(self);
 | |
|     return vret;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
 | |
| {
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
|     VALUE vret;
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(self, proc);
 | |
|     vret = rb_vm_invoke_proc(ec, proc, argc, argv, RB_NO_KEYWORDS, proc_to_block_handler(passed_procval));
 | |
|     RB_GC_GUARD(self);
 | |
|     return vret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     prc.arity -> integer
 | |
|  *
 | |
|  *  Returns the number of mandatory arguments. If the block
 | |
|  *  is declared to take no arguments, returns 0. If the block is known
 | |
|  *  to take exactly n arguments, returns n.
 | |
|  *  If the block has optional arguments, returns -n-1, where n is the
 | |
|  *  number of mandatory arguments, with the exception for blocks that
 | |
|  *  are not lambdas and have only a finite number of optional arguments;
 | |
|  *  in this latter case, returns n.
 | |
|  *  Keyword arguments will be considered as a single additional argument,
 | |
|  *  that argument being mandatory if any keyword argument is mandatory.
 | |
|  *  A #proc with no argument declarations is the same as a block
 | |
|  *  declaring <code>||</code> as its arguments.
 | |
|  *
 | |
|  *     proc {}.arity                  #=>  0
 | |
|  *     proc { || }.arity              #=>  0
 | |
|  *     proc { |a| }.arity             #=>  1
 | |
|  *     proc { |a, b| }.arity          #=>  2
 | |
|  *     proc { |a, b, c| }.arity       #=>  3
 | |
|  *     proc { |*a| }.arity            #=> -1
 | |
|  *     proc { |a, *b| }.arity         #=> -2
 | |
|  *     proc { |a, *b, c| }.arity      #=> -3
 | |
|  *     proc { |x:, y:, z:0| }.arity   #=>  1
 | |
|  *     proc { |*a, x:, y:0| }.arity   #=> -2
 | |
|  *
 | |
|  *     proc   { |a=0| }.arity         #=>  0
 | |
|  *     lambda { |a=0| }.arity         #=> -1
 | |
|  *     proc   { |a=0, b| }.arity      #=>  1
 | |
|  *     lambda { |a=0, b| }.arity      #=> -2
 | |
|  *     proc   { |a=0, b=0| }.arity    #=>  0
 | |
|  *     lambda { |a=0, b=0| }.arity    #=> -1
 | |
|  *     proc   { |a, b=0| }.arity      #=>  1
 | |
|  *     lambda { |a, b=0| }.arity      #=> -2
 | |
|  *     proc   { |(a, b), c=0| }.arity #=>  1
 | |
|  *     lambda { |(a, b), c=0| }.arity #=> -2
 | |
|  *     proc   { |a, x:0, y:0| }.arity #=>  1
 | |
|  *     lambda { |a, x:0, y:0| }.arity #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| proc_arity(VALUE self)
 | |
| {
 | |
|     int arity = rb_proc_arity(self);
 | |
|     return INT2FIX(arity);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
 | |
| {
 | |
|     *max = iseq->body->param.flags.has_rest == FALSE ?
 | |
|       iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num +
 | |
|       (iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE)
 | |
|       : UNLIMITED_ARGUMENTS;
 | |
|     return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
 | |
| {
 | |
|   again:
 | |
|     switch (vm_block_type(block)) {
 | |
|       case block_type_iseq:
 | |
| 	return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
 | |
|       case block_type_proc:
 | |
| 	block = vm_proc_block(block->as.proc);
 | |
| 	goto again;
 | |
|       case block_type_ifunc:
 | |
| 	{
 | |
| 	    const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
 | |
| 	    if (IS_METHOD_PROC_IFUNC(ifunc)) {
 | |
| 		/* e.g. method(:foo).to_proc.arity */
 | |
| 		return method_min_max_arity((VALUE)ifunc->data, max);
 | |
| 	    }
 | |
| 	    *max = ifunc->argc.max;
 | |
| 	    return ifunc->argc.min;
 | |
| 	}
 | |
|       case block_type_symbol:
 | |
|         *max = UNLIMITED_ARGUMENTS;
 | |
|         return 1;
 | |
|     }
 | |
|     *max = UNLIMITED_ARGUMENTS;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of required parameters and stores the maximum
 | |
|  * number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
 | |
|  * For non-lambda procs, the maximum is the number of non-ignored
 | |
|  * parameters even though there is no actual limit to the number of parameters
 | |
|  */
 | |
| static int
 | |
| rb_proc_min_max_arity(VALUE self, int *max)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(self, proc);
 | |
|     return rb_vm_block_min_max_arity(&proc->block, max);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_proc_arity(VALUE self)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     int max, min;
 | |
|     GetProcPtr(self, proc);
 | |
|     min = rb_vm_block_min_max_arity(&proc->block, &max);
 | |
|     return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| block_setup(struct rb_block *block, VALUE block_handler)
 | |
| {
 | |
|     switch (vm_block_handler_type(block_handler)) {
 | |
|       case block_handler_type_iseq:
 | |
| 	block->type = block_type_iseq;
 | |
| 	block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
 | |
| 	break;
 | |
|       case block_handler_type_ifunc:
 | |
| 	block->type = block_type_ifunc;
 | |
| 	block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
 | |
| 	break;
 | |
|       case block_handler_type_symbol:
 | |
| 	block->type = block_type_symbol;
 | |
| 	block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
 | |
| 	break;
 | |
|       case block_handler_type_proc:
 | |
| 	block->type = block_type_proc;
 | |
| 	block->as.proc = VM_BH_TO_PROC(block_handler);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_block_pair_yield_optimizable(void)
 | |
| {
 | |
|     int min, max;
 | |
|     const rb_execution_context_t *ec = GET_EC();
 | |
|     rb_control_frame_t *cfp = ec->cfp;
 | |
|     VALUE block_handler = rb_vm_frame_block_handler(cfp);
 | |
|     struct rb_block block;
 | |
| 
 | |
|     if (block_handler == VM_BLOCK_HANDLER_NONE) {
 | |
| 	rb_raise(rb_eArgError, "no block given");
 | |
|     }
 | |
| 
 | |
|     block_setup(&block, block_handler);
 | |
|     min = rb_vm_block_min_max_arity(&block, &max);
 | |
| 
 | |
|     switch (vm_block_type(&block)) {
 | |
|       case block_handler_type_symbol:
 | |
|         return 0;
 | |
| 
 | |
|       case block_handler_type_proc:
 | |
| 	{
 | |
| 	    VALUE procval = block_handler;
 | |
| 	    rb_proc_t *proc;
 | |
| 	    GetProcPtr(procval, proc);
 | |
|             if (proc->is_lambda) return 0;
 | |
|             if (min != max) return 0;
 | |
|             return min > 1;
 | |
| 	}
 | |
| 
 | |
|       default:
 | |
|         return min > 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_block_arity(void)
 | |
| {
 | |
|     int min, max;
 | |
|     const rb_execution_context_t *ec = GET_EC();
 | |
|     rb_control_frame_t *cfp = ec->cfp;
 | |
|     VALUE block_handler = rb_vm_frame_block_handler(cfp);
 | |
|     struct rb_block block;
 | |
| 
 | |
|     if (block_handler == VM_BLOCK_HANDLER_NONE) {
 | |
| 	rb_raise(rb_eArgError, "no block given");
 | |
|     }
 | |
| 
 | |
|     block_setup(&block, block_handler);
 | |
|     min = rb_vm_block_min_max_arity(&block, &max);
 | |
| 
 | |
|     switch (vm_block_type(&block)) {
 | |
|       case block_handler_type_symbol:
 | |
| 	return -1;
 | |
| 
 | |
|       case block_handler_type_proc:
 | |
| 	{
 | |
| 	    VALUE procval = block_handler;
 | |
| 	    rb_proc_t *proc;
 | |
| 	    GetProcPtr(procval, proc);
 | |
| 	    return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
 | |
| 	}
 | |
| 
 | |
|       default:
 | |
| 	return max != UNLIMITED_ARGUMENTS ? min : -min-1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_block_min_max_arity(int *max)
 | |
| {
 | |
|     const rb_execution_context_t *ec = GET_EC();
 | |
|     rb_control_frame_t *cfp = ec->cfp;
 | |
|     VALUE block_handler = rb_vm_frame_block_handler(cfp);
 | |
|     struct rb_block block;
 | |
| 
 | |
|     if (block_handler == VM_BLOCK_HANDLER_NONE) {
 | |
| 	rb_raise(rb_eArgError, "no block given");
 | |
|     }
 | |
| 
 | |
|     block_setup(&block, block_handler);
 | |
|     return rb_vm_block_min_max_arity(&block, max);
 | |
| }
 | |
| 
 | |
| const rb_iseq_t *
 | |
| rb_proc_get_iseq(VALUE self, int *is_proc)
 | |
| {
 | |
|     const rb_proc_t *proc;
 | |
|     const struct rb_block *block;
 | |
| 
 | |
|     GetProcPtr(self, proc);
 | |
|     block = &proc->block;
 | |
|     if (is_proc) *is_proc = !proc->is_lambda;
 | |
| 
 | |
|     switch (vm_block_type(block)) {
 | |
|       case block_type_iseq:
 | |
| 	return rb_iseq_check(block->as.captured.code.iseq);
 | |
|       case block_type_proc:
 | |
| 	return rb_proc_get_iseq(block->as.proc, is_proc);
 | |
|       case block_type_ifunc:
 | |
| 	{
 | |
| 	    const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
 | |
| 	    if (IS_METHOD_PROC_IFUNC(ifunc)) {
 | |
| 		/* method(:foo).to_proc */
 | |
| 		if (is_proc) *is_proc = 0;
 | |
| 		return rb_method_iseq((VALUE)ifunc->data);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		return NULL;
 | |
| 	    }
 | |
| 	}
 | |
|       case block_type_symbol:
 | |
| 	return NULL;
 | |
|     }
 | |
| 
 | |
|     VM_UNREACHABLE(rb_proc_get_iseq);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* call-seq:
 | |
|  *   prc == other -> true or false
 | |
|  *   prc.eql?(other) -> true or false
 | |
|  *
 | |
|  * Two procs are the same if, and only if, they were created from the same code block.
 | |
|  *
 | |
|  *   def return_block(&block)
 | |
|  *     block
 | |
|  *   end
 | |
|  *
 | |
|  *   def pass_block_twice(&block)
 | |
|  *     [return_block(&block), return_block(&block)]
 | |
|  *   end
 | |
|  *
 | |
|  *   block1, block2 = pass_block_twice { puts 'test' }
 | |
|  *   # Blocks might be instantiated into Proc's lazily, so they may, or may not,
 | |
|  *   # be the same object.
 | |
|  *   # But they are produced from the same code block, so they are equal
 | |
|  *   block1 == block2
 | |
|  *   #=> true
 | |
|  *
 | |
|  *   # Another Proc will never be equal, even if the code is the "same"
 | |
|  *   block1 == proc { puts 'test' }
 | |
|  *   #=> false
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| proc_eq(VALUE self, VALUE other)
 | |
| {
 | |
|     const rb_proc_t *self_proc, *other_proc;
 | |
|     const struct rb_block *self_block, *other_block;
 | |
| 
 | |
|     if (rb_obj_class(self) !=  rb_obj_class(other)) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     GetProcPtr(self, self_proc);
 | |
|     GetProcPtr(other, other_proc);
 | |
| 
 | |
|     if (self_proc->is_from_method != other_proc->is_from_method ||
 | |
|             self_proc->is_lambda != other_proc->is_lambda) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     self_block = &self_proc->block;
 | |
|     other_block = &other_proc->block;
 | |
| 
 | |
|     if (vm_block_type(self_block) != vm_block_type(other_block)) {
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     switch (vm_block_type(self_block)) {
 | |
|       case block_type_iseq:
 | |
|         if (self_block->as.captured.ep != \
 | |
|                 other_block->as.captured.ep ||
 | |
|                 self_block->as.captured.code.iseq != \
 | |
|                 other_block->as.captured.code.iseq) {
 | |
|             return Qfalse;
 | |
|         }
 | |
|         break;
 | |
|       case block_type_ifunc:
 | |
|         if (self_block->as.captured.ep != \
 | |
|                 other_block->as.captured.ep ||
 | |
|                 self_block->as.captured.code.ifunc != \
 | |
|                 other_block->as.captured.code.ifunc) {
 | |
|             return Qfalse;
 | |
|         }
 | |
|         break;
 | |
|       case block_type_proc:
 | |
|         if (self_block->as.proc != other_block->as.proc) {
 | |
|             return Qfalse;
 | |
|         }
 | |
|         break;
 | |
|       case block_type_symbol:
 | |
|         if (self_block->as.symbol != other_block->as.symbol) {
 | |
|             return Qfalse;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| iseq_location(const rb_iseq_t *iseq)
 | |
| {
 | |
|     VALUE loc[2];
 | |
| 
 | |
|     if (!iseq) return Qnil;
 | |
|     rb_iseq_check(iseq);
 | |
|     loc[0] = rb_iseq_path(iseq);
 | |
|     loc[1] = iseq->body->location.first_lineno;
 | |
| 
 | |
|     return rb_ary_new4(2, loc);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_iseq_location(const rb_iseq_t *iseq)
 | |
| {
 | |
|     return iseq_location(iseq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    prc.source_location  -> [String, Integer]
 | |
|  *
 | |
|  * Returns the Ruby source filename and line number containing this proc
 | |
|  * or +nil+ if this proc was not defined in Ruby (i.e. native).
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_proc_location(VALUE self)
 | |
| {
 | |
|     return iseq_location(rb_proc_get_iseq(self, 0));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_unnamed_parameters(int arity)
 | |
| {
 | |
|     VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
 | |
|     int n = (arity < 0) ? ~arity : arity;
 | |
|     ID req, rest;
 | |
|     CONST_ID(req, "req");
 | |
|     a = rb_ary_new3(1, ID2SYM(req));
 | |
|     OBJ_FREEZE(a);
 | |
|     for (; n; --n) {
 | |
| 	rb_ary_push(param, a);
 | |
|     }
 | |
|     if (arity < 0) {
 | |
| 	CONST_ID(rest, "rest");
 | |
| 	rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
 | |
|     }
 | |
|     return param;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    prc.parameters  -> array
 | |
|  *
 | |
|  * Returns the parameter information of this proc.
 | |
|  *
 | |
|  *    prc = lambda{|x, y=42, *other|}
 | |
|  *    prc.parameters  #=> [[:req, :x], [:opt, :y], [:rest, :other]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_proc_parameters(VALUE self)
 | |
| {
 | |
|     int is_proc;
 | |
|     const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc);
 | |
|     if (!iseq) {
 | |
| 	return rb_unnamed_parameters(rb_proc_arity(self));
 | |
|     }
 | |
|     return rb_iseq_parameters(iseq, is_proc);
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| rb_hash_proc(st_index_t hash, VALUE prc)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(prc, proc);
 | |
|     hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val);
 | |
|     hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self);
 | |
|     return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep >> 16);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_sym_to_proc(VALUE sym)
 | |
| {
 | |
|     static VALUE sym_proc_cache = Qfalse;
 | |
|     enum {SYM_PROC_CACHE_SIZE = 67};
 | |
|     VALUE proc;
 | |
|     long index;
 | |
|     ID id;
 | |
| 
 | |
|     if (!sym_proc_cache) {
 | |
| 	sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2);
 | |
| 	rb_gc_register_mark_object(sym_proc_cache);
 | |
| 	rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
 | |
|     }
 | |
| 
 | |
|     id = SYM2ID(sym);
 | |
|     index = (id % SYM_PROC_CACHE_SIZE) << 1;
 | |
| 
 | |
|     if (RARRAY_AREF(sym_proc_cache, index) == sym) {
 | |
|         return RARRAY_AREF(sym_proc_cache, index + 1);
 | |
|     }
 | |
|     else {
 | |
|         proc = sym_proc_new(rb_cProc, ID2SYM(id));
 | |
|         RARRAY_ASET(sym_proc_cache, index, sym);
 | |
|         RARRAY_ASET(sym_proc_cache, index + 1, proc);
 | |
| 	return proc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   prc.hash   ->  integer
 | |
|  *
 | |
|  * Returns a hash value corresponding to proc body.
 | |
|  *
 | |
|  * See also Object#hash.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| proc_hash(VALUE self)
 | |
| {
 | |
|     st_index_t hash;
 | |
|     hash = rb_hash_start(0);
 | |
|     hash = rb_hash_proc(hash, self);
 | |
|     hash = rb_hash_end(hash);
 | |
|     return ST2FIX(hash);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
 | |
| {
 | |
|     VALUE cname = rb_obj_class(self);
 | |
|     VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
 | |
| 
 | |
|   again:
 | |
|     switch (vm_block_type(block)) {
 | |
|       case block_type_proc:
 | |
| 	block = vm_proc_block(block->as.proc);
 | |
| 	goto again;
 | |
|       case block_type_iseq:
 | |
| 	{
 | |
| 	    const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
 | |
|             rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
 | |
| 			rb_iseq_path(iseq),
 | |
| 			FIX2INT(iseq->body->location.first_lineno));
 | |
| 	}
 | |
| 	break;
 | |
|       case block_type_symbol:
 | |
| 	rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
 | |
| 	break;
 | |
|       case block_type_ifunc:
 | |
| 	rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     if (additional_info) rb_str_cat_cstr(str, additional_info);
 | |
|     rb_str_cat_cstr(str, ">");
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   prc.to_s   -> string
 | |
|  *
 | |
|  * Returns the unique identifier for this proc, along with
 | |
|  * an indication of where the proc was defined.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| proc_to_s(VALUE self)
 | |
| {
 | |
|     const rb_proc_t *proc;
 | |
|     GetProcPtr(self, proc);
 | |
|     return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     prc.to_proc -> proc
 | |
|  *
 | |
|  *  Part of the protocol for converting objects to Proc objects.
 | |
|  *  Instances of class Proc simply return themselves.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| proc_to_proc(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bm_mark(void *ptr)
 | |
| {
 | |
|     struct METHOD *data = ptr;
 | |
|     rb_gc_mark_movable(data->recv);
 | |
|     rb_gc_mark_movable(data->klass);
 | |
|     rb_gc_mark_movable(data->iclass);
 | |
|     rb_gc_mark_movable((VALUE)data->me);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bm_compact(void *ptr)
 | |
| {
 | |
|     struct METHOD *data = ptr;
 | |
|     UPDATE_REFERENCE(data->recv);
 | |
|     UPDATE_REFERENCE(data->klass);
 | |
|     UPDATE_REFERENCE(data->iclass);
 | |
|     UPDATE_TYPED_REFERENCE(rb_method_entry_t *, data->me);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| bm_memsize(const void *ptr)
 | |
| {
 | |
|     return sizeof(struct METHOD);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t method_data_type = {
 | |
|     "method",
 | |
|     {
 | |
| 	bm_mark,
 | |
| 	RUBY_TYPED_DEFAULT_FREE,
 | |
| 	bm_memsize,
 | |
| 	bm_compact,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| VALUE
 | |
| rb_obj_is_method(VALUE m)
 | |
| {
 | |
|     if (rb_typeddata_is_kind_of(m, &method_data_type)) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     else {
 | |
| 	return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
 | |
| {
 | |
|     /* TODO: merge with obj_respond_to() */
 | |
|     ID rmiss = idRespond_to_missing;
 | |
| 
 | |
|     if (obj == Qundef) return 0;
 | |
|     if (rb_method_basic_definition_p(klass, rmiss)) return 0;
 | |
|     return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue));
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
 | |
| {
 | |
|     struct METHOD *data;
 | |
|     VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
 | |
|     rb_method_entry_t *me;
 | |
|     rb_method_definition_t *def;
 | |
| 
 | |
|     RB_OBJ_WRITE(method, &data->recv, obj);
 | |
|     RB_OBJ_WRITE(method, &data->klass, klass);
 | |
| 
 | |
|     def = ZALLOC(rb_method_definition_t);
 | |
|     def->type = VM_METHOD_TYPE_MISSING;
 | |
|     def->original_id = id;
 | |
| 
 | |
|     me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
 | |
| 
 | |
|     RB_OBJ_WRITE(method, &data->me, me);
 | |
| 
 | |
|     return method;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
 | |
| {
 | |
|     VALUE vid = rb_str_intern(*name);
 | |
|     *name = vid;
 | |
|     if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
 | |
|     return mnew_missing(klass, obj, SYM2ID(vid), mclass);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
 | |
| 	      VALUE obj, ID id, VALUE mclass, int scope, int error)
 | |
| {
 | |
|     struct METHOD *data;
 | |
|     VALUE method;
 | |
|     rb_method_visibility_t visi = METHOD_VISI_UNDEF;
 | |
| 
 | |
|   again:
 | |
|     if (UNDEFINED_METHOD_ENTRY_P(me)) {
 | |
| 	if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
 | |
| 	    return mnew_missing(klass, obj, id, mclass);
 | |
| 	}
 | |
| 	if (!error) return Qnil;
 | |
| 	rb_print_undef(klass, id, METHOD_VISI_UNDEF);
 | |
|     }
 | |
|     if (visi == METHOD_VISI_UNDEF) {
 | |
| 	visi = METHOD_ENTRY_VISI(me);
 | |
| 	if (scope && (visi != METHOD_VISI_PUBLIC)) {
 | |
| 	    if (!error) return Qnil;
 | |
| 	    rb_print_inaccessible(klass, id, visi);
 | |
| 	}
 | |
|     }
 | |
|     if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
 | |
| 	if (me->defined_class) {
 | |
|             VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
 | |
| 	    id = me->def->original_id;
 | |
|             me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
 | |
| 	}
 | |
| 	else {
 | |
|             VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner));
 | |
| 	    id = me->def->original_id;
 | |
| 	    me = rb_method_entry_without_refinements(klass, id, &iclass);
 | |
| 	}
 | |
| 	goto again;
 | |
|     }
 | |
| 
 | |
|     method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
 | |
| 
 | |
|     RB_OBJ_WRITE(method, &data->recv, obj);
 | |
|     RB_OBJ_WRITE(method, &data->klass, klass);
 | |
|     RB_OBJ_WRITE(method, &data->iclass, iclass);
 | |
|     RB_OBJ_WRITE(method, &data->me, me);
 | |
| 
 | |
|     return method;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
 | |
| 	     VALUE obj, ID id, VALUE mclass, int scope)
 | |
| {
 | |
|     return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
 | |
| {
 | |
|     const rb_method_entry_t *me;
 | |
|     VALUE iclass = Qnil;
 | |
| 
 | |
|     ASSUME(obj != Qundef);
 | |
|     me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
 | |
|     return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope)
 | |
| {
 | |
|     const rb_method_entry_t *me;
 | |
|     VALUE iclass = Qnil;
 | |
| 
 | |
|     me = rb_method_entry_with_refinements(klass, id, &iclass);
 | |
|     return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope);
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| method_entry_defined_class(const rb_method_entry_t *me)
 | |
| {
 | |
|     VALUE defined_class = me->defined_class;
 | |
|     return defined_class ? defined_class : me->owner;
 | |
| }
 | |
| 
 | |
| /**********************************************************************
 | |
|  *
 | |
|  * Document-class: Method
 | |
|  *
 | |
|  *  Method objects are created by Object#method, and are associated
 | |
|  *  with a particular object (not just with a class).  They may be
 | |
|  *  used to invoke the method within the object, and as a block
 | |
|  *  associated with an iterator.  They may also be unbound from one
 | |
|  *  object (creating an UnboundMethod) and bound to another.
 | |
|  *
 | |
|  *     class Thing
 | |
|  *       def square(n)
 | |
|  *         n*n
 | |
|  *       end
 | |
|  *     end
 | |
|  *     thing = Thing.new
 | |
|  *     meth  = thing.method(:square)
 | |
|  *
 | |
|  *     meth.call(9)                 #=> 81
 | |
|  *     [ 1, 2, 3 ].collect(&meth)   #=> [1, 4, 9]
 | |
|  *
 | |
|  *     [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
 | |
|  *
 | |
|  *     require 'date'
 | |
|  *     %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
 | |
|  *     #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   meth.eql?(other_meth)  -> true or false
 | |
|  *   meth == other_meth  -> true or false
 | |
|  *
 | |
|  * Two method objects are equal if they are bound to the same
 | |
|  * object and refer to the same method definition and the classes
 | |
|  * defining the methods are the same class or module.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_eq(VALUE method, VALUE other)
 | |
| {
 | |
|     struct METHOD *m1, *m2;
 | |
|     VALUE klass1, klass2;
 | |
| 
 | |
|     if (!rb_obj_is_method(other))
 | |
| 	return Qfalse;
 | |
|     if (CLASS_OF(method) != CLASS_OF(other))
 | |
| 	return Qfalse;
 | |
| 
 | |
|     Check_TypedStruct(method, &method_data_type);
 | |
|     m1 = (struct METHOD *)DATA_PTR(method);
 | |
|     m2 = (struct METHOD *)DATA_PTR(other);
 | |
| 
 | |
|     klass1 = method_entry_defined_class(m1->me);
 | |
|     klass2 = method_entry_defined_class(m2->me);
 | |
| 
 | |
|     if (!rb_method_entry_eq(m1->me, m2->me) ||
 | |
| 	klass1 != klass2 ||
 | |
| 	m1->klass != m2->klass ||
 | |
| 	m1->recv != m2->recv) {
 | |
| 	return Qfalse;
 | |
|     }
 | |
| 
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    meth.hash   -> integer
 | |
|  *
 | |
|  * Returns a hash value corresponding to the method object.
 | |
|  *
 | |
|  * See also Object#hash.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_hash(VALUE method)
 | |
| {
 | |
|     struct METHOD *m;
 | |
|     st_index_t hash;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
 | |
|     hash = rb_hash_start((st_index_t)m->recv);
 | |
|     hash = rb_hash_method_entry(hash, m->me);
 | |
|     hash = rb_hash_end(hash);
 | |
| 
 | |
|     return ST2FIX(hash);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.unbind    -> unbound_method
 | |
|  *
 | |
|  *  Dissociates <i>meth</i> from its current receiver. The resulting
 | |
|  *  UnboundMethod can subsequently be bound to a new object of the
 | |
|  *  same class (see UnboundMethod).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_unbind(VALUE obj)
 | |
| {
 | |
|     VALUE method;
 | |
|     struct METHOD *orig, *data;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
 | |
|     method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
 | |
| 				   &method_data_type, data);
 | |
|     RB_OBJ_WRITE(method, &data->recv, Qundef);
 | |
|     RB_OBJ_WRITE(method, &data->klass, orig->klass);
 | |
|     RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
 | |
|     RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
 | |
| 
 | |
|     return method;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.receiver    -> object
 | |
|  *
 | |
|  *  Returns the bound receiver of the method object.
 | |
|  *
 | |
|  *    (1..3).method(:map).receiver # => 1..3
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_receiver(VALUE obj)
 | |
| {
 | |
|     struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
 | |
|     return data->recv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.name    -> symbol
 | |
|  *
 | |
|  *  Returns the name of the method.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_name(VALUE obj)
 | |
| {
 | |
|     struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
 | |
|     return ID2SYM(data->me->called_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.original_name    -> symbol
 | |
|  *
 | |
|  *  Returns the original name of the method.
 | |
|  *
 | |
|  *    class C
 | |
|  *      def foo; end
 | |
|  *      alias bar foo
 | |
|  *    end
 | |
|  *    C.instance_method(:bar).original_name # => :foo
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_original_name(VALUE obj)
 | |
| {
 | |
|     struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
 | |
|     return ID2SYM(data->me->def->original_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.owner    -> class_or_module
 | |
|  *
 | |
|  *  Returns the class or module that defines the method.
 | |
|  *  See also Method#receiver.
 | |
|  *
 | |
|  *    (1..3).method(:map).owner #=> Enumerable
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_owner(VALUE obj)
 | |
| {
 | |
|     struct METHOD *data;
 | |
|     TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
 | |
|     return data->me->owner;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_method_name_error(VALUE klass, VALUE str)
 | |
| {
 | |
| #define MSG(s) rb_fstring_lit("undefined method `%1$s' for"s" `%2$s'")
 | |
|     VALUE c = klass;
 | |
|     VALUE s = Qundef;
 | |
| 
 | |
|     if (FL_TEST(c, FL_SINGLETON)) {
 | |
| 	VALUE obj = rb_ivar_get(klass, attached);
 | |
| 
 | |
| 	switch (BUILTIN_TYPE(obj)) {
 | |
| 	  case T_MODULE:
 | |
| 	  case T_CLASS:
 | |
| 	    c = obj;
 | |
|             break;
 | |
|           default:
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_TYPE_P(c, T_MODULE)) {
 | |
| 	s = MSG(" module");
 | |
|     }
 | |
|     if (s == Qundef) {
 | |
| 	s = MSG(" class");
 | |
|     }
 | |
|     rb_name_err_raise_str(s, c, str);
 | |
| #undef MSG
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| obj_method(VALUE obj, VALUE vid, int scope)
 | |
| {
 | |
|     ID id = rb_check_id(&vid);
 | |
|     const VALUE klass = CLASS_OF(obj);
 | |
|     const VALUE mclass = rb_cMethod;
 | |
| 
 | |
|     if (!id) {
 | |
|         VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
 | |
|         if (m) return m;
 | |
| 	rb_method_name_error(klass, vid);
 | |
|     }
 | |
|     return mnew_callable(klass, obj, id, mclass, scope);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.method(sym)    -> method
 | |
|  *
 | |
|  *  Looks up the named method as a receiver in <i>obj</i>, returning a
 | |
|  *  Method object (or raising NameError). The Method object acts as a
 | |
|  *  closure in <i>obj</i>'s object instance, so instance variables and
 | |
|  *  the value of <code>self</code> remain available.
 | |
|  *
 | |
|  *     class Demo
 | |
|  *       def initialize(n)
 | |
|  *         @iv = n
 | |
|  *       end
 | |
|  *       def hello()
 | |
|  *         "Hello, @iv = #{@iv}"
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     k = Demo.new(99)
 | |
|  *     m = k.method(:hello)
 | |
|  *     m.call   #=> "Hello, @iv = 99"
 | |
|  *
 | |
|  *     l = Demo.new('Fred')
 | |
|  *     m = l.method("hello")
 | |
|  *     m.call   #=> "Hello, @iv = Fred"
 | |
|  *
 | |
|  *  Note that Method implements <code>to_proc</code> method, which
 | |
|  *  means it can be used with iterators.
 | |
|  *
 | |
|  *     [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
 | |
|  *
 | |
|  *     out = File.open('test.txt', 'w')
 | |
|  *     [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
 | |
|  *
 | |
|  *     require 'date'
 | |
|  *     %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
 | |
|  *     #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_method(VALUE obj, VALUE vid)
 | |
| {
 | |
|     return obj_method(obj, vid, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.public_method(sym)    -> method
 | |
|  *
 | |
|  *  Similar to _method_, searches public method only.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_public_method(VALUE obj, VALUE vid)
 | |
| {
 | |
|     return obj_method(obj, vid, TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.singleton_method(sym)    -> method
 | |
|  *
 | |
|  *  Similar to _method_, searches singleton method only.
 | |
|  *
 | |
|  *     class Demo
 | |
|  *       def initialize(n)
 | |
|  *         @iv = n
 | |
|  *       end
 | |
|  *       def hello()
 | |
|  *         "Hello, @iv = #{@iv}"
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     k = Demo.new(99)
 | |
|  *     def k.hi
 | |
|  *       "Hi, @iv = #{@iv}"
 | |
|  *     end
 | |
|  *     m = k.singleton_method(:hi)
 | |
|  *     m.call   #=> "Hi, @iv = 99"
 | |
|  *     m = k.singleton_method(:hello) #=> NameError
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_singleton_method(VALUE obj, VALUE vid)
 | |
| {
 | |
|     VALUE klass = rb_singleton_class_get(obj);
 | |
|     ID id = rb_check_id(&vid);
 | |
| 
 | |
|     if (NIL_P(klass)) {
 | |
|         /* goto undef; */
 | |
|     }
 | |
|     else if (NIL_P(klass = RCLASS_ORIGIN(klass))) {
 | |
|         /* goto undef; */
 | |
|     }
 | |
|     else if (! id) {
 | |
|         VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
 | |
|         if (m) return m;
 | |
|         /* else goto undef; */
 | |
|     }
 | |
|     else {
 | |
|         const rb_method_entry_t *me = rb_method_entry_at(klass, id);
 | |
|         vid = ID2SYM(id);
 | |
| 
 | |
|         if (UNDEFINED_METHOD_ENTRY_P(me)) {
 | |
|             /* goto undef; */
 | |
|         }
 | |
|         else if (UNDEFINED_REFINED_METHOD_P(me->def)) {
 | |
|             /* goto undef; */
 | |
|         }
 | |
|         else {
 | |
|             return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   /* undef: */
 | |
|     rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'",
 | |
|                       obj, vid);
 | |
|     UNREACHABLE_RETURN(Qundef);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.instance_method(symbol)   -> unbound_method
 | |
|  *
 | |
|  *  Returns an +UnboundMethod+ representing the given
 | |
|  *  instance method in _mod_.
 | |
|  *
 | |
|  *     class Interpreter
 | |
|  *       def do_a() print "there, "; end
 | |
|  *       def do_d() print "Hello ";  end
 | |
|  *       def do_e() print "!\n";     end
 | |
|  *       def do_v() print "Dave";    end
 | |
|  *       Dispatcher = {
 | |
|  *         "a" => instance_method(:do_a),
 | |
|  *         "d" => instance_method(:do_d),
 | |
|  *         "e" => instance_method(:do_e),
 | |
|  *         "v" => instance_method(:do_v)
 | |
|  *       }
 | |
|  *       def interpret(string)
 | |
|  *         string.each_char {|b| Dispatcher[b].bind(self).call }
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     interpreter = Interpreter.new
 | |
|  *     interpreter.interpret('dave')
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     Hello there, Dave!
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_mod_instance_method(VALUE mod, VALUE vid)
 | |
| {
 | |
|     ID id = rb_check_id(&vid);
 | |
|     if (!id) {
 | |
| 	rb_method_name_error(mod, vid);
 | |
|     }
 | |
|     return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.public_instance_method(symbol)   -> unbound_method
 | |
|  *
 | |
|  *  Similar to _instance_method_, searches public method only.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_mod_public_instance_method(VALUE mod, VALUE vid)
 | |
| {
 | |
|     ID id = rb_check_id(&vid);
 | |
|     if (!id) {
 | |
| 	rb_method_name_error(mod, vid);
 | |
|     }
 | |
|     return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     define_method(symbol, method)     -> symbol
 | |
|  *     define_method(symbol) { block }   -> symbol
 | |
|  *
 | |
|  *  Defines an instance method in the receiver. The _method_
 | |
|  *  parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
 | |
|  *  If a block is specified, it is used as the method body.
 | |
|  *  If a block or the _method_ parameter has parameters,
 | |
|  *  they're used as method parameters.
 | |
|  *  This block is evaluated using #instance_eval.
 | |
|  *
 | |
|  *     class A
 | |
|  *       def fred
 | |
|  *         puts "In Fred"
 | |
|  *       end
 | |
|  *       def create_method(name, &block)
 | |
|  *         self.class.define_method(name, &block)
 | |
|  *       end
 | |
|  *       define_method(:wilma) { puts "Charge it!" }
 | |
|  *       define_method(:flint) {|name| puts "I'm #{name}!"}
 | |
|  *     end
 | |
|  *     class B < A
 | |
|  *       define_method(:barney, instance_method(:fred))
 | |
|  *     end
 | |
|  *     a = B.new
 | |
|  *     a.barney
 | |
|  *     a.wilma
 | |
|  *     a.flint('Dino')
 | |
|  *     a.create_method(:betty) { p self }
 | |
|  *     a.betty
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     In Fred
 | |
|  *     Charge it!
 | |
|  *     I'm Dino!
 | |
|  *     #<B:0x401b39e8>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
 | |
| {
 | |
|     ID id;
 | |
|     VALUE body;
 | |
|     VALUE name;
 | |
|     const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
 | |
|     const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
 | |
|     const rb_scope_visibility_t *scope_visi = &default_scope_visi;
 | |
|     int is_method = FALSE;
 | |
| 
 | |
|     if (cref) {
 | |
| 	scope_visi = CREF_SCOPE_VISI(cref);
 | |
|     }
 | |
| 
 | |
|     rb_check_arity(argc, 1, 2);
 | |
|     name = argv[0];
 | |
|     id = rb_check_id(&name);
 | |
|     if (argc == 1) {
 | |
| 	body = rb_block_lambda();
 | |
|     }
 | |
|     else {
 | |
| 	body = argv[1];
 | |
| 
 | |
| 	if (rb_obj_is_method(body)) {
 | |
| 	    is_method = TRUE;
 | |
| 	}
 | |
| 	else if (rb_obj_is_proc(body)) {
 | |
| 	    is_method = FALSE;
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_raise(rb_eTypeError,
 | |
| 		     "wrong argument type %s (expected Proc/Method/UnboundMethod)",
 | |
| 		     rb_obj_classname(body));
 | |
| 	}
 | |
|     }
 | |
|     if (!id) id = rb_to_id(name);
 | |
| 
 | |
|     if (is_method) {
 | |
| 	struct METHOD *method = (struct METHOD *)DATA_PTR(body);
 | |
| 	if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
 | |
| 	    !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
 | |
| 	    if (FL_TEST(method->me->owner, FL_SINGLETON)) {
 | |
| 		rb_raise(rb_eTypeError,
 | |
| 			 "can't bind singleton method to a different class");
 | |
| 	    }
 | |
| 	    else {
 | |
| 		rb_raise(rb_eTypeError,
 | |
| 			 "bind argument must be a subclass of % "PRIsVALUE,
 | |
| 			 method->me->owner);
 | |
| 	    }
 | |
| 	}
 | |
| 	rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
 | |
| 	if (scope_visi->module_func) {
 | |
| 	    rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
 | |
| 	}
 | |
| 	RB_GC_GUARD(body);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE procval = rb_proc_dup(body);
 | |
| 	if (vm_proc_iseq(procval) != NULL) {
 | |
| 	    rb_proc_t *proc;
 | |
| 	    GetProcPtr(procval, proc);
 | |
| 	    proc->is_lambda = TRUE;
 | |
| 	    proc->is_from_method = TRUE;
 | |
| 	}
 | |
| 	rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
 | |
| 	if (scope_visi->module_func) {
 | |
| 	    rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return ID2SYM(id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     define_singleton_method(symbol, method) -> symbol
 | |
|  *     define_singleton_method(symbol) { block } -> symbol
 | |
|  *
 | |
|  *  Defines a singleton method in the receiver. The _method_
 | |
|  *  parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
 | |
|  *  If a block is specified, it is used as the method body.
 | |
|  *  If a block or a method has parameters, they're used as method parameters.
 | |
|  *
 | |
|  *     class A
 | |
|  *       class << self
 | |
|  *         def class_name
 | |
|  *           to_s
 | |
|  *         end
 | |
|  *       end
 | |
|  *     end
 | |
|  *     A.define_singleton_method(:who_am_i) do
 | |
|  *       "I am: #{class_name}"
 | |
|  *     end
 | |
|  *     A.who_am_i   # ==> "I am: A"
 | |
|  *
 | |
|  *     guy = "Bob"
 | |
|  *     guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
 | |
|  *     guy.hello    #=>  "Bob: Hello there!"
 | |
|  *
 | |
|  *     chris = "Chris"
 | |
|  *     chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
 | |
|  *     chris.greet("Hi") #=> "Hi, I'm Chris!"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE klass = rb_singleton_class(obj);
 | |
| 
 | |
|     return rb_mod_define_method(argc, argv, klass);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *     define_method(symbol, method)     -> symbol
 | |
|  *     define_method(symbol) { block }   -> symbol
 | |
|  *
 | |
|  *  Defines a global function by _method_ or the block.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| top_define_method(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     VALUE klass;
 | |
| 
 | |
|     klass = th->top_wrapper;
 | |
|     if (klass) {
 | |
| 	rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
 | |
|     }
 | |
|     else {
 | |
| 	klass = rb_cObject;
 | |
|     }
 | |
|     return rb_mod_define_method(argc, argv, klass);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    method.clone -> new_method
 | |
|  *
 | |
|  *  Returns a clone of this method.
 | |
|  *
 | |
|  *    class A
 | |
|  *      def foo
 | |
|  *        return "bar"
 | |
|  *      end
 | |
|  *    end
 | |
|  *
 | |
|  *    m = A.new.method(:foo)
 | |
|  *    m.call # => "bar"
 | |
|  *    n = m.clone.call # => "bar"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_clone(VALUE self)
 | |
| {
 | |
|     VALUE clone;
 | |
|     struct METHOD *orig, *data;
 | |
| 
 | |
|     TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
 | |
|     clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
 | |
|     CLONESETUP(clone, self);
 | |
|     RB_OBJ_WRITE(clone, &data->recv, orig->recv);
 | |
|     RB_OBJ_WRITE(clone, &data->klass, orig->klass);
 | |
|     RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
 | |
|     RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| /*  Document-method: Method#===
 | |
|  *
 | |
|  *  call-seq:
 | |
|  *     method === obj   -> result_of_method
 | |
|  *
 | |
|  *  Invokes the method with +obj+ as the parameter like #call.
 | |
|  *  This allows a method object to be the target of a +when+ clause
 | |
|  *  in a case statement.
 | |
|  *
 | |
|  *      require 'prime'
 | |
|  *
 | |
|  *      case 1373
 | |
|  *      when Prime.method(:prime?)
 | |
|  *        # ...
 | |
|  *      end
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*  Document-method: Method#[]
 | |
|  *
 | |
|  *  call-seq:
 | |
|  *     meth[args, ...]         -> obj
 | |
|  *
 | |
|  *  Invokes the <i>meth</i> with the specified arguments, returning the
 | |
|  *  method's return value, like #call.
 | |
|  *
 | |
|  *     m = 12.method("+")
 | |
|  *     m[3]         #=> 15
 | |
|  *     m[20]        #=> 32
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.call(args, ...)    -> obj
 | |
|  *
 | |
|  *  Invokes the <i>meth</i> with the specified arguments, returning the
 | |
|  *  method's return value.
 | |
|  *
 | |
|  *     m = 12.method("+")
 | |
|  *     m.call(3)    #=> 15
 | |
|  *     m.call(20)   #=> 32
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
 | |
| {
 | |
|     VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
 | |
|     return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
 | |
| {
 | |
|     VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
 | |
|     return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_method_call(int argc, const VALUE *argv, VALUE method)
 | |
| {
 | |
|     VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
 | |
|     return rb_method_call_with_block(argc, argv, method, procval);
 | |
| }
 | |
| 
 | |
| static const rb_callable_method_entry_t *
 | |
| method_callable_method_entry(const struct METHOD *data)
 | |
| {
 | |
|     if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
 | |
|     return (const rb_callable_method_entry_t *)data->me;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
 | |
|                  int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
 | |
| {
 | |
|     vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
 | |
|     return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
 | |
|                          method_callable_method_entry(data), kw_splat);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
 | |
| {
 | |
|     const struct METHOD *data;
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     if (data->recv == Qundef) {
 | |
| 	rb_raise(rb_eTypeError, "can't call unbound method; bind first");
 | |
|     }
 | |
|     return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
 | |
| {
 | |
|     return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
 | |
| }
 | |
| 
 | |
| /**********************************************************************
 | |
|  *
 | |
|  * Document-class: UnboundMethod
 | |
|  *
 | |
|  *  Ruby supports two forms of objectified methods. Class Method is
 | |
|  *  used to represent methods that are associated with a particular
 | |
|  *  object: these method objects are bound to that object. Bound
 | |
|  *  method objects for an object can be created using Object#method.
 | |
|  *
 | |
|  *  Ruby also supports unbound methods; methods objects that are not
 | |
|  *  associated with a particular object. These can be created either
 | |
|  *  by calling Module#instance_method or by calling #unbind on a bound
 | |
|  *  method object. The result of both of these is an UnboundMethod
 | |
|  *  object.
 | |
|  *
 | |
|  *  Unbound methods can only be called after they are bound to an
 | |
|  *  object. That object must be a kind_of? the method's original
 | |
|  *  class.
 | |
|  *
 | |
|  *     class Square
 | |
|  *       def area
 | |
|  *         @side * @side
 | |
|  *       end
 | |
|  *       def initialize(side)
 | |
|  *         @side = side
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     area_un = Square.instance_method(:area)
 | |
|  *
 | |
|  *     s = Square.new(12)
 | |
|  *     area = area_un.bind(s)
 | |
|  *     area.call   #=> 144
 | |
|  *
 | |
|  *  Unbound methods are a reference to the method at the time it was
 | |
|  *  objectified: subsequent changes to the underlying class will not
 | |
|  *  affect the unbound method.
 | |
|  *
 | |
|  *     class Test
 | |
|  *       def test
 | |
|  *         :original
 | |
|  *       end
 | |
|  *     end
 | |
|  *     um = Test.instance_method(:test)
 | |
|  *     class Test
 | |
|  *       def test
 | |
|  *         :modified
 | |
|  *       end
 | |
|  *     end
 | |
|  *     t = Test.new
 | |
|  *     t.test            #=> :modified
 | |
|  *     um.bind(t).call   #=> :original
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void
 | |
| convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out)
 | |
| {
 | |
|     VALUE methclass = data->me->owner;
 | |
|     VALUE iclass = data->me->defined_class;
 | |
|     VALUE klass = CLASS_OF(recv);
 | |
| 
 | |
|     if (RB_TYPE_P(methclass, T_MODULE)) {
 | |
|         VALUE refined_class = rb_refinement_module_get_refined_class(methclass);
 | |
|         if (!NIL_P(refined_class)) methclass = refined_class;
 | |
|     }
 | |
|     if (!RB_TYPE_P(methclass, T_MODULE) &&
 | |
| 	methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) {
 | |
| 	if (FL_TEST(methclass, FL_SINGLETON)) {
 | |
| 	    rb_raise(rb_eTypeError,
 | |
| 		     "singleton method called for a different object");
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
 | |
| 		     methclass);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     const rb_method_entry_t *me = rb_method_entry_clone(data->me);
 | |
| 
 | |
|     if (RB_TYPE_P(me->owner, T_MODULE)) {
 | |
| 	VALUE ic = rb_class_search_ancestor(klass, me->owner);
 | |
| 	if (ic) {
 | |
| 	    klass = ic;
 | |
|             iclass = ic;
 | |
| 	}
 | |
| 	else {
 | |
| 	    klass = rb_include_class_new(methclass, klass);
 | |
| 	}
 | |
|         me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
 | |
|     }
 | |
| 
 | |
|     *methclass_out = methclass;
 | |
|     *klass_out = klass;
 | |
|     *iclass_out = iclass;
 | |
|     *me_out = me;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     umeth.bind(obj) -> method
 | |
|  *
 | |
|  *  Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
 | |
|  *  <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
 | |
|  *  be true.
 | |
|  *
 | |
|  *     class A
 | |
|  *       def test
 | |
|  *         puts "In test, class = #{self.class}"
 | |
|  *       end
 | |
|  *     end
 | |
|  *     class B < A
 | |
|  *     end
 | |
|  *     class C < B
 | |
|  *     end
 | |
|  *
 | |
|  *
 | |
|  *     um = B.instance_method(:test)
 | |
|  *     bm = um.bind(C.new)
 | |
|  *     bm.call
 | |
|  *     bm = um.bind(B.new)
 | |
|  *     bm.call
 | |
|  *     bm = um.bind(A.new)
 | |
|  *     bm.call
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     In test, class = C
 | |
|  *     In test, class = B
 | |
|  *     prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
 | |
|  *     	from prog.rb:16
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| umethod_bind(VALUE method, VALUE recv)
 | |
| {
 | |
|     VALUE methclass, klass, iclass;
 | |
|     const rb_method_entry_t *me;
 | |
|     const struct METHOD *data;
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me);
 | |
| 
 | |
|     struct METHOD *bound;
 | |
|     method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
 | |
|     RB_OBJ_WRITE(method, &bound->recv, recv);
 | |
|     RB_OBJ_WRITE(method, &bound->klass, klass);
 | |
|     RB_OBJ_WRITE(method, &bound->iclass, iclass);
 | |
|     RB_OBJ_WRITE(method, &bound->me, me);
 | |
| 
 | |
|     return method;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     umeth.bind_call(recv, args, ...) -> obj
 | |
|  *
 | |
|  *  Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
 | |
|  *  specified arguments.
 | |
|  *  This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
 | |
|  */
 | |
| static VALUE
 | |
| umethod_bind_call(int argc, VALUE *argv, VALUE method)
 | |
| {
 | |
|     rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
 | |
|     VALUE recv = argv[0];
 | |
|     argc--;
 | |
|     argv++;
 | |
| 
 | |
|     VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
| 
 | |
|     const struct METHOD *data;
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
| 
 | |
|     const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id);
 | |
|     if (data->me == (const rb_method_entry_t *)cme) {
 | |
|         vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
 | |
|         return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS);
 | |
|     } else {
 | |
|         VALUE methclass, klass, iclass;
 | |
|         const rb_method_entry_t *me;
 | |
|         convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me);
 | |
|         struct METHOD bound = { recv, klass, 0, me };
 | |
| 
 | |
|         return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of required parameters and stores the maximum
 | |
|  * number of parameters in max, or UNLIMITED_ARGUMENTS
 | |
|  * if there is no maximum.
 | |
|  */
 | |
| static int
 | |
| rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
 | |
| {
 | |
|     const rb_method_definition_t *def = me->def;
 | |
| 
 | |
|   again:
 | |
|     if (!def) return *max = 0;
 | |
|     switch (def->type) {
 | |
|       case VM_METHOD_TYPE_CFUNC:
 | |
| 	if (def->body.cfunc.argc < 0) {
 | |
| 	    *max = UNLIMITED_ARGUMENTS;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	return *max = check_argc(def->body.cfunc.argc);
 | |
|       case VM_METHOD_TYPE_ZSUPER:
 | |
| 	*max = UNLIMITED_ARGUMENTS;
 | |
| 	return 0;
 | |
|       case VM_METHOD_TYPE_ATTRSET:
 | |
| 	return *max = 1;
 | |
|       case VM_METHOD_TYPE_IVAR:
 | |
| 	return *max = 0;
 | |
|       case VM_METHOD_TYPE_ALIAS:
 | |
| 	def = def->body.alias.original_me->def;
 | |
| 	goto again;
 | |
|       case VM_METHOD_TYPE_BMETHOD:
 | |
|         return rb_proc_min_max_arity(def->body.bmethod.proc, max);
 | |
|       case VM_METHOD_TYPE_ISEQ:
 | |
| 	return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
 | |
|       case VM_METHOD_TYPE_UNDEF:
 | |
|       case VM_METHOD_TYPE_NOTIMPLEMENTED:
 | |
| 	return *max = 0;
 | |
|       case VM_METHOD_TYPE_MISSING:
 | |
| 	*max = UNLIMITED_ARGUMENTS;
 | |
| 	return 0;
 | |
|       case VM_METHOD_TYPE_OPTIMIZED: {
 | |
| 	switch (def->body.optimize_type) {
 | |
| 	  case OPTIMIZED_METHOD_TYPE_SEND:
 | |
| 	    *max = UNLIMITED_ARGUMENTS;
 | |
| 	    return 0;
 | |
| 	  case OPTIMIZED_METHOD_TYPE_CALL:
 | |
| 	    *max = UNLIMITED_ARGUMENTS;
 | |
| 	    return 0;
 | |
| 	  case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
 | |
| 	    *max = UNLIMITED_ARGUMENTS;
 | |
| 	    return 0;
 | |
| 	  default:
 | |
| 	    break;
 | |
| 	}
 | |
| 	break;
 | |
|       }
 | |
|       case VM_METHOD_TYPE_REFINED:
 | |
| 	*max = UNLIMITED_ARGUMENTS;
 | |
| 	return 0;
 | |
|     }
 | |
|     rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
 | |
|     UNREACHABLE_RETURN(Qnil);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_method_entry_arity(const rb_method_entry_t *me)
 | |
| {
 | |
|     int max, min = rb_method_entry_min_max_arity(me, &max);
 | |
|     return min == max ? min : -min-1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.arity    -> integer
 | |
|  *
 | |
|  *  Returns an indication of the number of arguments accepted by a
 | |
|  *  method. Returns a nonnegative integer for methods that take a fixed
 | |
|  *  number of arguments. For Ruby methods that take a variable number of
 | |
|  *  arguments, returns -n-1, where n is the number of required arguments.
 | |
|  *  Keyword arguments will be considered as a single additional argument,
 | |
|  *  that argument being mandatory if any keyword argument is mandatory.
 | |
|  *  For methods written in C, returns -1 if the call takes a
 | |
|  *  variable number of arguments.
 | |
|  *
 | |
|  *     class C
 | |
|  *       def one;    end
 | |
|  *       def two(a); end
 | |
|  *       def three(*a);  end
 | |
|  *       def four(a, b); end
 | |
|  *       def five(a, b, *c);    end
 | |
|  *       def six(a, b, *c, &d); end
 | |
|  *       def seven(a, b, x:0); end
 | |
|  *       def eight(x:, y:); end
 | |
|  *       def nine(x:, y:, **z); end
 | |
|  *       def ten(*a, x:, y:); end
 | |
|  *     end
 | |
|  *     c = C.new
 | |
|  *     c.method(:one).arity     #=> 0
 | |
|  *     c.method(:two).arity     #=> 1
 | |
|  *     c.method(:three).arity   #=> -1
 | |
|  *     c.method(:four).arity    #=> 2
 | |
|  *     c.method(:five).arity    #=> -3
 | |
|  *     c.method(:six).arity     #=> -3
 | |
|  *     c.method(:seven).arity   #=> -3
 | |
|  *     c.method(:eight).arity   #=> 1
 | |
|  *     c.method(:nine).arity    #=> 1
 | |
|  *     c.method(:ten).arity     #=> -2
 | |
|  *
 | |
|  *     "cat".method(:size).arity      #=> 0
 | |
|  *     "cat".method(:replace).arity   #=> 1
 | |
|  *     "cat".method(:squeeze).arity   #=> -1
 | |
|  *     "cat".method(:count).arity     #=> -1
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_arity_m(VALUE method)
 | |
| {
 | |
|     int n = method_arity(method);
 | |
|     return INT2FIX(n);
 | |
| }
 | |
| 
 | |
| static int
 | |
| method_arity(VALUE method)
 | |
| {
 | |
|     struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     return rb_method_entry_arity(data->me);
 | |
| }
 | |
| 
 | |
| static const rb_method_entry_t *
 | |
| original_method_entry(VALUE mod, ID id)
 | |
| {
 | |
|     const rb_method_entry_t *me;
 | |
| 
 | |
|     while ((me = rb_method_entry(mod, id)) != 0) {
 | |
| 	const rb_method_definition_t *def = me->def;
 | |
| 	if (def->type != VM_METHOD_TYPE_ZSUPER) break;
 | |
| 	mod = RCLASS_SUPER(me->owner);
 | |
| 	id = def->original_id;
 | |
|     }
 | |
|     return me;
 | |
| }
 | |
| 
 | |
| static int
 | |
| method_min_max_arity(VALUE method, int *max)
 | |
| {
 | |
|     const struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     return rb_method_entry_min_max_arity(data->me, max);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_mod_method_arity(VALUE mod, ID id)
 | |
| {
 | |
|     const rb_method_entry_t *me = original_method_entry(mod, id);
 | |
|     if (!me) return 0;		/* should raise? */
 | |
|     return rb_method_entry_arity(me);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_obj_method_arity(VALUE obj, ID id)
 | |
| {
 | |
|     return rb_mod_method_arity(CLASS_OF(obj), id);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_callable_receiver(VALUE callable)
 | |
| {
 | |
|     if (rb_obj_is_proc(callable)) {
 | |
|         VALUE binding = proc_binding(callable);
 | |
|         return rb_funcall(binding, rb_intern("receiver"), 0);
 | |
|     }
 | |
|     else if (rb_obj_is_method(callable)) {
 | |
|         return method_receiver(callable);
 | |
|     }
 | |
|     else {
 | |
|         return Qundef;
 | |
|     }
 | |
| }
 | |
| 
 | |
| const rb_method_definition_t *
 | |
| rb_method_def(VALUE method)
 | |
| {
 | |
|     const struct METHOD *data;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     return data->me->def;
 | |
| }
 | |
| 
 | |
| static const rb_iseq_t *
 | |
| method_def_iseq(const rb_method_definition_t *def)
 | |
| {
 | |
|     switch (def->type) {
 | |
|       case VM_METHOD_TYPE_ISEQ:
 | |
| 	return rb_iseq_check(def->body.iseq.iseqptr);
 | |
|       case VM_METHOD_TYPE_BMETHOD:
 | |
|         return rb_proc_get_iseq(def->body.bmethod.proc, 0);
 | |
|       case VM_METHOD_TYPE_ALIAS:
 | |
| 	return method_def_iseq(def->body.alias.original_me->def);
 | |
|       case VM_METHOD_TYPE_CFUNC:
 | |
|       case VM_METHOD_TYPE_ATTRSET:
 | |
|       case VM_METHOD_TYPE_IVAR:
 | |
|       case VM_METHOD_TYPE_ZSUPER:
 | |
|       case VM_METHOD_TYPE_UNDEF:
 | |
|       case VM_METHOD_TYPE_NOTIMPLEMENTED:
 | |
|       case VM_METHOD_TYPE_OPTIMIZED:
 | |
|       case VM_METHOD_TYPE_MISSING:
 | |
|       case VM_METHOD_TYPE_REFINED:
 | |
| 	break;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| const rb_iseq_t *
 | |
| rb_method_iseq(VALUE method)
 | |
| {
 | |
|     return method_def_iseq(rb_method_def(method));
 | |
| }
 | |
| 
 | |
| static const rb_cref_t *
 | |
| method_cref(VALUE method)
 | |
| {
 | |
|     const rb_method_definition_t *def = rb_method_def(method);
 | |
| 
 | |
|   again:
 | |
|     switch (def->type) {
 | |
|       case VM_METHOD_TYPE_ISEQ:
 | |
| 	return def->body.iseq.cref;
 | |
|       case VM_METHOD_TYPE_ALIAS:
 | |
| 	def = def->body.alias.original_me->def;
 | |
| 	goto again;
 | |
|       default:
 | |
| 	return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| method_def_location(const rb_method_definition_t *def)
 | |
| {
 | |
|     if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
 | |
| 	if (!def->body.attr.location)
 | |
| 	    return Qnil;
 | |
| 	return rb_ary_dup(def->body.attr.location);
 | |
|     }
 | |
|     return iseq_location(method_def_iseq(def));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_method_entry_location(const rb_method_entry_t *me)
 | |
| {
 | |
|     if (!me) return Qnil;
 | |
|     return method_def_location(me->def);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    meth.source_location  -> [String, Integer]
 | |
|  *
 | |
|  * Returns the Ruby source filename and line number containing this method
 | |
|  * or nil if this method was not defined in Ruby (i.e. native).
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_method_location(VALUE method)
 | |
| {
 | |
|     return method_def_location(rb_method_def(method));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    meth.parameters  -> array
 | |
|  *
 | |
|  * Returns the parameter information of this method.
 | |
|  *
 | |
|  *    def foo(bar); end
 | |
|  *    method(:foo).parameters #=> [[:req, :bar]]
 | |
|  *
 | |
|  *    def foo(bar, baz, bat, &blk); end
 | |
|  *    method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
 | |
|  *
 | |
|  *    def foo(bar, *args); end
 | |
|  *    method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
 | |
|  *
 | |
|  *    def foo(bar, baz, *args, &blk); end
 | |
|  *    method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_method_parameters(VALUE method)
 | |
| {
 | |
|     const rb_iseq_t *iseq = rb_method_iseq(method);
 | |
|     if (!iseq) {
 | |
| 	return rb_unnamed_parameters(method_arity(method));
 | |
|     }
 | |
|     return rb_iseq_parameters(iseq, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *   meth.to_s      ->  string
 | |
|  *   meth.inspect   ->  string
 | |
|  *
 | |
|  *  Returns a human-readable description of the underlying method.
 | |
|  *
 | |
|  *    "cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
 | |
|  *    (1..3).method(:map).inspect    #=> "#<Method: Range(Enumerable)#map()>"
 | |
|  *
 | |
|  *  In the latter case, the method description includes the "owner" of the
 | |
|  *  original method (+Enumerable+ module, which is included into +Range+).
 | |
|  *
 | |
|  *  +inspect+ also provides, when possible, method argument names (call
 | |
|  *  sequence) and source location.
 | |
|  *
 | |
|  *    require 'net/http'
 | |
|  *    Net::HTTP.method(:get).inspect
 | |
|  *    #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
 | |
|  *
 | |
|  *  <code>...</code> in argument definition means argument is optional (has
 | |
|  *  some default value).
 | |
|  *
 | |
|  *  For methods defined in C (language core and extensions), location and
 | |
|  *  argument names can't be extracted, and only generic information is provided
 | |
|  *  in form of <code>*</code> (any number of arguments) or <code>_</code> (some
 | |
|  *  positional argument).
 | |
|  *
 | |
|  *    "cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
 | |
|  *    "cat".method(:+).inspect       #=> "#<Method: String#+(_)>""
 | |
| 
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_inspect(VALUE method)
 | |
| {
 | |
|     struct METHOD *data;
 | |
|     VALUE str;
 | |
|     const char *sharp = "#";
 | |
|     VALUE mklass;
 | |
|     VALUE defined_class;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
 | |
| 
 | |
|     mklass = data->iclass;
 | |
|     if (!mklass) mklass = data->klass;
 | |
| 
 | |
|     if (RB_TYPE_P(mklass, T_ICLASS)) {
 | |
|         /* TODO: I'm not sure why mklass is T_ICLASS.
 | |
|          * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
 | |
|          * but not sure it is needed.
 | |
|          */
 | |
|         mklass = RBASIC_CLASS(mklass);
 | |
|     }
 | |
| 
 | |
|     if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
 | |
| 	defined_class = data->me->def->body.alias.original_me->owner;
 | |
|     }
 | |
|     else {
 | |
| 	defined_class = method_entry_defined_class(data->me);
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(defined_class, T_ICLASS)) {
 | |
| 	defined_class = RBASIC_CLASS(defined_class);
 | |
|     }
 | |
| 
 | |
|     if (FL_TEST(mklass, FL_SINGLETON)) {
 | |
| 	VALUE v = rb_ivar_get(mklass, attached);
 | |
| 
 | |
| 	if (data->recv == Qundef) {
 | |
| 	    rb_str_buf_append(str, rb_inspect(mklass));
 | |
| 	}
 | |
| 	else if (data->recv == v) {
 | |
| 	    rb_str_buf_append(str, rb_inspect(v));
 | |
| 	    sharp = ".";
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_str_buf_append(str, rb_inspect(data->recv));
 | |
| 	    rb_str_buf_cat2(str, "(");
 | |
| 	    rb_str_buf_append(str, rb_inspect(v));
 | |
| 	    rb_str_buf_cat2(str, ")");
 | |
| 	    sharp = ".";
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
|         mklass = data->klass;
 | |
|         if (FL_TEST(mklass, FL_SINGLETON)) {
 | |
|             VALUE v = rb_ivar_get(mklass, attached);
 | |
|             if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
 | |
|                 do {
 | |
|                    mklass = RCLASS_SUPER(mklass);
 | |
|                 } while (RB_TYPE_P(mklass, T_ICLASS));
 | |
|             }
 | |
|         }
 | |
| 	rb_str_buf_append(str, rb_inspect(mklass));
 | |
| 	if (defined_class != mklass) {
 | |
| 	    rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
 | |
| 	}
 | |
|     }
 | |
|     rb_str_buf_cat2(str, sharp);
 | |
|     rb_str_append(str, rb_id2str(data->me->called_id));
 | |
|     if (data->me->called_id != data->me->def->original_id) {
 | |
| 	rb_str_catf(str, "(%"PRIsVALUE")",
 | |
| 		    rb_id2str(data->me->def->original_id));
 | |
|     }
 | |
|     if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
 | |
|         rb_str_buf_cat2(str, " (not-implemented)");
 | |
|     }
 | |
| 
 | |
|     // parameter information
 | |
|     {
 | |
|         VALUE params = rb_method_parameters(method);
 | |
|         VALUE pair, name, kind;
 | |
|         const VALUE req = ID2SYM(rb_intern("req"));
 | |
|         const VALUE opt = ID2SYM(rb_intern("opt"));
 | |
|         const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
 | |
|         const VALUE key = ID2SYM(rb_intern("key"));
 | |
|         const VALUE rest = ID2SYM(rb_intern("rest"));
 | |
|         const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
 | |
|         const VALUE block = ID2SYM(rb_intern("block"));
 | |
|         const VALUE nokey = ID2SYM(rb_intern("nokey"));
 | |
|         int forwarding = 0;
 | |
| 
 | |
|         rb_str_buf_cat2(str, "(");
 | |
| 
 | |
|         for (int i = 0; i < RARRAY_LEN(params); i++) {
 | |
|             pair = RARRAY_AREF(params, i);
 | |
|             kind = RARRAY_AREF(pair, 0);
 | |
|             name = RARRAY_AREF(pair, 1);
 | |
|             // FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
 | |
|             if (NIL_P(name) || name == Qfalse) {
 | |
|                 // FIXME: can it be reduced to switch/case?
 | |
|                 if (kind == req || kind == opt) {
 | |
|                     name = rb_str_new2("_");
 | |
|                 }
 | |
|                 else if (kind == rest || kind == keyrest) {
 | |
|                     name = rb_str_new2("");
 | |
|                 }
 | |
|                 else if (kind == block) {
 | |
|                     name = rb_str_new2("block");
 | |
|                 }
 | |
|                 else if (kind == nokey) {
 | |
|                     name = rb_str_new2("nil");
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (kind == req) {
 | |
|                 rb_str_catf(str, "%"PRIsVALUE, name);
 | |
|             }
 | |
|             else if (kind == opt) {
 | |
|                 rb_str_catf(str, "%"PRIsVALUE"=...", name);
 | |
|             }
 | |
|             else if (kind == keyreq) {
 | |
|                 rb_str_catf(str, "%"PRIsVALUE":", name);
 | |
|             }
 | |
|             else if (kind == key) {
 | |
|                 rb_str_catf(str, "%"PRIsVALUE": ...", name);
 | |
|             }
 | |
|             else if (kind == rest) {
 | |
|                 if (name == ID2SYM('*')) {
 | |
|                     forwarding = 1;
 | |
|                     rb_str_cat_cstr(str, "...");
 | |
|                 }
 | |
|                 else {
 | |
|                     rb_str_catf(str, "*%"PRIsVALUE, name);
 | |
|                 }
 | |
|             }
 | |
|             else if (kind == keyrest) {
 | |
|                 rb_str_catf(str, "**%"PRIsVALUE, name);
 | |
|             }
 | |
|             else if (kind == block) {
 | |
|                 if (name == ID2SYM('&')) {
 | |
|                     if (forwarding) {
 | |
|                         rb_str_set_len(str, RSTRING_LEN(str) - 2);
 | |
|                     }
 | |
|                     else {
 | |
|                         rb_str_cat_cstr(str, "...");
 | |
|                     }
 | |
|                 }
 | |
|                 else {
 | |
|                     rb_str_catf(str, "&%"PRIsVALUE, name);
 | |
|                 }
 | |
|             }
 | |
|             else if (kind == nokey) {
 | |
|                 rb_str_buf_cat2(str, "**nil");
 | |
|             }
 | |
| 
 | |
|             if (i < RARRAY_LEN(params) - 1) {
 | |
|                 rb_str_buf_cat2(str, ", ");
 | |
|             }
 | |
|         }
 | |
|         rb_str_buf_cat2(str, ")");
 | |
|     }
 | |
| 
 | |
|     { // source location
 | |
|         VALUE loc = rb_method_location(method);
 | |
|         if (!NIL_P(loc)) {
 | |
|             rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
 | |
|                         RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rb_str_buf_cat2(str, ">");
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mproc(VALUE method)
 | |
| {
 | |
|     return rb_funcallv(rb_mRubyVMFrozenCore, idProc, 0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mlambda(VALUE method)
 | |
| {
 | |
|     return rb_funcallv(rb_mRubyVMFrozenCore, idLambda, 0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
 | |
| {
 | |
|     return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_proc_new(
 | |
|     rb_block_call_func_t func,
 | |
|     VALUE val)
 | |
| {
 | |
|     VALUE procval = rb_iterate(mproc, 0, func, val);
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.to_proc    -> proc
 | |
|  *
 | |
|  *  Returns a Proc object corresponding to this method.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_to_proc(VALUE method)
 | |
| {
 | |
|     VALUE procval;
 | |
|     rb_proc_t *proc;
 | |
| 
 | |
|     /*
 | |
|      * class Method
 | |
|      *   def to_proc
 | |
|      *     lambda{|*args|
 | |
|      *       self.call(*args)
 | |
|      *     }
 | |
|      *   end
 | |
|      * end
 | |
|      */
 | |
|     procval = rb_iterate(mlambda, 0, bmcall, method);
 | |
|     GetProcPtr(procval, proc);
 | |
|     proc->is_from_method = 1;
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner);
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   meth.super_method  -> method
 | |
|  *
 | |
|  * Returns a Method of superclass which would be called when super is used
 | |
|  * or nil if there is no method on superclass.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| method_super_method(VALUE method)
 | |
| {
 | |
|     const struct METHOD *data;
 | |
|     VALUE super_class, iclass;
 | |
|     ID mid;
 | |
|     const rb_method_entry_t *me;
 | |
| 
 | |
|     TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
 | |
|     iclass = data->iclass;
 | |
|     if (!iclass) return Qnil;
 | |
|     if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
 | |
|         super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
 | |
|             data->me->def->body.alias.original_me->owner));
 | |
|         mid = data->me->def->body.alias.original_me->def->original_id;
 | |
|     }
 | |
|     else {
 | |
|         super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
 | |
|         mid = data->me->def->original_id;
 | |
|     }
 | |
|     if (!super_class) return Qnil;
 | |
|     me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
 | |
|     if (!me) return Qnil;
 | |
|     return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   local_jump_error.exit_value  -> obj
 | |
|  *
 | |
|  * Returns the exit value associated with this +LocalJumpError+.
 | |
|  */
 | |
| static VALUE
 | |
| localjump_xvalue(VALUE exc)
 | |
| {
 | |
|     return rb_iv_get(exc, "@exit_value");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    local_jump_error.reason   -> symbol
 | |
|  *
 | |
|  * The reason this block was terminated:
 | |
|  * :break, :redo, :retry, :next, :return, or :noreason.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| localjump_reason(VALUE exc)
 | |
| {
 | |
|     return rb_iv_get(exc, "@reason");
 | |
| }
 | |
| 
 | |
| rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
 | |
| 
 | |
| static const rb_env_t *
 | |
| env_clone(const rb_env_t *env, const rb_cref_t *cref)
 | |
| {
 | |
|     VALUE *new_ep;
 | |
|     VALUE *new_body;
 | |
|     const rb_env_t *new_env;
 | |
| 
 | |
|     VM_ASSERT(env->ep > env->env);
 | |
|     VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
 | |
| 
 | |
|     if (cref == NULL) {
 | |
| 	cref = rb_vm_cref_new_toplevel();
 | |
|     }
 | |
| 
 | |
|     new_body = ALLOC_N(VALUE, env->env_size);
 | |
|     MEMCPY(new_body, env->env, VALUE, env->env_size);
 | |
|     new_ep = &new_body[env->ep - env->env];
 | |
|     new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
 | |
|     RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
 | |
|     VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
 | |
|     return new_env;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     prc.binding    -> binding
 | |
|  *
 | |
|  *  Returns the binding associated with <i>prc</i>.
 | |
|  *
 | |
|  *     def fred(param)
 | |
|  *       proc {}
 | |
|  *     end
 | |
|  *
 | |
|  *     b = fred(99)
 | |
|  *     eval("param", b.binding)   #=> 99
 | |
|  */
 | |
| static VALUE
 | |
| proc_binding(VALUE self)
 | |
| {
 | |
|     VALUE bindval, binding_self = Qundef;
 | |
|     rb_binding_t *bind;
 | |
|     const rb_proc_t *proc;
 | |
|     const rb_iseq_t *iseq = NULL;
 | |
|     const struct rb_block *block;
 | |
|     const rb_env_t *env = NULL;
 | |
| 
 | |
|     GetProcPtr(self, proc);
 | |
|     block = &proc->block;
 | |
| 
 | |
|     if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc");
 | |
| 
 | |
|   again:
 | |
|     switch (vm_block_type(block)) {
 | |
|       case block_type_iseq:
 | |
| 	iseq = block->as.captured.code.iseq;
 | |
| 	binding_self = block->as.captured.self;
 | |
| 	env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
 | |
| 	break;
 | |
|       case block_type_proc:
 | |
| 	GetProcPtr(block->as.proc, proc);
 | |
| 	block = &proc->block;
 | |
| 	goto again;
 | |
|       case block_type_ifunc:
 | |
| 	{
 | |
| 	    const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
 | |
| 	    if (IS_METHOD_PROC_IFUNC(ifunc)) {
 | |
| 		VALUE method = (VALUE)ifunc->data;
 | |
| 		VALUE name = rb_fstring_lit("<empty_iseq>");
 | |
| 		rb_iseq_t *empty;
 | |
| 		binding_self = method_receiver(method);
 | |
| 		iseq = rb_method_iseq(method);
 | |
| 		env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
 | |
| 		env = env_clone(env, method_cref(method));
 | |
| 		/* set empty iseq */
 | |
| 		empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP);
 | |
| 		RB_OBJ_WRITE(env, &env->iseq, empty);
 | |
| 		break;
 | |
| 	    }
 | |
| 	}
 | |
|         /* FALLTHROUGH */
 | |
|       case block_type_symbol:
 | |
|         rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
 | |
|         UNREACHABLE_RETURN(Qnil);
 | |
|     }
 | |
| 
 | |
|     bindval = rb_binding_alloc(rb_cBinding);
 | |
|     GetBindingPtr(bindval, bind);
 | |
|     RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
 | |
|     RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
 | |
|     rb_vm_block_ep_update(bindval, &bind->block, env->ep);
 | |
|     RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
 | |
| 
 | |
|     if (iseq) {
 | |
| 	rb_iseq_check(iseq);
 | |
| 	RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj);
 | |
| 	bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq));
 | |
|     }
 | |
|     else {
 | |
| 	RB_OBJ_WRITE(bindval, &bind->pathobj,
 | |
| 		     rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
 | |
| 	bind->first_lineno = 1;
 | |
|     }
 | |
| 
 | |
|     return bindval;
 | |
| }
 | |
| 
 | |
| static rb_block_call_func curry;
 | |
| 
 | |
| static VALUE
 | |
| make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
 | |
| {
 | |
|     VALUE args = rb_ary_new3(3, proc, passed, arity);
 | |
|     rb_proc_t *procp;
 | |
|     int is_lambda;
 | |
| 
 | |
|     GetProcPtr(proc, procp);
 | |
|     is_lambda = procp->is_lambda;
 | |
|     rb_ary_freeze(passed);
 | |
|     rb_ary_freeze(args);
 | |
|     proc = rb_proc_new(curry, args);
 | |
|     GetProcPtr(proc, procp);
 | |
|     procp->is_lambda = is_lambda;
 | |
|     return proc;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
 | |
| {
 | |
|     VALUE proc, passed, arity;
 | |
|     proc = RARRAY_AREF(args, 0);
 | |
|     passed = RARRAY_AREF(args, 1);
 | |
|     arity = RARRAY_AREF(args, 2);
 | |
| 
 | |
|     passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
 | |
|     rb_ary_freeze(passed);
 | |
| 
 | |
|     if (RARRAY_LEN(passed) < FIX2INT(arity)) {
 | |
|         if (!NIL_P(blockarg)) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
| 	arity = make_curry_proc(proc, passed, arity);
 | |
| 	return arity;
 | |
|     }
 | |
|     else {
 | |
|         return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
 | |
|     }
 | |
| }
 | |
| 
 | |
|  /*
 | |
|   *  call-seq:
 | |
|   *     prc.curry         -> a_proc
 | |
|   *     prc.curry(arity)  -> a_proc
 | |
|   *
 | |
|   *  Returns a curried proc. If the optional <i>arity</i> argument is given,
 | |
|   *  it determines the number of arguments.
 | |
|   *  A curried proc receives some arguments. If a sufficient number of
 | |
|   *  arguments are supplied, it passes the supplied arguments to the original
 | |
|   *  proc and returns the result. Otherwise, returns another curried proc that
 | |
|   *  takes the rest of arguments.
 | |
|   *
 | |
|   *     b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
 | |
|   *     p b.curry[1][2][3]           #=> 6
 | |
|   *     p b.curry[1, 2][3, 4]        #=> 6
 | |
|   *     p b.curry(5)[1][2][3][4][5]  #=> 6
 | |
|   *     p b.curry(5)[1, 2][3, 4][5]  #=> 6
 | |
|   *     p b.curry(1)[1]              #=> 1
 | |
|   *
 | |
|   *     b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
 | |
|   *     p b.curry[1][2][3]           #=> 6
 | |
|   *     p b.curry[1, 2][3, 4]        #=> 10
 | |
|   *     p b.curry(5)[1][2][3][4][5]  #=> 15
 | |
|   *     p b.curry(5)[1, 2][3, 4][5]  #=> 15
 | |
|   *     p b.curry(1)[1]              #=> 1
 | |
|   *
 | |
|   *     b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
 | |
|   *     p b.curry[1][2][3]           #=> 6
 | |
|   *     p b.curry[1, 2][3, 4]        #=> wrong number of arguments (given 4, expected 3)
 | |
|   *     p b.curry(5)                 #=> wrong number of arguments (given 5, expected 3)
 | |
|   *     p b.curry(1)                 #=> wrong number of arguments (given 1, expected 3)
 | |
|   *
 | |
|   *     b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
 | |
|   *     p b.curry[1][2][3]           #=> 6
 | |
|   *     p b.curry[1, 2][3, 4]        #=> 10
 | |
|   *     p b.curry(5)[1][2][3][4][5]  #=> 15
 | |
|   *     p b.curry(5)[1, 2][3, 4][5]  #=> 15
 | |
|   *     p b.curry(1)                 #=> wrong number of arguments (given 1, expected 3)
 | |
|   *
 | |
|   *     b = proc { :foo }
 | |
|   *     p b.curry[]                  #=> :foo
 | |
|   */
 | |
| static VALUE
 | |
| proc_curry(int argc, const VALUE *argv, VALUE self)
 | |
| {
 | |
|     int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
 | |
|     VALUE arity;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
 | |
| 	arity = INT2FIX(min_arity);
 | |
|     }
 | |
|     else {
 | |
| 	sarity = FIX2INT(arity);
 | |
| 	if (rb_proc_lambda_p(self)) {
 | |
| 	    rb_check_arity(sarity, min_arity, max_arity);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return make_curry_proc(self, rb_ary_new(), arity);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth.curry        -> proc
 | |
|  *     meth.curry(arity) -> proc
 | |
|  *
 | |
|  *  Returns a curried proc based on the method. When the proc is called with a number of
 | |
|  *  arguments that is lower than the method's arity, then another curried proc is returned.
 | |
|  *  Only when enough arguments have been supplied to satisfy the method signature, will the
 | |
|  *  method actually be called.
 | |
|  *
 | |
|  *  The optional <i>arity</i> argument should be supplied when currying methods with
 | |
|  *  variable arguments to determine how many arguments are needed before the method is
 | |
|  *  called.
 | |
|  *
 | |
|  *     def foo(a,b,c)
 | |
|  *       [a, b, c]
 | |
|  *     end
 | |
|  *
 | |
|  *     proc  = self.method(:foo).curry
 | |
|  *     proc2 = proc.call(1, 2)          #=> #<Proc>
 | |
|  *     proc2.call(3)                    #=> [1,2,3]
 | |
|  *
 | |
|  *     def vararg(*args)
 | |
|  *       args
 | |
|  *     end
 | |
|  *
 | |
|  *     proc = self.method(:vararg).curry(4)
 | |
|  *     proc2 = proc.call(:x)      #=> #<Proc>
 | |
|  *     proc3 = proc2.call(:y, :z) #=> #<Proc>
 | |
|  *     proc3.call(:a)             #=> [:x, :y, :z, :a]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_method_curry(int argc, const VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE proc = method_to_proc(self);
 | |
|     return proc_curry(argc, argv, proc);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
 | |
| {
 | |
|     VALUE f, g, fargs;
 | |
|     f = RARRAY_AREF(args, 0);
 | |
|     g = RARRAY_AREF(args, 1);
 | |
| 
 | |
|     if (rb_obj_is_proc(g))
 | |
|         fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
 | |
|     else
 | |
|         fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
 | |
| 
 | |
|     if (rb_obj_is_proc(f))
 | |
|         return rb_proc_call(f, rb_ary_new3(1, fargs));
 | |
|     else
 | |
|         return rb_funcallv(f, idCall, 1, &fargs);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| to_callable(VALUE f)
 | |
| {
 | |
|     VALUE mesg;
 | |
| 
 | |
|     if (rb_obj_is_proc(f)) return f;
 | |
|     if (rb_obj_is_method(f)) return f;
 | |
|     if (rb_obj_respond_to(f, idCall, TRUE)) return f;
 | |
|     mesg = rb_fstring_lit("callable object is expected");
 | |
|     rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
 | |
| }
 | |
| 
 | |
| static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
 | |
| static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     prc << g -> a_proc
 | |
|  *
 | |
|  *  Returns a proc that is the composition of this proc and the given <i>g</i>.
 | |
|  *  The returned proc takes a variable number of arguments, calls <i>g</i> with them
 | |
|  *  then calls this proc with the result.
 | |
|  *
 | |
|  *     f = proc {|x| x * x }
 | |
|  *     g = proc {|x| x + x }
 | |
|  *     p (f << g).call(2) #=> 16
 | |
|  *
 | |
|  *  See Proc#>> for detailed explanations.
 | |
|  */
 | |
| static VALUE
 | |
| proc_compose_to_left(VALUE self, VALUE g)
 | |
| {
 | |
|     return rb_proc_compose_to_left(self, to_callable(g));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_proc_compose_to_left(VALUE self, VALUE g)
 | |
| {
 | |
|     VALUE proc, args, procs[2];
 | |
|     rb_proc_t *procp;
 | |
|     int is_lambda;
 | |
| 
 | |
|     procs[0] = self;
 | |
|     procs[1] = g;
 | |
|     args = rb_ary_tmp_new_from_values(0, 2, procs);
 | |
| 
 | |
|     if (rb_obj_is_proc(g)) {
 | |
|         GetProcPtr(g, procp);
 | |
|         is_lambda = procp->is_lambda;
 | |
|     }
 | |
|     else {
 | |
|         VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE));
 | |
|         is_lambda = 1;
 | |
|     }
 | |
| 
 | |
|     proc = rb_proc_new(compose, args);
 | |
|     GetProcPtr(proc, procp);
 | |
|     procp->is_lambda = is_lambda;
 | |
| 
 | |
|     return proc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     prc >> g -> a_proc
 | |
|  *
 | |
|  *  Returns a proc that is the composition of this proc and the given <i>g</i>.
 | |
|  *  The returned proc takes a variable number of arguments, calls this proc with them
 | |
|  *  then calls <i>g</i> with the result.
 | |
|  *
 | |
|  *     f = proc {|x| x * x }
 | |
|  *     g = proc {|x| x + x }
 | |
|  *     p (f >> g).call(2) #=> 8
 | |
|  *
 | |
|  *  <i>g</i> could be other Proc, or Method, or any other object responding to
 | |
|  *  +call+ method:
 | |
|  *
 | |
|  *     class Parser
 | |
|  *       def self.call(text)
 | |
|  *          # ...some complicated parsing logic...
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
 | |
|  *     pipeline.call('data.json')
 | |
|  *
 | |
|  *  See also Method#>> and Method#<<.
 | |
|  */
 | |
| static VALUE
 | |
| proc_compose_to_right(VALUE self, VALUE g)
 | |
| {
 | |
|     return rb_proc_compose_to_right(self, to_callable(g));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_proc_compose_to_right(VALUE self, VALUE g)
 | |
| {
 | |
|     VALUE proc, args, procs[2];
 | |
|     rb_proc_t *procp;
 | |
|     int is_lambda;
 | |
| 
 | |
|     procs[0] = g;
 | |
|     procs[1] = self;
 | |
|     args = rb_ary_tmp_new_from_values(0, 2, procs);
 | |
| 
 | |
|     GetProcPtr(self, procp);
 | |
|     is_lambda = procp->is_lambda;
 | |
| 
 | |
|     proc = rb_proc_new(compose, args);
 | |
|     GetProcPtr(proc, procp);
 | |
|     procp->is_lambda = is_lambda;
 | |
| 
 | |
|     return proc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth << g -> a_proc
 | |
|  *
 | |
|  *  Returns a proc that is the composition of this method and the given <i>g</i>.
 | |
|  *  The returned proc takes a variable number of arguments, calls <i>g</i> with them
 | |
|  *  then calls this method with the result.
 | |
|  *
 | |
|  *     def f(x)
 | |
|  *       x * x
 | |
|  *     end
 | |
|  *
 | |
|  *     f = self.method(:f)
 | |
|  *     g = proc {|x| x + x }
 | |
|  *     p (f << g).call(2) #=> 16
 | |
|  */
 | |
| static VALUE
 | |
| rb_method_compose_to_left(VALUE self, VALUE g)
 | |
| {
 | |
|     g = to_callable(g);
 | |
|     self = method_to_proc(self);
 | |
|     return proc_compose_to_left(self, g);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     meth >> g -> a_proc
 | |
|  *
 | |
|  *  Returns a proc that is the composition of this method and the given <i>g</i>.
 | |
|  *  The returned proc takes a variable number of arguments, calls this method
 | |
|  *  with them then calls <i>g</i> with the result.
 | |
|  *
 | |
|  *     def f(x)
 | |
|  *       x * x
 | |
|  *     end
 | |
|  *
 | |
|  *     f = self.method(:f)
 | |
|  *     g = proc {|x| x + x }
 | |
|  *     p (f >> g).call(2) #=> 8
 | |
|  */
 | |
| static VALUE
 | |
| rb_method_compose_to_right(VALUE self, VALUE g)
 | |
| {
 | |
|     g = to_callable(g);
 | |
|     self = method_to_proc(self);
 | |
|     return proc_compose_to_right(self, g);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     proc.ruby2_keywords -> proc
 | |
|  *
 | |
|  *  Marks the proc as passing keywords through a normal argument splat.
 | |
|  *  This should only be called on procs that accept an argument splat
 | |
|  *  (<tt>*args</tt>) but not explicit keywords or a keyword splat.  It
 | |
|  *  marks the proc such that if the proc is called with keyword arguments,
 | |
|  *  the final hash argument is marked with a special flag such that if it
 | |
|  *  is the final element of a normal argument splat to another method call,
 | |
|  *  and that method call does not include explicit keywords or a keyword
 | |
|  *  splat, the final element is interpreted as keywords.  In other words,
 | |
|  *  keywords will be passed through the proc to other methods.
 | |
|  *
 | |
|  *  This should only be used for procs that delegate keywords to another
 | |
|  *  method, and only for backwards compatibility with Ruby versions before
 | |
|  *  2.7.
 | |
|  *
 | |
|  *  This method will probably be removed at some point, as it exists only
 | |
|  *  for backwards compatibility. As it does not exist in Ruby versions
 | |
|  *  before 2.7, check that the proc responds to this method before calling
 | |
|  *  it. Also, be aware that if this method is removed, the behavior of the
 | |
|  *  proc will change so that it does not pass through keywords.
 | |
|  *
 | |
|  *    module Mod
 | |
|  *      foo = ->(meth, *args, &block) do
 | |
|  *        send(:"do_#{meth}", *args, &block)
 | |
|  *      end
 | |
|  *      foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
 | |
|  *    end
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| proc_ruby2_keywords(VALUE procval)
 | |
| {
 | |
|     rb_proc_t *proc;
 | |
|     GetProcPtr(procval, proc);
 | |
| 
 | |
|     rb_check_frozen(procval);
 | |
| 
 | |
|     if (proc->is_from_method) {
 | |
|             rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
 | |
|             return procval;
 | |
|     }
 | |
| 
 | |
|     switch (proc->block.type) {
 | |
|       case block_type_iseq:
 | |
|         if (proc->block.as.captured.code.iseq->body->param.flags.has_rest &&
 | |
|                 !proc->block.as.captured.code.iseq->body->param.flags.has_kw &&
 | |
|                 !proc->block.as.captured.code.iseq->body->param.flags.has_kwrest) {
 | |
|             proc->block.as.captured.code.iseq->body->param.flags.ruby2_keywords = 1;
 | |
|         }
 | |
|         else {
 | |
|             rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)");
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return procval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-class: LocalJumpError
 | |
|  *
 | |
|  *  Raised when Ruby can't yield as requested.
 | |
|  *
 | |
|  *  A typical scenario is attempting to yield when no block is given:
 | |
|  *
 | |
|  *     def call_block
 | |
|  *       yield 42
 | |
|  *     end
 | |
|  *     call_block
 | |
|  *
 | |
|  *  <em>raises the exception:</em>
 | |
|  *
 | |
|  *     LocalJumpError: no block given (yield)
 | |
|  *
 | |
|  *  A more subtle example:
 | |
|  *
 | |
|  *     def get_me_a_return
 | |
|  *       Proc.new { return 42 }
 | |
|  *     end
 | |
|  *     get_me_a_return.call
 | |
|  *
 | |
|  *  <em>raises the exception:</em>
 | |
|  *
 | |
|  *     LocalJumpError: unexpected return
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  Document-class: SystemStackError
 | |
|  *
 | |
|  *  Raised in case of a stack overflow.
 | |
|  *
 | |
|  *     def me_myself_and_i
 | |
|  *       me_myself_and_i
 | |
|  *     end
 | |
|  *     me_myself_and_i
 | |
|  *
 | |
|  *  <em>raises the exception:</em>
 | |
|  *
 | |
|  *    SystemStackError: stack level too deep
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  Document-class: Proc
 | |
|  *
 | |
|  * A +Proc+ object is an encapsulation of a block of code, which can be stored
 | |
|  * in a local variable, passed to a method or another Proc, and can be called.
 | |
|  * Proc is an essential concept in Ruby and a core of its functional
 | |
|  * programming features.
 | |
|  *
 | |
|  *      square = Proc.new {|x| x**2 }
 | |
|  *
 | |
|  *      square.call(3)  #=> 9
 | |
|  *      # shorthands:
 | |
|  *      square.(3)      #=> 9
 | |
|  *      square[3]       #=> 9
 | |
|  *
 | |
|  * Proc objects are _closures_, meaning they remember and can use the entire
 | |
|  * context in which they were created.
 | |
|  *
 | |
|  *     def gen_times(factor)
 | |
|  *       Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
 | |
|  *     end
 | |
|  *
 | |
|  *     times3 = gen_times(3)
 | |
|  *     times5 = gen_times(5)
 | |
|  *
 | |
|  *     times3.call(12)               #=> 36
 | |
|  *     times5.call(5)                #=> 25
 | |
|  *     times3.call(times5.call(4))   #=> 60
 | |
|  *
 | |
|  * == Creation
 | |
|  *
 | |
|  * There are several methods to create a Proc
 | |
|  *
 | |
|  * * Use the Proc class constructor:
 | |
|  *
 | |
|  *      proc1 = Proc.new {|x| x**2 }
 | |
|  *
 | |
|  * * Use the Kernel#proc method as a shorthand of Proc.new:
 | |
|  *
 | |
|  *      proc2 = proc {|x| x**2 }
 | |
|  *
 | |
|  * * Receiving a block of code into proc argument (note the <code>&</code>):
 | |
|  *
 | |
|  *      def make_proc(&block)
 | |
|  *        block
 | |
|  *      end
 | |
|  *
 | |
|  *      proc3 = make_proc {|x| x**2 }
 | |
|  *
 | |
|  * * Construct a proc with lambda semantics using the Kernel#lambda method
 | |
|  *   (see below for explanations about lambdas):
 | |
|  *
 | |
|  *      lambda1 = lambda {|x| x**2 }
 | |
|  *
 | |
|  * * Use the Lambda literal syntax (also constructs a proc with lambda semantics):
 | |
|  *
 | |
|  *      lambda2 = ->(x) { x**2 }
 | |
|  *
 | |
|  * == Lambda and non-lambda semantics
 | |
|  *
 | |
|  * Procs are coming in two flavors: lambda and non-lambda (regular procs).
 | |
|  * Differences are:
 | |
|  *
 | |
|  * * In lambdas, +return+ and +break+ means exit from this lambda;
 | |
|  * * In non-lambda procs, +return+ means exit from embracing method
 | |
|  *   (and will throw +LocalJumpError+ if invoked outside the method);
 | |
|  * * In non-lambda procs, +break+ means exit from the method which the block given for.
 | |
|  *   (and will throw +LocalJumpError+ if invoked after the method returns);
 | |
|  * * In lambdas, arguments are treated in the same way as in methods: strict,
 | |
|  *   with +ArgumentError+ for mismatching argument number,
 | |
|  *   and no additional argument processing;
 | |
|  * * Regular procs accept arguments more generously: missing arguments
 | |
|  *   are filled with +nil+, single Array arguments are deconstructed if the
 | |
|  *   proc has multiple arguments, and there is no error raised on extra
 | |
|  *   arguments.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  *      # +return+ in non-lambda proc, +b+, exits +m2+.
 | |
|  *      # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
 | |
|  *      #=> []
 | |
|  *
 | |
|  *      # +break+ in non-lambda proc, +b+, exits +m1+.
 | |
|  *      # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m2]
 | |
|  *
 | |
|  *      # +next+ in non-lambda proc, +b+, exits the block.
 | |
|  *      # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m1, :m2]
 | |
|  *
 | |
|  *      # Using +proc+ method changes the behavior as follows because
 | |
|  *      # The block is given for +proc+ method and embraced by +m2+.
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
 | |
|  *      #=> []
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
 | |
|  *      # break from proc-closure (LocalJumpError)
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m1, :m2]
 | |
|  *
 | |
|  *      # +return+, +break+ and +next+ in the stubby lambda exits the block.
 | |
|  *      # (+lambda+ method behaves same.)
 | |
|  *      # (The block is given for stubby lambda syntax and embraced by +m2+.)
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m1, :m2]
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m1, :m2]
 | |
|  *      $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
 | |
|  *      #=> [:m1, :m2]
 | |
|  *
 | |
|  *      p = proc {|x, y| "x=#{x}, y=#{y}" }
 | |
|  *      p.call(1, 2)      #=> "x=1, y=2"
 | |
|  *      p.call([1, 2])    #=> "x=1, y=2", array deconstructed
 | |
|  *      p.call(1, 2, 8)   #=> "x=1, y=2", extra argument discarded
 | |
|  *      p.call(1)         #=> "x=1, y=", nil substituted instead of error
 | |
|  *
 | |
|  *      l = lambda {|x, y| "x=#{x}, y=#{y}" }
 | |
|  *      l.call(1, 2)      #=> "x=1, y=2"
 | |
|  *      l.call([1, 2])    # ArgumentError: wrong number of arguments (given 1, expected 2)
 | |
|  *      l.call(1, 2, 8)   # ArgumentError: wrong number of arguments (given 3, expected 2)
 | |
|  *      l.call(1)         # ArgumentError: wrong number of arguments (given 1, expected 2)
 | |
|  *
 | |
|  *      def test_return
 | |
|  *        -> { return 3 }.call      # just returns from lambda into method body
 | |
|  *        proc { return 4 }.call    # returns from method
 | |
|  *        return 5
 | |
|  *      end
 | |
|  *
 | |
|  *      test_return # => 4, return from proc
 | |
|  *
 | |
|  * Lambdas are useful as self-sufficient functions, in particular useful as
 | |
|  * arguments to higher-order functions, behaving exactly like Ruby methods.
 | |
|  *
 | |
|  * Procs are useful for implementing iterators:
 | |
|  *
 | |
|  *      def test
 | |
|  *        [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
 | |
|  *                                  #  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
|  *      end
 | |
|  *
 | |
|  * Inside +map+, the block of code is treated as a regular (non-lambda) proc,
 | |
|  * which means that the internal arrays will be deconstructed to pairs of
 | |
|  * arguments, and +return+ will exit from the method +test+. That would
 | |
|  * not be possible with a stricter lambda.
 | |
|  *
 | |
|  * You can tell a lambda from a regular proc by using the #lambda? instance method.
 | |
|  *
 | |
|  * Lambda semantics is typically preserved during the proc lifetime, including
 | |
|  * <code>&</code>-deconstruction to a block of code:
 | |
|  *
 | |
|  *      p = proc {|x, y| x }
 | |
|  *      l = lambda {|x, y| x }
 | |
|  *      [[1, 2], [3, 4]].map(&p) #=> [1, 3]
 | |
|  *      [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
 | |
|  *
 | |
|  * The only exception is dynamic method definition: even if defined by
 | |
|  * passing a non-lambda proc, methods still have normal semantics of argument
 | |
|  * checking.
 | |
|  *
 | |
|  *   class C
 | |
|  *     define_method(:e, &proc {})
 | |
|  *   end
 | |
|  *   C.new.e(1,2)       #=> ArgumentError
 | |
|  *   C.new.method(:e).to_proc.lambda?   #=> true
 | |
|  *
 | |
|  * This exception ensures that methods never have unusual argument passing
 | |
|  * conventions, and makes it easy to have wrappers defining methods that
 | |
|  * behave as usual.
 | |
|  *
 | |
|  *   class C
 | |
|  *     def self.def2(name, &body)
 | |
|  *       define_method(name, &body)
 | |
|  *     end
 | |
|  *
 | |
|  *     def2(:f) {}
 | |
|  *   end
 | |
|  *   C.new.f(1,2)       #=> ArgumentError
 | |
|  *
 | |
|  * The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
 | |
|  * yet defines a method which has normal semantics.
 | |
|  *
 | |
|  * == Conversion of other objects to procs
 | |
|  *
 | |
|  * Any object that implements the +to_proc+ method can be converted into
 | |
|  * a proc by the <code>&</code> operator, and therefore can be
 | |
|  * consumed by iterators.
 | |
|  *
 | |
| 
 | |
|  *      class Greeter
 | |
|  *        def initialize(greeting)
 | |
|  *          @greeting = greeting
 | |
|  *        end
 | |
|  *
 | |
|  *        def to_proc
 | |
|  *          proc {|name| "#{@greeting}, #{name}!" }
 | |
|  *        end
 | |
|  *      end
 | |
|  *
 | |
|  *      hi = Greeter.new("Hi")
 | |
|  *      hey = Greeter.new("Hey")
 | |
|  *      ["Bob", "Jane"].map(&hi)    #=> ["Hi, Bob!", "Hi, Jane!"]
 | |
|  *      ["Bob", "Jane"].map(&hey)   #=> ["Hey, Bob!", "Hey, Jane!"]
 | |
|  *
 | |
|  * Of the Ruby core classes, this method is implemented by Symbol,
 | |
|  * Method, and Hash.
 | |
|  *
 | |
|  *      :to_s.to_proc.call(1)           #=> "1"
 | |
|  *      [1, 2].map(&:to_s)              #=> ["1", "2"]
 | |
|  *
 | |
|  *      method(:puts).to_proc.call(1)   # prints 1
 | |
|  *      [1, 2].each(&method(:puts))     # prints 1, 2
 | |
|  *
 | |
|  *      {test: 1}.to_proc.call(:test)       #=> 1
 | |
|  *      %i[test many keys].map(&{test: 1})  #=> [1, nil, nil]
 | |
|  *
 | |
|  * == Orphaned Proc
 | |
|  *
 | |
|  * +return+ and +break+ in a block exit a method.
 | |
|  * If a Proc object is generated from the block and the Proc object
 | |
|  * survives until the method is returned, +return+ and +break+ cannot work.
 | |
|  * In such case, +return+ and +break+ raises LocalJumpError.
 | |
|  * A Proc object in such situation is called as orphaned Proc object.
 | |
|  *
 | |
|  * Note that the method to exit is different for +return+ and +break+.
 | |
|  * There is a situation that orphaned for +break+ but not orphaned for +return+.
 | |
|  *
 | |
|  *     def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
 | |
|  *     def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
 | |
|  *
 | |
|  *     def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
 | |
|  *     def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
 | |
|  *
 | |
|  *     def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
 | |
|  *     def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
 | |
|  *
 | |
|  * Since +return+ and +break+ exits the block itself in lambdas,
 | |
|  * lambdas cannot be orphaned.
 | |
|  *
 | |
|  * == Numbered parameters
 | |
|  *
 | |
|  * Numbered parameters are implicitly defined block parameters intended to
 | |
|  * simplify writing short blocks:
 | |
|  *
 | |
|  *     # Explicit parameter:
 | |
|  *     %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
 | |
|  *     (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
 | |
|  *
 | |
|  *     # Implicit parameter:
 | |
|  *     %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
 | |
|  *     (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
 | |
|  *
 | |
|  * Parameter names from +_1+ to +_9+ are supported:
 | |
|  *
 | |
|  *     [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
 | |
|  *     # => [120, 150, 180]
 | |
|  *
 | |
|  * Though, it is advised to resort to them wisely, probably limiting
 | |
|  * yourself to +_1+ and +_2+, and to one-line blocks.
 | |
|  *
 | |
|  * Numbered parameters can't be used together with explicitly named
 | |
|  * ones:
 | |
|  *
 | |
|  *     [10, 20, 30].map { |x| _1**2 }
 | |
|  *     # SyntaxError (ordinary parameter is defined)
 | |
|  *
 | |
|  * To avoid conflicts, naming local variables or method
 | |
|  * arguments +_1+, +_2+ and so on, causes a warning.
 | |
|  *
 | |
|  *     _1 = 'test'
 | |
|  *     # warning: `_1' is reserved as numbered parameter
 | |
|  *
 | |
|  * Using implicit numbered parameters affects block's arity:
 | |
|  *
 | |
|  *     p = proc { _1 + _2 }
 | |
|  *     l = lambda { _1 + _2 }
 | |
|  *     p.parameters     # => [[:opt, :_1], [:opt, :_2]]
 | |
|  *     p.arity          # => 2
 | |
|  *     l.parameters     # => [[:req, :_1], [:req, :_2]]
 | |
|  *     l.arity          # => 2
 | |
|  *
 | |
|  * Blocks with numbered parameters can't be nested:
 | |
|  *
 | |
|  *     %w[test me].each { _1.each_char { p _1 } }
 | |
|  *     # SyntaxError (numbered parameter is already used in outer block here)
 | |
|  *     # %w[test me].each { _1.each_char { p _1 } }
 | |
|  *     #                    ^~
 | |
|  *
 | |
|  * Numbered parameters were introduced in Ruby 2.7.
 | |
|  */
 | |
| 
 | |
| 
 | |
| void
 | |
| Init_Proc(void)
 | |
| {
 | |
| #undef rb_intern
 | |
|     /* Proc */
 | |
|     rb_cProc = rb_define_class("Proc", rb_cObject);
 | |
|     rb_undef_alloc_func(rb_cProc);
 | |
|     rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
 | |
| 
 | |
|     rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED,
 | |
| 		  (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
 | |
|     rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
 | |
| 		  (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
 | |
|     rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
 | |
| 		  (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
 | |
|     rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
 | |
| 		  (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
 | |
| 
 | |
| #if 0 /* for RDoc */
 | |
|     rb_define_method(rb_cProc, "call", proc_call, -1);
 | |
|     rb_define_method(rb_cProc, "[]", proc_call, -1);
 | |
|     rb_define_method(rb_cProc, "===", proc_call, -1);
 | |
|     rb_define_method(rb_cProc, "yield", proc_call, -1);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
 | |
|     rb_define_method(rb_cProc, "arity", proc_arity, 0);
 | |
|     rb_define_method(rb_cProc, "clone", proc_clone, 0);
 | |
|     rb_define_method(rb_cProc, "dup", rb_proc_dup, 0);
 | |
|     rb_define_method(rb_cProc, "hash", proc_hash, 0);
 | |
|     rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
 | |
|     rb_define_alias(rb_cProc, "inspect", "to_s");
 | |
|     rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
 | |
|     rb_define_method(rb_cProc, "binding", proc_binding, 0);
 | |
|     rb_define_method(rb_cProc, "curry", proc_curry, -1);
 | |
|     rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
 | |
|     rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
 | |
|     rb_define_method(rb_cProc, "==", proc_eq, 1);
 | |
|     rb_define_method(rb_cProc, "eql?", proc_eq, 1);
 | |
|     rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
 | |
|     rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
 | |
|     rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
 | |
|     // rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted.
 | |
| 
 | |
|     /* Exceptions */
 | |
|     rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
 | |
|     rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
 | |
|     rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
 | |
| 
 | |
|     rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
 | |
|     rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
 | |
| 
 | |
|     /* utility functions */
 | |
|     rb_define_global_function("proc", f_proc, 0);
 | |
|     rb_define_global_function("lambda", f_lambda, 0);
 | |
| 
 | |
|     /* Method */
 | |
|     rb_cMethod = rb_define_class("Method", rb_cObject);
 | |
|     rb_undef_alloc_func(rb_cMethod);
 | |
|     rb_undef_method(CLASS_OF(rb_cMethod), "new");
 | |
|     rb_define_method(rb_cMethod, "==", method_eq, 1);
 | |
|     rb_define_method(rb_cMethod, "eql?", method_eq, 1);
 | |
|     rb_define_method(rb_cMethod, "hash", method_hash, 0);
 | |
|     rb_define_method(rb_cMethod, "clone", method_clone, 0);
 | |
|     rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
 | |
|     rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
 | |
|     rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
 | |
|     rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
 | |
|     rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
 | |
|     rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
 | |
|     rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
 | |
|     rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
 | |
|     rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
 | |
|     rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
 | |
|     rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
 | |
|     rb_define_method(rb_cMethod, "name", method_name, 0);
 | |
|     rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
 | |
|     rb_define_method(rb_cMethod, "owner", method_owner, 0);
 | |
|     rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
 | |
|     rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
 | |
|     rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
 | |
|     rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
 | |
|     rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
 | |
|     rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
 | |
|     rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
 | |
| 
 | |
|     /* UnboundMethod */
 | |
|     rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
 | |
|     rb_undef_alloc_func(rb_cUnboundMethod);
 | |
|     rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
 | |
|     rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
 | |
|     rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
 | |
|     rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
 | |
|     rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
 | |
|     rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
 | |
|     rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
 | |
| 
 | |
|     /* Module#*_method */
 | |
|     rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
 | |
|     rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
 | |
|     rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
 | |
| 
 | |
|     /* Kernel */
 | |
|     rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
 | |
| 
 | |
|     rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
 | |
| 			     "define_method", top_define_method, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Objects of class Binding encapsulate the execution context at some
 | |
|  *  particular place in the code and retain this context for future
 | |
|  *  use. The variables, methods, value of <code>self</code>, and
 | |
|  *  possibly an iterator block that can be accessed in this context
 | |
|  *  are all retained. Binding objects can be created using
 | |
|  *  Kernel#binding, and are made available to the callback of
 | |
|  *  Kernel#set_trace_func and instances of TracePoint.
 | |
|  *
 | |
|  *  These binding objects can be passed as the second argument of the
 | |
|  *  Kernel#eval method, establishing an environment for the
 | |
|  *  evaluation.
 | |
|  *
 | |
|  *     class Demo
 | |
|  *       def initialize(n)
 | |
|  *         @secret = n
 | |
|  *       end
 | |
|  *       def get_binding
 | |
|  *         binding
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     k1 = Demo.new(99)
 | |
|  *     b1 = k1.get_binding
 | |
|  *     k2 = Demo.new(-3)
 | |
|  *     b2 = k2.get_binding
 | |
|  *
 | |
|  *     eval("@secret", b1)   #=> 99
 | |
|  *     eval("@secret", b2)   #=> -3
 | |
|  *     eval("@secret")       #=> nil
 | |
|  *
 | |
|  *  Binding objects have no class-specific methods.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Binding(void)
 | |
| {
 | |
|     rb_cBinding = rb_define_class("Binding", rb_cObject);
 | |
|     rb_undef_alloc_func(rb_cBinding);
 | |
|     rb_undef_method(CLASS_OF(rb_cBinding), "new");
 | |
|     rb_define_method(rb_cBinding, "clone", binding_clone, 0);
 | |
|     rb_define_method(rb_cBinding, "dup", binding_dup, 0);
 | |
|     rb_define_method(rb_cBinding, "eval", bind_eval, -1);
 | |
|     rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
 | |
|     rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
 | |
|     rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
 | |
|     rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
 | |
|     rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
 | |
|     rb_define_method(rb_cBinding, "source_location", bind_location, 0);
 | |
|     rb_define_global_function("binding", rb_f_binding, 0);
 | |
| }
 |