mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
3186 lines
92 KiB
C
3186 lines
92 KiB
C
/**********************************************************************
|
|
|
|
cont.c -
|
|
|
|
$Author$
|
|
created at: Thu May 23 09:03:43 2007
|
|
|
|
Copyright (C) 2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/internal/config.h"
|
|
|
|
#ifndef _WIN32
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
// On Solaris, madvise() is NOT declared for SUS (XPG4v2) or later,
|
|
// but MADV_* macros are defined when __EXTENSIONS__ is defined.
|
|
#ifdef NEED_MADVICE_PROTOTYPE_USING_CADDR_T
|
|
#include <sys/types.h>
|
|
extern int madvise(caddr_t, size_t, int);
|
|
#endif
|
|
|
|
#include COROUTINE_H
|
|
|
|
#include "eval_intern.h"
|
|
#include "gc.h"
|
|
#include "internal.h"
|
|
#include "internal/cont.h"
|
|
#include "internal/proc.h"
|
|
#include "internal/sanitizers.h"
|
|
#include "internal/warnings.h"
|
|
#include "ruby/fiber/scheduler.h"
|
|
#include "mjit.h"
|
|
#include "yjit.h"
|
|
#include "vm_core.h"
|
|
#include "vm_sync.h"
|
|
#include "id_table.h"
|
|
#include "ractor_core.h"
|
|
|
|
static const int DEBUG = 0;
|
|
|
|
#define RB_PAGE_SIZE (pagesize)
|
|
#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
|
|
static long pagesize;
|
|
|
|
static const rb_data_type_t cont_data_type, fiber_data_type;
|
|
static VALUE rb_cContinuation;
|
|
static VALUE rb_cFiber;
|
|
static VALUE rb_eFiberError;
|
|
#ifdef RB_EXPERIMENTAL_FIBER_POOL
|
|
static VALUE rb_cFiberPool;
|
|
#endif
|
|
|
|
#define CAPTURE_JUST_VALID_VM_STACK 1
|
|
|
|
// Defined in `coroutine/$arch/Context.h`:
|
|
#ifdef COROUTINE_LIMITED_ADDRESS_SPACE
|
|
#define FIBER_POOL_ALLOCATION_FREE
|
|
#define FIBER_POOL_INITIAL_SIZE 8
|
|
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32
|
|
#else
|
|
#define FIBER_POOL_INITIAL_SIZE 32
|
|
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024
|
|
#endif
|
|
#ifdef RB_EXPERIMENTAL_FIBER_POOL
|
|
#define FIBER_POOL_ALLOCATION_FREE
|
|
#endif
|
|
|
|
#define jit_cont_enabled (mjit_enabled || rb_yjit_enabled_p())
|
|
|
|
enum context_type {
|
|
CONTINUATION_CONTEXT = 0,
|
|
FIBER_CONTEXT = 1
|
|
};
|
|
|
|
struct cont_saved_vm_stack {
|
|
VALUE *ptr;
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
size_t slen; /* length of stack (head of ec->vm_stack) */
|
|
size_t clen; /* length of control frames (tail of ec->vm_stack) */
|
|
#endif
|
|
};
|
|
|
|
struct fiber_pool;
|
|
|
|
// Represents a single stack.
|
|
struct fiber_pool_stack {
|
|
// A pointer to the memory allocation (lowest address) for the stack.
|
|
void * base;
|
|
|
|
// The current stack pointer, taking into account the direction of the stack.
|
|
void * current;
|
|
|
|
// The size of the stack excluding any guard pages.
|
|
size_t size;
|
|
|
|
// The available stack capacity w.r.t. the current stack offset.
|
|
size_t available;
|
|
|
|
// The pool this stack should be allocated from.
|
|
struct fiber_pool * pool;
|
|
|
|
// If the stack is allocated, the allocation it came from.
|
|
struct fiber_pool_allocation * allocation;
|
|
};
|
|
|
|
// A linked list of vacant (unused) stacks.
|
|
// This structure is stored in the first page of a stack if it is not in use.
|
|
// @sa fiber_pool_vacancy_pointer
|
|
struct fiber_pool_vacancy {
|
|
// Details about the vacant stack:
|
|
struct fiber_pool_stack stack;
|
|
|
|
// The vacancy linked list.
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
struct fiber_pool_vacancy * previous;
|
|
#endif
|
|
struct fiber_pool_vacancy * next;
|
|
};
|
|
|
|
// Manages singly linked list of mapped regions of memory which contains 1 more more stack:
|
|
//
|
|
// base = +-------------------------------+-----------------------+ +
|
|
// |VM Stack |VM Stack | | |
|
|
// | | | | |
|
|
// | | | | |
|
|
// +-------------------------------+ | |
|
|
// |Machine Stack |Machine Stack | | |
|
|
// | | | | |
|
|
// | | | | |
|
|
// | | | . . . . | | size
|
|
// | | | | |
|
|
// | | | | |
|
|
// | | | | |
|
|
// | | | | |
|
|
// | | | | |
|
|
// +-------------------------------+ | |
|
|
// |Guard Page |Guard Page | | |
|
|
// +-------------------------------+-----------------------+ v
|
|
//
|
|
// +------------------------------------------------------->
|
|
//
|
|
// count
|
|
//
|
|
struct fiber_pool_allocation {
|
|
// A pointer to the memory mapped region.
|
|
void * base;
|
|
|
|
// The size of the individual stacks.
|
|
size_t size;
|
|
|
|
// The stride of individual stacks (including any guard pages or other accounting details).
|
|
size_t stride;
|
|
|
|
// The number of stacks that were allocated.
|
|
size_t count;
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
// The number of stacks used in this allocation.
|
|
size_t used;
|
|
#endif
|
|
|
|
struct fiber_pool * pool;
|
|
|
|
// The allocation linked list.
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
struct fiber_pool_allocation * previous;
|
|
#endif
|
|
struct fiber_pool_allocation * next;
|
|
};
|
|
|
|
// A fiber pool manages vacant stacks to reduce the overhead of creating fibers.
|
|
struct fiber_pool {
|
|
// A singly-linked list of allocations which contain 1 or more stacks each.
|
|
struct fiber_pool_allocation * allocations;
|
|
|
|
// Provides O(1) stack "allocation":
|
|
struct fiber_pool_vacancy * vacancies;
|
|
|
|
// The size of the stack allocations (excluding any guard page).
|
|
size_t size;
|
|
|
|
// The total number of stacks that have been allocated in this pool.
|
|
size_t count;
|
|
|
|
// The initial number of stacks to allocate.
|
|
size_t initial_count;
|
|
|
|
// Whether to madvise(free) the stack or not:
|
|
int free_stacks;
|
|
|
|
// The number of stacks that have been used in this pool.
|
|
size_t used;
|
|
|
|
// The amount to allocate for the vm_stack:
|
|
size_t vm_stack_size;
|
|
};
|
|
|
|
// Continuation contexts used by JITs
|
|
struct rb_jit_cont {
|
|
rb_execution_context_t *ec; // continuation ec
|
|
struct rb_jit_cont *prev, *next; // used to form lists
|
|
};
|
|
|
|
// Doubly linked list for enumerating all on-stack ISEQs.
|
|
static struct rb_jit_cont *first_jit_cont;
|
|
|
|
typedef struct rb_context_struct {
|
|
enum context_type type;
|
|
int argc;
|
|
int kw_splat;
|
|
VALUE self;
|
|
VALUE value;
|
|
|
|
struct cont_saved_vm_stack saved_vm_stack;
|
|
|
|
struct {
|
|
VALUE *stack;
|
|
VALUE *stack_src;
|
|
size_t stack_size;
|
|
} machine;
|
|
rb_execution_context_t saved_ec;
|
|
rb_jmpbuf_t jmpbuf;
|
|
rb_ensure_entry_t *ensure_array;
|
|
struct rb_jit_cont *jit_cont; // Continuation contexts for JITs
|
|
} rb_context_t;
|
|
|
|
|
|
/*
|
|
* Fiber status:
|
|
* [Fiber.new] ------> FIBER_CREATED
|
|
* | [Fiber#resume]
|
|
* v
|
|
* +--> FIBER_RESUMED ----+
|
|
* [Fiber#resume] | | [Fiber.yield] |
|
|
* | v |
|
|
* +-- FIBER_SUSPENDED | [Terminate]
|
|
* |
|
|
* FIBER_TERMINATED <-+
|
|
*/
|
|
enum fiber_status {
|
|
FIBER_CREATED,
|
|
FIBER_RESUMED,
|
|
FIBER_SUSPENDED,
|
|
FIBER_TERMINATED
|
|
};
|
|
|
|
#define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
|
|
#define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
|
|
#define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
|
|
#define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
|
|
#define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
|
|
|
|
struct rb_fiber_struct {
|
|
rb_context_t cont;
|
|
VALUE first_proc;
|
|
struct rb_fiber_struct *prev;
|
|
struct rb_fiber_struct *resuming_fiber;
|
|
|
|
BITFIELD(enum fiber_status, status, 2);
|
|
/* Whether the fiber is allowed to implicitly yield. */
|
|
unsigned int yielding : 1;
|
|
unsigned int blocking : 1;
|
|
|
|
struct coroutine_context context;
|
|
struct fiber_pool_stack stack;
|
|
};
|
|
|
|
static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0};
|
|
|
|
static ID fiber_initialize_keywords[2] = {0};
|
|
|
|
/*
|
|
* FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
|
|
* if MAP_STACK is passed.
|
|
* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=158755
|
|
*/
|
|
#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
|
|
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
|
|
#else
|
|
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
|
|
#endif
|
|
|
|
#define ERRNOMSG strerror(errno)
|
|
|
|
// Locates the stack vacancy details for the given stack.
|
|
inline static struct fiber_pool_vacancy *
|
|
fiber_pool_vacancy_pointer(void * base, size_t size)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
return (struct fiber_pool_vacancy *)(
|
|
(char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE)
|
|
);
|
|
}
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
// Compute the base pointer for a vacant stack, for the area which can be poisoned.
|
|
inline static void *
|
|
fiber_pool_stack_poison_base(struct fiber_pool_stack * stack)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
return (char*)stack->base + STACK_DIR_UPPER(RB_PAGE_SIZE, 0);
|
|
}
|
|
|
|
// Compute the size of the vacant stack, for the area that can be poisoned.
|
|
inline static size_t
|
|
fiber_pool_stack_poison_size(struct fiber_pool_stack * stack)
|
|
{
|
|
return stack->size - RB_PAGE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
// Reset the current stack pointer and available size of the given stack.
|
|
inline static void
|
|
fiber_pool_stack_reset(struct fiber_pool_stack * stack)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size);
|
|
stack->available = stack->size;
|
|
}
|
|
|
|
// A pointer to the base of the current unused portion of the stack.
|
|
inline static void *
|
|
fiber_pool_stack_base(struct fiber_pool_stack * stack)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
VM_ASSERT(stack->current);
|
|
|
|
return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available);
|
|
}
|
|
|
|
// Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack.
|
|
// @sa fiber_initialize_coroutine
|
|
inline static void *
|
|
fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", (void*)stack, offset, stack->available);
|
|
VM_ASSERT(stack->available >= offset);
|
|
|
|
// The pointer to the memory being allocated:
|
|
void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset);
|
|
|
|
// Move the stack pointer:
|
|
stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset);
|
|
stack->available -= offset;
|
|
|
|
return pointer;
|
|
}
|
|
|
|
// Reset the current stack pointer and available size of the given stack.
|
|
inline static void
|
|
fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy)
|
|
{
|
|
fiber_pool_stack_reset(&vacancy->stack);
|
|
|
|
// Consume one page of the stack because it's used for the vacancy list:
|
|
fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE);
|
|
}
|
|
|
|
inline static struct fiber_pool_vacancy *
|
|
fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head)
|
|
{
|
|
vacancy->next = head;
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
if (head) {
|
|
head->previous = vacancy;
|
|
vacancy->previous = NULL;
|
|
}
|
|
#endif
|
|
|
|
return vacancy;
|
|
}
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
static void
|
|
fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy)
|
|
{
|
|
if (vacancy->next) {
|
|
vacancy->next->previous = vacancy->previous;
|
|
}
|
|
|
|
if (vacancy->previous) {
|
|
vacancy->previous->next = vacancy->next;
|
|
}
|
|
else {
|
|
// It's the head of the list:
|
|
vacancy->stack.pool->vacancies = vacancy->next;
|
|
}
|
|
}
|
|
|
|
inline static struct fiber_pool_vacancy *
|
|
fiber_pool_vacancy_pop(struct fiber_pool * pool)
|
|
{
|
|
struct fiber_pool_vacancy * vacancy = pool->vacancies;
|
|
|
|
if (vacancy) {
|
|
fiber_pool_vacancy_remove(vacancy);
|
|
}
|
|
|
|
return vacancy;
|
|
}
|
|
#else
|
|
inline static struct fiber_pool_vacancy *
|
|
fiber_pool_vacancy_pop(struct fiber_pool * pool)
|
|
{
|
|
struct fiber_pool_vacancy * vacancy = pool->vacancies;
|
|
|
|
if (vacancy) {
|
|
pool->vacancies = vacancy->next;
|
|
}
|
|
|
|
return vacancy;
|
|
}
|
|
#endif
|
|
|
|
// Initialize the vacant stack. The [base, size] allocation should not include the guard page.
|
|
// @param base The pointer to the lowest address of the allocated memory.
|
|
// @param size The size of the allocated memory.
|
|
inline static struct fiber_pool_vacancy *
|
|
fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size)
|
|
{
|
|
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size);
|
|
|
|
vacancy->stack.base = base;
|
|
vacancy->stack.size = size;
|
|
|
|
fiber_pool_vacancy_reset(vacancy);
|
|
|
|
vacancy->stack.pool = fiber_pool;
|
|
|
|
return fiber_pool_vacancy_push(vacancy, vacancies);
|
|
}
|
|
|
|
// Allocate a maximum of count stacks, size given by stride.
|
|
// @param count the number of stacks to allocate / were allocated.
|
|
// @param stride the size of the individual stacks.
|
|
// @return [void *] the allocated memory or NULL if allocation failed.
|
|
inline static void *
|
|
fiber_pool_allocate_memory(size_t * count, size_t stride)
|
|
{
|
|
// We use a divide-by-2 strategy to try and allocate memory. We are trying
|
|
// to allocate `count` stacks. In normal situation, this won't fail. But
|
|
// if we ran out of address space, or we are allocating more memory than
|
|
// the system would allow (e.g. overcommit * physical memory + swap), we
|
|
// divide count by two and try again. This condition should only be
|
|
// encountered in edge cases, but we handle it here gracefully.
|
|
while (*count > 1) {
|
|
#if defined(_WIN32)
|
|
void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE);
|
|
|
|
if (!base) {
|
|
*count = (*count) >> 1;
|
|
}
|
|
else {
|
|
return base;
|
|
}
|
|
#else
|
|
errno = 0;
|
|
void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
|
|
|
|
if (base == MAP_FAILED) {
|
|
// If the allocation fails, count = count / 2, and try again.
|
|
*count = (*count) >> 1;
|
|
}
|
|
else {
|
|
#if defined(MADV_FREE_REUSE)
|
|
// On Mac MADV_FREE_REUSE is necessary for the task_info api
|
|
// to keep the accounting accurate as possible when a page is marked as reusable
|
|
// it can possibly not occurring at first call thus re-iterating if necessary.
|
|
while (madvise(base, (*count)*stride, MADV_FREE_REUSE) == -1 && errno == EAGAIN);
|
|
#endif
|
|
return base;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Given an existing fiber pool, expand it by the specified number of stacks.
|
|
// @param count the maximum number of stacks to allocate.
|
|
// @return the allocated fiber pool.
|
|
// @sa fiber_pool_allocation_free
|
|
static struct fiber_pool_allocation *
|
|
fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
size_t size = fiber_pool->size;
|
|
size_t stride = size + RB_PAGE_SIZE;
|
|
|
|
// Allocate the memory required for the stacks:
|
|
void * base = fiber_pool_allocate_memory(&count, stride);
|
|
|
|
if (base == NULL) {
|
|
rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG);
|
|
}
|
|
|
|
struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies;
|
|
struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation);
|
|
|
|
// Initialize fiber pool allocation:
|
|
allocation->base = base;
|
|
allocation->size = size;
|
|
allocation->stride = stride;
|
|
allocation->count = count;
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
allocation->used = 0;
|
|
#endif
|
|
allocation->pool = fiber_pool;
|
|
|
|
if (DEBUG) {
|
|
fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n",
|
|
count, (void*)fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size);
|
|
}
|
|
|
|
// Iterate over all stacks, initializing the vacancy list:
|
|
for (size_t i = 0; i < count; i += 1) {
|
|
void * base = (char*)allocation->base + (stride * i);
|
|
void * page = (char*)base + STACK_DIR_UPPER(size, 0);
|
|
|
|
#if defined(_WIN32)
|
|
DWORD old_protect;
|
|
|
|
if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
|
|
VirtualFree(allocation->base, 0, MEM_RELEASE);
|
|
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
|
|
}
|
|
#else
|
|
if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
|
|
munmap(allocation->base, count*stride);
|
|
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
|
|
}
|
|
#endif
|
|
|
|
vacancies = fiber_pool_vacancy_initialize(
|
|
fiber_pool, vacancies,
|
|
(char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE),
|
|
size
|
|
);
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
vacancies->stack.allocation = allocation;
|
|
#endif
|
|
}
|
|
|
|
// Insert the allocation into the head of the pool:
|
|
allocation->next = fiber_pool->allocations;
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
if (allocation->next) {
|
|
allocation->next->previous = allocation;
|
|
}
|
|
|
|
allocation->previous = NULL;
|
|
#endif
|
|
|
|
fiber_pool->allocations = allocation;
|
|
fiber_pool->vacancies = vacancies;
|
|
fiber_pool->count += count;
|
|
|
|
return allocation;
|
|
}
|
|
|
|
// Initialize the specified fiber pool with the given number of stacks.
|
|
// @param vm_stack_size The size of the vm stack to allocate.
|
|
static void
|
|
fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size)
|
|
{
|
|
VM_ASSERT(vm_stack_size < size);
|
|
|
|
fiber_pool->allocations = NULL;
|
|
fiber_pool->vacancies = NULL;
|
|
fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE;
|
|
fiber_pool->count = 0;
|
|
fiber_pool->initial_count = count;
|
|
fiber_pool->free_stacks = 1;
|
|
fiber_pool->used = 0;
|
|
|
|
fiber_pool->vm_stack_size = vm_stack_size;
|
|
|
|
fiber_pool_expand(fiber_pool, count);
|
|
}
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
// Free the list of fiber pool allocations.
|
|
static void
|
|
fiber_pool_allocation_free(struct fiber_pool_allocation * allocation)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
VM_ASSERT(allocation->used == 0);
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", (void*)allocation, allocation->base, allocation->count);
|
|
|
|
size_t i;
|
|
for (i = 0; i < allocation->count; i += 1) {
|
|
void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE);
|
|
|
|
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size);
|
|
|
|
// Pop the vacant stack off the free list:
|
|
fiber_pool_vacancy_remove(vacancy);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
VirtualFree(allocation->base, 0, MEM_RELEASE);
|
|
#else
|
|
munmap(allocation->base, allocation->stride * allocation->count);
|
|
#endif
|
|
|
|
if (allocation->previous) {
|
|
allocation->previous->next = allocation->next;
|
|
}
|
|
else {
|
|
// We are the head of the list, so update the pool:
|
|
allocation->pool->allocations = allocation->next;
|
|
}
|
|
|
|
if (allocation->next) {
|
|
allocation->next->previous = allocation->previous;
|
|
}
|
|
|
|
allocation->pool->count -= allocation->count;
|
|
|
|
ruby_xfree(allocation);
|
|
}
|
|
#endif
|
|
|
|
// Acquire a stack from the given fiber pool. If none are available, allocate more.
|
|
static struct fiber_pool_stack
|
|
fiber_pool_stack_acquire(struct fiber_pool * fiber_pool)
|
|
{
|
|
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool);
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", (void*)fiber_pool->vacancies, fiber_pool->used);
|
|
|
|
if (!vacancy) {
|
|
const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE;
|
|
const size_t minimum = fiber_pool->initial_count;
|
|
|
|
size_t count = fiber_pool->count;
|
|
if (count > maximum) count = maximum;
|
|
if (count < minimum) count = minimum;
|
|
|
|
fiber_pool_expand(fiber_pool, count);
|
|
|
|
// The free list should now contain some stacks:
|
|
VM_ASSERT(fiber_pool->vacancies);
|
|
|
|
vacancy = fiber_pool_vacancy_pop(fiber_pool);
|
|
}
|
|
|
|
VM_ASSERT(vacancy);
|
|
VM_ASSERT(vacancy->stack.base);
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
__asan_unpoison_memory_region(fiber_pool_stack_poison_base(&vacancy->stack), fiber_pool_stack_poison_size(&vacancy->stack));
|
|
#endif
|
|
|
|
// Take the top item from the free list:
|
|
fiber_pool->used += 1;
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
vacancy->stack.allocation->used += 1;
|
|
#endif
|
|
|
|
fiber_pool_stack_reset(&vacancy->stack);
|
|
|
|
return vacancy->stack;
|
|
}
|
|
|
|
// We advise the operating system that the stack memory pages are no longer being used.
|
|
// This introduce some performance overhead but allows system to relaim memory when there is pressure.
|
|
static inline void
|
|
fiber_pool_stack_free(struct fiber_pool_stack * stack)
|
|
{
|
|
void * base = fiber_pool_stack_base(stack);
|
|
size_t size = stack->available;
|
|
|
|
// If this is not true, the vacancy information will almost certainly be destroyed:
|
|
VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE));
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"]\n", base, size, stack->base, stack->size);
|
|
|
|
#if VM_CHECK_MODE > 0 && defined(MADV_DONTNEED)
|
|
// This immediately discards the pages and the memory is reset to zero.
|
|
madvise(base, size, MADV_DONTNEED);
|
|
#elif defined(POSIX_MADV_DONTNEED)
|
|
posix_madvise(base, size, POSIX_MADV_DONTNEED);
|
|
#elif defined(MADV_FREE_REUSABLE)
|
|
// Acknowledge the kernel down to the task info api we make this
|
|
// page reusable for future use.
|
|
// As for MADV_FREE_REUSE below we ensure in the rare occasions the task was not
|
|
// completed at the time of the call to re-iterate.
|
|
while (madvise(base, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN);
|
|
#elif defined(MADV_FREE)
|
|
madvise(base, size, MADV_FREE);
|
|
#elif defined(MADV_DONTNEED)
|
|
madvise(base, size, MADV_DONTNEED);
|
|
#elif defined(_WIN32)
|
|
VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE);
|
|
// Not available in all versions of Windows.
|
|
//DiscardVirtualMemory(base, size);
|
|
#endif
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
__asan_poison_memory_region(fiber_pool_stack_poison_base(stack), fiber_pool_stack_poison_size(stack));
|
|
#endif
|
|
}
|
|
|
|
// Release and return a stack to the vacancy list.
|
|
static void
|
|
fiber_pool_stack_release(struct fiber_pool_stack * stack)
|
|
{
|
|
struct fiber_pool * pool = stack->pool;
|
|
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size);
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used);
|
|
|
|
// Copy the stack details into the vacancy area:
|
|
vacancy->stack = *stack;
|
|
// After this point, be careful about updating/using state in stack, since it's copied to the vacancy area.
|
|
|
|
// Reset the stack pointers and reserve space for the vacancy data:
|
|
fiber_pool_vacancy_reset(vacancy);
|
|
|
|
// Push the vacancy into the vancancies list:
|
|
pool->vacancies = fiber_pool_vacancy_push(vacancy, pool->vacancies);
|
|
pool->used -= 1;
|
|
|
|
#ifdef FIBER_POOL_ALLOCATION_FREE
|
|
struct fiber_pool_allocation * allocation = stack->allocation;
|
|
|
|
allocation->used -= 1;
|
|
|
|
// Release address space and/or dirty memory:
|
|
if (allocation->used == 0) {
|
|
fiber_pool_allocation_free(allocation);
|
|
}
|
|
else if (stack->pool->free_stacks) {
|
|
fiber_pool_stack_free(&vacancy->stack);
|
|
}
|
|
#else
|
|
// This is entirely optional, but clears the dirty flag from the stack
|
|
// memory, so it won't get swapped to disk when there is memory pressure:
|
|
if (stack->pool->free_stacks) {
|
|
fiber_pool_stack_free(&vacancy->stack);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
|
|
{
|
|
rb_execution_context_t *ec = &fiber->cont.saved_ec;
|
|
rb_ractor_set_current_ec(th->ractor, th->ec = ec);
|
|
// ruby_current_execution_context_ptr = th->ec = ec;
|
|
|
|
/*
|
|
* timer-thread may set trap interrupt on previous th->ec at any time;
|
|
* ensure we do not delay (or lose) the trap interrupt handling.
|
|
*/
|
|
if (th->vm->ractor.main_thread == th &&
|
|
rb_signal_buff_size() > 0) {
|
|
RUBY_VM_SET_TRAP_INTERRUPT(ec);
|
|
}
|
|
|
|
VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
|
|
}
|
|
|
|
static inline void
|
|
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
|
|
{
|
|
ec_switch(th, fiber);
|
|
VM_ASSERT(th->ec->fiber_ptr == fiber);
|
|
}
|
|
|
|
static COROUTINE
|
|
fiber_entry(struct coroutine_context * from, struct coroutine_context * to)
|
|
{
|
|
rb_fiber_t *fiber = to->argument;
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
// Address sanitizer will copy the previous stack base and stack size into
|
|
// the "from" fiber. `coroutine_initialize_main` doesn't generally know the
|
|
// stack bounds (base + size). Therefore, the main fiber `stack_base` and
|
|
// `stack_size` will be NULL/0. It's specifically important in that case to
|
|
// get the (base+size) of the previous fiber and save it, so that later when
|
|
// we return to the main coroutine, we don't supply (NULL, 0) to
|
|
// __sanitizer_start_switch_fiber which royally messes up the internal state
|
|
// of ASAN and causes (sometimes) the following message:
|
|
// "WARNING: ASan is ignoring requested __asan_handle_no_return"
|
|
__sanitizer_finish_switch_fiber(to->fake_stack, (const void**)&from->stack_base, &from->stack_size);
|
|
#endif
|
|
|
|
rb_thread_t *thread = fiber->cont.saved_ec.thread_ptr;
|
|
|
|
#ifdef COROUTINE_PTHREAD_CONTEXT
|
|
ruby_thread_set_native(thread);
|
|
#endif
|
|
|
|
fiber_restore_thread(thread, fiber);
|
|
|
|
rb_fiber_start(fiber);
|
|
|
|
#ifndef COROUTINE_PTHREAD_CONTEXT
|
|
VM_UNREACHABLE(fiber_entry);
|
|
#endif
|
|
}
|
|
|
|
// Initialize a fiber's coroutine's machine stack and vm stack.
|
|
static VALUE *
|
|
fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size)
|
|
{
|
|
struct fiber_pool * fiber_pool = fiber->stack.pool;
|
|
rb_execution_context_t *sec = &fiber->cont.saved_ec;
|
|
void * vm_stack = NULL;
|
|
|
|
VM_ASSERT(fiber_pool != NULL);
|
|
|
|
fiber->stack = fiber_pool_stack_acquire(fiber_pool);
|
|
vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size);
|
|
*vm_stack_size = fiber_pool->vm_stack_size;
|
|
|
|
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available);
|
|
|
|
// The stack for this execution context is the one we allocated:
|
|
sec->machine.stack_start = fiber->stack.current;
|
|
sec->machine.stack_maxsize = fiber->stack.available;
|
|
|
|
fiber->context.argument = (void*)fiber;
|
|
|
|
return vm_stack;
|
|
}
|
|
|
|
// Release the stack from the fiber, it's execution context, and return it to
|
|
// the fiber pool.
|
|
static void
|
|
fiber_stack_release(rb_fiber_t * fiber)
|
|
{
|
|
rb_execution_context_t *ec = &fiber->cont.saved_ec;
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", (void*)fiber, fiber->stack.base);
|
|
|
|
// Return the stack back to the fiber pool if it wasn't already:
|
|
if (fiber->stack.base) {
|
|
fiber_pool_stack_release(&fiber->stack);
|
|
fiber->stack.base = NULL;
|
|
}
|
|
|
|
// The stack is no longer associated with this execution context:
|
|
rb_ec_clear_vm_stack(ec);
|
|
}
|
|
|
|
static const char *
|
|
fiber_status_name(enum fiber_status s)
|
|
{
|
|
switch (s) {
|
|
case FIBER_CREATED: return "created";
|
|
case FIBER_RESUMED: return "resumed";
|
|
case FIBER_SUSPENDED: return "suspended";
|
|
case FIBER_TERMINATED: return "terminated";
|
|
}
|
|
VM_UNREACHABLE(fiber_status_name);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
fiber_verify(const rb_fiber_t *fiber)
|
|
{
|
|
#if VM_CHECK_MODE > 0
|
|
VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
|
|
|
|
switch (fiber->status) {
|
|
case FIBER_RESUMED:
|
|
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
|
|
break;
|
|
case FIBER_SUSPENDED:
|
|
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
|
|
break;
|
|
case FIBER_CREATED:
|
|
case FIBER_TERMINATED:
|
|
/* TODO */
|
|
break;
|
|
default:
|
|
VM_UNREACHABLE(fiber_verify);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline static void
|
|
fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
|
|
{
|
|
// if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
|
|
VM_ASSERT(!FIBER_TERMINATED_P(fiber));
|
|
VM_ASSERT(fiber->status != s);
|
|
fiber_verify(fiber);
|
|
fiber->status = s;
|
|
}
|
|
|
|
static rb_context_t *
|
|
cont_ptr(VALUE obj)
|
|
{
|
|
rb_context_t *cont;
|
|
|
|
TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
|
|
|
|
return cont;
|
|
}
|
|
|
|
static rb_fiber_t *
|
|
fiber_ptr(VALUE obj)
|
|
{
|
|
rb_fiber_t *fiber;
|
|
|
|
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
|
|
if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
|
|
|
|
return fiber;
|
|
}
|
|
|
|
NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
|
|
|
|
#define THREAD_MUST_BE_RUNNING(th) do { \
|
|
if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
|
|
} while (0)
|
|
|
|
rb_thread_t*
|
|
rb_fiber_threadptr(const rb_fiber_t *fiber)
|
|
{
|
|
return fiber->cont.saved_ec.thread_ptr;
|
|
}
|
|
|
|
static VALUE
|
|
cont_thread_value(const rb_context_t *cont)
|
|
{
|
|
return cont->saved_ec.thread_ptr->self;
|
|
}
|
|
|
|
static void
|
|
cont_compact(void *ptr)
|
|
{
|
|
rb_context_t *cont = ptr;
|
|
|
|
if (cont->self) {
|
|
cont->self = rb_gc_location(cont->self);
|
|
}
|
|
cont->value = rb_gc_location(cont->value);
|
|
rb_execution_context_update(&cont->saved_ec);
|
|
}
|
|
|
|
static void
|
|
cont_mark(void *ptr)
|
|
{
|
|
rb_context_t *cont = ptr;
|
|
|
|
RUBY_MARK_ENTER("cont");
|
|
if (cont->self) {
|
|
rb_gc_mark_movable(cont->self);
|
|
}
|
|
rb_gc_mark_movable(cont->value);
|
|
|
|
rb_execution_context_mark(&cont->saved_ec);
|
|
rb_gc_mark(cont_thread_value(cont));
|
|
|
|
if (cont->saved_vm_stack.ptr) {
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
|
|
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
#else
|
|
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
|
|
cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
|
|
#endif
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
/* cont */
|
|
rb_gc_mark_locations(cont->machine.stack,
|
|
cont->machine.stack + cont->machine.stack_size);
|
|
}
|
|
else {
|
|
/* fiber */
|
|
const rb_fiber_t *fiber = (rb_fiber_t*)cont;
|
|
|
|
if (!FIBER_TERMINATED_P(fiber)) {
|
|
rb_gc_mark_locations(cont->machine.stack,
|
|
cont->machine.stack + cont->machine.stack_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
RUBY_MARK_LEAVE("cont");
|
|
}
|
|
|
|
#if 0
|
|
static int
|
|
fiber_is_root_p(const rb_fiber_t *fiber)
|
|
{
|
|
return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber;
|
|
}
|
|
#endif
|
|
|
|
static void jit_cont_free(struct rb_jit_cont *cont);
|
|
|
|
static void
|
|
cont_free(void *ptr)
|
|
{
|
|
rb_context_t *cont = ptr;
|
|
|
|
RUBY_FREE_ENTER("cont");
|
|
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
ruby_xfree(cont->saved_ec.vm_stack);
|
|
ruby_xfree(cont->ensure_array);
|
|
RUBY_FREE_UNLESS_NULL(cont->machine.stack);
|
|
}
|
|
else {
|
|
rb_fiber_t *fiber = (rb_fiber_t*)cont;
|
|
coroutine_destroy(&fiber->context);
|
|
fiber_stack_release(fiber);
|
|
}
|
|
|
|
RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
|
|
|
|
if (jit_cont_enabled) {
|
|
VM_ASSERT(cont->jit_cont != NULL);
|
|
jit_cont_free(cont->jit_cont);
|
|
}
|
|
/* free rb_cont_t or rb_fiber_t */
|
|
ruby_xfree(ptr);
|
|
RUBY_FREE_LEAVE("cont");
|
|
}
|
|
|
|
static size_t
|
|
cont_memsize(const void *ptr)
|
|
{
|
|
const rb_context_t *cont = ptr;
|
|
size_t size = 0;
|
|
|
|
size = sizeof(*cont);
|
|
if (cont->saved_vm_stack.ptr) {
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
#else
|
|
size_t n = cont->saved_ec.vm_stack_size;
|
|
#endif
|
|
size += n * sizeof(*cont->saved_vm_stack.ptr);
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
size += cont->machine.stack_size * sizeof(*cont->machine.stack);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
void
|
|
rb_fiber_update_self(rb_fiber_t *fiber)
|
|
{
|
|
if (fiber->cont.self) {
|
|
fiber->cont.self = rb_gc_location(fiber->cont.self);
|
|
}
|
|
else {
|
|
rb_execution_context_update(&fiber->cont.saved_ec);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_fiber_mark_self(const rb_fiber_t *fiber)
|
|
{
|
|
if (fiber->cont.self) {
|
|
rb_gc_mark_movable(fiber->cont.self);
|
|
}
|
|
else {
|
|
rb_execution_context_mark(&fiber->cont.saved_ec);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fiber_compact(void *ptr)
|
|
{
|
|
rb_fiber_t *fiber = ptr;
|
|
fiber->first_proc = rb_gc_location(fiber->first_proc);
|
|
|
|
if (fiber->prev) rb_fiber_update_self(fiber->prev);
|
|
|
|
cont_compact(&fiber->cont);
|
|
fiber_verify(fiber);
|
|
}
|
|
|
|
static void
|
|
fiber_mark(void *ptr)
|
|
{
|
|
rb_fiber_t *fiber = ptr;
|
|
RUBY_MARK_ENTER("cont");
|
|
fiber_verify(fiber);
|
|
rb_gc_mark_movable(fiber->first_proc);
|
|
if (fiber->prev) rb_fiber_mark_self(fiber->prev);
|
|
cont_mark(&fiber->cont);
|
|
RUBY_MARK_LEAVE("cont");
|
|
}
|
|
|
|
static void
|
|
fiber_free(void *ptr)
|
|
{
|
|
rb_fiber_t *fiber = ptr;
|
|
RUBY_FREE_ENTER("fiber");
|
|
|
|
if (DEBUG) fprintf(stderr, "fiber_free: %p[%p]\n", (void *)fiber, fiber->stack.base);
|
|
|
|
if (fiber->cont.saved_ec.local_storage) {
|
|
rb_id_table_free(fiber->cont.saved_ec.local_storage);
|
|
}
|
|
|
|
cont_free(&fiber->cont);
|
|
RUBY_FREE_LEAVE("fiber");
|
|
}
|
|
|
|
static size_t
|
|
fiber_memsize(const void *ptr)
|
|
{
|
|
const rb_fiber_t *fiber = ptr;
|
|
size_t size = sizeof(*fiber);
|
|
const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec;
|
|
const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
|
|
|
|
/*
|
|
* vm.c::thread_memsize already counts th->ec->local_storage
|
|
*/
|
|
if (saved_ec->local_storage && fiber != th->root_fiber) {
|
|
size += rb_id_table_memsize(saved_ec->local_storage);
|
|
}
|
|
size += cont_memsize(&fiber->cont);
|
|
return size;
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_fiber(VALUE obj)
|
|
{
|
|
return RBOOL(rb_typeddata_is_kind_of(obj, &fiber_data_type));
|
|
}
|
|
|
|
static void
|
|
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
|
|
{
|
|
size_t size;
|
|
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
|
|
if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
|
|
size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
|
|
cont->machine.stack_src = th->ec->machine.stack_end;
|
|
}
|
|
else {
|
|
size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
|
|
cont->machine.stack_src = th->ec->machine.stack_start;
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
REALLOC_N(cont->machine.stack, VALUE, size);
|
|
}
|
|
else {
|
|
cont->machine.stack = ALLOC_N(VALUE, size);
|
|
}
|
|
|
|
FLUSH_REGISTER_WINDOWS;
|
|
asan_unpoison_memory_region(cont->machine.stack_src, size, false);
|
|
MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
|
|
}
|
|
|
|
static const rb_data_type_t cont_data_type = {
|
|
"continuation",
|
|
{cont_mark, cont_free, cont_memsize, cont_compact},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static inline void
|
|
cont_save_thread(rb_context_t *cont, rb_thread_t *th)
|
|
{
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
|
|
VM_ASSERT(th->status == THREAD_RUNNABLE);
|
|
|
|
/* save thread context */
|
|
*sec = *th->ec;
|
|
|
|
/* saved_ec->machine.stack_end should be NULL */
|
|
/* because it may happen GC afterward */
|
|
sec->machine.stack_end = NULL;
|
|
}
|
|
|
|
static rb_nativethread_lock_t jit_cont_lock;
|
|
|
|
// Register a new continuation with execution context `ec`. Return JIT info about
|
|
// the continuation.
|
|
static struct rb_jit_cont *
|
|
jit_cont_new(rb_execution_context_t *ec)
|
|
{
|
|
struct rb_jit_cont *cont;
|
|
|
|
// We need to use calloc instead of something like ZALLOC to avoid triggering GC here.
|
|
// When this function is called from rb_thread_alloc through rb_threadptr_root_fiber_setup,
|
|
// the thread is still being prepared and marking it causes SEGV.
|
|
cont = calloc(1, sizeof(struct rb_jit_cont));
|
|
if (cont == NULL)
|
|
rb_memerror();
|
|
cont->ec = ec;
|
|
|
|
rb_native_mutex_lock(&jit_cont_lock);
|
|
if (first_jit_cont == NULL) {
|
|
cont->next = cont->prev = NULL;
|
|
}
|
|
else {
|
|
cont->prev = NULL;
|
|
cont->next = first_jit_cont;
|
|
first_jit_cont->prev = cont;
|
|
}
|
|
first_jit_cont = cont;
|
|
rb_native_mutex_unlock(&jit_cont_lock);
|
|
|
|
return cont;
|
|
}
|
|
|
|
// Unregister continuation `cont`.
|
|
static void
|
|
jit_cont_free(struct rb_jit_cont *cont)
|
|
{
|
|
rb_native_mutex_lock(&jit_cont_lock);
|
|
if (cont == first_jit_cont) {
|
|
first_jit_cont = cont->next;
|
|
if (first_jit_cont != NULL)
|
|
first_jit_cont->prev = NULL;
|
|
}
|
|
else {
|
|
cont->prev->next = cont->next;
|
|
if (cont->next != NULL)
|
|
cont->next->prev = cont->prev;
|
|
}
|
|
rb_native_mutex_unlock(&jit_cont_lock);
|
|
|
|
free(cont);
|
|
}
|
|
|
|
// Call a given callback against all on-stack ISEQs.
|
|
void
|
|
rb_jit_cont_each_iseq(rb_iseq_callback callback, void *data)
|
|
{
|
|
struct rb_jit_cont *cont;
|
|
for (cont = first_jit_cont; cont != NULL; cont = cont->next) {
|
|
if (cont->ec->vm_stack == NULL)
|
|
continue;
|
|
|
|
const rb_control_frame_t *cfp;
|
|
for (cfp = RUBY_VM_END_CONTROL_FRAME(cont->ec) - 1; ; cfp = RUBY_VM_NEXT_CONTROL_FRAME(cfp)) {
|
|
const rb_iseq_t *iseq;
|
|
if (cfp->pc && (iseq = cfp->iseq) != NULL && imemo_type((VALUE)iseq) == imemo_iseq) {
|
|
callback(iseq, data);
|
|
}
|
|
|
|
if (cfp == cont->ec->cfp)
|
|
break; // reached the most recent cfp
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finish working with jit_cont.
|
|
void
|
|
rb_jit_cont_finish(void)
|
|
{
|
|
if (!jit_cont_enabled)
|
|
return;
|
|
|
|
struct rb_jit_cont *cont, *next;
|
|
for (cont = first_jit_cont; cont != NULL; cont = next) {
|
|
next = cont->next;
|
|
free(cont); // Don't use xfree because it's allocated by calloc.
|
|
}
|
|
rb_native_mutex_destroy(&jit_cont_lock);
|
|
}
|
|
|
|
static void
|
|
cont_init_jit_cont(rb_context_t *cont)
|
|
{
|
|
VM_ASSERT(cont->jit_cont == NULL);
|
|
if (jit_cont_enabled) {
|
|
cont->jit_cont = jit_cont_new(&(cont->saved_ec));
|
|
}
|
|
}
|
|
|
|
struct rb_execution_context_struct *
|
|
rb_fiberptr_get_ec(struct rb_fiber_struct *fiber)
|
|
{
|
|
return &fiber->cont.saved_ec;
|
|
}
|
|
|
|
static void
|
|
cont_init(rb_context_t *cont, rb_thread_t *th)
|
|
{
|
|
/* save thread context */
|
|
cont_save_thread(cont, th);
|
|
cont->saved_ec.thread_ptr = th;
|
|
cont->saved_ec.local_storage = NULL;
|
|
cont->saved_ec.local_storage_recursive_hash = Qnil;
|
|
cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
|
|
cont_init_jit_cont(cont);
|
|
}
|
|
|
|
static rb_context_t *
|
|
cont_new(VALUE klass)
|
|
{
|
|
rb_context_t *cont;
|
|
volatile VALUE contval;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
|
|
cont->self = contval;
|
|
cont_init(cont, th);
|
|
return cont;
|
|
}
|
|
|
|
VALUE
|
|
rb_fiberptr_self(struct rb_fiber_struct *fiber)
|
|
{
|
|
return fiber->cont.self;
|
|
}
|
|
|
|
unsigned int
|
|
rb_fiberptr_blocking(struct rb_fiber_struct *fiber)
|
|
{
|
|
return fiber->blocking;
|
|
}
|
|
|
|
// Start working with jit_cont.
|
|
void
|
|
rb_jit_cont_init(void)
|
|
{
|
|
if (!jit_cont_enabled)
|
|
return;
|
|
|
|
rb_native_mutex_initialize(&jit_cont_lock);
|
|
cont_init_jit_cont(&GET_EC()->fiber_ptr->cont);
|
|
}
|
|
|
|
#if 0
|
|
void
|
|
show_vm_stack(const rb_execution_context_t *ec)
|
|
{
|
|
VALUE *p = ec->vm_stack;
|
|
while (p < ec->cfp->sp) {
|
|
fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
|
|
rb_obj_info_dump(*p);
|
|
p++;
|
|
}
|
|
}
|
|
|
|
void
|
|
show_vm_pcs(const rb_control_frame_t *cfp,
|
|
const rb_control_frame_t *end_of_cfp)
|
|
{
|
|
int i=0;
|
|
while (cfp != end_of_cfp) {
|
|
int pc = 0;
|
|
if (cfp->iseq) {
|
|
pc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded;
|
|
}
|
|
fprintf(stderr, "%2d pc: %d\n", i++, pc);
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static VALUE
|
|
cont_capture(volatile int *volatile stat)
|
|
{
|
|
rb_context_t *volatile cont;
|
|
rb_thread_t *th = GET_THREAD();
|
|
volatile VALUE contval;
|
|
const rb_execution_context_t *ec = th->ec;
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
rb_vm_stack_to_heap(th->ec);
|
|
cont = cont_new(rb_cContinuation);
|
|
contval = cont->self;
|
|
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
|
|
cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
|
|
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
MEMCPY(cont->saved_vm_stack.ptr,
|
|
ec->vm_stack,
|
|
VALUE, cont->saved_vm_stack.slen);
|
|
MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
|
|
(VALUE*)ec->cfp,
|
|
VALUE,
|
|
cont->saved_vm_stack.clen);
|
|
#else
|
|
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
|
|
MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
|
|
#endif
|
|
// At this point, `cfp` is valid but `vm_stack` should be cleared:
|
|
rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0);
|
|
VM_ASSERT(cont->saved_ec.cfp != NULL);
|
|
cont_save_machine_stack(th, cont);
|
|
|
|
/* backup ensure_list to array for search in another context */
|
|
{
|
|
rb_ensure_list_t *p;
|
|
int size = 0;
|
|
rb_ensure_entry_t *entry;
|
|
for (p=th->ec->ensure_list; p; p=p->next)
|
|
size++;
|
|
entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1);
|
|
for (p=th->ec->ensure_list; p; p=p->next) {
|
|
if (!p->entry.marker)
|
|
p->entry.marker = rb_ary_hidden_new(0); /* dummy object */
|
|
*entry++ = p->entry;
|
|
}
|
|
entry->marker = 0;
|
|
}
|
|
|
|
if (ruby_setjmp(cont->jmpbuf)) {
|
|
VALUE value;
|
|
|
|
VAR_INITIALIZED(cont);
|
|
value = cont->value;
|
|
if (cont->argc == -1) rb_exc_raise(value);
|
|
cont->value = Qnil;
|
|
*stat = 1;
|
|
return value;
|
|
}
|
|
else {
|
|
*stat = 0;
|
|
return contval;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
cont_restore_thread(rb_context_t *cont)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* restore thread context */
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
/* continuation */
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
rb_fiber_t *fiber = NULL;
|
|
|
|
if (sec->fiber_ptr != NULL) {
|
|
fiber = sec->fiber_ptr;
|
|
}
|
|
else if (th->root_fiber) {
|
|
fiber = th->root_fiber;
|
|
}
|
|
|
|
if (fiber && th->ec != &fiber->cont.saved_ec) {
|
|
ec_switch(th, fiber);
|
|
}
|
|
|
|
if (th->ec->trace_arg != sec->trace_arg) {
|
|
rb_raise(rb_eRuntimeError, "can't call across trace_func");
|
|
}
|
|
|
|
/* copy vm stack */
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
MEMCPY(th->ec->vm_stack,
|
|
cont->saved_vm_stack.ptr,
|
|
VALUE, cont->saved_vm_stack.slen);
|
|
MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
|
|
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
|
|
VALUE, cont->saved_vm_stack.clen);
|
|
#else
|
|
MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
|
|
#endif
|
|
/* other members of ec */
|
|
|
|
th->ec->cfp = sec->cfp;
|
|
th->ec->raised_flag = sec->raised_flag;
|
|
th->ec->tag = sec->tag;
|
|
th->ec->root_lep = sec->root_lep;
|
|
th->ec->root_svar = sec->root_svar;
|
|
th->ec->ensure_list = sec->ensure_list;
|
|
th->ec->errinfo = sec->errinfo;
|
|
|
|
VM_ASSERT(th->ec->vm_stack != NULL);
|
|
}
|
|
else {
|
|
/* fiber */
|
|
fiber_restore_thread(th, (rb_fiber_t*)cont);
|
|
}
|
|
}
|
|
|
|
NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber));
|
|
|
|
static void
|
|
fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* save old_fiber's machine stack - to ensure efficient garbage collection */
|
|
if (!FIBER_TERMINATED_P(old_fiber)) {
|
|
STACK_GROW_DIR_DETECTION;
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
if (STACK_DIR_UPPER(0, 1)) {
|
|
old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
|
|
old_fiber->cont.machine.stack = th->ec->machine.stack_end;
|
|
}
|
|
else {
|
|
old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
|
|
old_fiber->cont.machine.stack = th->ec->machine.stack_start;
|
|
}
|
|
}
|
|
|
|
/* exchange machine_stack_start between old_fiber and new_fiber */
|
|
old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
|
|
|
|
/* old_fiber->machine.stack_end should be NULL */
|
|
old_fiber->cont.saved_ec.machine.stack_end = NULL;
|
|
|
|
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] -> %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
__sanitizer_start_switch_fiber(FIBER_TERMINATED_P(old_fiber) ? NULL : &old_fiber->context.fake_stack, new_fiber->context.stack_base, new_fiber->context.stack_size);
|
|
#endif
|
|
|
|
/* swap machine context */
|
|
struct coroutine_context * from = coroutine_transfer(&old_fiber->context, &new_fiber->context);
|
|
|
|
#if defined(COROUTINE_SANITIZE_ADDRESS)
|
|
__sanitizer_finish_switch_fiber(old_fiber->context.fake_stack, NULL, NULL);
|
|
#endif
|
|
|
|
if (from == NULL) {
|
|
rb_syserr_fail(errno, "coroutine_transfer");
|
|
}
|
|
|
|
/* restore thread context */
|
|
fiber_restore_thread(th, old_fiber);
|
|
|
|
// It's possible to get here, and new_fiber is already freed.
|
|
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] <- %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
|
|
}
|
|
|
|
NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
|
|
|
|
static void
|
|
cont_restore_1(rb_context_t *cont)
|
|
{
|
|
cont_restore_thread(cont);
|
|
|
|
/* restore machine stack */
|
|
#ifdef _M_AMD64
|
|
{
|
|
/* workaround for x64 SEH */
|
|
jmp_buf buf;
|
|
setjmp(buf);
|
|
_JUMP_BUFFER *bp = (void*)&cont->jmpbuf;
|
|
bp->Frame = ((_JUMP_BUFFER*)((void*)&buf))->Frame;
|
|
}
|
|
#endif
|
|
if (cont->machine.stack_src) {
|
|
FLUSH_REGISTER_WINDOWS;
|
|
MEMCPY(cont->machine.stack_src, cont->machine.stack,
|
|
VALUE, cont->machine.stack_size);
|
|
}
|
|
|
|
ruby_longjmp(cont->jmpbuf, 1);
|
|
}
|
|
|
|
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
|
|
|
|
static void
|
|
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
|
|
{
|
|
if (cont->machine.stack_src) {
|
|
#ifdef HAVE_ALLOCA
|
|
#define STACK_PAD_SIZE 1
|
|
#else
|
|
#define STACK_PAD_SIZE 1024
|
|
#endif
|
|
VALUE space[STACK_PAD_SIZE];
|
|
|
|
#if !STACK_GROW_DIRECTION
|
|
if (addr_in_prev_frame > &space[0]) {
|
|
/* Stack grows downward */
|
|
#endif
|
|
#if STACK_GROW_DIRECTION <= 0
|
|
volatile VALUE *const end = cont->machine.stack_src;
|
|
if (&space[0] > end) {
|
|
# ifdef HAVE_ALLOCA
|
|
volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
|
|
// We need to make sure that the stack pointer is moved,
|
|
// but some compilers may remove the allocation by optimization.
|
|
// We hope that the following read/write will prevent such an optimization.
|
|
*sp = Qfalse;
|
|
space[0] = *sp;
|
|
# else
|
|
cont_restore_0(cont, &space[0]);
|
|
# endif
|
|
}
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
}
|
|
else {
|
|
/* Stack grows upward */
|
|
#endif
|
|
#if STACK_GROW_DIRECTION >= 0
|
|
volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
|
|
if (&space[STACK_PAD_SIZE] < end) {
|
|
# ifdef HAVE_ALLOCA
|
|
volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
|
|
space[0] = *sp;
|
|
# else
|
|
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
|
|
# endif
|
|
}
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
}
|
|
#endif
|
|
}
|
|
cont_restore_1(cont);
|
|
}
|
|
|
|
/*
|
|
* Document-class: Continuation
|
|
*
|
|
* Continuation objects are generated by Kernel#callcc,
|
|
* after having +require+d <i>continuation</i>. They hold
|
|
* a return address and execution context, allowing a nonlocal return
|
|
* to the end of the #callcc block from anywhere within a
|
|
* program. Continuations are somewhat analogous to a structured
|
|
* version of C's <code>setjmp/longjmp</code> (although they contain
|
|
* more state, so you might consider them closer to threads).
|
|
*
|
|
* For instance:
|
|
*
|
|
* require "continuation"
|
|
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
|
|
* callcc{|cc| $cc = cc}
|
|
* puts(message = arr.shift)
|
|
* $cc.call unless message =~ /Max/
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Freddie
|
|
* Herbie
|
|
* Ron
|
|
* Max
|
|
*
|
|
* Also you can call callcc in other methods:
|
|
*
|
|
* require "continuation"
|
|
*
|
|
* def g
|
|
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
|
|
* cc = callcc { |cc| cc }
|
|
* puts arr.shift
|
|
* return cc, arr.size
|
|
* end
|
|
*
|
|
* def f
|
|
* c, size = g
|
|
* c.call(c) if size > 1
|
|
* end
|
|
*
|
|
* f
|
|
*
|
|
* This (somewhat contrived) example allows the inner loop to abandon
|
|
* processing early:
|
|
*
|
|
* require "continuation"
|
|
* callcc {|cont|
|
|
* for i in 0..4
|
|
* print "#{i}: "
|
|
* for j in i*5...(i+1)*5
|
|
* cont.call() if j == 17
|
|
* printf "%3d", j
|
|
* end
|
|
* end
|
|
* }
|
|
* puts
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 0: 0 1 2 3 4
|
|
* 1: 5 6 7 8 9
|
|
* 2: 10 11 12 13 14
|
|
* 3: 15 16
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* callcc {|cont| block } -> obj
|
|
*
|
|
* Generates a Continuation object, which it passes to
|
|
* the associated block. You need to <code>require
|
|
* 'continuation'</code> before using this method. Performing a
|
|
* <em>cont</em><code>.call</code> will cause the #callcc
|
|
* to return (as will falling through the end of the block). The
|
|
* value returned by the #callcc is the value of the
|
|
* block, or the value passed to <em>cont</em><code>.call</code>. See
|
|
* class Continuation for more details. Also see
|
|
* Kernel#throw for an alternative mechanism for
|
|
* unwinding a call stack.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_callcc(VALUE self)
|
|
{
|
|
volatile int called;
|
|
volatile VALUE val = cont_capture(&called);
|
|
|
|
if (called) {
|
|
return val;
|
|
}
|
|
else {
|
|
return rb_yield(val);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
make_passing_arg(int argc, const VALUE *argv)
|
|
{
|
|
switch (argc) {
|
|
case -1:
|
|
return argv[0];
|
|
case 0:
|
|
return Qnil;
|
|
case 1:
|
|
return argv[0];
|
|
default:
|
|
return rb_ary_new4(argc, argv);
|
|
}
|
|
}
|
|
|
|
typedef VALUE e_proc(VALUE);
|
|
|
|
/* CAUTION!! : Currently, error in rollback_func is not supported */
|
|
/* same as rb_protect if set rollback_func to NULL */
|
|
void
|
|
ruby_register_rollback_func_for_ensure(e_proc *ensure_func, e_proc *rollback_func)
|
|
{
|
|
st_table **table_p = &GET_VM()->ensure_rollback_table;
|
|
if (UNLIKELY(*table_p == NULL)) {
|
|
*table_p = st_init_numtable();
|
|
}
|
|
st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func);
|
|
}
|
|
|
|
static inline e_proc *
|
|
lookup_rollback_func(e_proc *ensure_func)
|
|
{
|
|
st_table *table = GET_VM()->ensure_rollback_table;
|
|
st_data_t val;
|
|
if (table && st_lookup(table, (st_data_t)ensure_func, &val))
|
|
return (e_proc *) val;
|
|
return (e_proc *) Qundef;
|
|
}
|
|
|
|
|
|
static inline void
|
|
rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target)
|
|
{
|
|
rb_ensure_list_t *p;
|
|
rb_ensure_entry_t *entry;
|
|
size_t i, j;
|
|
size_t cur_size;
|
|
size_t target_size;
|
|
size_t base_point;
|
|
e_proc *func;
|
|
|
|
cur_size = 0;
|
|
for (p=current; p; p=p->next)
|
|
cur_size++;
|
|
target_size = 0;
|
|
for (entry=target; entry->marker; entry++)
|
|
target_size++;
|
|
|
|
/* search common stack point */
|
|
p = current;
|
|
base_point = cur_size;
|
|
while (base_point) {
|
|
if (target_size >= base_point &&
|
|
p->entry.marker == target[target_size - base_point].marker)
|
|
break;
|
|
base_point --;
|
|
p = p->next;
|
|
}
|
|
|
|
/* rollback function check */
|
|
for (i=0; i < target_size - base_point; i++) {
|
|
if (!lookup_rollback_func(target[i].e_proc)) {
|
|
rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope");
|
|
}
|
|
}
|
|
/* pop ensure stack */
|
|
while (cur_size > base_point) {
|
|
/* escape from ensure block */
|
|
(*current->entry.e_proc)(current->entry.data2);
|
|
current = current->next;
|
|
cur_size--;
|
|
}
|
|
/* push ensure stack */
|
|
for (j = 0; j < i; j++) {
|
|
func = lookup_rollback_func(target[i - j - 1].e_proc);
|
|
if ((VALUE)func != Qundef) {
|
|
(*func)(target[i - j - 1].data2);
|
|
}
|
|
}
|
|
}
|
|
|
|
NORETURN(static VALUE rb_cont_call(int argc, VALUE *argv, VALUE contval));
|
|
|
|
/*
|
|
* call-seq:
|
|
* cont.call(args, ...)
|
|
* cont[args, ...]
|
|
*
|
|
* Invokes the continuation. The program continues from the end of
|
|
* the #callcc block. If no arguments are given, the original #callcc
|
|
* returns +nil+. If one argument is given, #callcc returns
|
|
* it. Otherwise, an array containing <i>args</i> is returned.
|
|
*
|
|
* callcc {|cont| cont.call } #=> nil
|
|
* callcc {|cont| cont.call 1 } #=> 1
|
|
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_cont_call(int argc, VALUE *argv, VALUE contval)
|
|
{
|
|
rb_context_t *cont = cont_ptr(contval);
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
if (cont_thread_value(cont) != th->self) {
|
|
rb_raise(rb_eRuntimeError, "continuation called across threads");
|
|
}
|
|
if (cont->saved_ec.fiber_ptr) {
|
|
if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
|
|
rb_raise(rb_eRuntimeError, "continuation called across fiber");
|
|
}
|
|
}
|
|
rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array);
|
|
|
|
cont->argc = argc;
|
|
cont->value = make_passing_arg(argc, argv);
|
|
|
|
cont_restore_0(cont, &contval);
|
|
UNREACHABLE_RETURN(Qnil);
|
|
}
|
|
|
|
/*********/
|
|
/* fiber */
|
|
/*********/
|
|
|
|
/*
|
|
* Document-class: Fiber
|
|
*
|
|
* Fibers are primitives for implementing light weight cooperative
|
|
* concurrency in Ruby. Basically they are a means of creating code blocks
|
|
* that can be paused and resumed, much like threads. The main difference
|
|
* is that they are never preempted and that the scheduling must be done by
|
|
* the programmer and not the VM.
|
|
*
|
|
* As opposed to other stackless light weight concurrency models, each fiber
|
|
* comes with a stack. This enables the fiber to be paused from deeply
|
|
* nested function calls within the fiber block. See the ruby(1)
|
|
* manpage to configure the size of the fiber stack(s).
|
|
*
|
|
* When a fiber is created it will not run automatically. Rather it must
|
|
* be explicitly asked to run using the Fiber#resume method.
|
|
* The code running inside the fiber can give up control by calling
|
|
* Fiber.yield in which case it yields control back to caller (the
|
|
* caller of the Fiber#resume).
|
|
*
|
|
* Upon yielding or termination the Fiber returns the value of the last
|
|
* executed expression
|
|
*
|
|
* For instance:
|
|
*
|
|
* fiber = Fiber.new do
|
|
* Fiber.yield 1
|
|
* 2
|
|
* end
|
|
*
|
|
* puts fiber.resume
|
|
* puts fiber.resume
|
|
* puts fiber.resume
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* 1
|
|
* 2
|
|
* FiberError: dead fiber called
|
|
*
|
|
* The Fiber#resume method accepts an arbitrary number of parameters,
|
|
* if it is the first call to #resume then they will be passed as
|
|
* block arguments. Otherwise they will be the return value of the
|
|
* call to Fiber.yield
|
|
*
|
|
* Example:
|
|
*
|
|
* fiber = Fiber.new do |first|
|
|
* second = Fiber.yield first + 2
|
|
* end
|
|
*
|
|
* puts fiber.resume 10
|
|
* puts fiber.resume 1_000_000
|
|
* puts fiber.resume "The fiber will be dead before I can cause trouble"
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* 12
|
|
* 1000000
|
|
* FiberError: dead fiber called
|
|
*
|
|
* == Non-blocking Fibers
|
|
*
|
|
* The concept of <em>non-blocking fiber</em> was introduced in Ruby 3.0.
|
|
* A non-blocking fiber, when reaching a operation that would normally block
|
|
* the fiber (like <code>sleep</code>, or wait for another process or I/O)
|
|
* will yield control to other fibers and allow the <em>scheduler</em> to
|
|
* handle blocking and waking up (resuming) this fiber when it can proceed.
|
|
*
|
|
* For a Fiber to behave as non-blocking, it need to be created in Fiber.new with
|
|
* <tt>blocking: false</tt> (which is the default), and Fiber.scheduler
|
|
* should be set with Fiber.set_scheduler. If Fiber.scheduler is not set in
|
|
* the current thread, blocking and non-blocking fibers' behavior is identical.
|
|
*
|
|
* Ruby doesn't provide a scheduler class: it is expected to be implemented by
|
|
* the user and correspond to Fiber::SchedulerInterface.
|
|
*
|
|
* There is also Fiber.schedule method, which is expected to immediately perform
|
|
* the given block in a non-blocking manner. Its actual implementation is up to
|
|
* the scheduler.
|
|
*
|
|
*/
|
|
|
|
static const rb_data_type_t fiber_data_type = {
|
|
"fiber",
|
|
{fiber_mark, fiber_free, fiber_memsize, fiber_compact,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE
|
|
fiber_alloc(VALUE klass)
|
|
{
|
|
return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
|
|
}
|
|
|
|
static rb_fiber_t*
|
|
fiber_t_alloc(VALUE fiber_value, unsigned int blocking)
|
|
{
|
|
rb_fiber_t *fiber;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
if (DATA_PTR(fiber_value) != 0) {
|
|
rb_raise(rb_eRuntimeError, "cannot initialize twice");
|
|
}
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
fiber = ZALLOC(rb_fiber_t);
|
|
fiber->cont.self = fiber_value;
|
|
fiber->cont.type = FIBER_CONTEXT;
|
|
fiber->blocking = blocking;
|
|
cont_init(&fiber->cont, th);
|
|
|
|
fiber->cont.saved_ec.fiber_ptr = fiber;
|
|
rb_ec_clear_vm_stack(&fiber->cont.saved_ec);
|
|
|
|
fiber->prev = NULL;
|
|
|
|
/* fiber->status == 0 == CREATED
|
|
* So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */
|
|
VM_ASSERT(FIBER_CREATED_P(fiber));
|
|
|
|
DATA_PTR(fiber_value) = fiber;
|
|
|
|
return fiber;
|
|
}
|
|
|
|
static VALUE
|
|
fiber_initialize(VALUE self, VALUE proc, struct fiber_pool * fiber_pool, unsigned int blocking)
|
|
{
|
|
rb_fiber_t *fiber = fiber_t_alloc(self, blocking);
|
|
|
|
fiber->first_proc = proc;
|
|
fiber->stack.base = NULL;
|
|
fiber->stack.pool = fiber_pool;
|
|
|
|
return self;
|
|
}
|
|
|
|
static void
|
|
fiber_prepare_stack(rb_fiber_t *fiber)
|
|
{
|
|
rb_context_t *cont = &fiber->cont;
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
|
|
size_t vm_stack_size = 0;
|
|
VALUE *vm_stack = fiber_initialize_coroutine(fiber, &vm_stack_size);
|
|
|
|
/* initialize cont */
|
|
cont->saved_vm_stack.ptr = NULL;
|
|
rb_ec_initialize_vm_stack(sec, vm_stack, vm_stack_size / sizeof(VALUE));
|
|
|
|
sec->tag = NULL;
|
|
sec->local_storage = NULL;
|
|
sec->local_storage_recursive_hash = Qnil;
|
|
sec->local_storage_recursive_hash_for_trace = Qnil;
|
|
}
|
|
|
|
static struct fiber_pool *
|
|
rb_fiber_pool_default(VALUE pool)
|
|
{
|
|
return &shared_fiber_pool;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
rb_fiber_initialize_kw(int argc, VALUE* argv, VALUE self, int kw_splat)
|
|
{
|
|
VALUE pool = Qnil;
|
|
VALUE blocking = Qfalse;
|
|
|
|
if (kw_splat != RB_NO_KEYWORDS) {
|
|
VALUE options = Qnil;
|
|
VALUE arguments[2] = {Qundef};
|
|
|
|
argc = rb_scan_args_kw(kw_splat, argc, argv, ":", &options);
|
|
rb_get_kwargs(options, fiber_initialize_keywords, 0, 2, arguments);
|
|
|
|
if (arguments[0] != Qundef) {
|
|
blocking = arguments[0];
|
|
}
|
|
|
|
if (arguments[1] != Qundef) {
|
|
pool = arguments[1];
|
|
}
|
|
}
|
|
|
|
return fiber_initialize(self, rb_block_proc(), rb_fiber_pool_default(pool), RTEST(blocking));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.new(blocking: false) { |*args| ... } -> fiber
|
|
*
|
|
* Creates new Fiber. Initially, the fiber is not running and can be resumed with
|
|
* #resume. Arguments to the first #resume call will be passed to the block:
|
|
*
|
|
* f = Fiber.new do |initial|
|
|
* current = initial
|
|
* loop do
|
|
* puts "current: #{current.inspect}"
|
|
* current = Fiber.yield
|
|
* end
|
|
* end
|
|
* f.resume(100) # prints: current: 100
|
|
* f.resume(1, 2, 3) # prints: current: [1, 2, 3]
|
|
* f.resume # prints: current: nil
|
|
* # ... and so on ...
|
|
*
|
|
* If <tt>blocking: false</tt> is passed to <tt>Fiber.new</tt>, _and_ current thread
|
|
* has a Fiber.scheduler defined, the Fiber becomes non-blocking (see "Non-blocking
|
|
* Fibers" section in class docs).
|
|
*/
|
|
static VALUE
|
|
rb_fiber_initialize(int argc, VALUE* argv, VALUE self)
|
|
{
|
|
return rb_fiber_initialize_kw(argc, argv, self, rb_keyword_given_p());
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_new(rb_block_call_func_t func, VALUE obj)
|
|
{
|
|
return fiber_initialize(fiber_alloc(rb_cFiber), rb_proc_new(func, obj), rb_fiber_pool_default(Qnil), 1);
|
|
}
|
|
|
|
static VALUE
|
|
rb_fiber_s_schedule_kw(int argc, VALUE* argv, int kw_splat)
|
|
{
|
|
rb_thread_t * th = GET_THREAD();
|
|
VALUE scheduler = th->scheduler;
|
|
VALUE fiber = Qnil;
|
|
|
|
if (scheduler != Qnil) {
|
|
fiber = rb_fiber_scheduler_fiber(scheduler, argc, argv, kw_splat);
|
|
}
|
|
else {
|
|
rb_raise(rb_eRuntimeError, "No scheduler is available!");
|
|
}
|
|
|
|
return fiber;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.schedule { |*args| ... } -> fiber
|
|
*
|
|
* The method is <em>expected</em> to immediately run the provided block of code in a
|
|
* separate non-blocking fiber.
|
|
*
|
|
* puts "Go to sleep!"
|
|
*
|
|
* Fiber.set_scheduler(MyScheduler.new)
|
|
*
|
|
* Fiber.schedule do
|
|
* puts "Going to sleep"
|
|
* sleep(1)
|
|
* puts "I slept well"
|
|
* end
|
|
*
|
|
* puts "Wakey-wakey, sleepyhead"
|
|
*
|
|
* Assuming MyScheduler is properly implemented, this program will produce:
|
|
*
|
|
* Go to sleep!
|
|
* Going to sleep
|
|
* Wakey-wakey, sleepyhead
|
|
* ...1 sec pause here...
|
|
* I slept well
|
|
*
|
|
* ...e.g. on the first blocking operation inside the Fiber (<tt>sleep(1)</tt>),
|
|
* the control is yielded to the outside code (main fiber), and <em>at the end
|
|
* of that execution</em>, the scheduler takes care of properly resuming all the
|
|
* blocked fibers.
|
|
*
|
|
* Note that the behavior described above is how the method is <em>expected</em>
|
|
* to behave, actual behavior is up to the current scheduler's implementation of
|
|
* Fiber::SchedulerInterface#fiber method. Ruby doesn't enforce this method to
|
|
* behave in any particular way.
|
|
*
|
|
* If the scheduler is not set, the method raises
|
|
* <tt>RuntimeError (No scheduler is available!)</tt>.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_schedule(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
return rb_fiber_s_schedule_kw(argc, argv, rb_keyword_given_p());
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.scheduler -> obj or nil
|
|
*
|
|
* Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler.
|
|
* Returns +nil+ if no scheduler is set (which is the default), and non-blocking fibers'
|
|
# behavior is the same as blocking.
|
|
* (see "Non-blocking fibers" section in class docs for details about the scheduler concept).
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_scheduler(VALUE klass)
|
|
{
|
|
return rb_fiber_scheduler_get();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.current_scheduler -> obj or nil
|
|
*
|
|
* Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler
|
|
* if and only if the current fiber is non-blocking.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_current_scheduler(VALUE klass)
|
|
{
|
|
return rb_fiber_scheduler_current();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.set_scheduler(scheduler) -> scheduler
|
|
*
|
|
* Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking
|
|
* fibers (created by Fiber.new with <tt>blocking: false</tt>, or by Fiber.schedule)
|
|
* call that scheduler's hook methods on potentially blocking operations, and the current
|
|
* thread will call scheduler's +close+ method on finalization (allowing the scheduler to
|
|
* properly manage all non-finished fibers).
|
|
*
|
|
* +scheduler+ can be an object of any class corresponding to Fiber::SchedulerInterface. Its
|
|
* implementation is up to the user.
|
|
*
|
|
* See also the "Non-blocking fibers" section in class docs.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_set_scheduler(VALUE klass, VALUE scheduler)
|
|
{
|
|
return rb_fiber_scheduler_set(scheduler);
|
|
}
|
|
|
|
NORETURN(static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE err));
|
|
|
|
void
|
|
rb_fiber_start(rb_fiber_t *fiber)
|
|
{
|
|
rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
|
|
|
|
rb_proc_t *proc;
|
|
enum ruby_tag_type state;
|
|
int need_interrupt = TRUE;
|
|
|
|
VM_ASSERT(th->ec == GET_EC());
|
|
VM_ASSERT(FIBER_RESUMED_P(fiber));
|
|
|
|
if (fiber->blocking) {
|
|
th->blocking += 1;
|
|
}
|
|
|
|
EC_PUSH_TAG(th->ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont;
|
|
int argc;
|
|
const VALUE *argv, args = cont->value;
|
|
GetProcPtr(fiber->first_proc, proc);
|
|
argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
|
|
cont->value = Qnil;
|
|
th->ec->errinfo = Qnil;
|
|
th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc);
|
|
th->ec->root_svar = Qfalse;
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
|
|
cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, cont->kw_splat, VM_BLOCK_HANDLER_NONE);
|
|
}
|
|
EC_POP_TAG();
|
|
|
|
VALUE err = Qfalse;
|
|
if (state) {
|
|
err = th->ec->errinfo;
|
|
VM_ASSERT(FIBER_RESUMED_P(fiber));
|
|
|
|
if (state == TAG_RAISE) {
|
|
// noop...
|
|
}
|
|
else if (state == TAG_FATAL) {
|
|
rb_threadptr_pending_interrupt_enque(th, err);
|
|
}
|
|
else {
|
|
err = rb_vm_make_jump_tag_but_local_jump(state, err);
|
|
}
|
|
need_interrupt = TRUE;
|
|
}
|
|
|
|
rb_fiber_terminate(fiber, need_interrupt, err);
|
|
}
|
|
|
|
static rb_fiber_t *
|
|
root_fiber_alloc(rb_thread_t *th)
|
|
{
|
|
VALUE fiber_value = fiber_alloc(rb_cFiber);
|
|
rb_fiber_t *fiber = th->ec->fiber_ptr;
|
|
|
|
VM_ASSERT(DATA_PTR(fiber_value) == NULL);
|
|
VM_ASSERT(fiber->cont.type == FIBER_CONTEXT);
|
|
VM_ASSERT(FIBER_RESUMED_P(fiber));
|
|
|
|
th->root_fiber = fiber;
|
|
DATA_PTR(fiber_value) = fiber;
|
|
fiber->cont.self = fiber_value;
|
|
|
|
coroutine_initialize_main(&fiber->context);
|
|
|
|
return fiber;
|
|
}
|
|
|
|
// Set up a "root fiber", which is the fiber that every Ractor has.
|
|
void
|
|
rb_threadptr_root_fiber_setup(rb_thread_t *th)
|
|
{
|
|
rb_fiber_t *fiber = ruby_mimmalloc(sizeof(rb_fiber_t));
|
|
if (!fiber) {
|
|
rb_bug("%s", strerror(errno)); /* ... is it possible to call rb_bug here? */
|
|
}
|
|
MEMZERO(fiber, rb_fiber_t, 1);
|
|
fiber->cont.type = FIBER_CONTEXT;
|
|
fiber->cont.saved_ec.fiber_ptr = fiber;
|
|
fiber->cont.saved_ec.thread_ptr = th;
|
|
fiber->blocking = 1;
|
|
fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */
|
|
th->ec = &fiber->cont.saved_ec;
|
|
// When rb_threadptr_root_fiber_setup is called for the first time, mjit_enabled and
|
|
// rb_yjit_enabled_p() are still false. So this does nothing and rb_jit_cont_init() that is
|
|
// called later will take care of it. However, you still have to call cont_init_jit_cont()
|
|
// here for other Ractors, which are not initialized by rb_jit_cont_init().
|
|
cont_init_jit_cont(&fiber->cont);
|
|
}
|
|
|
|
void
|
|
rb_threadptr_root_fiber_release(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber) {
|
|
/* ignore. A root fiber object will free th->ec */
|
|
}
|
|
else {
|
|
rb_execution_context_t *ec = GET_EC();
|
|
|
|
VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT);
|
|
VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
|
|
|
|
if (th->ec == ec) {
|
|
rb_ractor_set_current_ec(th->ractor, NULL);
|
|
}
|
|
fiber_free(th->ec->fiber_ptr);
|
|
th->ec = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_threadptr_root_fiber_terminate(rb_thread_t *th)
|
|
{
|
|
rb_fiber_t *fiber = th->ec->fiber_ptr;
|
|
|
|
fiber->status = FIBER_TERMINATED;
|
|
|
|
// The vm_stack is `alloca`ed on the thread stack, so it's gone too:
|
|
rb_ec_clear_vm_stack(th->ec);
|
|
}
|
|
|
|
static inline rb_fiber_t*
|
|
fiber_current(void)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
if (ec->fiber_ptr->cont.self == 0) {
|
|
root_fiber_alloc(rb_ec_thread_ptr(ec));
|
|
}
|
|
return ec->fiber_ptr;
|
|
}
|
|
|
|
static inline rb_fiber_t*
|
|
return_fiber(bool terminate)
|
|
{
|
|
rb_fiber_t *fiber = fiber_current();
|
|
rb_fiber_t *prev = fiber->prev;
|
|
|
|
if (prev) {
|
|
fiber->prev = NULL;
|
|
prev->resuming_fiber = NULL;
|
|
return prev;
|
|
}
|
|
else {
|
|
if (!terminate) {
|
|
rb_raise(rb_eFiberError, "attempt to yield on a not resumed fiber");
|
|
}
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_fiber_t *root_fiber = th->root_fiber;
|
|
|
|
VM_ASSERT(root_fiber != NULL);
|
|
|
|
// search resuming fiber
|
|
for (fiber = root_fiber; fiber->resuming_fiber; fiber = fiber->resuming_fiber) {
|
|
}
|
|
|
|
return fiber;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_current(void)
|
|
{
|
|
return fiber_current()->cont.self;
|
|
}
|
|
|
|
// Prepare to execute next_fiber on the given thread.
|
|
static inline void
|
|
fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th)
|
|
{
|
|
rb_fiber_t *fiber;
|
|
|
|
if (th->ec->fiber_ptr != NULL) {
|
|
fiber = th->ec->fiber_ptr;
|
|
}
|
|
else {
|
|
/* create root fiber */
|
|
fiber = root_fiber_alloc(th);
|
|
}
|
|
|
|
if (FIBER_CREATED_P(next_fiber)) {
|
|
fiber_prepare_stack(next_fiber);
|
|
}
|
|
|
|
VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber));
|
|
VM_ASSERT(FIBER_RUNNABLE_P(next_fiber));
|
|
|
|
if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED);
|
|
|
|
fiber_status_set(next_fiber, FIBER_RESUMED);
|
|
fiber_setcontext(next_fiber, fiber);
|
|
}
|
|
|
|
static inline VALUE
|
|
fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat, rb_fiber_t *resuming_fiber, bool yielding)
|
|
{
|
|
VALUE value;
|
|
rb_context_t *cont = &fiber->cont;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* make sure the root_fiber object is available */
|
|
if (th->root_fiber == NULL) root_fiber_alloc(th);
|
|
|
|
if (th->ec->fiber_ptr == fiber) {
|
|
/* ignore fiber context switch
|
|
* because destination fiber is the same as current fiber
|
|
*/
|
|
return make_passing_arg(argc, argv);
|
|
}
|
|
|
|
if (cont_thread_value(cont) != th->self) {
|
|
rb_raise(rb_eFiberError, "fiber called across threads");
|
|
}
|
|
|
|
if (FIBER_TERMINATED_P(fiber)) {
|
|
value = rb_exc_new2(rb_eFiberError, "dead fiber called");
|
|
|
|
if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
|
|
rb_exc_raise(value);
|
|
VM_UNREACHABLE(fiber_switch);
|
|
}
|
|
else {
|
|
/* th->ec->fiber_ptr is also dead => switch to root fiber */
|
|
/* (this means we're being called from rb_fiber_terminate, */
|
|
/* and the terminated fiber's return_fiber() is already dead) */
|
|
VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
|
|
|
|
cont = &th->root_fiber->cont;
|
|
cont->argc = -1;
|
|
cont->value = value;
|
|
|
|
fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
|
|
|
|
VM_UNREACHABLE(fiber_switch);
|
|
}
|
|
}
|
|
|
|
VM_ASSERT(FIBER_RUNNABLE_P(fiber));
|
|
|
|
rb_fiber_t *current_fiber = fiber_current();
|
|
|
|
VM_ASSERT(!current_fiber->resuming_fiber);
|
|
|
|
if (resuming_fiber) {
|
|
current_fiber->resuming_fiber = resuming_fiber;
|
|
fiber->prev = fiber_current();
|
|
fiber->yielding = 0;
|
|
}
|
|
|
|
VM_ASSERT(!current_fiber->yielding);
|
|
if (yielding) {
|
|
current_fiber->yielding = 1;
|
|
}
|
|
|
|
if (current_fiber->blocking) {
|
|
th->blocking -= 1;
|
|
}
|
|
|
|
cont->argc = argc;
|
|
cont->kw_splat = kw_splat;
|
|
cont->value = make_passing_arg(argc, argv);
|
|
|
|
fiber_store(fiber, th);
|
|
|
|
// We cannot free the stack until the pthread is joined:
|
|
#ifndef COROUTINE_PTHREAD_CONTEXT
|
|
if (resuming_fiber && FIBER_TERMINATED_P(fiber)) {
|
|
fiber_stack_release(fiber);
|
|
}
|
|
#endif
|
|
|
|
if (fiber_current()->blocking) {
|
|
th->blocking += 1;
|
|
}
|
|
|
|
RUBY_VM_CHECK_INTS(th->ec);
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
|
|
|
|
current_fiber = th->ec->fiber_ptr;
|
|
value = current_fiber->cont.value;
|
|
if (current_fiber->cont.argc == -1) rb_exc_raise(value);
|
|
return value;
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv)
|
|
{
|
|
return fiber_switch(fiber_ptr(fiber_value), argc, argv, RB_NO_KEYWORDS, NULL, false);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.blocking? -> true or false
|
|
*
|
|
* Returns +true+ if +fiber+ is blocking and +false+ otherwise.
|
|
* Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
|
|
* to Fiber.new, or via Fiber.schedule.
|
|
*
|
|
* Note that, even if the method returns +false+, the fiber behaves differently
|
|
* only if Fiber.scheduler is set in the current thread.
|
|
*
|
|
* See the "Non-blocking fibers" section in class docs for details.
|
|
*
|
|
*/
|
|
VALUE
|
|
rb_fiber_blocking_p(VALUE fiber)
|
|
{
|
|
return RBOOL(fiber_ptr(fiber)->blocking);
|
|
}
|
|
|
|
static VALUE
|
|
fiber_blocking_yield(VALUE fiber_value)
|
|
{
|
|
rb_fiber_t *fiber = fiber_ptr(fiber_value);
|
|
rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
|
|
|
|
// fiber->blocking is `unsigned int : 1`, so we use it as a boolean:
|
|
fiber->blocking = 1;
|
|
|
|
// Once the fiber is blocking, and current, we increment the thread blocking state:
|
|
th->blocking += 1;
|
|
|
|
return rb_yield(fiber_value);
|
|
}
|
|
|
|
static VALUE
|
|
fiber_blocking_ensure(VALUE fiber_value)
|
|
{
|
|
rb_fiber_t *fiber = fiber_ptr(fiber_value);
|
|
rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
|
|
|
|
// We are no longer blocking:
|
|
fiber->blocking = 0;
|
|
th->blocking -= 1;
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.blocking{|fiber| ...} -> result
|
|
*
|
|
* Forces the fiber to be blocking for the duration of the block. Returns the
|
|
* result of the block.
|
|
*
|
|
* See the "Non-blocking fibers" section in class docs for details.
|
|
*
|
|
*/
|
|
VALUE
|
|
rb_fiber_blocking(VALUE class)
|
|
{
|
|
VALUE fiber_value = rb_fiber_current();
|
|
rb_fiber_t *fiber = fiber_ptr(fiber_value);
|
|
|
|
// If we are already blocking, this is essentially a no-op:
|
|
if (fiber->blocking) {
|
|
return rb_yield(fiber_value);
|
|
} else {
|
|
return rb_ensure(fiber_blocking_yield, fiber_value, fiber_blocking_ensure, fiber_value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.blocking? -> false or 1
|
|
*
|
|
* Returns +false+ if the current fiber is non-blocking.
|
|
* Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
|
|
* to Fiber.new, or via Fiber.schedule.
|
|
*
|
|
* If the current Fiber is blocking, the method returns 1.
|
|
* Future developments may allow for situations where larger integers
|
|
* could be returned.
|
|
*
|
|
* Note that, even if the method returns +false+, Fiber behaves differently
|
|
* only if Fiber.scheduler is set in the current thread.
|
|
*
|
|
* See the "Non-blocking fibers" section in class docs for details.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_blocking_p(VALUE klass)
|
|
{
|
|
rb_thread_t *thread = GET_THREAD();
|
|
unsigned blocking = thread->blocking;
|
|
|
|
if (blocking == 0)
|
|
return Qfalse;
|
|
|
|
return INT2NUM(blocking);
|
|
}
|
|
|
|
void
|
|
rb_fiber_close(rb_fiber_t *fiber)
|
|
{
|
|
fiber_status_set(fiber, FIBER_TERMINATED);
|
|
}
|
|
|
|
static void
|
|
rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE error)
|
|
{
|
|
VALUE value = fiber->cont.value;
|
|
|
|
VM_ASSERT(FIBER_RESUMED_P(fiber));
|
|
rb_fiber_close(fiber);
|
|
|
|
fiber->cont.machine.stack = NULL;
|
|
fiber->cont.machine.stack_size = 0;
|
|
|
|
rb_fiber_t *next_fiber = return_fiber(true);
|
|
|
|
if (need_interrupt) RUBY_VM_SET_INTERRUPT(&next_fiber->cont.saved_ec);
|
|
|
|
if (RTEST(error))
|
|
fiber_switch(next_fiber, -1, &error, RB_NO_KEYWORDS, NULL, false);
|
|
else
|
|
fiber_switch(next_fiber, 1, &value, RB_NO_KEYWORDS, NULL, false);
|
|
ruby_stop(0);
|
|
}
|
|
|
|
static VALUE
|
|
fiber_resume_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
|
|
{
|
|
rb_fiber_t *current_fiber = fiber_current();
|
|
|
|
if (argc == -1 && FIBER_CREATED_P(fiber)) {
|
|
rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber");
|
|
}
|
|
else if (FIBER_TERMINATED_P(fiber)) {
|
|
rb_raise(rb_eFiberError, "attempt to resume a terminated fiber");
|
|
}
|
|
else if (fiber == current_fiber) {
|
|
rb_raise(rb_eFiberError, "attempt to resume the current fiber");
|
|
}
|
|
else if (fiber->prev != NULL) {
|
|
rb_raise(rb_eFiberError, "attempt to resume a resumed fiber (double resume)");
|
|
}
|
|
else if (fiber->resuming_fiber) {
|
|
rb_raise(rb_eFiberError, "attempt to resume a resuming fiber");
|
|
}
|
|
else if (fiber->prev == NULL &&
|
|
(!fiber->yielding && fiber->status != FIBER_CREATED)) {
|
|
rb_raise(rb_eFiberError, "attempt to resume a transferring fiber");
|
|
}
|
|
|
|
return fiber_switch(fiber, argc, argv, kw_splat, fiber, false);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_resume_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
|
|
{
|
|
return fiber_resume_kw(fiber_ptr(self), argc, argv, kw_splat);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_resume(VALUE self, int argc, const VALUE *argv)
|
|
{
|
|
return fiber_resume_kw(fiber_ptr(self), argc, argv, RB_NO_KEYWORDS);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_yield_kw(int argc, const VALUE *argv, int kw_splat)
|
|
{
|
|
return fiber_switch(return_fiber(false), argc, argv, kw_splat, NULL, true);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_yield(int argc, const VALUE *argv)
|
|
{
|
|
return fiber_switch(return_fiber(false), argc, argv, RB_NO_KEYWORDS, NULL, true);
|
|
}
|
|
|
|
void
|
|
rb_fiber_reset_root_local_storage(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
|
|
th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.alive? -> true or false
|
|
*
|
|
* Returns true if the fiber can still be resumed (or transferred
|
|
* to). After finishing execution of the fiber block this method will
|
|
* always return +false+.
|
|
*/
|
|
VALUE
|
|
rb_fiber_alive_p(VALUE fiber_value)
|
|
{
|
|
return RBOOL(!FIBER_TERMINATED_P(fiber_ptr(fiber_value)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.resume(args, ...) -> obj
|
|
*
|
|
* Resumes the fiber from the point at which the last Fiber.yield was
|
|
* called, or starts running it if it is the first call to
|
|
* #resume. Arguments passed to resume will be the value of the
|
|
* Fiber.yield expression or will be passed as block parameters to
|
|
* the fiber's block if this is the first #resume.
|
|
*
|
|
* Alternatively, when resume is called it evaluates to the arguments passed
|
|
* to the next Fiber.yield statement inside the fiber's block
|
|
* or to the block value if it runs to completion without any
|
|
* Fiber.yield
|
|
*/
|
|
static VALUE
|
|
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber)
|
|
{
|
|
return rb_fiber_resume_kw(fiber, argc, argv, rb_keyword_given_p());
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.backtrace -> array
|
|
* fiber.backtrace(start) -> array
|
|
* fiber.backtrace(start, count) -> array
|
|
* fiber.backtrace(start..end) -> array
|
|
*
|
|
* Returns the current execution stack of the fiber. +start+, +count+ and +end+ allow
|
|
* to select only parts of the backtrace.
|
|
*
|
|
* def level3
|
|
* Fiber.yield
|
|
* end
|
|
*
|
|
* def level2
|
|
* level3
|
|
* end
|
|
*
|
|
* def level1
|
|
* level2
|
|
* end
|
|
*
|
|
* f = Fiber.new { level1 }
|
|
*
|
|
* # It is empty before the fiber started
|
|
* f.backtrace
|
|
* #=> []
|
|
*
|
|
* f.resume
|
|
*
|
|
* f.backtrace
|
|
* #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
|
|
* p f.backtrace(1) # start from the item 1
|
|
* #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
|
|
* p f.backtrace(2, 2) # start from item 2, take 2
|
|
* #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"]
|
|
* p f.backtrace(1..3) # take items from 1 to 3
|
|
* #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"]
|
|
*
|
|
* f.resume
|
|
*
|
|
* # It is nil after the fiber is finished
|
|
* f.backtrace
|
|
* #=> nil
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_backtrace(int argc, VALUE *argv, VALUE fiber)
|
|
{
|
|
return rb_vm_backtrace(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.backtrace_locations -> array
|
|
* fiber.backtrace_locations(start) -> array
|
|
* fiber.backtrace_locations(start, count) -> array
|
|
* fiber.backtrace_locations(start..end) -> array
|
|
*
|
|
* Like #backtrace, but returns each line of the execution stack as a
|
|
* Thread::Backtrace::Location. Accepts the same arguments as #backtrace.
|
|
*
|
|
* f = Fiber.new { Fiber.yield }
|
|
* f.resume
|
|
* loc = f.backtrace_locations.first
|
|
* loc.label #=> "yield"
|
|
* loc.path #=> "test.rb"
|
|
* loc.lineno #=> 1
|
|
*
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_backtrace_locations(int argc, VALUE *argv, VALUE fiber)
|
|
{
|
|
return rb_vm_backtrace_locations(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.transfer(args, ...) -> obj
|
|
*
|
|
* Transfer control to another fiber, resuming it from where it last
|
|
* stopped or starting it if it was not resumed before. The calling
|
|
* fiber will be suspended much like in a call to
|
|
* Fiber.yield.
|
|
*
|
|
* The fiber which receives the transfer call treats it much like
|
|
* a resume call. Arguments passed to transfer are treated like those
|
|
* passed to resume.
|
|
*
|
|
* The two style of control passing to and from fiber (one is #resume and
|
|
* Fiber::yield, another is #transfer to and from fiber) can't be freely
|
|
* mixed.
|
|
*
|
|
* * If the Fiber's lifecycle had started with transfer, it will never
|
|
* be able to yield or be resumed control passing, only
|
|
* finish or transfer back. (It still can resume other fibers that
|
|
* are allowed to be resumed.)
|
|
* * If the Fiber's lifecycle had started with resume, it can yield
|
|
* or transfer to another Fiber, but can receive control back only
|
|
* the way compatible with the way it was given away: if it had
|
|
* transferred, it only can be transferred back, and if it had
|
|
* yielded, it only can be resumed back. After that, it again can
|
|
* transfer or yield.
|
|
*
|
|
* If those rules are broken FiberError is raised.
|
|
*
|
|
* For an individual Fiber design, yield/resume is easier to use
|
|
* (the Fiber just gives away control, it doesn't need to think
|
|
* about who the control is given to), while transfer is more flexible
|
|
* for complex cases, allowing to build arbitrary graphs of Fibers
|
|
* dependent on each other.
|
|
*
|
|
*
|
|
* Example:
|
|
*
|
|
* manager = nil # For local var to be visible inside worker block
|
|
*
|
|
* # This fiber would be started with transfer
|
|
* # It can't yield, and can't be resumed
|
|
* worker = Fiber.new { |work|
|
|
* puts "Worker: starts"
|
|
* puts "Worker: Performed #{work.inspect}, transferring back"
|
|
* # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber
|
|
* # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume)
|
|
* manager.transfer(work.capitalize)
|
|
* }
|
|
*
|
|
* # This fiber would be started with resume
|
|
* # It can yield or transfer, and can be transferred
|
|
* # back or resumed
|
|
* manager = Fiber.new {
|
|
* puts "Manager: starts"
|
|
* puts "Manager: transferring 'something' to worker"
|
|
* result = worker.transfer('something')
|
|
* puts "Manager: worker returned #{result.inspect}"
|
|
* # worker.resume # this would raise FiberError: attempt to resume a transferring fiber
|
|
* Fiber.yield # this is OK, the fiber transferred from and to, now it can yield
|
|
* puts "Manager: finished"
|
|
* }
|
|
*
|
|
* puts "Starting the manager"
|
|
* manager.resume
|
|
* puts "Resuming the manager"
|
|
* # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber
|
|
* manager.resume
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* Starting the manager
|
|
* Manager: starts
|
|
* Manager: transferring 'something' to worker
|
|
* Worker: starts
|
|
* Worker: Performed "something", transferring back
|
|
* Manager: worker returned "Something"
|
|
* Resuming the manager
|
|
* Manager: finished
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return rb_fiber_transfer_kw(self, argc, argv, rb_keyword_given_p());
|
|
}
|
|
|
|
static VALUE
|
|
fiber_transfer_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
|
|
{
|
|
if (fiber->resuming_fiber) {
|
|
rb_raise(rb_eFiberError, "attempt to transfer to a resuming fiber");
|
|
}
|
|
|
|
if (fiber->yielding) {
|
|
rb_raise(rb_eFiberError, "attempt to transfer to a yielding fiber");
|
|
}
|
|
|
|
return fiber_switch(fiber, argc, argv, kw_splat, NULL, false);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_transfer_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
|
|
{
|
|
return fiber_transfer_kw(fiber_ptr(self), argc, argv, kw_splat);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.yield(args, ...) -> obj
|
|
*
|
|
* Yields control back to the context that resumed the fiber, passing
|
|
* along any arguments that were passed to it. The fiber will resume
|
|
* processing at this point when #resume is called next.
|
|
* Any arguments passed to the next #resume will be the value that
|
|
* this Fiber.yield expression evaluates to.
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return rb_fiber_yield_kw(argc, argv, rb_keyword_given_p());
|
|
}
|
|
|
|
static VALUE
|
|
fiber_raise(rb_fiber_t *fiber, int argc, const VALUE *argv)
|
|
{
|
|
VALUE exception = rb_make_exception(argc, argv);
|
|
|
|
if (fiber->resuming_fiber) {
|
|
rb_raise(rb_eFiberError, "attempt to raise a resuming fiber");
|
|
}
|
|
else if (FIBER_SUSPENDED_P(fiber) && !fiber->yielding) {
|
|
return fiber_transfer_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
|
|
}
|
|
else {
|
|
return fiber_resume_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_raise(VALUE fiber, int argc, const VALUE *argv)
|
|
{
|
|
return fiber_raise(fiber_ptr(fiber), argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.raise -> obj
|
|
* fiber.raise(string) -> obj
|
|
* fiber.raise(exception [, string [, array]]) -> obj
|
|
*
|
|
* Raises an exception in the fiber at the point at which the last
|
|
* +Fiber.yield+ was called. If the fiber has not been started or has
|
|
* already run to completion, raises +FiberError+. If the fiber is
|
|
* yielding, it is resumed. If it is transferring, it is transferred into.
|
|
* But if it is resuming, raises +FiberError+.
|
|
*
|
|
* With no arguments, raises a +RuntimeError+. With a single +String+
|
|
* argument, raises a +RuntimeError+ with the string as a message. Otherwise,
|
|
* the first parameter should be the name of an +Exception+ class (or an
|
|
* object that returns an +Exception+ object when sent an +exception+
|
|
* message). The optional second parameter sets the message associated with
|
|
* the exception, and the third parameter is an array of callback information.
|
|
* Exceptions are caught by the +rescue+ clause of <code>begin...end</code>
|
|
* blocks.
|
|
*/
|
|
static VALUE
|
|
rb_fiber_m_raise(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return rb_fiber_raise(self, argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.current -> fiber
|
|
*
|
|
* Returns the current fiber. If you are not running in the context of
|
|
* a fiber this method will return the root fiber.
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_current(VALUE klass)
|
|
{
|
|
return rb_fiber_current();
|
|
}
|
|
|
|
static VALUE
|
|
fiber_to_s(VALUE fiber_value)
|
|
{
|
|
const rb_fiber_t *fiber = fiber_ptr(fiber_value);
|
|
const rb_proc_t *proc;
|
|
char status_info[0x20];
|
|
|
|
if (fiber->resuming_fiber) {
|
|
snprintf(status_info, 0x20, " (%s by resuming)", fiber_status_name(fiber->status));
|
|
}
|
|
else {
|
|
snprintf(status_info, 0x20, " (%s)", fiber_status_name(fiber->status));
|
|
}
|
|
|
|
if (!rb_obj_is_proc(fiber->first_proc)) {
|
|
VALUE str = rb_any_to_s(fiber_value);
|
|
strlcat(status_info, ">", sizeof(status_info));
|
|
rb_str_set_len(str, RSTRING_LEN(str)-1);
|
|
rb_str_cat_cstr(str, status_info);
|
|
return str;
|
|
}
|
|
GetProcPtr(fiber->first_proc, proc);
|
|
return rb_block_to_s(fiber_value, &proc->block, status_info);
|
|
}
|
|
|
|
#ifdef HAVE_WORKING_FORK
|
|
void
|
|
rb_fiber_atfork(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber) {
|
|
if (&th->root_fiber->cont.saved_ec != th->ec) {
|
|
th->root_fiber = th->ec->fiber_ptr;
|
|
}
|
|
th->root_fiber->prev = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RB_EXPERIMENTAL_FIBER_POOL
|
|
static void
|
|
fiber_pool_free(void *ptr)
|
|
{
|
|
struct fiber_pool * fiber_pool = ptr;
|
|
RUBY_FREE_ENTER("fiber_pool");
|
|
|
|
fiber_pool_allocation_free(fiber_pool->allocations);
|
|
ruby_xfree(fiber_pool);
|
|
|
|
RUBY_FREE_LEAVE("fiber_pool");
|
|
}
|
|
|
|
static size_t
|
|
fiber_pool_memsize(const void *ptr)
|
|
{
|
|
const struct fiber_pool * fiber_pool = ptr;
|
|
size_t size = sizeof(*fiber_pool);
|
|
|
|
size += fiber_pool->count * fiber_pool->size;
|
|
|
|
return size;
|
|
}
|
|
|
|
static const rb_data_type_t FiberPoolDataType = {
|
|
"fiber_pool",
|
|
{NULL, fiber_pool_free, fiber_pool_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE
|
|
fiber_pool_alloc(VALUE klass)
|
|
{
|
|
struct fiber_pool *fiber_pool;
|
|
|
|
return TypedData_Make_Struct(klass, struct fiber_pool, &FiberPoolDataType, fiber_pool);
|
|
}
|
|
|
|
static VALUE
|
|
rb_fiber_pool_initialize(int argc, VALUE* argv, VALUE self)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE size = Qnil, count = Qnil, vm_stack_size = Qnil;
|
|
struct fiber_pool * fiber_pool = NULL;
|
|
|
|
// Maybe these should be keyword arguments.
|
|
rb_scan_args(argc, argv, "03", &size, &count, &vm_stack_size);
|
|
|
|
if (NIL_P(size)) {
|
|
size = SIZET2NUM(th->vm->default_params.fiber_machine_stack_size);
|
|
}
|
|
|
|
if (NIL_P(count)) {
|
|
count = INT2NUM(128);
|
|
}
|
|
|
|
if (NIL_P(vm_stack_size)) {
|
|
vm_stack_size = SIZET2NUM(th->vm->default_params.fiber_vm_stack_size);
|
|
}
|
|
|
|
TypedData_Get_Struct(self, struct fiber_pool, &FiberPoolDataType, fiber_pool);
|
|
|
|
fiber_pool_initialize(fiber_pool, NUM2SIZET(size), NUM2SIZET(count), NUM2SIZET(vm_stack_size));
|
|
|
|
return self;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Document-class: FiberError
|
|
*
|
|
* Raised when an invalid operation is attempted on a Fiber, in
|
|
* particular when attempting to call/resume a dead fiber,
|
|
* attempting to yield from the root fiber, or calling a fiber across
|
|
* threads.
|
|
*
|
|
* fiber = Fiber.new{}
|
|
* fiber.resume #=> nil
|
|
* fiber.resume #=> FiberError: dead fiber called
|
|
*/
|
|
|
|
void
|
|
Init_Cont(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
size_t vm_stack_size = th->vm->default_params.fiber_vm_stack_size;
|
|
size_t machine_stack_size = th->vm->default_params.fiber_machine_stack_size;
|
|
size_t stack_size = machine_stack_size + vm_stack_size;
|
|
|
|
#ifdef _WIN32
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
pagesize = info.dwPageSize;
|
|
#else /* not WIN32 */
|
|
pagesize = sysconf(_SC_PAGESIZE);
|
|
#endif
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
|
|
fiber_pool_initialize(&shared_fiber_pool, stack_size, FIBER_POOL_INITIAL_SIZE, vm_stack_size);
|
|
|
|
fiber_initialize_keywords[0] = rb_intern_const("blocking");
|
|
fiber_initialize_keywords[1] = rb_intern_const("pool");
|
|
|
|
const char *fiber_shared_fiber_pool_free_stacks = getenv("RUBY_SHARED_FIBER_POOL_FREE_STACKS");
|
|
if (fiber_shared_fiber_pool_free_stacks) {
|
|
shared_fiber_pool.free_stacks = atoi(fiber_shared_fiber_pool_free_stacks);
|
|
}
|
|
|
|
rb_cFiber = rb_define_class("Fiber", rb_cObject);
|
|
rb_define_alloc_func(rb_cFiber, fiber_alloc);
|
|
rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
|
|
rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
|
|
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
|
|
rb_define_singleton_method(rb_cFiber, "blocking", rb_fiber_blocking, 0);
|
|
rb_define_method(rb_cFiber, "initialize", rb_fiber_initialize, -1);
|
|
rb_define_method(rb_cFiber, "blocking?", rb_fiber_blocking_p, 0);
|
|
rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
|
|
rb_define_method(rb_cFiber, "raise", rb_fiber_m_raise, -1);
|
|
rb_define_method(rb_cFiber, "backtrace", rb_fiber_backtrace, -1);
|
|
rb_define_method(rb_cFiber, "backtrace_locations", rb_fiber_backtrace_locations, -1);
|
|
rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
|
|
rb_define_alias(rb_cFiber, "inspect", "to_s");
|
|
rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
|
|
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
|
|
|
|
rb_define_singleton_method(rb_cFiber, "blocking?", rb_fiber_s_blocking_p, 0);
|
|
rb_define_singleton_method(rb_cFiber, "scheduler", rb_fiber_s_scheduler, 0);
|
|
rb_define_singleton_method(rb_cFiber, "set_scheduler", rb_fiber_set_scheduler, 1);
|
|
rb_define_singleton_method(rb_cFiber, "current_scheduler", rb_fiber_current_scheduler, 0);
|
|
|
|
rb_define_singleton_method(rb_cFiber, "schedule", rb_fiber_s_schedule, -1);
|
|
|
|
#ifdef RB_EXPERIMENTAL_FIBER_POOL
|
|
rb_cFiberPool = rb_define_class_under(rb_cFiber, "Pool", rb_cObject);
|
|
rb_define_alloc_func(rb_cFiberPool, fiber_pool_alloc);
|
|
rb_define_method(rb_cFiberPool, "initialize", rb_fiber_pool_initialize, -1);
|
|
#endif
|
|
|
|
rb_provide("fiber.so");
|
|
}
|
|
|
|
RUBY_SYMBOL_EXPORT_BEGIN
|
|
|
|
void
|
|
ruby_Init_Continuation_body(void)
|
|
{
|
|
rb_cContinuation = rb_define_class("Continuation", rb_cObject);
|
|
rb_undef_alloc_func(rb_cContinuation);
|
|
rb_undef_method(CLASS_OF(rb_cContinuation), "new");
|
|
rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
|
|
rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
|
|
rb_define_global_function("callcc", rb_callcc, 0);
|
|
}
|
|
|
|
RUBY_SYMBOL_EXPORT_END
|