mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
bdfc23cba9
2d98593bf5
made it so that
attr_accessor methods fire C method tracing events.
Previously, we weren't checking for whether we are tracing before
compiling, leading to missed events.
Since global invalidation invalidates all code, and that attr_accessor
methods can never enable tracing while running, events are only dropped
when YJIT tries to compile when tracing is already enabled.
Factor out the code for checking tracing and check it before generating
code for attr_accessor methods.
This change fixes TestSetTraceFunc#test_tracepoint_attr when it's
ran in isolation.
4732 lines
162 KiB
C
4732 lines
162 KiB
C
// This file is a fragment of the yjit.o compilation unit. See yjit.c.
|
|
#include "internal.h"
|
|
#include "gc.h"
|
|
#include "internal/compile.h"
|
|
#include "internal/class.h"
|
|
#include "internal/object.h"
|
|
#include "internal/sanitizers.h"
|
|
#include "internal/string.h"
|
|
#include "internal/variable.h"
|
|
#include "internal/re.h"
|
|
#include "probes.h"
|
|
#include "probes_helper.h"
|
|
#include "yjit.h"
|
|
#include "yjit_iface.h"
|
|
#include "yjit_core.h"
|
|
#include "yjit_codegen.h"
|
|
#include "yjit_asm.h"
|
|
|
|
// Map from YARV opcodes to code generation functions
|
|
static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL };
|
|
|
|
// Map from method entries to code generation functions
|
|
static st_table *yjit_method_codegen_table = NULL;
|
|
|
|
// Code for exiting back to the interpreter from the leave insn
|
|
static void *leave_exit_code;
|
|
|
|
// Code for full logic of returning from C method and exiting to the interpreter
|
|
static uint32_t outline_full_cfunc_return_pos;
|
|
|
|
// For implementing global code invalidation
|
|
struct codepage_patch {
|
|
uint32_t inline_patch_pos;
|
|
uint32_t outlined_target_pos;
|
|
};
|
|
|
|
typedef rb_darray(struct codepage_patch) patch_array_t;
|
|
|
|
static patch_array_t global_inval_patches = NULL;
|
|
|
|
// Print the current source location for debugging purposes
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static void
|
|
jit_print_loc(jitstate_t *jit, const char *msg)
|
|
{
|
|
char *ptr;
|
|
long len;
|
|
VALUE path = rb_iseq_path(jit->iseq);
|
|
RSTRING_GETMEM(path, ptr, len);
|
|
fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
|
|
}
|
|
|
|
// dump an object for debugging purposes
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static void
|
|
jit_obj_info_dump(codeblock_t *cb, x86opnd_t opnd) {
|
|
push_regs(cb);
|
|
mov(cb, C_ARG_REGS[0], opnd);
|
|
call_ptr(cb, REG0, (void *)rb_obj_info_dump);
|
|
pop_regs(cb);
|
|
}
|
|
|
|
// Get the current instruction's opcode
|
|
static int
|
|
jit_get_opcode(jitstate_t *jit)
|
|
{
|
|
return jit->opcode;
|
|
}
|
|
|
|
// Get the index of the next instruction
|
|
static uint32_t
|
|
jit_next_insn_idx(jitstate_t *jit)
|
|
{
|
|
return jit->insn_idx + insn_len(jit_get_opcode(jit));
|
|
}
|
|
|
|
// Get an instruction argument by index
|
|
static VALUE
|
|
jit_get_arg(jitstate_t *jit, size_t arg_idx)
|
|
{
|
|
RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
|
|
return *(jit->pc + arg_idx + 1);
|
|
}
|
|
|
|
// Load a VALUE into a register and keep track of the reference if it is on the GC heap.
|
|
static void
|
|
jit_mov_gc_ptr(jitstate_t *jit, codeblock_t *cb, x86opnd_t reg, VALUE ptr)
|
|
{
|
|
RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);
|
|
|
|
// Load the pointer constant into the specified register
|
|
mov(cb, reg, const_ptr_opnd((void*)ptr));
|
|
|
|
// The pointer immediate is encoded as the last part of the mov written out
|
|
uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);
|
|
|
|
if (!SPECIAL_CONST_P(ptr)) {
|
|
if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
|
|
rb_bug("allocation failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if we are compiling the instruction at the stub PC
|
|
// Meaning we are compiling the instruction that is next to execute
|
|
static bool
|
|
jit_at_current_insn(jitstate_t *jit)
|
|
{
|
|
const VALUE *ec_pc = jit->ec->cfp->pc;
|
|
return (ec_pc == jit->pc);
|
|
}
|
|
|
|
// Peek at the nth topmost value on the Ruby stack.
|
|
// Returns the topmost value when n == 0.
|
|
static VALUE
|
|
jit_peek_at_stack(jitstate_t *jit, ctx_t *ctx, int n)
|
|
{
|
|
RUBY_ASSERT(jit_at_current_insn(jit));
|
|
|
|
// Note: this does not account for ctx->sp_offset because
|
|
// this is only available when hitting a stub, and while
|
|
// hitting a stub, cfp->sp needs to be up to date in case
|
|
// codegen functions trigger GC. See :stub-sp-flush:.
|
|
VALUE *sp = jit->ec->cfp->sp;
|
|
|
|
return *(sp - 1 - n);
|
|
}
|
|
|
|
static VALUE
|
|
jit_peek_at_self(jitstate_t *jit, ctx_t *ctx)
|
|
{
|
|
return jit->ec->cfp->self;
|
|
}
|
|
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static VALUE
|
|
jit_peek_at_local(jitstate_t *jit, ctx_t *ctx, int n)
|
|
{
|
|
RUBY_ASSERT(jit_at_current_insn(jit));
|
|
|
|
int32_t local_table_size = jit->iseq->body->local_table_size;
|
|
RUBY_ASSERT(n < (int)jit->iseq->body->local_table_size);
|
|
|
|
const VALUE *ep = jit->ec->cfp->ep;
|
|
return ep[-VM_ENV_DATA_SIZE - local_table_size + n + 1];
|
|
}
|
|
|
|
// Save the incremented PC on the CFP
|
|
// This is necessary when calleees can raise or allocate
|
|
static void
|
|
jit_save_pc(jitstate_t *jit, x86opnd_t scratch_reg)
|
|
{
|
|
codeblock_t *cb = jit->cb;
|
|
mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode)));
|
|
mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg);
|
|
}
|
|
|
|
// Save the current SP on the CFP
|
|
// This realigns the interpreter SP with the JIT SP
|
|
// Note: this will change the current value of REG_SP,
|
|
// which could invalidate memory operands
|
|
static void
|
|
jit_save_sp(jitstate_t *jit, ctx_t *ctx)
|
|
{
|
|
if (ctx->sp_offset != 0) {
|
|
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
|
|
codeblock_t *cb = jit->cb;
|
|
lea(cb, REG_SP, stack_pointer);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
|
|
ctx->sp_offset = 0;
|
|
}
|
|
}
|
|
|
|
// jit_save_pc() + jit_save_sp(). Should be used before calling a routine that
|
|
// could:
|
|
// - Perform GC allocation
|
|
// - Take the VM lock through RB_VM_LOCK_ENTER()
|
|
// - Perform Ruby method call
|
|
static void
|
|
jit_prepare_routine_call(jitstate_t *jit, ctx_t *ctx, x86opnd_t scratch_reg)
|
|
{
|
|
jit->record_boundary_patch_point = true;
|
|
jit_save_pc(jit, scratch_reg);
|
|
jit_save_sp(jit, ctx);
|
|
}
|
|
|
|
// Record the current codeblock write position for rewriting into a jump into
|
|
// the outlined block later. Used to implement global code invalidation.
|
|
static void
|
|
record_global_inval_patch(const codeblock_t *cb, uint32_t outline_block_target_pos)
|
|
{
|
|
struct codepage_patch patch_point = { cb->write_pos, outline_block_target_pos };
|
|
if (!rb_darray_append(&global_inval_patches, patch_point)) rb_bug("allocation failed");
|
|
}
|
|
|
|
static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit);
|
|
|
|
#if YJIT_STATS
|
|
|
|
// Add a comment at the current position in the code block
|
|
static void
|
|
_add_comment(codeblock_t *cb, const char *comment_str)
|
|
{
|
|
// We can't add comments to the outlined code block
|
|
if (cb == ocb)
|
|
return;
|
|
|
|
// Avoid adding duplicate comment strings (can happen due to deferred codegen)
|
|
size_t num_comments = rb_darray_size(yjit_code_comments);
|
|
if (num_comments > 0) {
|
|
struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1);
|
|
if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str };
|
|
rb_darray_append(&yjit_code_comments, new_comment);
|
|
}
|
|
|
|
// Comments for generated machine code
|
|
#define ADD_COMMENT(cb, comment) _add_comment((cb), (comment))
|
|
|
|
// Verify the ctx's types and mappings against the compile-time stack, self,
|
|
// and locals.
|
|
static void
|
|
verify_ctx(jitstate_t *jit, ctx_t *ctx)
|
|
{
|
|
// Only able to check types when at current insn
|
|
RUBY_ASSERT(jit_at_current_insn(jit));
|
|
|
|
VALUE self_val = jit_peek_at_self(jit, ctx);
|
|
if (type_diff(yjit_type_of_value(self_val), ctx->self_type) == INT_MAX) {
|
|
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of self: %s", yjit_type_name(ctx->self_type), rb_obj_info(self_val));
|
|
}
|
|
|
|
for (int i = 0; i < ctx->stack_size && i < MAX_TEMP_TYPES; i++) {
|
|
temp_type_mapping_t learned = ctx_get_opnd_mapping(ctx, OPND_STACK(i));
|
|
VALUE val = jit_peek_at_stack(jit, ctx, i);
|
|
val_type_t detected = yjit_type_of_value(val);
|
|
|
|
if (learned.mapping.kind == TEMP_SELF) {
|
|
if (self_val != val) {
|
|
rb_bug("verify_ctx: stack value was mapped to self, but values did not match\n"
|
|
" stack: %s\n"
|
|
" self: %s",
|
|
rb_obj_info(val),
|
|
rb_obj_info(self_val));
|
|
}
|
|
}
|
|
|
|
if (learned.mapping.kind == TEMP_LOCAL) {
|
|
int local_idx = learned.mapping.idx;
|
|
VALUE local_val = jit_peek_at_local(jit, ctx, local_idx);
|
|
if (local_val != val) {
|
|
rb_bug("verify_ctx: stack value was mapped to local, but values did not match\n"
|
|
" stack: %s\n"
|
|
" local %i: %s",
|
|
rb_obj_info(val),
|
|
local_idx,
|
|
rb_obj_info(local_val));
|
|
}
|
|
}
|
|
|
|
if (type_diff(detected, learned.type) == INT_MAX) {
|
|
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value on stack: %s", yjit_type_name(learned.type), rb_obj_info(val));
|
|
}
|
|
}
|
|
|
|
int32_t local_table_size = jit->iseq->body->local_table_size;
|
|
for (int i = 0; i < local_table_size && i < MAX_TEMP_TYPES; i++) {
|
|
val_type_t learned = ctx->local_types[i];
|
|
VALUE val = jit_peek_at_local(jit, ctx, i);
|
|
val_type_t detected = yjit_type_of_value(val);
|
|
|
|
if (type_diff(detected, learned) == INT_MAX) {
|
|
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of local: %s", yjit_type_name(learned), rb_obj_info(val));
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
#define ADD_COMMENT(cb, comment) ((void)0)
|
|
#define verify_ctx(jit, ctx) ((void)0)
|
|
|
|
#endif // if YJIT_STATS
|
|
|
|
#if YJIT_STATS
|
|
|
|
// Increment a profiling counter with counter_name
|
|
#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name))
|
|
static void
|
|
_gen_counter_inc(codeblock_t *cb, int64_t *counter)
|
|
{
|
|
if (!rb_yjit_opts.gen_stats) return;
|
|
|
|
// Use REG1 because there might be return value in REG0
|
|
mov(cb, REG1, const_ptr_opnd(counter));
|
|
cb_write_lock_prefix(cb); // for ractors.
|
|
add(cb, mem_opnd(64, REG1, 0), imm_opnd(1));
|
|
}
|
|
|
|
// Increment a counter then take an existing side exit.
|
|
#define COUNTED_EXIT(side_exit, counter_name) _counted_side_exit(side_exit, &(yjit_runtime_counters . counter_name))
|
|
static uint8_t *
|
|
_counted_side_exit(uint8_t *existing_side_exit, int64_t *counter)
|
|
{
|
|
if (!rb_yjit_opts.gen_stats) return existing_side_exit;
|
|
|
|
uint8_t *start = cb_get_ptr(ocb, ocb->write_pos);
|
|
_gen_counter_inc(ocb, counter);
|
|
jmp_ptr(ocb, existing_side_exit);
|
|
return start;
|
|
}
|
|
|
|
#else
|
|
|
|
#define GEN_COUNTER_INC(cb, counter_name) ((void)0)
|
|
#define COUNTED_EXIT(side_exit, counter_name) side_exit
|
|
|
|
#endif // if YJIT_STATS
|
|
|
|
// Generate an exit to return to the interpreter
|
|
static uint32_t
|
|
yjit_gen_exit(VALUE *exit_pc, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
const uint32_t code_pos = cb->write_pos;
|
|
|
|
ADD_COMMENT(cb, "exit to interpreter");
|
|
|
|
// Generate the code to exit to the interpreters
|
|
// Write the adjusted SP back into the CFP
|
|
if (ctx->sp_offset != 0) {
|
|
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
|
|
lea(cb, REG_SP, stack_pointer);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
|
|
}
|
|
|
|
// Update CFP->PC
|
|
mov(cb, RAX, const_ptr_opnd(exit_pc));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
|
|
|
|
// Accumulate stats about interpreter exits
|
|
#if YJIT_STATS
|
|
if (rb_yjit_opts.gen_stats) {
|
|
mov(cb, RDI, const_ptr_opnd(exit_pc));
|
|
call_ptr(cb, RSI, (void *)&yjit_count_side_exit_op);
|
|
}
|
|
#endif
|
|
|
|
pop(cb, REG_SP);
|
|
pop(cb, REG_EC);
|
|
pop(cb, REG_CFP);
|
|
|
|
mov(cb, RAX, imm_opnd(Qundef));
|
|
ret(cb);
|
|
|
|
return code_pos;
|
|
}
|
|
|
|
// Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc.
|
|
static uint8_t *
|
|
yjit_gen_leave_exit(codeblock_t *cb)
|
|
{
|
|
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
|
|
|
|
// Note, gen_leave() fully reconstructs interpreter state and leaves the
|
|
// return value in RAX before coming here.
|
|
|
|
// Every exit to the interpreter should be counted
|
|
GEN_COUNTER_INC(cb, leave_interp_return);
|
|
|
|
pop(cb, REG_SP);
|
|
pop(cb, REG_EC);
|
|
pop(cb, REG_CFP);
|
|
|
|
ret(cb);
|
|
|
|
return code_ptr;
|
|
}
|
|
|
|
// :side-exit:
|
|
// Get an exit for the current instruction in the outlined block. The code
|
|
// for each instruction often begins with several guards before proceeding
|
|
// to do work. When guards fail, an option we have is to exit to the
|
|
// interpreter at an instruction boundary. The piece of code that takes
|
|
// care of reconstructing interpreter state and exiting out of generated
|
|
// code is called the side exit.
|
|
//
|
|
// No guards change the logic for reconstructing interpreter state at the
|
|
// moment, so there is one unique side exit for each context. Note that
|
|
// it's incorrect to jump to the side exit after any ctx stack push/pop operations
|
|
// since they change the logic required for reconstructing interpreter state.
|
|
static uint8_t *
|
|
yjit_side_exit(jitstate_t *jit, ctx_t *ctx)
|
|
{
|
|
if (!jit->side_exit_for_pc) {
|
|
codeblock_t *ocb = jit->ocb;
|
|
uint32_t pos = yjit_gen_exit(jit->pc, ctx, ocb);
|
|
jit->side_exit_for_pc = cb_get_ptr(ocb, pos);
|
|
}
|
|
|
|
return jit->side_exit_for_pc;
|
|
}
|
|
|
|
// Generate a runtime guard that ensures the PC is at the start of the iseq,
|
|
// otherwise take a side exit. This is to handle the situation of optional
|
|
// parameters. When a function with optional parameters is called, the entry
|
|
// PC for the method isn't necessarily 0, but we always generated code that
|
|
// assumes the entry point is 0.
|
|
static void
|
|
yjit_pc_guard(codeblock_t *cb, const rb_iseq_t *iseq)
|
|
{
|
|
RUBY_ASSERT(cb != NULL);
|
|
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, pc));
|
|
mov(cb, REG1, const_ptr_opnd(iseq->body->iseq_encoded));
|
|
xor(cb, REG0, REG1);
|
|
|
|
// xor should impact ZF, so we can jz here
|
|
uint32_t pc_is_zero = cb_new_label(cb, "pc_is_zero");
|
|
jz_label(cb, pc_is_zero);
|
|
|
|
// We're not starting at the first PC, so we need to exit.
|
|
GEN_COUNTER_INC(cb, leave_start_pc_non_zero);
|
|
|
|
pop(cb, REG_SP);
|
|
pop(cb, REG_EC);
|
|
pop(cb, REG_CFP);
|
|
|
|
mov(cb, RAX, imm_opnd(Qundef));
|
|
ret(cb);
|
|
|
|
// PC should be at the beginning
|
|
cb_write_label(cb, pc_is_zero);
|
|
cb_link_labels(cb);
|
|
}
|
|
|
|
// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event
|
|
// like the interpreter. When tracing for c_return is enabled, we patch the code after
|
|
// the C method return to call into this to fire the event.
|
|
static void
|
|
full_cfunc_return(rb_execution_context_t *ec, VALUE return_value)
|
|
{
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp);
|
|
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
|
|
|
|
RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp));
|
|
RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC);
|
|
|
|
// CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this
|
|
|
|
// Pop the C func's frame and fire the c_return TracePoint event
|
|
// Note that this is the same order as vm_call_cfunc_with_frame().
|
|
rb_vm_pop_frame(ec);
|
|
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value);
|
|
// Note, this deviates from the interpreter in that users need to enable
|
|
// a c_return TracePoint for this DTrace hook to work. A reasonable change
|
|
// since the Ruby return event works this way as well.
|
|
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
|
|
|
|
// Push return value into the caller's stack. We know that it's a frame that
|
|
// uses cfp->sp because we are patching a call done with gen_send_cfunc().
|
|
ec->cfp->sp[0] = return_value;
|
|
ec->cfp->sp++;
|
|
}
|
|
|
|
// Landing code for when c_return tracing is enabled. See full_cfunc_return().
|
|
static void
|
|
gen_full_cfunc_return(void)
|
|
{
|
|
codeblock_t *cb = ocb;
|
|
outline_full_cfunc_return_pos = ocb->write_pos;
|
|
|
|
// This chunk of code expect REG_EC to be filled properly and
|
|
// RAX to contain the return value of the C method.
|
|
|
|
// Call full_cfunc_return()
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
mov(cb, C_ARG_REGS[1], RAX);
|
|
call_ptr(cb, REG0, (void *)full_cfunc_return);
|
|
|
|
// Count the exit
|
|
GEN_COUNTER_INC(cb, traced_cfunc_return);
|
|
|
|
// Return to the interpreter
|
|
pop(cb, REG_SP);
|
|
pop(cb, REG_EC);
|
|
pop(cb, REG_CFP);
|
|
|
|
mov(cb, RAX, imm_opnd(Qundef));
|
|
ret(cb);
|
|
}
|
|
|
|
/*
|
|
Compile an interpreter entry block to be inserted into an iseq
|
|
Returns `NULL` if compilation fails.
|
|
*/
|
|
static uint8_t *
|
|
yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq)
|
|
{
|
|
RUBY_ASSERT(cb != NULL);
|
|
|
|
if (cb->write_pos + 1024 >= cb->mem_size) {
|
|
rb_bug("out of executable memory");
|
|
}
|
|
|
|
// Align the current write positon to cache line boundaries
|
|
cb_align_pos(cb, 64);
|
|
|
|
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
|
|
ADD_COMMENT(cb, "yjit prolog");
|
|
|
|
push(cb, REG_CFP);
|
|
push(cb, REG_EC);
|
|
push(cb, REG_SP);
|
|
|
|
// We are passed EC and CFP
|
|
mov(cb, REG_EC, C_ARG_REGS[0]);
|
|
mov(cb, REG_CFP, C_ARG_REGS[1]);
|
|
|
|
// Load the current SP from the CFP into REG_SP
|
|
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
|
|
|
|
// Setup cfp->jit_return
|
|
// TODO: this could use an IP relative LEA instead of an 8 byte immediate
|
|
mov(cb, REG0, const_ptr_opnd(leave_exit_code));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
|
|
|
|
// We're compiling iseqs that we *expect* to start at `insn_idx`. But in
|
|
// the case of optional parameters, the interpreter can set the pc to a
|
|
// different location depending on the optional parameters. If an iseq
|
|
// has optional parameters, we'll add a runtime check that the PC we've
|
|
// compiled for is the same PC that the interpreter wants us to run with.
|
|
// If they don't match, then we'll take a side exit.
|
|
if (iseq->body->param.flags.has_opt) {
|
|
yjit_pc_guard(cb, iseq);
|
|
}
|
|
|
|
return code_ptr;
|
|
}
|
|
|
|
// Generate code to check for interrupts and take a side-exit.
|
|
// Warning: this function clobbers REG0
|
|
static void
|
|
yjit_check_ints(codeblock_t *cb, uint8_t *side_exit)
|
|
{
|
|
// Check for interrupts
|
|
// see RUBY_VM_CHECK_INTS(ec) macro
|
|
ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)");
|
|
mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
|
|
not(cb, REG0_32);
|
|
test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
|
|
jnz_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Generate a stubbed unconditional jump to the next bytecode instruction.
|
|
// Blocks that are part of a guard chain can use this to share the same successor.
|
|
static void
|
|
jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context)
|
|
{
|
|
// Reset the depth since in current usages we only ever jump to to
|
|
// chain_depth > 0 from the same instruction.
|
|
ctx_t reset_depth = *current_context;
|
|
reset_depth.chain_depth = 0;
|
|
|
|
blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) };
|
|
|
|
// We are at the end of the current instruction. Record the boundary.
|
|
if (jit->record_boundary_patch_point) {
|
|
uint32_t exit_pos = yjit_gen_exit(jit->pc + insn_len(jit->opcode), &reset_depth, ocb);
|
|
record_global_inval_patch(cb, exit_pos);
|
|
jit->record_boundary_patch_point = false;
|
|
}
|
|
|
|
// Generate the jump instruction
|
|
gen_direct_jump(
|
|
jit,
|
|
&reset_depth,
|
|
jump_block
|
|
);
|
|
}
|
|
|
|
// Compile a sequence of bytecode instructions for a given basic block version
|
|
static void
|
|
yjit_gen_block(block_t *block, rb_execution_context_t *ec)
|
|
{
|
|
RUBY_ASSERT(cb != NULL);
|
|
RUBY_ASSERT(block != NULL);
|
|
RUBY_ASSERT(!(block->blockid.idx == 0 && block->ctx.stack_size > 0));
|
|
|
|
// Copy the block's context to avoid mutating it
|
|
ctx_t ctx_copy = block->ctx;
|
|
ctx_t *ctx = &ctx_copy;
|
|
|
|
const rb_iseq_t *iseq = block->blockid.iseq;
|
|
uint32_t insn_idx = block->blockid.idx;
|
|
const uint32_t starting_insn_idx = insn_idx;
|
|
|
|
// NOTE: if we are ever deployed in production, we
|
|
// should probably just log an error and return NULL here,
|
|
// so we can fail more gracefully
|
|
if (cb->write_pos + 1024 >= cb->mem_size) {
|
|
rb_bug("out of executable memory");
|
|
}
|
|
if (ocb->write_pos + 1024 >= ocb->mem_size) {
|
|
rb_bug("out of executable memory (outlined block)");
|
|
}
|
|
|
|
// Initialize a JIT state object
|
|
jitstate_t jit = {
|
|
.cb = cb,
|
|
.ocb = ocb,
|
|
.block = block,
|
|
.iseq = iseq,
|
|
.ec = ec
|
|
};
|
|
|
|
// Mark the start position of the block
|
|
block->start_pos = cb->write_pos;
|
|
|
|
// For each instruction to compile
|
|
for (;;) {
|
|
// Get the current pc and opcode
|
|
VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx);
|
|
int opcode = yjit_opcode_at_pc(iseq, pc);
|
|
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
|
|
|
|
// opt_getinlinecache wants to be in a block all on its own. Cut the block short
|
|
// if we run into it. See gen_opt_getinlinecache for details.
|
|
if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) {
|
|
jit_jump_to_next_insn(&jit, ctx);
|
|
break;
|
|
}
|
|
|
|
// Set the current instruction
|
|
jit.insn_idx = insn_idx;
|
|
jit.opcode = opcode;
|
|
jit.pc = pc;
|
|
jit.side_exit_for_pc = NULL;
|
|
|
|
// If previous instruction requested to record the boundary
|
|
if (jit.record_boundary_patch_point) {
|
|
// Generate an exit to this instruction and record it
|
|
uint32_t exit_pos = yjit_gen_exit(jit.pc, ctx, ocb);
|
|
record_global_inval_patch(cb, exit_pos);
|
|
jit.record_boundary_patch_point = false;
|
|
}
|
|
|
|
// Verify our existing assumption (DEBUG)
|
|
if (jit_at_current_insn(&jit)) {
|
|
verify_ctx(&jit, ctx);
|
|
}
|
|
|
|
// Lookup the codegen function for this instruction
|
|
codegen_fn gen_fn = gen_fns[opcode];
|
|
if (!gen_fn) {
|
|
// If we reach an unknown instruction,
|
|
// exit to the interpreter and stop compiling
|
|
yjit_gen_exit(jit.pc, ctx, cb);
|
|
break;
|
|
}
|
|
|
|
if (0) {
|
|
fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
|
|
print_str(cb, insn_name(opcode));
|
|
}
|
|
|
|
// :count-placement:
|
|
// Count bytecode instructions that execute in generated code.
|
|
// Note that the increment happens even when the output takes side exit.
|
|
GEN_COUNTER_INC(cb, exec_instruction);
|
|
|
|
// Add a comment for the name of the YARV instruction
|
|
ADD_COMMENT(cb, insn_name(opcode));
|
|
|
|
// Call the code generation function
|
|
codegen_status_t status = gen_fn(&jit, ctx, cb);
|
|
|
|
// For now, reset the chain depth after each instruction as only the
|
|
// first instruction in the block can concern itself with the depth.
|
|
ctx->chain_depth = 0;
|
|
|
|
// If we can't compile this instruction
|
|
// exit to the interpreter and stop compiling
|
|
if (status == YJIT_CANT_COMPILE) {
|
|
// TODO: if the codegen function makes changes to ctx and then return YJIT_CANT_COMPILE,
|
|
// the exit this generates would be wrong. We could save a copy of the entry context
|
|
// and assert that ctx is the same here.
|
|
yjit_gen_exit(jit.pc, ctx, cb);
|
|
break;
|
|
}
|
|
|
|
// Move to the next instruction to compile
|
|
insn_idx += insn_len(opcode);
|
|
|
|
// If the instruction terminates this block
|
|
if (status == YJIT_END_BLOCK) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Mark the end position of the block
|
|
block->end_pos = cb->write_pos;
|
|
|
|
// Store the index of the last instruction in the block
|
|
block->end_idx = insn_idx;
|
|
|
|
// We currently can't handle cases where the request is for a block that
|
|
// doesn't go to the next instruction.
|
|
RUBY_ASSERT(!jit.record_boundary_patch_point);
|
|
|
|
if (YJIT_DUMP_MODE >= 2) {
|
|
// Dump list of compiled instrutions
|
|
fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
|
|
for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) {
|
|
int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx));
|
|
fprintf(stderr, " %04d %s\n", idx, insn_name(opcode));
|
|
idx += insn_len(opcode);
|
|
}
|
|
}
|
|
}
|
|
|
|
static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb);
|
|
|
|
static codegen_status_t
|
|
gen_nop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Do nothing
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_dup(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Get the top value and its type
|
|
x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
|
|
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
|
|
|
|
// Push the same value on top
|
|
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
|
|
mov(cb, REG0, dup_val);
|
|
mov(cb, loc0, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// duplicate stack top n elements
|
|
static codegen_status_t
|
|
gen_dupn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
// In practice, seems to be only used for n==2
|
|
if (n != 2) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1);
|
|
x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0);
|
|
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(1));
|
|
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
|
|
|
|
x86opnd_t dst1 = ctx_stack_push_mapping(ctx, mapping1);
|
|
mov(cb, REG0, opnd1);
|
|
mov(cb, dst1, REG0);
|
|
|
|
x86opnd_t dst0 = ctx_stack_push_mapping(ctx, mapping0);
|
|
mov(cb, REG0, opnd0);
|
|
mov(cb, dst0, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static void
|
|
stack_swap(ctx_t *ctx, codeblock_t *cb, int offset0, int offset1, x86opnd_t reg0, x86opnd_t reg1)
|
|
{
|
|
x86opnd_t opnd0 = ctx_stack_opnd(ctx, offset0);
|
|
x86opnd_t opnd1 = ctx_stack_opnd(ctx, offset1);
|
|
|
|
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset0));
|
|
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset1));
|
|
|
|
mov(cb, reg0, opnd0);
|
|
mov(cb, reg1, opnd1);
|
|
mov(cb, opnd0, reg1);
|
|
mov(cb, opnd1, reg0);
|
|
|
|
ctx_set_opnd_mapping(ctx, OPND_STACK(offset0), mapping1);
|
|
ctx_set_opnd_mapping(ctx, OPND_STACK(offset1), mapping0);
|
|
}
|
|
|
|
// Swap top 2 stack entries
|
|
static codegen_status_t
|
|
gen_swap(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
stack_swap(ctx , cb, 0, 1, REG0, REG1);
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// set Nth stack entry to stack top
|
|
static codegen_status_t
|
|
gen_setn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
// Set the destination
|
|
x86opnd_t top_val = ctx_stack_pop(ctx, 0);
|
|
x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n);
|
|
mov(cb, REG0, top_val);
|
|
mov(cb, dst_opnd, REG0);
|
|
|
|
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
|
|
ctx_set_opnd_mapping(ctx, OPND_STACK(n), mapping);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// get nth stack value, then push it
|
|
static codegen_status_t
|
|
gen_topn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t n = (int32_t)jit_get_arg(jit, 0);
|
|
|
|
// Get top n type / operand
|
|
x86opnd_t top_n_val = ctx_stack_opnd(ctx, n);
|
|
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(n));
|
|
|
|
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
|
|
mov(cb, REG0, top_n_val);
|
|
mov(cb, loc0, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_pop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Decrement SP
|
|
ctx_stack_pop(ctx, 1);
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// Pop n values off the stack
|
|
static codegen_status_t
|
|
gen_adjuststack(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
ctx_stack_pop(ctx, n);
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// new array initialized from top N values
|
|
static codegen_status_t
|
|
gen_newarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because we are allocating
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));
|
|
|
|
// call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
mov(cb, C_ARG_REGS[1], imm_opnd(n));
|
|
lea(cb, C_ARG_REGS[2], values_ptr);
|
|
call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values);
|
|
|
|
ctx_stack_pop(ctx, n);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// dup array
|
|
static codegen_status_t
|
|
gen_duparray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
VALUE ary = jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because we are allocating
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// call rb_ary_resurrect(VALUE ary);
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary);
|
|
call_ptr(cb, REG0, (void *)rb_ary_resurrect);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
VALUE rb_vm_splat_array(VALUE flag, VALUE ary);
|
|
|
|
// call to_a on the array on the stack
|
|
static codegen_status_t
|
|
gen_splatarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
VALUE flag = (VALUE) jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because the callee may allocate
|
|
// Note that this modifies REG_SP, which is why we do it first
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t ary_opnd = ctx_stack_pop(ctx, 1);
|
|
|
|
// Call rb_vm_splat_array(flag, ary)
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], flag);
|
|
mov(cb, C_ARG_REGS[1], ary_opnd);
|
|
call_ptr(cb, REG1, (void *) rb_vm_splat_array);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// new range initialized from top 2 values
|
|
static codegen_status_t
|
|
gen_newrange(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t flag = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
// rb_range_new() allocates and can raise
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// val = rb_range_new(low, high, (int)flag);
|
|
mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, 1));
|
|
mov(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, 0));
|
|
mov(cb, C_ARG_REGS[2], imm_opnd(flag));
|
|
call_ptr(cb, REG0, (void *)rb_range_new);
|
|
|
|
ctx_stack_pop(ctx, 2);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static void
|
|
guard_object_is_heap(codeblock_t *cb, x86opnd_t object_opnd, ctx_t *ctx, uint8_t *side_exit)
|
|
{
|
|
ADD_COMMENT(cb, "guard object is heap");
|
|
|
|
// Test that the object is not an immediate
|
|
test(cb, object_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Test that the object is not false or nil
|
|
cmp(cb, object_opnd, imm_opnd(Qnil));
|
|
RUBY_ASSERT(Qfalse < Qnil);
|
|
jbe_ptr(cb, side_exit);
|
|
}
|
|
|
|
static inline void
|
|
guard_object_is_array(codeblock_t *cb, x86opnd_t object_opnd, x86opnd_t flags_opnd, ctx_t *ctx, uint8_t *side_exit)
|
|
{
|
|
ADD_COMMENT(cb, "guard object is array");
|
|
|
|
// Pull out the type mask
|
|
mov(cb, flags_opnd, member_opnd(object_opnd, struct RBasic, flags));
|
|
and(cb, flags_opnd, imm_opnd(RUBY_T_MASK));
|
|
|
|
// Compare the result with T_ARRAY
|
|
cmp(cb, flags_opnd, imm_opnd(T_ARRAY));
|
|
jne_ptr(cb, side_exit);
|
|
}
|
|
|
|
// push enough nils onto the stack to fill out an array
|
|
static codegen_status_t
|
|
gen_expandarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int flag = (int) jit_get_arg(jit, 1);
|
|
|
|
// If this instruction has the splat flag, then bail out.
|
|
if (flag & 0x01) {
|
|
GEN_COUNTER_INC(cb, expandarray_splat);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// If this instruction has the postarg flag, then bail out.
|
|
if (flag & 0x02) {
|
|
GEN_COUNTER_INC(cb, expandarray_postarg);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// num is the number of requested values. If there aren't enough in the
|
|
// array then we're going to push on nils.
|
|
int num = (int)jit_get_arg(jit, 0);
|
|
val_type_t array_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
|
|
x86opnd_t array_opnd = ctx_stack_pop(ctx, 1);
|
|
|
|
if (array_type.type == ETYPE_NIL) {
|
|
// special case for a, b = nil pattern
|
|
// push N nils onto the stack
|
|
for (int i = 0; i < num; i++) {
|
|
x86opnd_t push = ctx_stack_push(ctx, TYPE_NIL);
|
|
mov(cb, push, imm_opnd(Qnil));
|
|
}
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// Move the array from the stack into REG0 and check that it's an array.
|
|
mov(cb, REG0, array_opnd);
|
|
guard_object_is_heap(cb, REG0, ctx, COUNTED_EXIT(side_exit, expandarray_not_array));
|
|
guard_object_is_array(cb, REG0, REG1, ctx, COUNTED_EXIT(side_exit, expandarray_not_array));
|
|
|
|
// If we don't actually want any values, then just return.
|
|
if (num == 0) {
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// Pull out the embed flag to check if it's an embedded array.
|
|
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
|
|
mov(cb, REG1, flags_opnd);
|
|
|
|
// Move the length of the embedded array into REG1.
|
|
and(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_MASK));
|
|
shr(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_SHIFT));
|
|
|
|
// Conditionally move the length of the heap array into REG1.
|
|
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
|
|
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.len));
|
|
|
|
// Only handle the case where the number of values in the array is greater
|
|
// than or equal to the number of values requested.
|
|
cmp(cb, REG1, imm_opnd(num));
|
|
jl_ptr(cb, COUNTED_EXIT(side_exit, expandarray_rhs_too_small));
|
|
|
|
// Load the address of the embedded array into REG1.
|
|
// (struct RArray *)(obj)->as.ary
|
|
lea(cb, REG1, member_opnd(REG0, struct RArray, as.ary));
|
|
|
|
// Conditionally load the address of the heap array into REG1.
|
|
// (struct RArray *)(obj)->as.heap.ptr
|
|
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
|
|
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.ptr));
|
|
|
|
// Loop backward through the array and push each element onto the stack.
|
|
for (int32_t i = (int32_t) num - 1; i >= 0; i--) {
|
|
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, REG0, mem_opnd(64, REG1, i * SIZEOF_VALUE));
|
|
mov(cb, top, REG0);
|
|
}
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// new hash initialized from top N values
|
|
static codegen_status_t
|
|
gen_newhash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
if (n == 0) {
|
|
// Save the PC and SP because we are allocating
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// val = rb_hash_new();
|
|
call_ptr(cb, REG0, (void *)rb_hash_new);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Write constant at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_NIL);
|
|
mov(cb, stack_top, imm_opnd(Qnil));
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
VALUE arg = jit_get_arg(jit, 0);
|
|
|
|
if (FIXNUM_P(arg))
|
|
{
|
|
// Keep track of the fixnum type tag
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
x86opnd_t imm = imm_opnd((int64_t)arg);
|
|
|
|
// 64-bit immediates can't be directly written to memory
|
|
if (imm.num_bits <= 32)
|
|
{
|
|
mov(cb, stack_top, imm);
|
|
}
|
|
else
|
|
{
|
|
mov(cb, REG0, imm);
|
|
mov(cb, stack_top, REG0);
|
|
}
|
|
}
|
|
else if (arg == Qtrue || arg == Qfalse)
|
|
{
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_IMM);
|
|
mov(cb, stack_top, imm_opnd((int64_t)arg));
|
|
}
|
|
else
|
|
{
|
|
// Load the value to push into REG0
|
|
// Note that this value may get moved by the GC
|
|
VALUE put_val = jit_get_arg(jit, 0);
|
|
jit_mov_gc_ptr(jit, cb, REG0, put_val);
|
|
|
|
val_type_t val_type = yjit_type_of_value(put_val);
|
|
|
|
// Write argument at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, val_type);
|
|
mov(cb, stack_top, REG0);
|
|
}
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putstring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
VALUE put_val = jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because the callee will allocate
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], put_val);
|
|
call_ptr(cb, REG0, (void *)rb_ec_str_resurrect);
|
|
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_STRING);
|
|
mov(cb, stack_top, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putobject_int2fix(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int opcode = jit_get_opcode(jit);
|
|
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
|
|
|
|
// Write constant at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putself(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Load self from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
// Write it on the stack
|
|
x86opnd_t stack_top = ctx_stack_push_self(ctx);
|
|
mov(cb, stack_top, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_putspecialobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
enum vm_special_object_type type = (enum vm_special_object_type)jit_get_arg(jit, 0);
|
|
|
|
if (type == VM_SPECIAL_OBJECT_VMCORE) {
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_HEAP);
|
|
jit_mov_gc_ptr(jit, cb, REG0, rb_mRubyVMFrozenCore);
|
|
mov(cb, stack_top, REG0);
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// TODO: implement for VM_SPECIAL_OBJECT_CBASE and
|
|
// VM_SPECIAL_OBJECT_CONST_BASE
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
|
|
// Get EP at level from CFP
|
|
static void
|
|
gen_get_ep(codeblock_t *cb, x86opnd_t reg, uint32_t level)
|
|
{
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, reg, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
while (level--) {
|
|
// Get the previous EP from the current EP
|
|
// See GET_PREV_EP(ep) macro
|
|
// VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
|
|
mov(cb, reg, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
|
|
and(cb, reg, imm_opnd(~0x03));
|
|
}
|
|
}
|
|
|
|
// Compute the index of a local variable from its slot index
|
|
static uint32_t
|
|
slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx)
|
|
{
|
|
// Convoluted rules from local_var_name() in iseq.c
|
|
int32_t local_table_size = iseq->body->local_table_size;
|
|
int32_t op = slot_idx - VM_ENV_DATA_SIZE;
|
|
int32_t local_idx = local_idx = local_table_size - op - 1;
|
|
RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size);
|
|
return (uint32_t)local_idx;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Compute the offset from BP to the local
|
|
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
|
|
const int32_t offs = -(SIZEOF_VALUE * slot_idx);
|
|
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);
|
|
|
|
// Load environment pointer EP (level 0) from CFP
|
|
gen_get_ep(cb, REG0, 0);
|
|
|
|
// Load the local from the EP
|
|
mov(cb, REG0, mem_opnd(64, REG0, offs));
|
|
|
|
// Write the local at SP
|
|
x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx);
|
|
mov(cb, stack_top, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getlocal_generic(ctx_t *ctx, uint32_t local_idx, uint32_t level)
|
|
{
|
|
gen_get_ep(cb, REG0, level);
|
|
|
|
// Load the local from the block
|
|
// val = *(vm_get_ep(GET_EP(), level) - idx);
|
|
const int32_t offs = -(SIZEOF_VALUE * local_idx);
|
|
mov(cb, REG0, mem_opnd(64, REG0, offs));
|
|
|
|
// Write the local at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_top, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t idx = (int32_t)jit_get_arg(jit, 0);
|
|
int32_t level = (int32_t)jit_get_arg(jit, 1);
|
|
return gen_getlocal_generic(ctx, idx, level);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t idx = (int32_t)jit_get_arg(jit, 0);
|
|
return gen_getlocal_generic(ctx, idx, 1);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_setlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
/*
|
|
vm_env_write(const VALUE *ep, int index, VALUE v)
|
|
{
|
|
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
|
|
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
|
|
VM_STACK_ENV_WRITE(ep, index, v);
|
|
}
|
|
else {
|
|
vm_env_write_slowpath(ep, index, v);
|
|
}
|
|
}
|
|
*/
|
|
|
|
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
|
|
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);
|
|
|
|
// Load environment pointer EP (level 0) from CFP
|
|
gen_get_ep(cb, REG0, 0);
|
|
|
|
// flags & VM_ENV_FLAG_WB_REQUIRED
|
|
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
|
|
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Set the type of the local variable in the context
|
|
val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
|
|
ctx_set_local_type(ctx, local_idx, temp_type);
|
|
|
|
// Pop the value to write from the stack
|
|
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG1, stack_top);
|
|
|
|
// Write the value at the environment pointer
|
|
const int32_t offs = -8 * slot_idx;
|
|
mov(cb, mem_opnd(64, REG0, offs), REG1);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_setlocal_generic(jitstate_t *jit, ctx_t *ctx, uint32_t local_idx, uint32_t level)
|
|
{
|
|
// Load environment pointer EP at level
|
|
gen_get_ep(cb, REG0, level);
|
|
|
|
// flags & VM_ENV_FLAG_WB_REQUIRED
|
|
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
|
|
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Pop the value to write from the stack
|
|
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG1, stack_top);
|
|
|
|
// Write the value at the environment pointer
|
|
const int32_t offs = -(SIZEOF_VALUE * local_idx);
|
|
mov(cb, mem_opnd(64, REG0, offs), REG1);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_setlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t idx = (int32_t)jit_get_arg(jit, 0);
|
|
int32_t level = (int32_t)jit_get_arg(jit, 1);
|
|
return gen_setlocal_generic(jit, ctx, idx, level);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_setlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t idx = (int32_t)jit_get_arg(jit, 0);
|
|
return gen_setlocal_generic(jit, ctx, idx, 1);
|
|
}
|
|
|
|
// Check that `self` is a pointer to an object on the GC heap
|
|
static void
|
|
guard_self_is_heap(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
|
|
{
|
|
|
|
// `self` is constant throughout the entire region, so we only need to do this check once.
|
|
if (!ctx->self_type.is_heap) {
|
|
ADD_COMMENT(cb, "guard self is heap");
|
|
RUBY_ASSERT(Qfalse < Qnil);
|
|
test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, self_opnd, imm_opnd(Qnil));
|
|
jbe_ptr(cb, side_exit);
|
|
|
|
ctx->self_type.is_heap = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
case SHAPE_NEXT1:
|
|
RUBY_ASSERT(false);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jnz_ptr(cb, target0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
case SHAPE_NEXT1:
|
|
RUBY_ASSERT(false);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jz_ptr(cb, target0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
case SHAPE_NEXT1:
|
|
RUBY_ASSERT(false);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jbe_ptr(cb, target0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
enum jcc_kinds {
|
|
JCC_JNE,
|
|
JCC_JNZ,
|
|
JCC_JZ,
|
|
JCC_JE,
|
|
JCC_JBE,
|
|
JCC_JNA,
|
|
};
|
|
|
|
// Generate a jump to a stub that recompiles the current YARV instruction on failure.
|
|
// When depth_limitk is exceeded, generate a jump to a side exit.
|
|
static void
|
|
jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit)
|
|
{
|
|
branchgen_fn target0_gen_fn;
|
|
|
|
switch (jcc) {
|
|
case JCC_JNE:
|
|
case JCC_JNZ:
|
|
target0_gen_fn = gen_jnz_to_target0;
|
|
break;
|
|
case JCC_JZ:
|
|
case JCC_JE:
|
|
target0_gen_fn = gen_jz_to_target0;
|
|
break;
|
|
case JCC_JBE:
|
|
case JCC_JNA:
|
|
target0_gen_fn = gen_jbe_to_target0;
|
|
break;
|
|
default:
|
|
rb_bug("yjit: unimplemented jump kind");
|
|
break;
|
|
};
|
|
|
|
if (ctx->chain_depth < depth_limit) {
|
|
ctx_t deeper = *ctx;
|
|
deeper.chain_depth++;
|
|
|
|
gen_branch(
|
|
jit,
|
|
ctx,
|
|
(blockid_t) { jit->iseq, jit->insn_idx },
|
|
&deeper,
|
|
BLOCKID_NULL,
|
|
NULL,
|
|
target0_gen_fn
|
|
);
|
|
}
|
|
else {
|
|
target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT);
|
|
}
|
|
}
|
|
|
|
enum {
|
|
GETIVAR_MAX_DEPTH = 10, // up to 5 different classes, and embedded or not for each
|
|
OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays
|
|
SEND_MAX_DEPTH = 5, // up to 5 different classes
|
|
};
|
|
|
|
VALUE rb_vm_set_ivar_idx(VALUE obj, uint32_t idx, VALUE val);
|
|
|
|
// Codegen for setting an instance variable.
|
|
// Preconditions:
|
|
// - receiver is in REG0
|
|
// - receiver has the same class as CLASS_OF(comptime_receiver)
|
|
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
|
|
static codegen_status_t
|
|
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, VALUE recv, VALUE klass, ID ivar_name)
|
|
{
|
|
// Save the PC and SP because the callee may allocate
|
|
// Note that this modifies REG_SP, which is why we do it first
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
|
|
|
|
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(recv, ivar_name);
|
|
|
|
// Call rb_vm_set_ivar_idx with the receiver, the index of the ivar, and the value
|
|
mov(cb, C_ARG_REGS[0], recv_opnd);
|
|
mov(cb, C_ARG_REGS[1], imm_opnd(ivar_index));
|
|
mov(cb, C_ARG_REGS[2], val_opnd);
|
|
call_ptr(cb, REG0, (void *)rb_vm_set_ivar_idx);
|
|
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, out_opnd, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// Codegen for getting an instance variable.
|
|
// Preconditions:
|
|
// - receiver is in REG0
|
|
// - receiver has the same class as CLASS_OF(comptime_receiver)
|
|
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
|
|
static codegen_status_t
|
|
gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
|
|
{
|
|
VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
|
|
const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard
|
|
|
|
// If the class uses the default allocator, instances should all be T_OBJECT
|
|
// NOTE: This assumes nobody changes the allocator of the class after allocation.
|
|
// Eventually, we can encode whether an object is T_OBJECT or not
|
|
// inside object shapes.
|
|
if (!RB_TYPE_P(comptime_receiver, T_OBJECT) ||
|
|
rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
|
|
// General case. Call rb_ivar_get().
|
|
// VALUE rb_ivar_get(VALUE obj, ID id)
|
|
ADD_COMMENT(cb, "call rb_ivar_get()");
|
|
|
|
// The function could raise exceptions.
|
|
jit_prepare_routine_call(jit, ctx, REG1);
|
|
|
|
mov(cb, C_ARG_REGS[0], REG0);
|
|
mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name));
|
|
call_ptr(cb, REG1, (void *)rb_ivar_get);
|
|
|
|
if (!reg0_opnd.is_self) {
|
|
(void)ctx_stack_pop(ctx, 1);
|
|
}
|
|
// Push the ivar on the stack
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, out_opnd, RAX);
|
|
|
|
// Jump to next instruction. This allows guard chains to share the same successor.
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
/*
|
|
// FIXME:
|
|
// This check was added because of a failure in a test involving the
|
|
// Nokogiri Document class where we see a T_DATA that still has the default
|
|
// allocator.
|
|
// Aaron Patterson argues that this is a bug in the C extension, because
|
|
// people could call .allocate() on the class and still get a T_OBJECT
|
|
// For now I added an extra dynamic check that the receiver is T_OBJECT
|
|
// so we can safely pass all the tests in Shopify Core.
|
|
//
|
|
// Guard that the receiver is T_OBJECT
|
|
// #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK)
|
|
ADD_COMMENT(cb, "guard receiver is T_OBJECT");
|
|
mov(cb, REG1, member_opnd(REG0, struct RBasic, flags));
|
|
and(cb, REG1, imm_opnd(RUBY_T_MASK));
|
|
cmp(cb, REG1, imm_opnd(T_OBJECT));
|
|
jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit);
|
|
*/
|
|
|
|
// FIXME: Mapping the index could fail when there is too many ivar names. If we're
|
|
// compiling for a branch stub that can cause the exception to be thrown from the
|
|
// wrong PC.
|
|
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(comptime_receiver, ivar_name);
|
|
|
|
// Pop receiver if it's on the temp stack
|
|
if (!reg0_opnd.is_self) {
|
|
(void)ctx_stack_pop(ctx, 1);
|
|
}
|
|
|
|
// Compile time self is embedded and the ivar index lands within the object
|
|
if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
|
|
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
|
|
|
|
// Guard that self is embedded
|
|
// TODO: BT and JC is shorter
|
|
ADD_COMMENT(cb, "guard embedded getivar");
|
|
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
|
|
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
|
|
jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, side_exit);
|
|
|
|
// Load the variable
|
|
x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
|
|
mov(cb, REG1, ivar_opnd);
|
|
|
|
// Guard that the variable is not Qundef
|
|
cmp(cb, REG1, imm_opnd(Qundef));
|
|
mov(cb, REG0, imm_opnd(Qnil));
|
|
cmove(cb, REG1, REG0);
|
|
|
|
// Push the ivar on the stack
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, out_opnd, REG1);
|
|
}
|
|
else {
|
|
// Compile time value is *not* embeded.
|
|
|
|
// Guard that value is *not* embedded
|
|
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
|
|
ADD_COMMENT(cb, "guard extended getivar");
|
|
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
|
|
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
|
|
jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, side_exit);
|
|
|
|
// check that the extended table is big enough
|
|
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
|
|
// Check that the slot is inside the extended table (num_slots > index)
|
|
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
|
|
cmp(cb, num_slots, imm_opnd(ivar_index));
|
|
jle_ptr(cb, COUNTED_EXIT(side_exit, getivar_idx_out_of_range));
|
|
}
|
|
|
|
// Get a pointer to the extended table
|
|
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
|
|
mov(cb, REG0, tbl_opnd);
|
|
|
|
// Read the ivar from the extended table
|
|
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
|
|
mov(cb, REG0, ivar_opnd);
|
|
|
|
// Check that the ivar is not Qundef
|
|
cmp(cb, REG0, imm_opnd(Qundef));
|
|
mov(cb, REG1, imm_opnd(Qnil));
|
|
cmove(cb, REG0, REG1);
|
|
|
|
// Push the ivar on the stack
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, out_opnd, REG0);
|
|
}
|
|
|
|
// Jump to next instruction. This allows guard chains to share the same successor.
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
ID ivar_name = (ID)jit_get_arg(jit, 0);
|
|
|
|
VALUE comptime_val = jit_peek_at_self(jit, ctx);
|
|
VALUE comptime_val_klass = CLASS_OF(comptime_val);
|
|
|
|
// Generate a side exit
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Guard that the receiver has the same class as the one from compile time.
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, getivar_se_self_not_heap), ctx);
|
|
|
|
jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit);
|
|
|
|
return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
|
|
}
|
|
|
|
void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic);
|
|
|
|
static codegen_status_t
|
|
gen_setinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
ID id = (ID)jit_get_arg(jit, 0);
|
|
IVC ic = (IVC)jit_get_arg(jit, 1);
|
|
|
|
// Save the PC and SP because the callee may allocate
|
|
// Note that this modifies REG_SP, which is why we do it first
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
|
|
// Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
|
|
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
mov(cb, C_ARG_REGS[3], val_opnd);
|
|
mov(cb, C_ARG_REGS[2], imm_opnd(id));
|
|
mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic));
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq);
|
|
call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v);
|
|
|
|
static codegen_status_t
|
|
gen_defined(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0);
|
|
VALUE obj = (VALUE)jit_get_arg(jit, 1);
|
|
VALUE pushval = (VALUE)jit_get_arg(jit, 2);
|
|
|
|
// Save the PC and SP because the callee may allocate
|
|
// Note that this modifies REG_SP, which is why we do it first
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t v_opnd = ctx_stack_pop(ctx, 1);
|
|
|
|
// Call vm_defined(ec, reg_cfp, op_type, obj, v)
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
mov(cb, C_ARG_REGS[1], REG_CFP);
|
|
mov(cb, C_ARG_REGS[2], imm_opnd(op_type));
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj);
|
|
mov(cb, C_ARG_REGS[4], v_opnd);
|
|
call_ptr(cb, REG0, (void *)rb_vm_defined);
|
|
|
|
// if (vm_defined(ec, GET_CFP(), op_type, obj, v)) {
|
|
// val = pushval;
|
|
// }
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval);
|
|
cmp(cb, AL, imm_opnd(0));
|
|
mov(cb, RAX, imm_opnd(Qnil));
|
|
cmovnz(cb, RAX, REG1);
|
|
|
|
// Push the return value onto the stack
|
|
val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN;
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, out_type);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_checktype(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0);
|
|
// Only three types are emitted by compile.c
|
|
if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) {
|
|
val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
|
|
x86opnd_t val = ctx_stack_pop(ctx, 1);
|
|
|
|
x86opnd_t stack_ret;
|
|
|
|
// Check if we know from type information
|
|
if ((type_val == T_STRING && val_type.type == ETYPE_STRING) ||
|
|
(type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) ||
|
|
(type_val == T_HASH && val_type.type == ETYPE_HASH)) {
|
|
// guaranteed type match
|
|
stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
|
|
mov(cb, stack_ret, imm_opnd(Qtrue));
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) {
|
|
// guaranteed not to match T_STRING/T_ARRAY/T_HASH
|
|
stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
|
|
mov(cb, stack_ret, imm_opnd(Qfalse));
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
mov(cb, REG0, val);
|
|
mov(cb, REG1, imm_opnd(Qfalse));
|
|
|
|
uint32_t ret = cb_new_label(cb, "ret");
|
|
|
|
if (!val_type.is_heap) {
|
|
// if (SPECIAL_CONST_P(val)) {
|
|
// Return Qfalse via REG1 if not on heap
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_label(cb, ret);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
jbe_label(cb, ret);
|
|
}
|
|
|
|
// Check type on object
|
|
mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags)));
|
|
and(cb, REG0, imm_opnd(RUBY_T_MASK));
|
|
cmp(cb, REG0, imm_opnd(type_val));
|
|
mov(cb, REG0, imm_opnd(Qtrue));
|
|
// REG1 contains Qfalse from above
|
|
cmove(cb, REG1, REG0);
|
|
|
|
cb_write_label(cb, ret);
|
|
stack_ret = ctx_stack_push(ctx, TYPE_IMM);
|
|
mov(cb, stack_ret, REG1);
|
|
cb_link_labels(cb);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_concatstrings(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because we are allocating
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));
|
|
|
|
// call rb_str_concat_literals(long n, const VALUE *strings);
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(n));
|
|
lea(cb, C_ARG_REGS[1], values_ptr);
|
|
call_ptr(cb, REG0, (void *)rb_str_concat_literals);
|
|
|
|
ctx_stack_pop(ctx, n);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static void
|
|
guard_two_fixnums(ctx_t *ctx, uint8_t *side_exit)
|
|
{
|
|
// Get the stack operand types
|
|
val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
|
|
val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1));
|
|
|
|
if (arg0_type.is_heap || arg1_type.is_heap) {
|
|
jmp_ptr(cb, side_exit);
|
|
return;
|
|
}
|
|
|
|
if (arg0_type.type != ETYPE_FIXNUM && arg0_type.type != ETYPE_UNKNOWN) {
|
|
jmp_ptr(cb, side_exit);
|
|
return;
|
|
}
|
|
|
|
if (arg1_type.type != ETYPE_FIXNUM && arg1_type.type != ETYPE_UNKNOWN) {
|
|
jmp_ptr(cb, side_exit);
|
|
return;
|
|
}
|
|
|
|
RUBY_ASSERT(!arg0_type.is_heap);
|
|
RUBY_ASSERT(!arg1_type.is_heap);
|
|
RUBY_ASSERT(arg0_type.type == ETYPE_FIXNUM || arg0_type.type == ETYPE_UNKNOWN);
|
|
RUBY_ASSERT(arg1_type.type == ETYPE_FIXNUM || arg1_type.type == ETYPE_UNKNOWN);
|
|
|
|
// Get stack operands without popping them
|
|
x86opnd_t arg1 = ctx_stack_opnd(ctx, 0);
|
|
x86opnd_t arg0 = ctx_stack_opnd(ctx, 1);
|
|
|
|
// If not fixnums, fall back
|
|
if (arg0_type.type != ETYPE_FIXNUM) {
|
|
ADD_COMMENT(cb, "guard arg0 fixnum");
|
|
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
if (arg1_type.type != ETYPE_FIXNUM) {
|
|
ADD_COMMENT(cb, "guard arg1 fixnum");
|
|
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Set stack types in context
|
|
ctx_upgrade_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM);
|
|
ctx_upgrade_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM);
|
|
}
|
|
|
|
// Conditional move operation used by comparison operators
|
|
typedef void (*cmov_fn)(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1);
|
|
|
|
static codegen_status_t
|
|
gen_fixnum_cmp(jitstate_t *jit, ctx_t *ctx, cmov_fn cmov_op)
|
|
{
|
|
// Defer compilation so we can specialize base on a runtime receiver
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that both operands are fixnums
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Compare the arguments
|
|
xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
|
|
mov(cb, REG1, arg0);
|
|
cmp(cb, REG1, arg1);
|
|
mov(cb, REG1, imm_opnd(Qtrue));
|
|
cmov_op(cb, REG0, REG1);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, dst, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_lt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovl);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_le(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovle);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_ge(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovge);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_gt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovg);
|
|
}
|
|
|
|
// Implements specialized equality for either two fixnum or two strings
|
|
// Returns true if code was generated, otherwise false
|
|
static bool
|
|
gen_equality_specialized(jitstate_t *jit, ctx_t *ctx, uint8_t *side_exit)
|
|
{
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
x86opnd_t a_opnd = ctx_stack_opnd(ctx, 1);
|
|
x86opnd_t b_opnd = ctx_stack_opnd(ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_EQ)) {
|
|
// if overridden, emit the generic version
|
|
return false;
|
|
}
|
|
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
mov(cb, REG0, a_opnd);
|
|
cmp(cb, REG0, b_opnd);
|
|
|
|
mov(cb, REG0, imm_opnd(Qfalse));
|
|
mov(cb, REG1, imm_opnd(Qtrue));
|
|
cmove(cb, REG0, REG1);
|
|
|
|
// Push the output on the stack
|
|
ctx_stack_pop(ctx, 2);
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return true;
|
|
}
|
|
else if (CLASS_OF(comptime_a) == rb_cString &&
|
|
CLASS_OF(comptime_b) == rb_cString) {
|
|
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_EQ)) {
|
|
// if overridden, emit the generic version
|
|
return false;
|
|
}
|
|
|
|
// Load a and b in preparation for call later
|
|
mov(cb, C_ARG_REGS[0], a_opnd);
|
|
mov(cb, C_ARG_REGS[1], b_opnd);
|
|
|
|
// Guard that a is a String
|
|
mov(cb, REG0, C_ARG_REGS[0]);
|
|
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(1), comptime_a, SEND_MAX_DEPTH, side_exit);
|
|
|
|
uint32_t ret = cb_new_label(cb, "ret");
|
|
|
|
// If they are equal by identity, return true
|
|
cmp(cb, C_ARG_REGS[0], C_ARG_REGS[1]);
|
|
mov(cb, RAX, imm_opnd(Qtrue));
|
|
je_label(cb, ret);
|
|
|
|
// Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard)
|
|
if (ctx_get_opnd_type(ctx, OPND_STACK(0)).type != ETYPE_STRING) {
|
|
mov(cb, REG0, C_ARG_REGS[1]);
|
|
// Note: any T_STRING is valid here, but we check for a ::String for simplicity
|
|
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(0), comptime_b, SEND_MAX_DEPTH, side_exit);
|
|
}
|
|
|
|
// Call rb_str_eql_internal(a, b)
|
|
call_ptr(cb, REG0, (void *)rb_str_eql_internal);
|
|
|
|
// Push the output on the stack
|
|
cb_write_label(cb, ret);
|
|
ctx_stack_pop(ctx, 2);
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
|
|
mov(cb, dst, RAX);
|
|
cb_link_labels(cb);
|
|
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_eq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize base on a runtime receiver
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (gen_equality_specialized(jit, ctx, side_exit)) {
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
else {
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block);
|
|
|
|
static codegen_status_t
|
|
gen_opt_neq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// opt_neq is passed two rb_call_data as arguments:
|
|
// first for ==, second for !=
|
|
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1);
|
|
return gen_send_general(jit, ctx, cd, NULL);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_aref(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
|
|
|
|
// Only JIT one arg calls like `ary[6]`
|
|
if (argc != 1) {
|
|
GEN_COUNTER_INC(cb, oaref_argc_not_one);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Defer compilation so we can specialize base on a runtime receiver
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
// Remember the context on entry for adding guard chains
|
|
const ctx_t starting_context = *ctx;
|
|
|
|
// Specialize base on compile time values
|
|
VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0);
|
|
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1);
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) {
|
|
if (!assume_bop_not_redefined(jit->block, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Pop the stack operands
|
|
x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG0, recv_opnd);
|
|
|
|
// if (SPECIAL_CONST_P(recv)) {
|
|
// Bail if receiver is not a heap object
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qfalse));
|
|
je_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Bail if recv has a class other than ::Array.
|
|
// BOP_AREF check above is only good for ::Array.
|
|
mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
|
|
mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
|
|
cmp(cb, REG0, REG1);
|
|
jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);
|
|
|
|
// Bail if idx is not a FIXNUM
|
|
mov(cb, REG1, idx_opnd);
|
|
test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, COUNTED_EXIT(side_exit, oaref_arg_not_fixnum));
|
|
|
|
// Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
|
|
// It never raises or allocates, so we don't need to write to cfp->pc.
|
|
{
|
|
mov(cb, RDI, recv_opnd);
|
|
sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
|
|
mov(cb, RSI, REG1);
|
|
call_ptr(cb, REG0, (void *)rb_ary_entry_internal);
|
|
|
|
// Push the return value onto the stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
}
|
|
|
|
// Jump to next instruction. This allows guard chains to share the same successor.
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
else if (CLASS_OF(comptime_recv) == rb_cHash) {
|
|
if (!assume_bop_not_redefined(jit->block, HASH_REDEFINED_OP_FLAG, BOP_AREF)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
x86opnd_t key_opnd = ctx_stack_opnd(ctx, 0);
|
|
x86opnd_t recv_opnd = ctx_stack_opnd(ctx, 1);
|
|
|
|
// Guard that the receiver is a hash
|
|
mov(cb, REG0, recv_opnd);
|
|
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(1), comptime_recv, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);
|
|
|
|
// Setup arguments for rb_hash_aref().
|
|
mov(cb, C_ARG_REGS[0], REG0);
|
|
mov(cb, C_ARG_REGS[1], key_opnd);
|
|
|
|
// Prepare to call rb_hash_aref(). It might call #hash on the key.
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
call_ptr(cb, REG0, (void *)rb_hash_aref);
|
|
|
|
// Pop the key and the reciever
|
|
(void)ctx_stack_pop(ctx, 2);
|
|
|
|
// Push the return value onto the stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
// Jump to next instruction. This allows guard chains to share the same successor.
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
else {
|
|
// General case. Call the [] method.
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_aset(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 2);
|
|
VALUE comptime_key = jit_peek_at_stack(jit, ctx, 1);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, 2);
|
|
x86opnd_t key = ctx_stack_opnd(ctx, 1);
|
|
x86opnd_t val = ctx_stack_opnd(ctx, 0);
|
|
|
|
if (CLASS_OF(comptime_recv) == rb_cArray && FIXNUM_P(comptime_key)) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Guard receiver is an Array
|
|
mov(cb, REG0, recv);
|
|
jit_guard_known_klass(jit, ctx, rb_cArray, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);
|
|
|
|
// Guard key is a fixnum
|
|
mov(cb, REG0, key);
|
|
jit_guard_known_klass(jit, ctx, rb_cInteger, OPND_STACK(1), comptime_key, SEND_MAX_DEPTH, side_exit);
|
|
|
|
// Call rb_ary_store
|
|
mov(cb, C_ARG_REGS[0], recv);
|
|
mov(cb, C_ARG_REGS[1], key);
|
|
sar(cb, C_ARG_REGS[1], imm_opnd(1)); // FIX2LONG(key)
|
|
mov(cb, C_ARG_REGS[2], val);
|
|
|
|
// We might allocate or raise
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
call_ptr(cb, REG0, (void *)rb_ary_store);
|
|
|
|
// rb_ary_store returns void
|
|
// stored value should still be on stack
|
|
mov(cb, REG0, ctx_stack_opnd(ctx, 0));
|
|
|
|
// Push the return value onto the stack
|
|
ctx_stack_pop(ctx, 3);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, REG0);
|
|
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
else if (CLASS_OF(comptime_recv) == rb_cHash) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Guard receiver is a Hash
|
|
mov(cb, REG0, recv);
|
|
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);
|
|
|
|
// Call rb_hash_aset
|
|
mov(cb, C_ARG_REGS[0], recv);
|
|
mov(cb, C_ARG_REGS[1], key);
|
|
mov(cb, C_ARG_REGS[2], val);
|
|
|
|
// We might allocate or raise
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
call_ptr(cb, REG0, (void *)rb_hash_aset);
|
|
|
|
// Push the return value onto the stack
|
|
ctx_stack_pop(ctx, 3);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
else {
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_and(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that both operands are fixnums
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Do the bitwise and arg0 & arg1
|
|
mov(cb, REG0, arg0);
|
|
and(cb, REG0, arg1);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_or(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that both operands are fixnums
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Do the bitwise or arg0 | arg1
|
|
mov(cb, REG0, arg0);
|
|
or(cb, REG0, arg1);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_minus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that both operands are fixnums
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Subtract arg0 - arg1 and test for overflow
|
|
mov(cb, REG0, arg0);
|
|
sub(cb, REG0, arg1);
|
|
jo_ptr(cb, side_exit);
|
|
add(cb, REG0, imm_opnd(1));
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_plus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Defer compilation so we can specialize on a runtime `self`
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
|
|
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
|
|
|
|
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that both operands are fixnums
|
|
guard_two_fixnums(ctx, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Add arg0 + arg1 and test for overflow
|
|
mov(cb, REG0, arg0);
|
|
sub(cb, REG0, imm_opnd(1));
|
|
add(cb, REG0, arg1);
|
|
jo_ptr(cb, side_exit);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_mult(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_div(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
VALUE rb_vm_opt_mod(VALUE recv, VALUE obj);
|
|
|
|
static codegen_status_t
|
|
gen_opt_mod(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Save the PC and SP because the callee may allocate bignums
|
|
// Note that this modifies REG_SP, which is why we do it first
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Get the operands from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// Call rb_vm_opt_mod(VALUE recv, VALUE obj)
|
|
mov(cb, C_ARG_REGS[0], arg0);
|
|
mov(cb, C_ARG_REGS[1], arg1);
|
|
call_ptr(cb, REG0, (void *)rb_vm_opt_mod);
|
|
|
|
// If val == Qundef, bail to do a method call
|
|
cmp(cb, RAX, imm_opnd(Qundef));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Push the return value onto the stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_ltlt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_nil_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_empty_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Delegate to send, call the method on the recv
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_str_freeze(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
VALUE str = jit_get_arg(jit, 0);
|
|
jit_mov_gc_ptr(jit, cb, REG0, str);
|
|
|
|
// Push the return value onto the stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
|
|
mov(cb, stack_ret, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_str_uminus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
VALUE str = jit_get_arg(jit, 0);
|
|
jit_mov_gc_ptr(jit, cb, REG0, str);
|
|
|
|
// Push the return value onto the stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
|
|
mov(cb, stack_ret, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_not(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_size(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_length(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_regexpmatch2(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
return gen_opt_send_without_block(jit, ctx, cb);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_case_dispatch(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Normally this instruction would lookup the key in a hash and jump to an
|
|
// offset based on that.
|
|
// Instead we can take the fallback case and continue with the next
|
|
// instruciton.
|
|
// We'd hope that our jitted code will be sufficiently fast without the
|
|
// hash lookup, at least for small hashes, but it's worth revisiting this
|
|
// assumption in the future.
|
|
|
|
ctx_stack_pop(ctx, 1);
|
|
|
|
return YJIT_KEEP_COMPILING; // continue with the next instruction
|
|
}
|
|
|
|
static void
|
|
gen_branchif_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
jz_ptr(cb, target1);
|
|
break;
|
|
|
|
case SHAPE_NEXT1:
|
|
jnz_ptr(cb, target0);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jnz_ptr(cb, target0);
|
|
jmp_ptr(cb, target1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_branchif(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
|
|
|
|
// Check for interrupts, but only on backward branches that may create loops
|
|
if (jump_offset < 0) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
yjit_check_ints(cb, side_exit);
|
|
}
|
|
|
|
// Test if any bit (outside of the Qnil bit) is on
|
|
// RUBY_Qfalse /* ...0000 0000 */
|
|
// RUBY_Qnil /* ...0000 1000 */
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
test(cb, val_opnd, imm_opnd(~Qnil));
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t next_idx = jit_next_insn_idx(jit);
|
|
uint32_t jump_idx = next_idx + jump_offset;
|
|
blockid_t next_block = { jit->iseq, next_idx };
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the branch instructions
|
|
gen_branch(
|
|
jit,
|
|
ctx,
|
|
jump_block,
|
|
ctx,
|
|
next_block,
|
|
ctx,
|
|
gen_branchif_branch
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
static void
|
|
gen_branchunless_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
jnz_ptr(cb, target1);
|
|
break;
|
|
|
|
case SHAPE_NEXT1:
|
|
jz_ptr(cb, target0);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jz_ptr(cb, target0);
|
|
jmp_ptr(cb, target1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_branchunless(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
|
|
|
|
// Check for interrupts, but only on backward branches that may create loops
|
|
if (jump_offset < 0) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
yjit_check_ints(cb, side_exit);
|
|
}
|
|
|
|
// Test if any bit (outside of the Qnil bit) is on
|
|
// RUBY_Qfalse /* ...0000 0000 */
|
|
// RUBY_Qnil /* ...0000 1000 */
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
test(cb, val_opnd, imm_opnd(~Qnil));
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t next_idx = jit_next_insn_idx(jit);
|
|
uint32_t jump_idx = next_idx + jump_offset;
|
|
blockid_t next_block = { jit->iseq, next_idx };
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the branch instructions
|
|
gen_branch(
|
|
jit,
|
|
ctx,
|
|
jump_block,
|
|
ctx,
|
|
next_block,
|
|
ctx,
|
|
gen_branchunless_branch
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
static void
|
|
gen_branchnil_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
jne_ptr(cb, target1);
|
|
break;
|
|
|
|
case SHAPE_NEXT1:
|
|
je_ptr(cb, target0);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
je_ptr(cb, target0);
|
|
jmp_ptr(cb, target1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_branchnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
|
|
|
|
// Check for interrupts, but only on backward branches that may create loops
|
|
if (jump_offset < 0) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
yjit_check_ints(cb, side_exit);
|
|
}
|
|
|
|
// Test if the value is Qnil
|
|
// RUBY_Qnil /* ...0000 1000 */
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
cmp(cb, val_opnd, imm_opnd(Qnil));
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t next_idx = jit_next_insn_idx(jit);
|
|
uint32_t jump_idx = next_idx + jump_offset;
|
|
blockid_t next_block = { jit->iseq, next_idx };
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the branch instructions
|
|
gen_branch(
|
|
jit,
|
|
ctx,
|
|
jump_block,
|
|
ctx,
|
|
next_block,
|
|
ctx,
|
|
gen_branchnil_branch
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_jump(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
|
|
|
|
// Check for interrupts, but only on backward branches that may create loops
|
|
if (jump_offset < 0) {
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
yjit_check_ints(cb, side_exit);
|
|
}
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset;
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the jump instruction
|
|
gen_direct_jump(
|
|
jit,
|
|
ctx,
|
|
jump_block
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
/*
|
|
Guard that a stack operand has the same class as known_klass.
|
|
Recompile as contingency if possible, or take side exit a last resort.
|
|
*/
|
|
static bool
|
|
jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit)
|
|
{
|
|
val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd);
|
|
|
|
if (known_klass == rb_cNilClass) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
if (val_type.type != ETYPE_NIL) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
ADD_COMMENT(cb, "guard object is nil");
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_NIL);
|
|
}
|
|
}
|
|
else if (known_klass == rb_cTrueClass) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
if (val_type.type != ETYPE_TRUE) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
ADD_COMMENT(cb, "guard object is true");
|
|
cmp(cb, REG0, imm_opnd(Qtrue));
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_TRUE);
|
|
}
|
|
}
|
|
else if (known_klass == rb_cFalseClass) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
if (val_type.type != ETYPE_FALSE) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
ADD_COMMENT(cb, "guard object is false");
|
|
STATIC_ASSERT(qfalse_is_zero, Qfalse == 0);
|
|
test(cb, REG0, REG0);
|
|
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
|
|
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FALSE);
|
|
}
|
|
}
|
|
else if (known_klass == rb_cInteger && FIXNUM_P(sample_instance)) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
// We will guard fixnum and bignum as though they were separate classes
|
|
// BIGNUM can be handled by the general else case below
|
|
if (val_type.type != ETYPE_FIXNUM || !val_type.is_imm) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
ADD_COMMENT(cb, "guard object is fixnum");
|
|
test(cb, REG0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jit_chain_guard(JCC_JZ, jit, ctx, max_chain_depth, side_exit);
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FIXNUM);
|
|
}
|
|
}
|
|
else if (known_klass == rb_cSymbol && STATIC_SYM_P(sample_instance)) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
// We will guard STATIC vs DYNAMIC as though they were separate classes
|
|
// DYNAMIC symbols can be handled by the general else case below
|
|
if (val_type.type != ETYPE_SYMBOL || !val_type.is_imm) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
ADD_COMMENT(cb, "guard object is static symbol");
|
|
STATIC_ASSERT(special_shift_is_8, RUBY_SPECIAL_SHIFT == 8);
|
|
cmp(cb, REG0_8, imm_opnd(RUBY_SYMBOL_FLAG));
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_STATIC_SYMBOL);
|
|
}
|
|
}
|
|
else if (known_klass == rb_cFloat && FLONUM_P(sample_instance)) {
|
|
RUBY_ASSERT(!val_type.is_heap);
|
|
if (val_type.type != ETYPE_FLONUM || !val_type.is_imm) {
|
|
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
|
|
|
|
// We will guard flonum vs heap float as though they were separate classes
|
|
ADD_COMMENT(cb, "guard object is flonum");
|
|
mov(cb, REG1, REG0);
|
|
and(cb, REG1, imm_opnd(RUBY_FLONUM_MASK));
|
|
cmp(cb, REG1, imm_opnd(RUBY_FLONUM_FLAG));
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FLONUM);
|
|
}
|
|
}
|
|
else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) {
|
|
// Singleton classes are attached to one specific object, so we can
|
|
// avoid one memory access (and potentially the is_heap check) by
|
|
// looking for the expected object directly.
|
|
// Note that in case the sample instance has a singleton class that
|
|
// doesn't attach to the sample instance, it means the sample instance
|
|
// has an empty singleton class that hasn't been materialized yet. In
|
|
// this case, comparing against the sample instance doesn't gurantee
|
|
// that its singleton class is empty, so we can't avoid the memory
|
|
// access. As an example, `Object.new.singleton_class` is an object in
|
|
// this situation.
|
|
ADD_COMMENT(cb, "guard known object with singleton class");
|
|
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object.
|
|
jit_mov_gc_ptr(jit, cb, REG1, sample_instance);
|
|
cmp(cb, REG0, REG1);
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
}
|
|
else {
|
|
RUBY_ASSERT(!val_type.is_imm);
|
|
|
|
// Check that the receiver is a heap object
|
|
// Note: if we get here, the class doesn't have immediate instances.
|
|
if (!val_type.is_heap) {
|
|
ADD_COMMENT(cb, "guard not immediate");
|
|
RUBY_ASSERT(Qfalse < Qnil);
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit);
|
|
|
|
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_HEAP);
|
|
}
|
|
|
|
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
|
|
|
|
// Bail if receiver class is different from known_klass
|
|
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class.
|
|
ADD_COMMENT(cb, "guard known class");
|
|
jit_mov_gc_ptr(jit, cb, REG1, known_klass);
|
|
cmp(cb, klass_opnd, REG1);
|
|
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Generate ancestry guard for protected callee.
|
|
// Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee).
|
|
static void
|
|
jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit)
|
|
{
|
|
// See vm_call_method().
|
|
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class);
|
|
// Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
|
|
// VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
|
|
call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of);
|
|
test(cb, RAX, RAX);
|
|
jz_ptr(cb, COUNTED_EXIT(side_exit, send_se_protected_check_failed));
|
|
}
|
|
|
|
// Return true when the codegen function generates code.
|
|
// known_recv_klass is non-NULL when the caller has used jit_guard_known_klass().
|
|
// See yjit_reg_method().
|
|
typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass);
|
|
|
|
// Register a specialized codegen function for a particular method. Note that
|
|
// the if the function returns true, the code it generates runs without a
|
|
// control frame and without interrupt checks. To avoid creating observable
|
|
// behavior changes, the codegen function should only target simple code paths
|
|
// that do not allocate and do not make method calls.
|
|
static void
|
|
yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn)
|
|
{
|
|
ID mid = rb_intern(mid_str);
|
|
const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
|
|
|
|
if (!me) {
|
|
rb_bug("undefined optimized method: %s", rb_id2name(mid));
|
|
}
|
|
|
|
// For now, only cfuncs are supported
|
|
RUBY_ASSERT(me && me->def);
|
|
RUBY_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC);
|
|
|
|
st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn);
|
|
}
|
|
|
|
// Codegen for rb_obj_not().
|
|
// Note, caller is responsible for generating all the right guards, including
|
|
// arity guards.
|
|
static bool
|
|
jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
|
|
{
|
|
const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0));
|
|
|
|
if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) {
|
|
ADD_COMMENT(cb, "rb_obj_not(nil_or_false)");
|
|
ctx_stack_pop(ctx, 1);
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_TRUE);
|
|
mov(cb, out_opnd, imm_opnd(Qtrue));
|
|
}
|
|
else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) {
|
|
// Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE.
|
|
ADD_COMMENT(cb, "rb_obj_not(truthy)");
|
|
ctx_stack_pop(ctx, 1);
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FALSE);
|
|
mov(cb, out_opnd, imm_opnd(Qfalse));
|
|
}
|
|
else {
|
|
// jit_guard_known_klass() already ran on the receiver which should
|
|
// have deduced deduced the type of the receiver. This case should be
|
|
// rare if not unreachable.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Codegen for rb_true()
|
|
static bool
|
|
jit_rb_true(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
|
|
{
|
|
ADD_COMMENT(cb, "nil? == true");
|
|
ctx_stack_pop(ctx, 1);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
|
|
mov(cb, stack_ret, imm_opnd(Qtrue));
|
|
return true;
|
|
}
|
|
|
|
// Codegen for rb_false()
|
|
static bool
|
|
jit_rb_false(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
|
|
{
|
|
ADD_COMMENT(cb, "nil? == false");
|
|
ctx_stack_pop(ctx, 1);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
|
|
mov(cb, stack_ret, imm_opnd(Qfalse));
|
|
return true;
|
|
}
|
|
|
|
// Codegen for rb_obj_equal()
|
|
// object identity comparison
|
|
static bool
|
|
jit_rb_obj_equal(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
|
|
{
|
|
ADD_COMMENT(cb, "equal?");
|
|
x86opnd_t obj1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t obj2 = ctx_stack_pop(ctx, 1);
|
|
|
|
mov(cb, REG0, obj1);
|
|
cmp(cb, REG0, obj2);
|
|
mov(cb, REG0, imm_opnd(Qtrue));
|
|
mov(cb, REG1, imm_opnd(Qfalse));
|
|
cmovne(cb, REG0, REG1);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
|
|
mov(cb, stack_ret, REG0);
|
|
return true;
|
|
}
|
|
|
|
static VALUE
|
|
yjit_str_bytesize(VALUE str)
|
|
{
|
|
return LONG2NUM(RSTRING_LEN(str));
|
|
}
|
|
|
|
static bool
|
|
jit_rb_str_bytesize(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
|
|
{
|
|
ADD_COMMENT(cb, "String#bytesize");
|
|
|
|
x86opnd_t recv = ctx_stack_pop(ctx, 1);
|
|
mov(cb, C_ARG_REGS[0], recv);
|
|
call_ptr(cb, REG0, (void *)&yjit_str_bytesize);
|
|
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FIXNUM);
|
|
mov(cb, out_opnd, RAX);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Codegen for rb_str_to_s()
|
|
// When String#to_s is called on a String instance, the method returns self and
|
|
// most of the overhead comes from setting up the method call. We observed that
|
|
// this situation happens a lot in some workloads.
|
|
static bool
|
|
jit_rb_str_to_s(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
|
|
{
|
|
if (recv_known_klass && *recv_known_klass == rb_cString) {
|
|
ADD_COMMENT(cb, "to_s on plain string");
|
|
// The method returns the receiver, which is already on the stack.
|
|
// No stack movement.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
jit_thread_s_current(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
|
|
{
|
|
ADD_COMMENT(cb, "Thread.current");
|
|
ctx_stack_pop(ctx, 1);
|
|
|
|
// ec->thread_ptr
|
|
mov(cb, REG0, member_opnd(REG_EC, rb_execution_context_t, thread_ptr));
|
|
|
|
// thread->self
|
|
mov(cb, REG0, member_opnd(REG0, rb_thread_t, self));
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
|
|
mov(cb, stack_ret, REG0);
|
|
return true;
|
|
}
|
|
|
|
// Check if we know how to codegen for a particular cfunc method
|
|
static method_codegen_t
|
|
lookup_cfunc_codegen(const rb_method_definition_t *def)
|
|
{
|
|
method_codegen_t gen_fn;
|
|
if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) {
|
|
return gen_fn;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Is anyone listening for :c_call and :c_return event currently?
|
|
static bool
|
|
c_method_tracing_currently_enabled(const jitstate_t *jit)
|
|
{
|
|
rb_event_flag_t tracing_events;
|
|
if (rb_multi_ractor_p()) {
|
|
tracing_events = ruby_vm_event_enabled_global_flags;
|
|
}
|
|
else {
|
|
// At the time of writing, events are never removed from
|
|
// ruby_vm_event_enabled_global_flags so always checking using it would
|
|
// mean we don't compile even after tracing is disabled.
|
|
tracing_events = rb_ec_ractor_hooks(jit->ec)->events;
|
|
}
|
|
|
|
return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
|
|
{
|
|
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
|
|
|
|
// If the function expects a Ruby array of arguments
|
|
if (cfunc->argc < 0 && cfunc->argc != -1) {
|
|
GEN_COUNTER_INC(cb, send_cfunc_ruby_array_varg);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// If the argument count doesn't match
|
|
if (cfunc->argc >= 0 && cfunc->argc != argc) {
|
|
GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Don't JIT functions that need C stack arguments for now
|
|
if (cfunc->argc >= 0 && argc + 1 > NUM_C_ARG_REGS) {
|
|
GEN_COUNTER_INC(cb, send_cfunc_toomany_args);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
if (c_method_tracing_currently_enabled(jit)) {
|
|
// Don't JIT if tracing c_call or c_return
|
|
GEN_COUNTER_INC(cb, send_cfunc_tracing);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Delegate to codegen for C methods if we have it.
|
|
{
|
|
method_codegen_t known_cfunc_codegen;
|
|
if ((known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) {
|
|
if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc, recv_known_klass)) {
|
|
// cfunc codegen generated code. Terminate the block so
|
|
// there isn't multiple calls in the same block.
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Callee method ID
|
|
//ID mid = vm_ci_mid(ci);
|
|
//printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
|
|
//print_str(cb, "");
|
|
//print_str(cb, "calling CFUNC:");
|
|
//print_str(cb, rb_id2name(mid));
|
|
//print_str(cb, "recv");
|
|
//print_ptr(cb, recv);
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Check for interrupts
|
|
yjit_check_ints(cb, side_exit);
|
|
|
|
// Stack overflow check
|
|
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
|
|
// REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + 2 * sizeof(rb_control_frame_t)));
|
|
cmp(cb, REG_CFP, REG0);
|
|
jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow));
|
|
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
|
|
// Store incremented PC into current control frame in case callee raises.
|
|
jit_save_pc(jit, REG0);
|
|
|
|
if (block) {
|
|
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
|
|
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
|
|
// with cfp->block_code.
|
|
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
|
|
}
|
|
|
|
// Increment the stack pointer by 3 (in the callee)
|
|
// sp += 3
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));
|
|
|
|
// Write method entry at sp[-3]
|
|
// sp[-3] = me;
|
|
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
|
|
// any cme we depend on become outdated. See rb_yjit_method_lookup_change().
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
|
|
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
|
|
|
|
// Write block handler at sp[-2]
|
|
// sp[-2] = block_handler;
|
|
if (block) {
|
|
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
|
|
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
or(cb, REG1, imm_opnd(1));
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
|
|
}
|
|
else {
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
|
|
}
|
|
|
|
// Write env flags at sp[-1]
|
|
// sp[-1] = frame_type;
|
|
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
|
|
|
|
// Allocate a new CFP (ec->cfp--)
|
|
sub(
|
|
cb,
|
|
member_opnd(REG_EC, rb_execution_context_t, cfp),
|
|
imm_opnd(sizeof(rb_control_frame_t))
|
|
);
|
|
|
|
// Setup the new frame
|
|
// *cfp = (const struct rb_control_frame_struct) {
|
|
// .pc = 0,
|
|
// .sp = sp,
|
|
// .iseq = 0,
|
|
// .self = recv,
|
|
// .ep = sp - 1,
|
|
// .block_code = 0,
|
|
// .__bp__ = sp,
|
|
// };
|
|
mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
|
|
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
|
|
mov(cb, REG0, recv);
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
|
|
|
|
// Verify that we are calling the right function
|
|
if (YJIT_CHECK_MODE > 0) {
|
|
// Call check_cfunc_dispatch
|
|
mov(cb, C_ARG_REGS[0], recv);
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci);
|
|
mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func));
|
|
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme);
|
|
call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
|
|
}
|
|
|
|
// Copy SP into RAX because REG_SP will get overwritten
|
|
lea(cb, RAX, ctx_sp_opnd(ctx, 0));
|
|
|
|
// Pop the C function arguments from the stack (in the caller)
|
|
ctx_stack_pop(ctx, argc + 1);
|
|
|
|
// Write interpreter SP into CFP.
|
|
// Needed in case the callee yields to the block.
|
|
jit_save_sp(jit, ctx);
|
|
|
|
// Non-variadic method
|
|
if (cfunc->argc >= 0) {
|
|
// Copy the arguments from the stack to the C argument registers
|
|
// self is the 0th argument and is at index argc from the stack top
|
|
for (int32_t i = 0; i < argc + 1; ++i)
|
|
{
|
|
x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * SIZEOF_VALUE);
|
|
x86opnd_t c_arg_reg = C_ARG_REGS[i];
|
|
mov(cb, c_arg_reg, stack_opnd);
|
|
}
|
|
}
|
|
// Variadic method
|
|
if (cfunc->argc == -1) {
|
|
// The method gets a pointer to the first argument
|
|
// rb_f_puts(int argc, VALUE *argv, VALUE recv)
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(argc));
|
|
lea(cb, C_ARG_REGS[1], mem_opnd(64, RAX, -(argc) * SIZEOF_VALUE));
|
|
mov(cb, C_ARG_REGS[2], mem_opnd(64, RAX, -(argc + 1) * SIZEOF_VALUE));
|
|
}
|
|
|
|
// Call the C function
|
|
// VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
|
|
// cfunc comes from compile-time cme->def, which we assume to be stable.
|
|
// Invalidation logic is in rb_yjit_method_lookup_change()
|
|
call_ptr(cb, REG0, (void*)cfunc->func);
|
|
|
|
// Record code position for TracePoint patching. See full_cfunc_return().
|
|
record_global_inval_patch(cb, outline_full_cfunc_return_pos);
|
|
|
|
// Push the return value on the Ruby stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
// Pop the stack frame (ec->cfp++)
|
|
add(
|
|
cb,
|
|
member_opnd(REG_EC, rb_execution_context_t, cfp),
|
|
imm_opnd(sizeof(rb_control_frame_t))
|
|
);
|
|
|
|
// cfunc calls may corrupt types
|
|
ctx_clear_local_types(ctx);
|
|
|
|
// Note: the return block of gen_send_iseq() has ctx->sp_offset == 1
|
|
// which allows for sharing the same successor.
|
|
|
|
// Jump (fall through) to the call continuation block
|
|
// We do this to end the current block after the call
|
|
jit_jump_to_next_insn(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
static void
|
|
gen_return_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
|
|
{
|
|
switch (shape) {
|
|
case SHAPE_NEXT0:
|
|
case SHAPE_NEXT1:
|
|
RUBY_ASSERT(false);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
mov(cb, REG0, const_ptr_opnd(target0));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Returns whether the iseq only needs positional (lead) argument setup.
|
|
static bool
|
|
iseq_lead_only_arg_setup_p(const rb_iseq_t *iseq)
|
|
{
|
|
// When iseq->body->local_iseq == iseq, setup_parameters_complex()
|
|
// doesn't do anything to setup the block parameter.
|
|
bool takes_block = iseq->body->param.flags.has_block;
|
|
return (!takes_block || iseq->body->local_iseq == iseq) &&
|
|
iseq->body->param.flags.has_opt == false &&
|
|
iseq->body->param.flags.has_rest == false &&
|
|
iseq->body->param.flags.has_post == false &&
|
|
iseq->body->param.flags.has_kw == false &&
|
|
iseq->body->param.flags.has_kwrest == false &&
|
|
iseq->body->param.flags.accepts_no_kwarg == false;
|
|
}
|
|
|
|
bool rb_iseq_only_optparam_p(const rb_iseq_t *iseq);
|
|
bool rb_iseq_only_kwparam_p(const rb_iseq_t *iseq);
|
|
|
|
// If true, the iseq is leaf and it can be replaced by a single C call.
|
|
static bool
|
|
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq)
|
|
{
|
|
unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave));
|
|
unsigned int leave_len = insn_len(BIN(leave));
|
|
|
|
return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) &&
|
|
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) &&
|
|
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) &&
|
|
iseq->body->builtin_inline_p
|
|
);
|
|
}
|
|
|
|
// Return an rb_builtin_function if the iseq contains only that leaf builtin function.
|
|
static const struct rb_builtin_function*
|
|
rb_leaf_builtin_function(const rb_iseq_t *iseq)
|
|
{
|
|
if (!rb_leaf_invokebuiltin_iseq_p(iseq))
|
|
return NULL;
|
|
return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc)
|
|
{
|
|
const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
|
|
|
|
// When you have keyword arguments, there is an extra object that gets
|
|
// placed on the stack the represents a bitmap of the keywords that were not
|
|
// specified at the call site. We need to keep track of the fact that this
|
|
// value is present on the stack in order to properly set up the callee's
|
|
// stack pointer.
|
|
bool doing_kw_call = false;
|
|
|
|
if (vm_ci_flag(ci) & VM_CALL_TAILCALL) {
|
|
// We can't handle tailcalls
|
|
GEN_COUNTER_INC(cb, send_iseq_tailcall);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Arity handling and optional parameter setup
|
|
int num_params = iseq->body->param.size;
|
|
uint32_t start_pc_offset = 0;
|
|
|
|
if (iseq_lead_only_arg_setup_p(iseq)) {
|
|
// If we have keyword arguments being passed to a callee that only takes
|
|
// positionals, then we need to allocate a hash. For now we're going to
|
|
// call that too complex and bail.
|
|
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
|
|
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
num_params = iseq->body->param.lead_num;
|
|
|
|
if (num_params != argc) {
|
|
GEN_COUNTER_INC(cb, send_iseq_arity_error);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
else if (rb_iseq_only_optparam_p(iseq)) {
|
|
// If we have keyword arguments being passed to a callee that only takes
|
|
// positionals and optionals, then we need to allocate a hash. For now
|
|
// we're going to call that too complex and bail.
|
|
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
|
|
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// These are iseqs with 0 or more required parameters followed by 1
|
|
// or more optional parameters.
|
|
// We follow the logic of vm_call_iseq_setup_normal_opt_start()
|
|
// and these are the preconditions required for using that fast path.
|
|
RUBY_ASSERT(vm_ci_markable(ci) && ((vm_ci_flag(ci) &
|
|
(VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT)) == 0));
|
|
|
|
const int required_num = iseq->body->param.lead_num;
|
|
const int opts_filled = argc - required_num;
|
|
const int opt_num = iseq->body->param.opt_num;
|
|
|
|
if (opts_filled < 0 || opts_filled > opt_num) {
|
|
GEN_COUNTER_INC(cb, send_iseq_arity_error);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
num_params -= opt_num - opts_filled;
|
|
start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled];
|
|
}
|
|
else if (rb_iseq_only_kwparam_p(iseq)) {
|
|
const int lead_num = iseq->body->param.lead_num;
|
|
|
|
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
|
|
// Here we're calling a method with keyword arguments and specifying
|
|
// keyword arguments at this call site.
|
|
|
|
// This struct represents the metadata about the caller-specified
|
|
// keyword arguments.
|
|
const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci);
|
|
|
|
// This struct represents the metadata about the callee-specified
|
|
// keyword parameters.
|
|
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword;
|
|
|
|
if ((kw_arg->keyword_len != keyword->num) || (lead_num != argc - kw_arg->keyword_len)) {
|
|
// Here the method being called specifies optional and required
|
|
// keyword arguments and the callee is not specifying every one
|
|
// of them.
|
|
GEN_COUNTER_INC(cb, send_iseq_kwargs_req_and_opt_missing);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// This is the list of keyword arguments that the callee specified
|
|
// in its initial declaration.
|
|
const ID *callee_kwargs = keyword->table;
|
|
|
|
// Here we're going to build up a list of the IDs that correspond to
|
|
// the caller-specified keyword arguments. If they're not in the
|
|
// same order as the order specified in the callee declaration, then
|
|
// we're going to need to generate some code to swap values around
|
|
// on the stack.
|
|
ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len);
|
|
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++)
|
|
caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]);
|
|
|
|
// First, we're going to be sure that the names of every
|
|
// caller-specified keyword argument correspond to a name in the
|
|
// list of callee-specified keyword parameters.
|
|
for (int caller_idx = 0; caller_idx < kw_arg->keyword_len; caller_idx++) {
|
|
int callee_idx;
|
|
|
|
for (callee_idx = 0; callee_idx < keyword->num; callee_idx++) {
|
|
if (caller_kwargs[caller_idx] == callee_kwargs[callee_idx]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the keyword was never found, then we know we have a
|
|
// mismatch in the names of the keyword arguments, so we need to
|
|
// bail.
|
|
if (callee_idx == keyword->num) {
|
|
GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
|
|
doing_kw_call = true;
|
|
}
|
|
else if (argc == lead_num) {
|
|
// Here we are calling a method that accepts keyword arguments
|
|
// (optional or required) but we're not passing any keyword
|
|
// arguments at this call site
|
|
|
|
GEN_COUNTER_INC(cb, send_iseq_kwargs_none_passed);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
else {
|
|
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
}
|
|
else {
|
|
// Only handle iseqs that have simple parameter setup.
|
|
// See vm_callee_setup_arg().
|
|
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Number of locals that are not parameters
|
|
const int num_locals = iseq->body->local_table_size - num_params;
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Check for interrupts
|
|
yjit_check_ints(cb, side_exit);
|
|
|
|
const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq);
|
|
|
|
if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) {
|
|
ADD_COMMENT(cb, "inlined leaf builtin");
|
|
|
|
// Call the builtin func (ec, recv, arg1, arg2, ...)
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
|
|
// Copy self and arguments
|
|
for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) {
|
|
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, leaf_builtin->argc - i);
|
|
x86opnd_t c_arg_reg = C_ARG_REGS[i + 1];
|
|
mov(cb, c_arg_reg, stack_opnd);
|
|
}
|
|
ctx_stack_pop(ctx, leaf_builtin->argc + 1);
|
|
call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr);
|
|
|
|
// Push the return value
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
// Note: assuming that the leaf builtin doesn't change local variables here.
|
|
// Seems like a safe assumption.
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// Stack overflow check
|
|
// Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2.
|
|
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
|
|
ADD_COMMENT(cb, "stack overflow check");
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + 2 * sizeof(rb_control_frame_t)));
|
|
cmp(cb, REG_CFP, REG0);
|
|
jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow));
|
|
|
|
if (doing_kw_call) {
|
|
// Here we're calling a method with keyword arguments and specifying
|
|
// keyword arguments at this call site.
|
|
const int lead_num = iseq->body->param.lead_num;
|
|
|
|
// This struct represents the metadata about the caller-specified
|
|
// keyword arguments.
|
|
const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci);
|
|
|
|
// This struct represents the metadata about the callee-specified
|
|
// keyword parameters.
|
|
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword;
|
|
|
|
// Note: we are about to do argument shuffling for a keyword argument
|
|
// call. The various checks for whether we can do it happened earlier
|
|
// in this function.
|
|
RUBY_ASSERT((kw_arg->keyword_len == keyword->num) && (lead_num == argc - kw_arg->keyword_len));
|
|
|
|
// This is the list of keyword arguments that the callee specified
|
|
// in its initial declaration.
|
|
const ID *callee_kwargs = keyword->table;
|
|
|
|
// Here we're going to build up a list of the IDs that correspond to
|
|
// the caller-specified keyword arguments. If they're not in the
|
|
// same order as the order specified in the callee declaration, then
|
|
// we're going to need to generate some code to swap values around
|
|
// on the stack.
|
|
ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len);
|
|
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++)
|
|
caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]);
|
|
|
|
// Next, we're going to loop through every keyword that was
|
|
// specified by the caller and make sure that it's in the correct
|
|
// place. If it's not we're going to swap it around with another one.
|
|
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++) {
|
|
ID callee_kwarg = callee_kwargs[kwarg_idx];
|
|
|
|
// If the argument is already in the right order, then we don't
|
|
// need to generate any code since the expected value is already
|
|
// in the right place on the stack.
|
|
if (callee_kwarg == caller_kwargs[kwarg_idx]) continue;
|
|
|
|
// In this case the argument is not in the right place, so we
|
|
// need to find its position where it _should_ be and swap with
|
|
// that location.
|
|
for (int swap_idx = kwarg_idx + 1; swap_idx < kw_arg->keyword_len; swap_idx++) {
|
|
if (callee_kwarg == caller_kwargs[swap_idx]) {
|
|
// First we're going to generate the code that is going
|
|
// to perform the actual swapping at runtime.
|
|
stack_swap(ctx, cb, argc - 1 - swap_idx - lead_num, argc - 1 - kwarg_idx - lead_num, REG1, REG0);
|
|
|
|
// Next we're going to do some bookkeeping on our end so
|
|
// that we know the order that the arguments are
|
|
// actually in now.
|
|
ID tmp = caller_kwargs[kwarg_idx];
|
|
caller_kwargs[kwarg_idx] = caller_kwargs[swap_idx];
|
|
caller_kwargs[swap_idx] = tmp;
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Keyword arguments cause a special extra local variable to be
|
|
// pushed onto the stack that represents the parameters that weren't
|
|
// explicitly given a value. Its value is a bitmap that corresponds
|
|
// to the indices of the missing parameters. In this case since we
|
|
// know every value was specified, we can just write the value 0.
|
|
mov(cb, ctx_stack_opnd(ctx, -1), imm_opnd(INT2FIX(0)));
|
|
}
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
|
|
// Store the updated SP on the current frame (pop arguments and receiver)
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
|
|
|
|
// Store the next PC in the current frame
|
|
jit_save_pc(jit, REG0);
|
|
|
|
if (block) {
|
|
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
|
|
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
|
|
// with cfp->block_code.
|
|
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
|
|
}
|
|
|
|
// Adjust the callee's stack pointer
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals + doing_kw_call)));
|
|
|
|
// Initialize local variables to Qnil
|
|
for (int i = 0; i < num_locals; i++) {
|
|
mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
|
|
}
|
|
|
|
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
|
|
// any cme we depend on become outdated. See rb_yjit_method_lookup_change().
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
|
|
// Write method entry at sp[-3]
|
|
// sp[-3] = me;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
|
|
|
|
// Write block handler at sp[-2]
|
|
// sp[-2] = block_handler;
|
|
if (block) {
|
|
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
|
|
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
or(cb, REG1, imm_opnd(1));
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
|
|
}
|
|
else {
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
|
|
}
|
|
|
|
// Write env flags at sp[-1]
|
|
// sp[-1] = frame_type;
|
|
uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
|
|
|
|
// Allocate a new CFP (ec->cfp--)
|
|
sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
|
|
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
|
|
|
|
// Setup the new frame
|
|
// *cfp = (const struct rb_control_frame_struct) {
|
|
// .pc = pc,
|
|
// .sp = sp,
|
|
// .iseq = iseq,
|
|
// .self = recv,
|
|
// .ep = sp - 1,
|
|
// .block_code = 0,
|
|
// .__bp__ = sp,
|
|
// };
|
|
mov(cb, REG1, recv);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG1);
|
|
mov(cb, REG_SP, REG0); // Switch to the callee's REG_SP
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
|
|
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
|
|
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
|
|
|
|
// No need to set cfp->pc since the callee sets it whenever calling into routines
|
|
// that could look at it through jit_save_pc().
|
|
// mov(cb, REG0, const_ptr_opnd(start_pc));
|
|
// mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);
|
|
|
|
// Stub so we can return to JITted code
|
|
blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };
|
|
|
|
// Create a context for the callee
|
|
ctx_t callee_ctx = DEFAULT_CTX;
|
|
|
|
// Set the argument types in the callee's context
|
|
for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) {
|
|
val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1));
|
|
ctx_set_local_type(&callee_ctx, arg_idx, arg_type);
|
|
}
|
|
val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc));
|
|
ctx_upgrade_opnd_type(&callee_ctx, OPND_SELF, recv_type);
|
|
|
|
// The callee might change locals through Kernel#binding and other means.
|
|
ctx_clear_local_types(ctx);
|
|
|
|
// Pop arguments and receiver in return context, push the return value
|
|
// After the return, sp_offset will be 1. The codegen for leave writes
|
|
// the return value in case of JIT-to-JIT return.
|
|
ctx_t return_ctx = *ctx;
|
|
ctx_stack_pop(&return_ctx, argc + 1);
|
|
ctx_stack_push(&return_ctx, TYPE_UNKNOWN);
|
|
return_ctx.sp_offset = 1;
|
|
return_ctx.chain_depth = 0;
|
|
|
|
// Write the JIT return address on the callee frame
|
|
gen_branch(
|
|
jit,
|
|
ctx,
|
|
return_block,
|
|
&return_ctx,
|
|
return_block,
|
|
&return_ctx,
|
|
gen_return_branch
|
|
);
|
|
|
|
//print_str(cb, "calling Ruby func:");
|
|
//print_str(cb, rb_id2name(vm_ci_mid(ci)));
|
|
|
|
// Directly jump to the entry point of the callee
|
|
gen_direct_jump(
|
|
jit,
|
|
&callee_ctx,
|
|
(blockid_t){ iseq, start_pc_offset }
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
const rb_callable_method_entry_t *
|
|
rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me);
|
|
|
|
static codegen_status_t
|
|
gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block)
|
|
{
|
|
// Relevant definitions:
|
|
// rb_execution_context_t : vm_core.h
|
|
// invoker, cfunc logic : method.h, vm_method.c
|
|
// rb_callinfo : vm_callinfo.h
|
|
// rb_callable_method_entry_t : method.h
|
|
// vm_call_cfunc_with_frame : vm_insnhelper.c
|
|
//
|
|
// For a general overview for how the interpreter calls methods,
|
|
// see vm_call_method().
|
|
|
|
const struct rb_callinfo *ci = cd->ci; // info about the call site
|
|
|
|
int32_t argc = (int32_t)vm_ci_argc(ci);
|
|
ID mid = vm_ci_mid(ci);
|
|
|
|
// Don't JIT calls with keyword splat
|
|
if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) {
|
|
GEN_COUNTER_INC(cb, send_kw_splat);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Don't JIT calls that aren't simple
|
|
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
|
|
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
|
|
GEN_COUNTER_INC(cb, send_args_splat);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
|
|
GEN_COUNTER_INC(cb, send_block_arg);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Defer compilation so we can specialize on class of receiver
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
|
|
VALUE comptime_recv_klass = CLASS_OF(comptime_recv);
|
|
|
|
// Guard that the receiver has the same class as the one from compile time
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
insn_opnd_t recv_opnd = OPND_STACK(argc);
|
|
mov(cb, REG0, recv);
|
|
if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Do method lookup
|
|
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid);
|
|
if (!cme) {
|
|
// TODO: counter
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
switch (METHOD_ENTRY_VISI(cme)) {
|
|
case METHOD_VISI_PUBLIC:
|
|
// Can always call public methods
|
|
break;
|
|
case METHOD_VISI_PRIVATE:
|
|
if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) {
|
|
// Can only call private methods with FCALL callsites.
|
|
// (at the moment they are callsites without a receiver or an explicit `self` receiver)
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
break;
|
|
case METHOD_VISI_PROTECTED:
|
|
jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit);
|
|
break;
|
|
case METHOD_VISI_UNDEF:
|
|
RUBY_ASSERT(false && "cmes should always have a visibility");
|
|
break;
|
|
}
|
|
|
|
// Register block for invalidation
|
|
RUBY_ASSERT(cme->called_id == mid);
|
|
assume_method_lookup_stable(comptime_recv_klass, cme, jit->block);
|
|
|
|
// To handle the aliased method case (VM_METHOD_TYPE_ALIAS)
|
|
while (true) {
|
|
// switch on the method type
|
|
switch (cme->def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return gen_send_iseq(jit, ctx, ci, cme, block, argc);
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
|
|
GEN_COUNTER_INC(cb, send_cfunc_kwargs);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, &comptime_recv_klass);
|
|
case VM_METHOD_TYPE_IVAR:
|
|
if (argc != 0) {
|
|
// Argument count mismatch. Getters take no arguments.
|
|
GEN_COUNTER_INC(cb, send_getter_arity);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
if (c_method_tracing_currently_enabled(jit)) {
|
|
// Can't generate code for firing c_call and c_return events
|
|
// :attr-tracing:
|
|
// Handling the C method tracing events for attr_accessor
|
|
// methods is easier than regular C methods as we know the
|
|
// "method" we are calling into never enables those tracing
|
|
// events. Once global invalidation runs, the code for the
|
|
// attr_accessor is invalidated and we exit at the closest
|
|
// instruction boundary which is always outside of the body of
|
|
// the attr_accessor code.
|
|
GEN_COUNTER_INC(cb, send_cfunc_tracing);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
mov(cb, REG0, recv);
|
|
|
|
ID ivar_name = cme->def->body.attr.id;
|
|
return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit);
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
|
|
GEN_COUNTER_INC(cb, send_attrset_kwargs);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
else if (argc != 1 || !RB_TYPE_P(comptime_recv, T_OBJECT)) {
|
|
GEN_COUNTER_INC(cb, send_ivar_set_method);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
else if (c_method_tracing_currently_enabled(jit)) {
|
|
// Can't generate code for firing c_call and c_return events
|
|
// See :attr-tracing:
|
|
GEN_COUNTER_INC(cb, send_cfunc_tracing);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
else {
|
|
ID ivar_name = cme->def->body.attr.id;
|
|
return gen_set_ivar(jit, ctx, comptime_recv, comptime_recv_klass, ivar_name);
|
|
}
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
GEN_COUNTER_INC(cb, send_bmethod);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
GEN_COUNTER_INC(cb, send_zsuper_method);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_ALIAS: {
|
|
// Retrieve the alised method and re-enter the switch
|
|
cme = rb_aliased_callable_method_entry(cme);
|
|
continue;
|
|
}
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
GEN_COUNTER_INC(cb, send_undef_method);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
GEN_COUNTER_INC(cb, send_not_implemented_method);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_OPTIMIZED:
|
|
GEN_COUNTER_INC(cb, send_optimized_method);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_MISSING:
|
|
GEN_COUNTER_INC(cb, send_missing_method);
|
|
return YJIT_CANT_COMPILE;
|
|
case VM_METHOD_TYPE_REFINED:
|
|
GEN_COUNTER_INC(cb, send_refined_method);
|
|
return YJIT_CANT_COMPILE;
|
|
// no default case so compiler issues a warning if this is not exhaustive
|
|
}
|
|
|
|
// Unreachable
|
|
RUBY_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
return gen_send_general(jit, ctx, cd, NULL);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_send(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
|
|
return gen_send_general(jit, ctx, cd, block);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_invokesuper(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
|
|
|
|
// Defer compilation so we can specialize on class of receiver
|
|
if (!jit_at_current_insn(jit)) {
|
|
defer_compilation(jit, ctx);
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp);
|
|
if (!me) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// FIXME: We should track and invalidate this block when this cme is invalidated
|
|
VALUE current_defined_class = me->defined_class;
|
|
ID mid = me->def->original_id;
|
|
|
|
if (me != rb_callable_method_entry(current_defined_class, me->called_id)) {
|
|
// Though we likely could generate this call, as we are only concerned
|
|
// with the method entry remaining valid, assume_method_lookup_stable
|
|
// below requires that the method lookup matches as well
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// vm_search_normal_superclass
|
|
if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class));
|
|
|
|
const struct rb_callinfo *ci = cd->ci;
|
|
int32_t argc = (int32_t)vm_ci_argc(ci);
|
|
|
|
// Don't JIT calls that aren't simple
|
|
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
|
|
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
|
|
GEN_COUNTER_INC(cb, send_args_splat);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
|
|
GEN_COUNTER_INC(cb, send_keywords);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
if ((vm_ci_flag(ci) & VM_CALL_KW_SPLAT) != 0) {
|
|
GEN_COUNTER_INC(cb, send_kw_splat);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
|
|
GEN_COUNTER_INC(cb, send_block_arg);
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Ensure we haven't rebound this method onto an incompatible class.
|
|
// In the interpreter we try to avoid making this check by performing some
|
|
// cheaper calculations first, but since we specialize on the method entry
|
|
// and so only have to do this once at compile time this is fine to always
|
|
// check and side exit.
|
|
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
|
|
if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Do method lookup
|
|
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid);
|
|
|
|
if (!cme) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Check that we'll be able to write this method dispatch before generating checks
|
|
switch (cme->def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
break;
|
|
default:
|
|
// others unimplemented
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// Guard that the receiver has the same class as the one from compile time
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
if (jit->ec->cfp->ep[VM_ENV_DATA_INDEX_ME_CREF] != (VALUE)me) {
|
|
// This will be the case for super within a block
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
ADD_COMMENT(cb, "guard known me");
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
x86opnd_t ep_me_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_ME_CREF);
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)me);
|
|
cmp(cb, ep_me_opnd, REG1);
|
|
jne_ptr(cb, COUNTED_EXIT(side_exit, invokesuper_me_changed));
|
|
|
|
if (!block) {
|
|
// Guard no block passed
|
|
// rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE
|
|
// note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep))
|
|
//
|
|
// TODO: this could properly forward the current block handler, but
|
|
// would require changes to gen_send_*
|
|
ADD_COMMENT(cb, "guard no block given");
|
|
// EP is in REG0 from above
|
|
x86opnd_t ep_specval_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL);
|
|
cmp(cb, ep_specval_opnd, imm_opnd(VM_BLOCK_HANDLER_NONE));
|
|
jne_ptr(cb, COUNTED_EXIT(side_exit, invokesuper_block));
|
|
}
|
|
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
mov(cb, REG0, recv);
|
|
|
|
// We need to assume that both our current method entry and the super
|
|
// method entry we invoke remain stable
|
|
assume_method_lookup_stable(current_defined_class, me, jit->block);
|
|
assume_method_lookup_stable(comptime_superclass, cme, jit->block);
|
|
|
|
// Method calls may corrupt types
|
|
ctx_clear_local_types(ctx);
|
|
|
|
switch (cme->def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return gen_send_iseq(jit, ctx, ci, cme, block, argc);
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, NULL);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
RUBY_ASSERT_ALWAYS(false);
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_leave(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Only the return value should be on the stack
|
|
RUBY_ASSERT(ctx->stack_size == 1);
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
// Check for interrupts
|
|
ADD_COMMENT(cb, "check for interrupts");
|
|
yjit_check_ints(cb, COUNTED_EXIT(side_exit, leave_se_interrupt));
|
|
|
|
// Load the return value
|
|
mov(cb, REG0, ctx_stack_pop(ctx, 1));
|
|
|
|
// Pop the current frame (ec->cfp++)
|
|
// Note: the return PC is already in the previous CFP
|
|
add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
|
|
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
|
|
|
|
// Reload REG_SP for the caller and write the return value.
|
|
// Top of the stack is REG_SP[0] since the caller has sp_offset=1.
|
|
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
|
|
mov(cb, mem_opnd(64, REG_SP, 0), REG0);
|
|
|
|
// Jump to the JIT return address on the frame that was just popped
|
|
const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return);
|
|
jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return));
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state;
|
|
|
|
static codegen_status_t
|
|
gen_getglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
ID gid = jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because we might make a Ruby call for warning
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(gid));
|
|
|
|
call_ptr(cb, REG0, (void *)&rb_gvar_get);
|
|
|
|
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, top, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_setglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
ID gid = jit_get_arg(jit, 0);
|
|
|
|
// Save the PC and SP because we might make a Ruby call for
|
|
// Kernel#set_trace_var
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(gid));
|
|
|
|
x86opnd_t val = ctx_stack_pop(ctx, 1);
|
|
|
|
mov(cb, C_ARG_REGS[1], val);
|
|
|
|
call_ptr(cb, REG0, (void *)&rb_gvar_set);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_tostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// Save the PC and SP because we might make a Ruby call for
|
|
// Kernel#set_trace_var
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
x86opnd_t str = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t val = ctx_stack_pop(ctx, 1);
|
|
|
|
mov(cb, C_ARG_REGS[0], str);
|
|
mov(cb, C_ARG_REGS[1], val);
|
|
|
|
call_ptr(cb, REG0, (void *)&rb_obj_as_string_result);
|
|
|
|
// Push the return value
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_toregexp(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
rb_num_t opt = jit_get_arg(jit, 0);
|
|
rb_num_t cnt = jit_get_arg(jit, 1);
|
|
|
|
// Save the PC and SP because this allocates an object and could
|
|
// raise an exception.
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)cnt));
|
|
ctx_stack_pop(ctx, cnt);
|
|
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(0));
|
|
mov(cb, C_ARG_REGS[1], imm_opnd(cnt));
|
|
lea(cb, C_ARG_REGS[2], values_ptr);
|
|
call_ptr(cb, REG0, (void *)&rb_ary_tmp_new_from_values);
|
|
|
|
// Save the array so we can clear it later
|
|
push(cb, RAX);
|
|
push(cb, RAX); // Alignment
|
|
mov(cb, C_ARG_REGS[0], RAX);
|
|
mov(cb, C_ARG_REGS[1], imm_opnd(opt));
|
|
call_ptr(cb, REG0, (void *)&rb_reg_new_ary);
|
|
|
|
// The actual regex is in RAX now. Pop the temp array from
|
|
// rb_ary_tmp_new_from_values into C arg regs so we can clear it
|
|
pop(cb, REG1); // Alignment
|
|
pop(cb, C_ARG_REGS[0]);
|
|
|
|
// The value we want to push on the stack is in RAX right now
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
// Clear the temp array.
|
|
call_ptr(cb, REG0, (void *)&rb_ary_clear);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_getspecial(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// This takes two arguments, key and type
|
|
// key is only used when type == 0
|
|
// A non-zero type determines which type of backref to fetch
|
|
//rb_num_t key = jit_get_arg(jit, 0);
|
|
rb_num_t type = jit_get_arg(jit, 1);
|
|
|
|
if (type == 0) {
|
|
// not yet implemented
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
else if (type & 0x01) {
|
|
// Fetch a "special" backref based on a char encoded by shifting by 1
|
|
|
|
// Can raise if matchdata uninitialized
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// call rb_backref_get()
|
|
ADD_COMMENT(cb, "rb_backref_get");
|
|
call_ptr(cb, REG0, (void *)rb_backref_get);
|
|
mov(cb, C_ARG_REGS[0], RAX);
|
|
|
|
switch (type >> 1) {
|
|
case '&':
|
|
ADD_COMMENT(cb, "rb_reg_last_match");
|
|
call_ptr(cb, REG0, (void *)rb_reg_last_match);
|
|
break;
|
|
case '`':
|
|
ADD_COMMENT(cb, "rb_reg_match_pre");
|
|
call_ptr(cb, REG0, (void *)rb_reg_match_pre);
|
|
break;
|
|
case '\'':
|
|
ADD_COMMENT(cb, "rb_reg_match_post");
|
|
call_ptr(cb, REG0, (void *)rb_reg_match_post);
|
|
break;
|
|
case '+':
|
|
ADD_COMMENT(cb, "rb_reg_match_last");
|
|
call_ptr(cb, REG0, (void *)rb_reg_match_last);
|
|
break;
|
|
default:
|
|
rb_bug("invalid back-ref");
|
|
}
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
else {
|
|
// Fetch the N-th match from the last backref based on type shifted by 1
|
|
|
|
// Can raise if matchdata uninitialized
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// call rb_backref_get()
|
|
ADD_COMMENT(cb, "rb_backref_get");
|
|
call_ptr(cb, REG0, (void *)rb_backref_get);
|
|
|
|
// rb_reg_nth_match((int)(type >> 1), backref);
|
|
ADD_COMMENT(cb, "rb_reg_nth_match");
|
|
mov(cb, C_ARG_REGS[0], imm_opnd(type >> 1));
|
|
mov(cb, C_ARG_REGS[1], RAX);
|
|
call_ptr(cb, REG0, (void *)rb_reg_nth_match);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_vm_getclassvariable(const rb_iseq_t *iseq, const rb_cref_t *cref, const rb_control_frame_t *cfp, ID id, ICVARC ic);
|
|
|
|
rb_cref_t *
|
|
rb_vm_get_cref(const VALUE *ep);
|
|
|
|
static codegen_status_t
|
|
gen_getclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb)
|
|
{
|
|
// rb_vm_getclassvariable can raise exceptions.
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
call_ptr(cb, REG0, (void *)rb_vm_get_cref);
|
|
|
|
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq));
|
|
mov(cb, C_ARG_REGS[1], RAX);
|
|
mov(cb, C_ARG_REGS[2], REG_CFP);
|
|
mov(cb, C_ARG_REGS[3], imm_opnd(jit_get_arg(jit, 0)));
|
|
mov(cb, C_ARG_REGS[4], imm_opnd(jit_get_arg(jit, 1)));
|
|
|
|
call_ptr(cb, REG0, (void *)rb_vm_getclassvariable);
|
|
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_top, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
VALUE jump_offset = jit_get_arg(jit, 0);
|
|
VALUE const_cache_as_value = jit_get_arg(jit, 1);
|
|
IC ic = (IC)const_cache_as_value;
|
|
|
|
// See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update().
|
|
struct iseq_inline_constant_cache_entry *ice = ic->entry;
|
|
if (!ice || // cache not filled
|
|
ice->ic_serial != ruby_vm_global_constant_state /* cache out of date */) {
|
|
// In these cases, leave a block that unconditionally side exits
|
|
// for the interpreter to invalidate.
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
if (ice->ic_cref) {
|
|
// Cache is keyed on a certain lexical scope. Use the interpreter's cache.
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// Call function to verify the cache. It doesn't allocate or call methods.
|
|
bool rb_vm_ic_hit_p(IC ic, const VALUE *reg_ep);
|
|
mov(cb, C_ARG_REGS[0], const_ptr_opnd((void *)ic));
|
|
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
call_ptr(cb, REG0, (void *)rb_vm_ic_hit_p);
|
|
|
|
// Check the result. _Bool is one byte in SysV.
|
|
test(cb, AL, AL);
|
|
jz_ptr(cb, COUNTED_EXIT(side_exit, opt_getinlinecache_miss));
|
|
|
|
// Push ic->entry->value
|
|
mov(cb, REG0, const_ptr_opnd((void *)ic));
|
|
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache, entry));
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache_entry, value));
|
|
mov(cb, stack_top, REG0);
|
|
}
|
|
else {
|
|
// Optimize for single ractor mode.
|
|
// FIXME: This leaks when st_insert raises NoMemoryError
|
|
if (!assume_single_ractor_mode(jit->block)) return YJIT_CANT_COMPILE;
|
|
|
|
// Invalidate output code on any and all constant writes
|
|
// FIXME: This leaks when st_insert raises NoMemoryError
|
|
assume_stable_global_constant_state(jit->block);
|
|
|
|
val_type_t type = yjit_type_of_value(ice->value);
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, type);
|
|
jit_mov_gc_ptr(jit, cb, REG0, ice->value);
|
|
mov(cb, stack_top, REG0);
|
|
}
|
|
|
|
// Jump over the code for filling the cache
|
|
uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset;
|
|
gen_direct_jump(
|
|
jit,
|
|
ctx,
|
|
(blockid_t){ .iseq = jit->iseq, .idx = jump_idx }
|
|
);
|
|
|
|
return YJIT_END_BLOCK;
|
|
}
|
|
|
|
// Push the explict block parameter onto the temporary stack. Part of the
|
|
// interpreter's scheme for avoiding Proc allocations when delegating
|
|
// explict block parameters.
|
|
static codegen_status_t
|
|
gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
// A mirror of the interpreter code. Checking for the case
|
|
// where it's pushing rb_block_param_proxy.
|
|
uint8_t *side_exit = yjit_side_exit(jit, ctx);
|
|
|
|
// EP level
|
|
uint32_t level = (uint32_t)jit_get_arg(jit, 1);
|
|
|
|
// Load environment pointer EP from CFP
|
|
gen_get_ep(cb, REG0, level);
|
|
|
|
// Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
|
|
test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM));
|
|
jnz_ptr(cb, COUNTED_EXIT(side_exit, gbpp_block_param_modified));
|
|
|
|
// Load the block handler for the current frame
|
|
// note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
|
|
mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
|
|
|
|
// Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P().
|
|
and(cb, REG0_8, imm_opnd(0x3));
|
|
|
|
// Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null.
|
|
cmp(cb, REG0_8, imm_opnd(0x1));
|
|
jnz_ptr(cb, COUNTED_EXIT(side_exit, gbpp_block_handler_not_iseq));
|
|
|
|
// Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr.
|
|
mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy));
|
|
RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy));
|
|
x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP);
|
|
mov(cb, top, REG0);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static codegen_status_t
|
|
gen_invokebuiltin(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
|
|
|
|
// ec, self, and arguments
|
|
if (bf->argc + 2 > NUM_C_ARG_REGS) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// If the calls don't allocate, do they need up to date PC, SP?
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
// Call the builtin func (ec, recv, arg1, arg2, ...)
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
// Copy arguments from locals
|
|
for (int32_t i = 0; i < bf->argc; i++) {
|
|
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, bf->argc - i - 1);
|
|
x86opnd_t c_arg_reg = C_ARG_REGS[2 + i];
|
|
mov(cb, c_arg_reg, stack_opnd);
|
|
}
|
|
|
|
call_ptr(cb, REG0, (void *)bf->func_ptr);
|
|
|
|
// Push the return value
|
|
ctx_stack_pop(ctx, bf->argc);
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
// opt_invokebuiltin_delegate calls a builtin function, like
|
|
// invokebuiltin does, but instead of taking arguments from the top of the
|
|
// stack uses the argument locals (and self) from the current method.
|
|
static codegen_status_t
|
|
gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
|
|
{
|
|
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
|
|
int32_t start_index = (int32_t)jit_get_arg(jit, 1);
|
|
|
|
// ec, self, and arguments
|
|
if (bf->argc + 2 > NUM_C_ARG_REGS) {
|
|
return YJIT_CANT_COMPILE;
|
|
}
|
|
|
|
// If the calls don't allocate, do they need up to date PC, SP?
|
|
jit_prepare_routine_call(jit, ctx, REG0);
|
|
|
|
if (bf->argc > 0) {
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
}
|
|
|
|
// Call the builtin func (ec, recv, arg1, arg2, ...)
|
|
mov(cb, C_ARG_REGS[0], REG_EC);
|
|
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
// Copy arguments from locals
|
|
for (int32_t i = 0; i < bf->argc; i++) {
|
|
const int32_t offs = -jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1 + start_index + i;
|
|
x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE);
|
|
x86opnd_t c_arg_reg = C_ARG_REGS[i + 2];
|
|
mov(cb, c_arg_reg, local_opnd);
|
|
}
|
|
call_ptr(cb, REG0, (void *)bf->func_ptr);
|
|
|
|
// Push the return value
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return YJIT_KEEP_COMPILING;
|
|
}
|
|
|
|
static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data);
|
|
static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq);
|
|
|
|
// Invalidate all generated code and patch C method return code to contain
|
|
// logic for firing the c_return TracePoint event. Once rb_vm_barrier()
|
|
// returns, all other ractors are pausing inside RB_VM_LOCK_ENTER(), which
|
|
// means they are inside a C routine. If there are any generated code on-stack,
|
|
// they are waiting for a return from a C routine. For every routine call, we
|
|
// patch in an exit after the body of the containing VM instruction. This makes
|
|
// it so all the invalidated code exit as soon as execution logically reaches
|
|
// the next VM instruction. The interpreter takes care of firing the tracing
|
|
// event if it so happens that the next VM instruction has one attached.
|
|
//
|
|
// The c_return event needs special handling as our codegen never outputs code
|
|
// that contains tracing logic. If we let the normal output code run until the
|
|
// start of the next VM instruction by relying on the patching scheme above, we
|
|
// would fail to fire the c_return event. The interpreter doesn't fire the
|
|
// event at an instruction boundary, so simply exiting to the interpreter isn't
|
|
// enough. To handle it, we patch in the full logic at the return address. See
|
|
// full_cfunc_return().
|
|
//
|
|
// In addition to patching, we prevent future entries into invalidated code by
|
|
// removing all live blocks from their iseq.
|
|
void
|
|
rb_yjit_tracing_invalidate_all(void)
|
|
{
|
|
if (!rb_yjit_enabled_p()) return;
|
|
|
|
// Stop other ractors since we are going to patch machine code.
|
|
RB_VM_LOCK_ENTER();
|
|
rb_vm_barrier();
|
|
|
|
// Make it so all live block versions are no longer valid branch targets
|
|
rb_objspace_each_objects(tracing_invalidate_all_i, NULL);
|
|
|
|
// Apply patches
|
|
const uint32_t old_pos = cb->write_pos;
|
|
rb_darray_for(global_inval_patches, patch_idx) {
|
|
struct codepage_patch patch = rb_darray_get(global_inval_patches, patch_idx);
|
|
cb_set_pos(cb, patch.inline_patch_pos);
|
|
uint8_t *jump_target = cb_get_ptr(ocb, patch.outlined_target_pos);
|
|
jmp_ptr(cb, jump_target);
|
|
}
|
|
cb_set_pos(cb, old_pos);
|
|
|
|
// Freeze invalidated part of the codepage. We only want to wait for
|
|
// running instances of the code to exit from now on, so we shouldn't
|
|
// change the code. There could be other ractors sleeping in
|
|
// branch_stub_hit(), for example. We could harden this by changing memory
|
|
// protection on the frozen range.
|
|
RUBY_ASSERT_ALWAYS(yjit_codepage_frozen_bytes <= old_pos && "frozen bytes should increase monotonically");
|
|
yjit_codepage_frozen_bytes = old_pos;
|
|
|
|
RB_VM_LOCK_LEAVE();
|
|
}
|
|
|
|
static int
|
|
tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
VALUE v = (VALUE)vstart;
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
void *ptr = asan_poisoned_object_p(v);
|
|
asan_unpoison_object(v, false);
|
|
|
|
if (rb_obj_is_iseq(v)) {
|
|
rb_iseq_t *iseq = (rb_iseq_t *)v;
|
|
invalidate_all_blocks_for_tracing(iseq);
|
|
}
|
|
|
|
asan_poison_object_if(ptr, v);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq)
|
|
{
|
|
struct rb_iseq_constant_body *body = iseq->body;
|
|
if (!body) return; // iseq yet to be initialized
|
|
|
|
ASSERT_vm_locking();
|
|
|
|
// Empty all blocks on the iseq so we don't compile new blocks that jump to the
|
|
// invalidted region.
|
|
// TODO Leaking the blocks for now since we might have situations where
|
|
// a different ractor is waiting in branch_stub_hit(). If we free the block
|
|
// that ractor can wake up with a dangling block.
|
|
rb_darray_for(body->yjit_blocks, version_array_idx) {
|
|
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
|
|
rb_darray_for(version_array, version_idx) {
|
|
// Stop listening for invalidation events like basic operation redefinition.
|
|
block_t *block = rb_darray_get(version_array, version_idx);
|
|
yjit_unlink_method_lookup_dependency(block);
|
|
yjit_block_assumptions_free(block);
|
|
}
|
|
rb_darray_free(version_array);
|
|
}
|
|
rb_darray_free(body->yjit_blocks);
|
|
body->yjit_blocks = NULL;
|
|
|
|
#if USE_MJIT
|
|
// Reset output code entry point
|
|
body->jit_func = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
yjit_reg_op(int opcode, codegen_fn gen_fn)
|
|
{
|
|
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
|
|
// Check that the op wasn't previously registered
|
|
RUBY_ASSERT(gen_fns[opcode] == NULL);
|
|
|
|
gen_fns[opcode] = gen_fn;
|
|
}
|
|
|
|
void
|
|
yjit_init_codegen(void)
|
|
{
|
|
// Initialize the code blocks
|
|
uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024;
|
|
uint8_t *mem_block = alloc_exec_mem(mem_size);
|
|
|
|
cb = █
|
|
cb_init(cb, mem_block, mem_size/2);
|
|
|
|
ocb = &outline_block;
|
|
cb_init(ocb, mem_block + mem_size/2, mem_size/2);
|
|
|
|
// Generate the interpreter exit code for leave
|
|
leave_exit_code = yjit_gen_leave_exit(cb);
|
|
|
|
// Generate full exit code for C func
|
|
gen_full_cfunc_return();
|
|
|
|
// Map YARV opcodes to the corresponding codegen functions
|
|
yjit_reg_op(BIN(nop), gen_nop);
|
|
yjit_reg_op(BIN(dup), gen_dup);
|
|
yjit_reg_op(BIN(dupn), gen_dupn);
|
|
yjit_reg_op(BIN(swap), gen_swap);
|
|
yjit_reg_op(BIN(setn), gen_setn);
|
|
yjit_reg_op(BIN(topn), gen_topn);
|
|
yjit_reg_op(BIN(pop), gen_pop);
|
|
yjit_reg_op(BIN(adjuststack), gen_adjuststack);
|
|
yjit_reg_op(BIN(newarray), gen_newarray);
|
|
yjit_reg_op(BIN(duparray), gen_duparray);
|
|
yjit_reg_op(BIN(splatarray), gen_splatarray);
|
|
yjit_reg_op(BIN(expandarray), gen_expandarray);
|
|
yjit_reg_op(BIN(newhash), gen_newhash);
|
|
yjit_reg_op(BIN(newrange), gen_newrange);
|
|
yjit_reg_op(BIN(concatstrings), gen_concatstrings);
|
|
yjit_reg_op(BIN(putnil), gen_putnil);
|
|
yjit_reg_op(BIN(putobject), gen_putobject);
|
|
yjit_reg_op(BIN(putstring), gen_putstring);
|
|
yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix);
|
|
yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix);
|
|
yjit_reg_op(BIN(putself), gen_putself);
|
|
yjit_reg_op(BIN(putspecialobject), gen_putspecialobject);
|
|
yjit_reg_op(BIN(getlocal), gen_getlocal);
|
|
yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0);
|
|
yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1);
|
|
yjit_reg_op(BIN(setlocal), gen_setlocal);
|
|
yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0);
|
|
yjit_reg_op(BIN(setlocal_WC_1), gen_setlocal_wc1);
|
|
yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable);
|
|
yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable);
|
|
yjit_reg_op(BIN(defined), gen_defined);
|
|
yjit_reg_op(BIN(checktype), gen_checktype);
|
|
yjit_reg_op(BIN(opt_lt), gen_opt_lt);
|
|
yjit_reg_op(BIN(opt_le), gen_opt_le);
|
|
yjit_reg_op(BIN(opt_ge), gen_opt_ge);
|
|
yjit_reg_op(BIN(opt_gt), gen_opt_gt);
|
|
yjit_reg_op(BIN(opt_eq), gen_opt_eq);
|
|
yjit_reg_op(BIN(opt_neq), gen_opt_neq);
|
|
yjit_reg_op(BIN(opt_aref), gen_opt_aref);
|
|
yjit_reg_op(BIN(opt_aset), gen_opt_aset);
|
|
yjit_reg_op(BIN(opt_and), gen_opt_and);
|
|
yjit_reg_op(BIN(opt_or), gen_opt_or);
|
|
yjit_reg_op(BIN(opt_minus), gen_opt_minus);
|
|
yjit_reg_op(BIN(opt_plus), gen_opt_plus);
|
|
yjit_reg_op(BIN(opt_mult), gen_opt_mult);
|
|
yjit_reg_op(BIN(opt_div), gen_opt_div);
|
|
yjit_reg_op(BIN(opt_mod), gen_opt_mod);
|
|
yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt);
|
|
yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p);
|
|
yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p);
|
|
yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze);
|
|
yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus);
|
|
yjit_reg_op(BIN(opt_not), gen_opt_not);
|
|
yjit_reg_op(BIN(opt_size), gen_opt_size);
|
|
yjit_reg_op(BIN(opt_length), gen_opt_length);
|
|
yjit_reg_op(BIN(opt_regexpmatch2), gen_opt_regexpmatch2);
|
|
yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache);
|
|
yjit_reg_op(BIN(invokebuiltin), gen_invokebuiltin);
|
|
yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate);
|
|
yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate);
|
|
yjit_reg_op(BIN(opt_case_dispatch), gen_opt_case_dispatch);
|
|
yjit_reg_op(BIN(branchif), gen_branchif);
|
|
yjit_reg_op(BIN(branchunless), gen_branchunless);
|
|
yjit_reg_op(BIN(branchnil), gen_branchnil);
|
|
yjit_reg_op(BIN(jump), gen_jump);
|
|
yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy);
|
|
yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block);
|
|
yjit_reg_op(BIN(send), gen_send);
|
|
yjit_reg_op(BIN(invokesuper), gen_invokesuper);
|
|
yjit_reg_op(BIN(leave), gen_leave);
|
|
yjit_reg_op(BIN(getglobal), gen_getglobal);
|
|
yjit_reg_op(BIN(setglobal), gen_setglobal);
|
|
yjit_reg_op(BIN(tostring), gen_tostring);
|
|
yjit_reg_op(BIN(toregexp), gen_toregexp);
|
|
yjit_reg_op(BIN(getspecial), gen_getspecial);
|
|
yjit_reg_op(BIN(getclassvariable), gen_getclassvariable);
|
|
|
|
yjit_method_codegen_table = st_init_numtable();
|
|
|
|
// Specialization for C methods. See yjit_reg_method() for details.
|
|
yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not);
|
|
|
|
yjit_reg_method(rb_cNilClass, "nil?", jit_rb_true);
|
|
yjit_reg_method(rb_mKernel, "nil?", jit_rb_false);
|
|
|
|
yjit_reg_method(rb_cBasicObject, "==", jit_rb_obj_equal);
|
|
yjit_reg_method(rb_cBasicObject, "equal?", jit_rb_obj_equal);
|
|
yjit_reg_method(rb_mKernel, "eql?", jit_rb_obj_equal);
|
|
yjit_reg_method(rb_cModule, "==", jit_rb_obj_equal);
|
|
yjit_reg_method(rb_cSymbol, "==", jit_rb_obj_equal);
|
|
yjit_reg_method(rb_cSymbol, "===", jit_rb_obj_equal);
|
|
|
|
// rb_str_to_s() methods in string.c
|
|
yjit_reg_method(rb_cString, "to_s", jit_rb_str_to_s);
|
|
yjit_reg_method(rb_cString, "to_str", jit_rb_str_to_s);
|
|
yjit_reg_method(rb_cString, "bytesize", jit_rb_str_bytesize);
|
|
|
|
// Thread.current
|
|
yjit_reg_method(rb_singleton_class(rb_cThread), "current", jit_thread_s_current);
|
|
}
|