mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
5185955f3f
* complex.c: added some aliases (::rectangular, ::rect, #rectangular, #rect, #phase, #magnitude). * complex.c (string_to_c_internal): should not strip any null bytes. * rational.c (string_to_r_internal): ditto. * rational.c (i_gcd): reverted to nurat 0.0.2's one. * numeric.c: added an alias (#magnitude). * test/ruby/test_complex.rb: added assertions. * test/ruby/test_rational.rb: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@18925 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
1487 lines
32 KiB
C
1487 lines
32 KiB
C
/*
|
|
complex.c: Coded by Tadayoshi Funaba 2008
|
|
|
|
This implementation is based on Keiju Ishitsuka's Complex library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "ruby.h"
|
|
#include <math.h>
|
|
|
|
#define NDEBUG
|
|
#include <assert.h>
|
|
|
|
#ifndef COMPLEX_NAME
|
|
#define COMPLEX_NAME "Complex"
|
|
#endif
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
|
|
VALUE rb_cComplex;
|
|
|
|
static ID id_Unify, id_abs, id_abs2, id_arg, id_atan2_bang, id_cmp,
|
|
id_conjugate, id_convert, id_cos, id_denominator, id_divmod,
|
|
id_equal_p, id_exact_p, id_exp_bang, id_expt, id_floor, id_format,
|
|
id_hypot, id_idiv, id_inspect, id_log_bang, id_negate, id_new, id_new_bang,
|
|
id_numerator, id_polar, id_quo, id_scalar_p, id_sin, id_sqrt, id_to_f,
|
|
id_to_i, id_to_r, id_to_s, id_truncate;
|
|
|
|
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
|
|
|
#define binop(n,op) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, op, 1, y);\
|
|
}
|
|
|
|
#define fun1(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 0);\
|
|
}
|
|
|
|
#define fun2(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 1, y);\
|
|
}
|
|
|
|
#define math1(n) \
|
|
inline static VALUE \
|
|
m_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(rb_mMath, id_##n, 1, x);\
|
|
}
|
|
|
|
#define math2(n) \
|
|
inline static VALUE \
|
|
m_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(rb_mMath, id_##n, 2, x, y);\
|
|
}
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y)) {
|
|
if (FIX2LONG(y) == 0)
|
|
return x;
|
|
}
|
|
else if (FIXNUM_P(x)) {
|
|
if (FIX2LONG(x) == 0)
|
|
return y;
|
|
}
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_cmp(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long c = FIX2LONG(x) - FIX2LONG(y);
|
|
if (c > 0)
|
|
c = 1;
|
|
else if (c < 0)
|
|
c = -1;
|
|
return INT2FIX(c);
|
|
}
|
|
return rb_funcall(x, id_cmp, 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 1)
|
|
return x;
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
|
|
return rb_funcall(x, '>', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_lt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
|
|
return rb_funcall(x, '<', 1, y);
|
|
}
|
|
|
|
binop(mod, '%')
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y)) {
|
|
long _iy = FIX2LONG(y);
|
|
if (_iy == 0) {
|
|
if (TYPE(x) == T_FLOAT)
|
|
return rb_float_new(0.0);
|
|
else
|
|
return ZERO;
|
|
}
|
|
else if (_iy == 1)
|
|
return x;
|
|
}
|
|
else if (FIXNUM_P(x)) {
|
|
long _ix = FIX2LONG(x);
|
|
if (_ix == 0) {
|
|
if (TYPE(y) == T_FLOAT)
|
|
return rb_float_new(0.0);
|
|
else
|
|
return ZERO;
|
|
}
|
|
else if (_ix == 1)
|
|
return y;
|
|
}
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y))
|
|
if (FIX2LONG(y) == 0)
|
|
return x;
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
binop(xor, '^')
|
|
|
|
fun1(abs)
|
|
fun1(abs2)
|
|
fun1(arg)
|
|
fun1(conjugate)
|
|
fun1(denominator)
|
|
fun1(exact_p)
|
|
fun1(floor)
|
|
fun1(inspect)
|
|
fun1(negate)
|
|
fun1(numerator)
|
|
fun1(polar)
|
|
fun1(scalar_p)
|
|
fun1(to_f)
|
|
fun1(to_i)
|
|
fun1(to_r)
|
|
fun1(to_s)
|
|
fun1(truncate)
|
|
|
|
fun2(divmod)
|
|
|
|
inline static VALUE
|
|
f_equal_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
|
|
return rb_funcall(x, id_equal_p, 1, y);
|
|
}
|
|
|
|
fun2(expt)
|
|
fun2(idiv)
|
|
fun2(quo)
|
|
|
|
inline static VALUE
|
|
f_negative_p(VALUE x)
|
|
{
|
|
if (FIXNUM_P(x))
|
|
return f_boolcast(FIX2LONG(x) < 0);
|
|
return rb_funcall(x, '<', 1, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_zero_p(VALUE x)
|
|
{
|
|
if (FIXNUM_P(x))
|
|
return f_boolcast(FIX2LONG(x) == 0);
|
|
return rb_funcall(x, id_equal_p, 1, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_one_p(VALUE x)
|
|
{
|
|
if (FIXNUM_P(x))
|
|
return f_boolcast(FIX2LONG(x) == 1);
|
|
return rb_funcall(x, id_equal_p, 1, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_integer_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cInteger);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_float_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cFloat);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_rational_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cRational);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_complex_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cComplex);
|
|
}
|
|
|
|
#define get_dat1(x) \
|
|
struct RComplex *dat;\
|
|
dat = ((struct RComplex *)(x))
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RComplex *adat, *bdat;\
|
|
adat = ((struct RComplex *)(x));\
|
|
bdat = ((struct RComplex *)(y))
|
|
|
|
inline static VALUE
|
|
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE image)
|
|
{
|
|
NEWOBJ(obj, struct RComplex);
|
|
OBJSETUP(obj, klass, T_COMPLEX);
|
|
|
|
obj->real = real;
|
|
obj->image = image;
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_alloc(VALUE klass)
|
|
{
|
|
return nucomp_s_new_internal(klass, ZERO, ZERO);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, image;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &image)) {
|
|
case 1:
|
|
if (!k_numeric_p(real))
|
|
real = f_to_i(real);
|
|
image = ZERO;
|
|
break;
|
|
default:
|
|
if (!k_numeric_p(real))
|
|
real = f_to_i(real);
|
|
if (!k_numeric_p(image))
|
|
image = f_to_i(image);
|
|
break;
|
|
}
|
|
|
|
return nucomp_s_new_internal(klass, real, image);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_new_internal(klass, x, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
assert(!k_complex_p(y));
|
|
return nucomp_s_new_internal(klass, x, y);
|
|
}
|
|
|
|
#define f_unify_p(klass) rb_const_defined(klass, id_Unify)
|
|
|
|
inline static void
|
|
nucomp_real_check(VALUE num)
|
|
{
|
|
switch (TYPE(num)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
case T_RATIONAL:
|
|
break;
|
|
default:
|
|
if (!k_numeric_p(num) || !f_scalar_p(num))
|
|
rb_raise(rb_eArgError, "not a real");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE image)
|
|
{
|
|
#define CL_CANON
|
|
#ifdef CL_CANON
|
|
if (f_zero_p(image) && f_unify_p(klass) &&
|
|
!k_float_p(real) && !k_float_p(image))
|
|
return real;
|
|
#else
|
|
if (f_zero_p(image) && f_unify_p(klass))
|
|
return real;
|
|
#endif
|
|
else if (f_scalar_p(real) && f_scalar_p(image))
|
|
return nucomp_s_new_internal(klass, real, image);
|
|
else if (f_scalar_p(real)) {
|
|
get_dat1(image);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(real, dat->image),
|
|
f_add(ZERO, dat->real));
|
|
}
|
|
else if (f_scalar_p(image)) {
|
|
get_dat1(real);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
dat->real,
|
|
f_add(dat->image, image));
|
|
}
|
|
else {
|
|
get_dat2(real, image);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(adat->real, bdat->image),
|
|
f_add(adat->image, bdat->real));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static VALUE
|
|
nucomp_s_canonicalize(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, image;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &image)) {
|
|
case 1:
|
|
image = ZERO;
|
|
break;
|
|
}
|
|
|
|
nucomp_real_check(real);
|
|
nucomp_real_check(image);
|
|
|
|
return nucomp_s_canonicalize_internal(klass, real, image);
|
|
}
|
|
#endif
|
|
|
|
static VALUE
|
|
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, image;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &image)) {
|
|
case 1:
|
|
image = ZERO;
|
|
break;
|
|
}
|
|
|
|
nucomp_real_check(real);
|
|
nucomp_real_check(image);
|
|
|
|
return nucomp_s_canonicalize_internal(klass, real, image);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_canonicalize_internal(klass, x, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
return nucomp_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return rb_funcall2(rb_cComplex, id_convert, argc, argv);
|
|
}
|
|
|
|
extern VALUE math_atan2(VALUE obj, VALUE x, VALUE y);
|
|
extern VALUE math_cos(VALUE obj, VALUE x);
|
|
extern VALUE math_cosh(VALUE obj, VALUE x);
|
|
extern VALUE math_exp(VALUE obj, VALUE x);
|
|
extern VALUE math_hypot(VALUE obj, VALUE x, VALUE y);
|
|
extern VALUE math_log(int argc, VALUE *argv);
|
|
extern VALUE math_sin(VALUE obj, VALUE x);
|
|
extern VALUE math_sinh(VALUE obj, VALUE x);
|
|
extern VALUE math_sqrt(VALUE obj, VALUE x);
|
|
|
|
#define m_atan2_bang(x,y) math_atan2(Qnil,x,y)
|
|
#define m_cos_bang(x) math_cos(Qnil,x)
|
|
#define m_cosh_bang(x) math_cosh(Qnil,x)
|
|
#define m_exp_bang(x) math_exp(Qnil,x)
|
|
#define m_hypot(x,y) math_hypot(Qnil,x,y)
|
|
|
|
static VALUE
|
|
m_log_bang(VALUE x)
|
|
{
|
|
return math_log(1, &x);
|
|
}
|
|
|
|
#define m_sin_bang(x) math_sin(Qnil,x)
|
|
#define m_sinh_bang(x) math_sinh(Qnil,x)
|
|
#define m_sqrt_bang(x) math_sqrt(Qnil,x)
|
|
|
|
static VALUE
|
|
m_cos(VALUE x)
|
|
{
|
|
get_dat1(x);
|
|
|
|
if (f_scalar_p(x))
|
|
return m_cos_bang(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_cosh_bang(dat->image)),
|
|
f_mul(f_negate(m_sin_bang(dat->real)),
|
|
m_sinh_bang(dat->image)));
|
|
}
|
|
|
|
static VALUE
|
|
m_sin(VALUE x)
|
|
{
|
|
get_dat1(x);
|
|
|
|
if (f_scalar_p(x))
|
|
return m_sin_bang(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_sin_bang(dat->real),
|
|
m_cosh_bang(dat->image)),
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_sinh_bang(dat->image)));
|
|
}
|
|
|
|
static VALUE
|
|
m_sqrt(VALUE x)
|
|
{
|
|
if (f_scalar_p(x)) {
|
|
if (!f_negative_p(x))
|
|
return m_sqrt_bang(x);
|
|
return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
|
|
}
|
|
else {
|
|
get_dat1(x);
|
|
|
|
if (f_negative_p(dat->image))
|
|
return f_conjugate(m_sqrt(f_conjugate(x)));
|
|
else {
|
|
VALUE a = f_abs(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
|
|
m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_polar(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_complex_p(x));
|
|
assert(!k_complex_p(y));
|
|
return nucomp_s_canonicalize_internal(klass,
|
|
f_mul(x, m_cos(y)),
|
|
f_mul(x, m_sin(y)));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
|
|
{
|
|
return f_complex_polar(klass, abs, arg);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_real(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->real;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_image(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->image;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_add(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
VALUE real, image;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_add(adat->real, bdat->real);
|
|
image = f_add(adat->image, bdat->image);
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, image);
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_add(dat->real, other), dat->image);
|
|
}
|
|
return rb_num_coerce_bin(self, other, '+');
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_sub(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
VALUE real, image;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_sub(adat->real, bdat->real);
|
|
image = f_sub(adat->image, bdat->image);
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, image);
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_sub(dat->real, other), dat->image);
|
|
}
|
|
return rb_num_coerce_bin(self, other, '-');
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_mul(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
VALUE real, image;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_sub(f_mul(adat->real, bdat->real),
|
|
f_mul(adat->image, bdat->image));
|
|
image = f_add(f_mul(adat->real, bdat->image),
|
|
f_mul(adat->image, bdat->real));
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, image);
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(dat->real, other),
|
|
f_mul(dat->image, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
|
|
#define f_div f_quo
|
|
|
|
static VALUE
|
|
nucomp_div(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
get_dat2(self, other);
|
|
|
|
if (TYPE(adat->real) == T_FLOAT ||
|
|
TYPE(adat->image) == T_FLOAT ||
|
|
TYPE(bdat->real) == T_FLOAT ||
|
|
TYPE(bdat->image) == T_FLOAT) {
|
|
VALUE magn = m_hypot(bdat->real, bdat->image);
|
|
VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
|
|
f_div(bdat->real, magn),
|
|
f_div(bdat->image, magn));
|
|
return f_div(f_mul(self, f_conjugate(tmp)), magn);
|
|
}
|
|
return f_div(f_mul(self, f_conjugate(other)), f_abs2(other));
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_div(dat->real, other),
|
|
f_div(dat->image, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, '/');
|
|
}
|
|
|
|
#undef f_div
|
|
#define nucomp_quo nucomp_div
|
|
|
|
static VALUE
|
|
nucomp_fdiv(VALUE self, VALUE other)
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_div(f_complex_new2(CLASS_OF(self),
|
|
f_to_f(dat->real),
|
|
f_to_f(dat->image)), other);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_expt(VALUE self, VALUE other)
|
|
{
|
|
if (f_zero_p(other))
|
|
return f_complex_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (k_rational_p(other) && f_one_p(f_denominator(other)))
|
|
other = f_numerator(other); /* good? */
|
|
|
|
if (k_complex_p(other)) {
|
|
VALUE a, r, theta, ore, oim, nr, ntheta;
|
|
|
|
get_dat1(other);
|
|
|
|
a = f_polar(self);
|
|
r = RARRAY_PTR(a)[0];
|
|
theta = RARRAY_PTR(a)[1];
|
|
|
|
ore = dat->real;
|
|
oim = dat->image;
|
|
nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
|
|
f_mul(oim, theta)));
|
|
ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
|
|
return f_complex_polar(CLASS_OF(self), nr, ntheta);
|
|
}
|
|
if (k_integer_p(other)) {
|
|
if (f_gt_p(other, ZERO)) {
|
|
VALUE x, z, n;
|
|
|
|
x = self;
|
|
z = x;
|
|
n = f_sub(other, ONE);
|
|
|
|
while (!f_zero_p(n)) {
|
|
VALUE a;
|
|
|
|
while (a = f_divmod(n, TWO),
|
|
f_zero_p(RARRAY_PTR(a)[1])) {
|
|
get_dat1(x);
|
|
|
|
x = f_complex_new2(CLASS_OF(self),
|
|
f_sub(f_mul(dat->real, dat->real),
|
|
f_mul(dat->image, dat->image)),
|
|
f_mul(f_mul(TWO, dat->real), dat->image));
|
|
n = RARRAY_PTR(a)[0];
|
|
}
|
|
z = f_mul(z, x);
|
|
n = f_sub(n, ONE);
|
|
}
|
|
return z;
|
|
}
|
|
return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
VALUE a, r, theta;
|
|
|
|
a = f_polar(self);
|
|
r = RARRAY_PTR(a)[0];
|
|
theta = RARRAY_PTR(a)[1];
|
|
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
|
|
f_mul(theta, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, id_expt);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_equal_p(VALUE self, VALUE other)
|
|
{
|
|
if (k_complex_p(other)) {
|
|
get_dat2(self, other);
|
|
|
|
return f_boolcast(f_equal_p(adat->real, bdat->real) &&
|
|
f_equal_p(adat->image, bdat->image));
|
|
}
|
|
if (k_numeric_p(other) && f_scalar_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->image));
|
|
}
|
|
return f_equal_p(other, self);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_coerce(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && f_scalar_p(other))
|
|
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
|
|
|
|
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
|
rb_obj_classname(other), rb_obj_classname(self));
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_abs(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return m_hypot(dat->real, dat->image);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_abs2(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_add(f_mul(dat->real, dat->real),
|
|
f_mul(dat->image, dat->image));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_arg(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return m_atan2_bang(dat->image, dat->real);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_rect(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_assoc_new(dat->real, dat->image);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_polar(VALUE self)
|
|
{
|
|
return rb_assoc_new(f_abs(self), f_arg(self));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_conjugate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->image));
|
|
}
|
|
|
|
#if 0
|
|
static VALUE
|
|
nucomp_real_p(VALUE self)
|
|
{
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_complex_p(VALUE self)
|
|
{
|
|
return Qtrue;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_exact_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->image));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_inexact_p(VALUE self)
|
|
{
|
|
return f_boolcast(!nucomp_exact_p(self));
|
|
}
|
|
#endif
|
|
|
|
extern VALUE rb_lcm(VALUE x, VALUE y);
|
|
|
|
static VALUE
|
|
nucomp_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_lcm(f_denominator(dat->real), f_denominator(dat->image));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_numerator(VALUE self)
|
|
{
|
|
VALUE cd;
|
|
|
|
get_dat1(self);
|
|
|
|
cd = f_denominator(self);
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(f_numerator(dat->real),
|
|
f_div(cd, f_denominator(dat->real))),
|
|
f_mul(f_numerator(dat->image),
|
|
f_div(cd, f_denominator(dat->image))));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_hash(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_xor(dat->real, dat->image);
|
|
}
|
|
|
|
#ifndef HAVE_SIGNBIT
|
|
#ifdef signbit
|
|
#define HAVE_SIGNBIT 1
|
|
#endif
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_signbit(VALUE x)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_FLOAT:
|
|
#ifdef HAVE_SIGNBIT
|
|
return f_boolcast(signbit(RFLOAT_VALUE(x)));
|
|
#else
|
|
{
|
|
char s[2];
|
|
|
|
(void)snprintf(s, sizeof s, "%.0f", RFLOAT_VALUE(x));
|
|
|
|
return f_boolcast(s[0] == '-');
|
|
}
|
|
#endif
|
|
}
|
|
return f_negative_p(x);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_tpositive_p(VALUE x)
|
|
{
|
|
return f_boolcast(!f_signbit(x));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_to_s(VALUE self)
|
|
{
|
|
VALUE s, impos;
|
|
|
|
get_dat1(self);
|
|
|
|
impos = f_tpositive_p(dat->image);
|
|
|
|
s = f_to_s(dat->real);
|
|
rb_str_cat2(s, !impos ? "-" : "+");
|
|
|
|
rb_str_concat(s, f_to_s(f_abs(dat->image)));
|
|
rb_str_cat2(s, "i");
|
|
|
|
return s;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_inspect(VALUE self)
|
|
{
|
|
VALUE s, impos;
|
|
|
|
get_dat1(self);
|
|
|
|
impos = f_tpositive_p(dat->image);
|
|
|
|
s = rb_str_new2("(");
|
|
rb_str_concat(s, f_inspect(dat->real));
|
|
rb_str_cat2(s, !impos ? "-" : "+");
|
|
|
|
rb_str_concat(s, f_inspect(f_abs(dat->image)));
|
|
rb_str_cat2(s, "i)");
|
|
|
|
return s;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_marshal_dump(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_assoc_new(dat->real, dat->image);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
get_dat1(self);
|
|
dat->real = RARRAY_PTR(a)[0];
|
|
dat->image = RARRAY_PTR(a)[1];
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_complex_raw(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_new_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_new(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_polar(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_polar(rb_cComplex, x, y);
|
|
}
|
|
|
|
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
VALUE
|
|
rb_Complex(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nucomp_s_convert(2, a, rb_cComplex);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_scalar_p(VALUE self)
|
|
{
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_to_i(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Integer",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_i(dat->real);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_to_f(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Float",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_f(dat->real);
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_to_r(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
|
|
VALUE s = f_to_s(self);
|
|
rb_raise(rb_eRangeError, "can't convert %s into Rational",
|
|
StringValuePtr(s));
|
|
}
|
|
return f_to_r(dat->real);
|
|
}
|
|
|
|
static VALUE
|
|
nilclass_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(INT2FIX(0));
|
|
}
|
|
|
|
static VALUE
|
|
numeric_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(self);
|
|
}
|
|
|
|
static VALUE comp_pat0, comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
|
|
null_string, underscores_pat, an_underscore;
|
|
|
|
#define WS "\\s*"
|
|
#define DIGITS "(?:\\d(?:_\\d|\\d)*)"
|
|
#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
|
|
#define DENOMINATOR DIGITS
|
|
#define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
|
#define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
|
#define PATTERN0 "\\A" WS "(" NUMBER ")@(" NUMBER ")" WS
|
|
#define PATTERN1 "\\A" WS "([-+])?(" NUMBER ")?[iIjJ]" WS
|
|
#define PATTERN2 "\\A" WS "(" NUMBER ")(([-+])(" NUMBERNOS ")?[iIjJ])?" WS
|
|
|
|
static void
|
|
make_patterns(void)
|
|
{
|
|
static const char comp_pat0_source[] = PATTERN0;
|
|
static const char comp_pat1_source[] = PATTERN1;
|
|
static const char comp_pat2_source[] = PATTERN2;
|
|
static const char underscores_pat_source[] = "_+";
|
|
|
|
if (comp_pat0) return;
|
|
|
|
comp_pat0 = rb_reg_new(comp_pat0_source, sizeof comp_pat0_source - 1, 0);
|
|
rb_global_variable(&comp_pat0);
|
|
|
|
comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0);
|
|
rb_global_variable(&comp_pat1);
|
|
|
|
comp_pat2 = rb_reg_new(comp_pat2_source, sizeof comp_pat2_source - 1, 0);
|
|
rb_global_variable(&comp_pat2);
|
|
|
|
a_slash = rb_str_new2("/");
|
|
rb_global_variable(&a_slash);
|
|
|
|
a_dot_and_an_e = rb_str_new2(".eE");
|
|
rb_global_variable(&a_dot_and_an_e);
|
|
|
|
null_string = rb_str_new2("");
|
|
rb_global_variable(&null_string);
|
|
|
|
underscores_pat = rb_reg_new(underscores_pat_source,
|
|
sizeof underscores_pat_source - 1, 0);
|
|
rb_global_variable(&underscores_pat);
|
|
|
|
an_underscore = rb_str_new2("_");
|
|
rb_global_variable(&an_underscore);
|
|
}
|
|
|
|
#define id_match rb_intern("match")
|
|
#define f_match(x,y) rb_funcall(x, id_match, 1, y)
|
|
|
|
#define id_aref rb_intern("[]")
|
|
#define f_aref(x,y) rb_funcall(x, id_aref, 1, y)
|
|
|
|
#define id_post_match rb_intern("post_match")
|
|
#define f_post_match(x) rb_funcall(x, id_post_match, 0)
|
|
|
|
#define id_split rb_intern("split")
|
|
#define f_split(x,y) rb_funcall(x, id_split, 1, y)
|
|
|
|
#define id_include_p rb_intern("include?")
|
|
#define f_include_p(x,y) rb_funcall(x, id_include_p, 1, y)
|
|
|
|
#define id_count rb_intern("count")
|
|
#define f_count(x,y) rb_funcall(x, id_count, 1, y)
|
|
|
|
#define id_gsub_bang rb_intern("gsub!")
|
|
#define f_gsub_bang(x,y,z) rb_funcall(x, id_gsub_bang, 2, y, z)
|
|
|
|
static VALUE
|
|
string_to_c_internal(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = self;
|
|
|
|
if (RSTRING_LEN(s) == 0)
|
|
return rb_assoc_new(Qnil, self);
|
|
|
|
{
|
|
VALUE m, sr, si, re, r, i;
|
|
int po;
|
|
|
|
m = f_match(comp_pat0, s);
|
|
if (!NIL_P(m)) {
|
|
sr = f_aref(m, INT2FIX(1));
|
|
si = f_aref(m, INT2FIX(2));
|
|
re = f_post_match(m);
|
|
po = 1;
|
|
}
|
|
if (NIL_P(m)) {
|
|
m = f_match(comp_pat1, s);
|
|
if (!NIL_P(m)) {
|
|
sr = Qnil;
|
|
si = f_aref(m, INT2FIX(1));
|
|
if (NIL_P(si))
|
|
si = rb_str_new2("");
|
|
{
|
|
VALUE t;
|
|
|
|
t = f_aref(m, INT2FIX(2));
|
|
if (NIL_P(t))
|
|
t = rb_str_new2("1");
|
|
rb_str_concat(si, t);
|
|
}
|
|
re = f_post_match(m);
|
|
po = 0;
|
|
}
|
|
}
|
|
if (NIL_P(m)) {
|
|
m = f_match(comp_pat2, s);
|
|
if (NIL_P(m)) {
|
|
return rb_assoc_new(Qnil, self);
|
|
}
|
|
sr = f_aref(m, INT2FIX(1));
|
|
if (NIL_P(f_aref(m, INT2FIX(2))))
|
|
si = Qnil;
|
|
else {
|
|
VALUE t;
|
|
|
|
si = f_aref(m, INT2FIX(3));
|
|
t = f_aref(m, INT2FIX(4));
|
|
if (NIL_P(t))
|
|
t = rb_str_new2("1");
|
|
rb_str_concat(si, t);
|
|
}
|
|
re = f_post_match(m);
|
|
po = 0;
|
|
}
|
|
r = INT2FIX(0);
|
|
i = INT2FIX(0);
|
|
if (!NIL_P(sr)) {
|
|
if (f_include_p(sr, a_slash))
|
|
r = f_to_r(sr);
|
|
else if (f_gt_p(f_count(sr, a_dot_and_an_e), INT2FIX(0)))
|
|
r = f_to_f(sr);
|
|
else
|
|
r = f_to_i(sr);
|
|
}
|
|
if (!NIL_P(si)) {
|
|
if (f_include_p(si, a_slash))
|
|
i = f_to_r(si);
|
|
else if (f_gt_p(f_count(si, a_dot_and_an_e), INT2FIX(0)))
|
|
i = f_to_f(si);
|
|
else
|
|
i = f_to_i(si);
|
|
}
|
|
if (po)
|
|
return rb_assoc_new(rb_complex_polar(r, i), re);
|
|
else
|
|
return rb_assoc_new(rb_complex_new2(r, i), re);
|
|
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
string_to_c_strict(VALUE self)
|
|
{
|
|
VALUE a = string_to_c_internal(self);
|
|
if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) {
|
|
VALUE s = f_inspect(self);
|
|
rb_raise(rb_eArgError, "invalid value for Complex: %s",
|
|
StringValuePtr(s));
|
|
}
|
|
return RARRAY_PTR(a)[0];
|
|
}
|
|
|
|
#define id_gsub rb_intern("gsub")
|
|
#define f_gsub(x,y,z) rb_funcall(x, id_gsub, 2, y, z)
|
|
|
|
static VALUE
|
|
string_to_c(VALUE self)
|
|
{
|
|
VALUE s, a, backref;
|
|
|
|
backref = rb_backref_get();
|
|
rb_match_busy(backref);
|
|
|
|
s = f_gsub(self, underscores_pat, an_underscore);
|
|
a = string_to_c_internal(s);
|
|
|
|
rb_backref_set(backref);
|
|
|
|
if (!NIL_P(RARRAY_PTR(a)[0]))
|
|
return RARRAY_PTR(a)[0];
|
|
return rb_complex_new1(INT2FIX(0));
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, backref;
|
|
|
|
rb_scan_args(argc, argv, "02", &a1, &a2);
|
|
|
|
backref = rb_backref_get();
|
|
rb_match_busy(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
break;
|
|
case T_STRING:
|
|
a1 = string_to_c_strict(a1);
|
|
break;
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
case T_FLOAT:
|
|
break;
|
|
case T_STRING:
|
|
a2 = string_to_c_strict(a2);
|
|
break;
|
|
}
|
|
|
|
rb_backref_set(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_COMPLEX:
|
|
{
|
|
get_dat1(a1);
|
|
|
|
if (!k_float_p(dat->image) && f_zero_p(dat->image))
|
|
a1 = dat->real;
|
|
}
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_COMPLEX:
|
|
{
|
|
get_dat1(a2);
|
|
|
|
if (!k_float_p(dat->image) && f_zero_p(dat->image))
|
|
a2 = dat->real;
|
|
}
|
|
}
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_COMPLEX:
|
|
if (NIL_P(a2) || f_zero_p(a2))
|
|
return a1;
|
|
}
|
|
|
|
{
|
|
VALUE argv2[2];
|
|
argv2[0] = a1;
|
|
argv2[1] = a2;
|
|
return nucomp_s_new(argc, argv2, klass);
|
|
}
|
|
}
|
|
|
|
/* --- */
|
|
|
|
#define id_Complex rb_intern("Complex")
|
|
|
|
static VALUE
|
|
numeric_re(VALUE self)
|
|
{
|
|
return rb_Complex1(self);
|
|
}
|
|
|
|
static VALUE
|
|
numeric_im(VALUE self)
|
|
{
|
|
return rb_Complex2(ZERO, self);
|
|
}
|
|
|
|
static VALUE
|
|
numeric_real(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
numeric_image(VALUE self)
|
|
{
|
|
return INT2FIX(0);
|
|
}
|
|
|
|
#define id_PI rb_intern("PI")
|
|
|
|
static VALUE
|
|
numeric_arg(VALUE self)
|
|
{
|
|
if (!f_negative_p(self))
|
|
return INT2FIX(0);
|
|
return rb_const_get(rb_mMath, id_PI);
|
|
}
|
|
|
|
static VALUE
|
|
numeric_rect(VALUE self)
|
|
{
|
|
return rb_assoc_new(self, ZERO);
|
|
}
|
|
|
|
static VALUE
|
|
numeric_polar(VALUE self)
|
|
{
|
|
return rb_assoc_new(f_abs(self), f_arg(self));
|
|
}
|
|
|
|
static VALUE
|
|
numeric_conjugate(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
void
|
|
Init_Complex(void)
|
|
{
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
assert(fprintf(stderr, "assert() is now active\n"));
|
|
|
|
id_Unify = rb_intern("Unify");
|
|
id_abs = rb_intern("abs");
|
|
id_abs2 = rb_intern("abs2");
|
|
id_arg = rb_intern("arg");
|
|
id_atan2_bang = rb_intern("atan2!");
|
|
id_cmp = rb_intern("<=>");
|
|
id_conjugate = rb_intern("conjugate");
|
|
id_convert = rb_intern("convert");
|
|
id_cos = rb_intern("cos");
|
|
id_denominator = rb_intern("denominator");
|
|
id_divmod = rb_intern("divmod");
|
|
id_equal_p = rb_intern("==");
|
|
id_exact_p = rb_intern("exact?");
|
|
id_exp_bang = rb_intern("exp!");
|
|
id_expt = rb_intern("**");
|
|
id_floor = rb_intern("floor");
|
|
id_format = rb_intern("format");
|
|
id_hypot = rb_intern("hypot");
|
|
id_idiv = rb_intern("div");
|
|
id_inspect = rb_intern("inspect");
|
|
id_log_bang = rb_intern("log!");
|
|
id_negate = rb_intern("-@");
|
|
id_new = rb_intern("new");
|
|
id_new_bang = rb_intern("new!");
|
|
id_numerator = rb_intern("numerator");
|
|
id_polar = rb_intern("polar");
|
|
id_quo = rb_intern("quo");
|
|
id_scalar_p = rb_intern("scalar?");
|
|
id_sin = rb_intern("sin");
|
|
id_sqrt = rb_intern("sqrt");
|
|
id_to_f = rb_intern("to_f");
|
|
id_to_i = rb_intern("to_i");
|
|
id_to_r = rb_intern("to_r");
|
|
id_to_s = rb_intern("to_s");
|
|
id_truncate = rb_intern("truncate");
|
|
|
|
rb_cComplex = rb_define_class(COMPLEX_NAME, rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
|
|
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
|
ID2SYM(rb_intern("allocate")));
|
|
|
|
rb_define_singleton_method(rb_cComplex, "new!", nucomp_s_new_bang, -1);
|
|
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
|
ID2SYM(rb_intern("new!")));
|
|
|
|
rb_define_singleton_method(rb_cComplex, "new", nucomp_s_new, -1);
|
|
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
|
ID2SYM(rb_intern("new")));
|
|
|
|
rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, 2);
|
|
|
|
rb_define_global_function(COMPLEX_NAME, nucomp_f_complex, -1);
|
|
|
|
rb_undef_method(rb_cComplex, "<");
|
|
rb_undef_method(rb_cComplex, "<=");
|
|
rb_undef_method(rb_cComplex, "<=>");
|
|
rb_undef_method(rb_cComplex, ">");
|
|
rb_undef_method(rb_cComplex, ">=");
|
|
rb_undef_method(rb_cComplex, "between?");
|
|
rb_undef_method(rb_cComplex, "divmod");
|
|
rb_undef_method(rb_cComplex, "floor");
|
|
rb_undef_method(rb_cComplex, "ceil");
|
|
rb_undef_method(rb_cComplex, "modulo");
|
|
rb_undef_method(rb_cComplex, "round");
|
|
rb_undef_method(rb_cComplex, "step");
|
|
rb_undef_method(rb_cComplex, "truncate");
|
|
|
|
#if NUBY
|
|
rb_undef_method(rb_cComplex, "//");
|
|
#endif
|
|
|
|
rb_define_method(rb_cComplex, "real", nucomp_real, 0);
|
|
rb_define_method(rb_cComplex, "image", nucomp_image, 0);
|
|
rb_define_method(rb_cComplex, "imag", nucomp_image, 0);
|
|
|
|
rb_define_method(rb_cComplex, "+", nucomp_add, 1);
|
|
rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
|
|
rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
|
|
rb_define_method(rb_cComplex, "/", nucomp_div, 1);
|
|
rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
|
|
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
|
|
rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
|
|
|
|
rb_define_method(rb_cComplex, "==", nucomp_equal_p, 1);
|
|
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
|
|
|
|
rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
|
|
rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
|
|
rb_define_method(rb_cComplex, "conjugate", nucomp_conjugate, 0);
|
|
rb_define_method(rb_cComplex, "conj", nucomp_conjugate, 0);
|
|
#if 0
|
|
rb_define_method(rb_cComplex, "~", nucomp_conjugate, 0); /* gcc */
|
|
#endif
|
|
|
|
#if 0
|
|
rb_define_method(rb_cComplex, "real?", nucomp_real_p, 0);
|
|
rb_define_method(rb_cComplex, "complex?", nucomp_complex_p, 0);
|
|
rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
|
|
rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
|
|
#endif
|
|
|
|
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
|
|
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
|
|
|
|
rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
|
|
|
|
rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
|
|
rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
|
|
|
|
rb_define_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
|
|
rb_define_method(rb_cComplex, "marshal_load", nucomp_marshal_load, 1);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cComplex, "scalar?", nucomp_scalar_p, 0);
|
|
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
|
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
|
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
|
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
|
|
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
|
|
|
|
make_patterns();
|
|
|
|
rb_define_method(rb_cString, "to_c", string_to_c, 0);
|
|
|
|
rb_define_singleton_method(rb_cComplex, "convert", nucomp_s_convert, -1);
|
|
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
|
ID2SYM(rb_intern("convert")));
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cNumeric, "re", numeric_re, 0);
|
|
rb_define_method(rb_cNumeric, "im", numeric_im, 0);
|
|
rb_define_method(rb_cNumeric, "real", numeric_real, 0);
|
|
rb_define_method(rb_cNumeric, "image", numeric_image, 0);
|
|
rb_define_method(rb_cNumeric, "imag", numeric_image, 0);
|
|
rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
|
|
rb_define_method(rb_cNumeric, "conjugate", numeric_conjugate, 0);
|
|
rb_define_method(rb_cNumeric, "conj", numeric_conjugate, 0);
|
|
|
|
rb_define_const(rb_cComplex, "I",
|
|
f_complex_new_bang2(rb_cComplex, ZERO, ONE));
|
|
}
|