1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/class.c
ko1 68a533c611 * class.c, vm_core.h: move decl of rb_iseq_clone() to class.c.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19476 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-23 08:10:20 +00:00

957 lines
21 KiB
C

/**********************************************************************
class.c -
$Author$
created at: Tue Aug 10 15:05:44 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/node.h"
#include "ruby/st.h"
#include <ctype.h>
extern st_table *rb_class_tbl;
static VALUE
class_alloc(VALUE flags, VALUE klass)
{
rb_classext_t *ext = ALLOC(rb_classext_t);
NEWOBJ(obj, struct RClass);
OBJSETUP(obj, klass, flags);
obj->ptr = ext;
RCLASS_IV_TBL(obj) = 0;
RCLASS_M_TBL(obj) = 0;
RCLASS_SUPER(obj) = 0;
RCLASS_IV_INDEX_TBL(obj) = 0;
return (VALUE)obj;
}
VALUE
rb_class_boot(VALUE super)
{
VALUE klass = class_alloc(T_CLASS, rb_cClass);
RCLASS_SUPER(klass) = super;
RCLASS_M_TBL(klass) = st_init_numtable();
OBJ_INFECT(klass, super);
return (VALUE)klass;
}
void
rb_check_inheritable(VALUE super)
{
if (TYPE(super) != T_CLASS) {
rb_raise(rb_eTypeError, "superclass must be a Class (%s given)",
rb_obj_classname(super));
}
if (RBASIC(super)->flags & FL_SINGLETON) {
rb_raise(rb_eTypeError, "can't make subclass of singleton class");
}
}
VALUE
rb_class_new(VALUE super)
{
Check_Type(super, T_CLASS);
rb_check_inheritable(super);
if (super == rb_cClass) {
rb_raise(rb_eTypeError, "can't make subclass of Class");
}
return rb_class_boot(super);
}
struct clone_method_data {
st_table *tbl;
VALUE klass;
};
VALUE rb_iseq_clone(VALUE iseqval, VALUE newcbase);
static int
clone_method(ID mid, NODE *body, struct clone_method_data *data)
{
if (body == 0) {
st_insert(data->tbl, mid, 0);
}
else {
NODE *fbody = body->nd_body->nd_body;
if (nd_type(fbody) == RUBY_VM_METHOD_NODE) {
fbody = NEW_NODE(RUBY_VM_METHOD_NODE, 0,
rb_iseq_clone((VALUE)fbody->nd_body, data->klass),
0);
}
st_insert(data->tbl, mid,
(st_data_t)
NEW_FBODY(
NEW_METHOD(fbody,
data->klass, /* TODO */
body->nd_body->nd_noex),
0));
}
return ST_CONTINUE;
}
/* :nodoc: */
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
rb_obj_init_copy(clone, orig);
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC(clone)->klass = rb_singleton_class_clone(orig);
}
RCLASS_SUPER(clone) = RCLASS_SUPER(orig);
if (RCLASS_IV_TBL(orig)) {
ID id;
RCLASS_IV_TBL(clone) = st_copy(RCLASS_IV_TBL(orig));
CONST_ID(id, "__classpath__");
st_delete(RCLASS_IV_TBL(clone), (st_data_t*)&id, 0);
CONST_ID(id, "__classid__");
st_delete(RCLASS_IV_TBL(clone), (st_data_t*)&id, 0);
}
if (RCLASS_M_TBL(orig)) {
struct clone_method_data data;
data.tbl = RCLASS_M_TBL(clone) = st_init_numtable();
data.klass = clone;
st_foreach(RCLASS_M_TBL(orig), clone_method,
(st_data_t)&data);
}
return clone;
}
/* :nodoc: */
VALUE
rb_class_init_copy(VALUE clone, VALUE orig)
{
if (RCLASS_SUPER(clone) != 0) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (FL_TEST(orig, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't copy singleton class");
}
return rb_mod_init_copy(clone, orig);
}
VALUE
rb_singleton_class_clone(VALUE obj)
{
VALUE klass = RBASIC(obj)->klass;
if (!FL_TEST(klass, FL_SINGLETON))
return klass;
else {
struct clone_method_data data;
/* copy singleton(unnamed) class */
VALUE clone = class_alloc(RBASIC(klass)->flags, 0);
if (BUILTIN_TYPE(obj) == T_CLASS) {
RBASIC(clone)->klass = (VALUE)clone;
}
else {
RBASIC(clone)->klass = rb_singleton_class_clone(klass);
}
RCLASS_SUPER(clone) = RCLASS_SUPER(klass);
if (RCLASS_IV_TBL(klass)) {
RCLASS_IV_TBL(clone) = st_copy(RCLASS_IV_TBL(klass));
}
RCLASS_M_TBL(clone) = st_init_numtable();
data.tbl = RCLASS_M_TBL(clone);
data.klass = (VALUE)clone;
st_foreach(RCLASS_M_TBL(klass), clone_method,
(st_data_t)&data);
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
FL_SET(clone, FL_SINGLETON);
return (VALUE)clone;
}
}
void
rb_singleton_class_attached(VALUE klass, VALUE obj)
{
if (FL_TEST(klass, FL_SINGLETON)) {
ID attached;
if (!RCLASS_IV_TBL(klass)) {
RCLASS_IV_TBL(klass) = st_init_numtable();
}
CONST_ID(attached, "__attached__");
st_insert(RCLASS_IV_TBL(klass), attached, obj);
}
}
VALUE
rb_make_metaclass(VALUE obj, VALUE super)
{
if (BUILTIN_TYPE(obj) == T_CLASS && FL_TEST(obj, FL_SINGLETON)) {
return RBASIC(obj)->klass = rb_cClass;
}
else {
VALUE metasuper;
VALUE klass = rb_class_boot(super);
FL_SET(klass, FL_SINGLETON);
RBASIC(obj)->klass = klass;
rb_singleton_class_attached(klass, obj);
metasuper = RBASIC(rb_class_real(super))->klass;
/* metaclass of a superclass may be NULL at boot time */
if (metasuper) {
RBASIC(klass)->klass = metasuper;
}
return klass;
}
}
VALUE
rb_define_class_id(ID id, VALUE super)
{
VALUE klass;
if (!super) super = rb_cObject;
klass = rb_class_new(super);
rb_make_metaclass(klass, RBASIC(super)->klass);
return klass;
}
VALUE
rb_class_inherited(VALUE super, VALUE klass)
{
ID inherited;
if (!super) super = rb_cObject;
CONST_ID(inherited, "inherited");
return rb_funcall(super, inherited, 1, klass);
}
VALUE
rb_define_class(const char *name, VALUE super)
{
VALUE klass;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
klass = rb_const_get(rb_cObject, id);
if (TYPE(klass) != T_CLASS) {
rb_raise(rb_eTypeError, "%s is not a class", name);
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_name_error(id, "%s is already defined", name);
}
return klass;
}
if (!super) {
rb_warn("no super class for `%s', Object assumed", name);
}
klass = rb_define_class_id(id, super);
st_add_direct(rb_class_tbl, id, klass);
rb_name_class(klass, id);
rb_const_set(rb_cObject, id, klass);
rb_class_inherited(super, klass);
return klass;
}
VALUE
rb_define_class_under(VALUE outer, const char *name, VALUE super)
{
VALUE klass;
ID id;
id = rb_intern(name);
if (rb_const_defined_at(outer, id)) {
klass = rb_const_get_at(outer, id);
if (TYPE(klass) != T_CLASS) {
rb_raise(rb_eTypeError, "%s is not a class", name);
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_name_error(id, "%s is already defined", name);
}
return klass;
}
if (!super) {
rb_warn("no super class for `%s::%s', Object assumed",
rb_class2name(outer), name);
}
klass = rb_define_class_id(id, super);
rb_set_class_path(klass, outer, name);
rb_const_set(outer, id, klass);
rb_class_inherited(super, klass);
return klass;
}
VALUE
rb_module_new(void)
{
VALUE mdl = class_alloc(T_MODULE, rb_cModule);
RCLASS_M_TBL(mdl) = st_init_numtable();
return (VALUE)mdl;
}
VALUE
rb_define_module_id(ID id)
{
VALUE mdl;
mdl = rb_module_new();
rb_name_class(mdl, id);
return mdl;
}
VALUE
rb_define_module(const char *name)
{
VALUE module;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
module = rb_const_get(rb_cObject, id);
if (TYPE(module) == T_MODULE)
return module;
rb_raise(rb_eTypeError, "%s is not a module", rb_obj_classname(module));
}
module = rb_define_module_id(id);
st_add_direct(rb_class_tbl, id, module);
rb_const_set(rb_cObject, id, module);
return module;
}
VALUE
rb_define_module_under(VALUE outer, const char *name)
{
VALUE module;
ID id;
id = rb_intern(name);
if (rb_const_defined_at(outer, id)) {
module = rb_const_get_at(outer, id);
if (TYPE(module) == T_MODULE)
return module;
rb_raise(rb_eTypeError, "%s::%s is not a module",
rb_class2name(outer), rb_obj_classname(module));
}
module = rb_define_module_id(id);
rb_const_set(outer, id, module);
rb_set_class_path(module, outer, name);
return module;
}
static VALUE
include_class_new(VALUE module, VALUE super)
{
VALUE klass = class_alloc(T_ICLASS, rb_cClass);
if (BUILTIN_TYPE(module) == T_ICLASS) {
module = RBASIC(module)->klass;
}
if (!RCLASS_IV_TBL(module)) {
RCLASS_IV_TBL(module) = st_init_numtable();
}
RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);
RCLASS_M_TBL(klass) = RCLASS_M_TBL(module);
RCLASS_SUPER(klass) = super;
if (TYPE(module) == T_ICLASS) {
RBASIC(klass)->klass = RBASIC(module)->klass;
}
else {
RBASIC(klass)->klass = module;
}
OBJ_INFECT(klass, module);
OBJ_INFECT(klass, super);
return (VALUE)klass;
}
void
rb_include_module(VALUE klass, VALUE module)
{
VALUE p, c;
int changed = 0;
rb_frozen_class_p(klass);
if (!OBJ_UNTRUSTED(klass)) {
rb_secure(4);
}
if (TYPE(module) != T_MODULE) {
Check_Type(module, T_MODULE);
}
OBJ_INFECT(klass, module);
c = klass;
while (module) {
int superclass_seen = Qfalse;
if (RCLASS_M_TBL(klass) == RCLASS_M_TBL(module))
rb_raise(rb_eArgError, "cyclic include detected");
/* ignore if the module included already in superclasses */
for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
switch (BUILTIN_TYPE(p)) {
case T_ICLASS:
if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
if (!superclass_seen) {
c = p; /* move insertion point */
}
goto skip;
}
break;
case T_CLASS:
superclass_seen = Qtrue;
break;
}
}
c = RCLASS_SUPER(c) = include_class_new(module, RCLASS_SUPER(c));
changed = 1;
skip:
module = RCLASS_SUPER(module);
}
if (changed) rb_clear_cache();
}
/*
* call-seq:
* mod.included_modules -> array
*
* Returns the list of modules included in <i>mod</i>.
*
* module Mixin
* end
*
* module Outer
* include Mixin
* end
*
* Mixin.included_modules #=> []
* Outer.included_modules #=> [Mixin]
*/
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
}
return ary;
}
/*
* call-seq:
* mod.include?(module) => true or false
*
* Returns <code>true</code> if <i>module</i> is included in
* <i>mod</i> or one of <i>mod</i>'s ancestors.
*
* module A
* end
* class B
* include A
* end
* class C < B
* end
* B.include?(A) #=> true
* C.include?(A) #=> true
* A.include?(A) #=> false
*/
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* mod.ancestors -> array
*
* Returns a list of modules included in <i>mod</i> (including
* <i>mod</i> itself).
*
* module Mod
* include Math
* include Comparable
* end
*
* Mod.ancestors #=> [Mod, Comparable, Math]
* Math.ancestors #=> [Math]
*/
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (FL_TEST(p, FL_SINGLETON))
continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
else {
rb_ary_push(ary, p);
}
}
return ary;
}
#define VISI(x) ((x)&NOEX_MASK)
#define VISI_CHECK(x,f) (VISI(x) == (f))
static int
ins_methods_push(ID name, long type, VALUE ary, long visi)
{
if (type == -1) return ST_CONTINUE;
switch (visi) {
case NOEX_PRIVATE:
case NOEX_PROTECTED:
case NOEX_PUBLIC:
visi = (type == visi);
break;
default:
visi = (type != NOEX_PRIVATE);
break;
}
if (visi) {
rb_ary_push(ary, ID2SYM(name));
}
return ST_CONTINUE;
}
static int
ins_methods_i(ID name, long type, VALUE ary)
{
return ins_methods_push(name, type, ary, -1); /* everything but private */
}
static int
ins_methods_prot_i(ID name, long type, VALUE ary)
{
return ins_methods_push(name, type, ary, NOEX_PROTECTED);
}
static int
ins_methods_priv_i(ID name, long type, VALUE ary)
{
return ins_methods_push(name, type, ary, NOEX_PRIVATE);
}
static int
ins_methods_pub_i(ID name, long type, VALUE ary)
{
return ins_methods_push(name, type, ary, NOEX_PUBLIC);
}
static int
method_entry(ID key, NODE *body, st_table *list)
{
long type;
if (key == ID_ALLOCATOR) {
return ST_CONTINUE;
}
if (!st_lookup(list, key, 0)) {
if (body ==0 || !body->nd_body->nd_body) {
type = -1; /* none */
}
else {
type = VISI(body->nd_body->nd_noex);
}
st_add_direct(list, key, type);
}
return ST_CONTINUE;
}
static VALUE
class_instance_method_list(int argc, VALUE *argv, VALUE mod, int (*func) (ID, long, VALUE))
{
VALUE ary;
int recur;
st_table *list;
if (argc == 0) {
recur = Qtrue;
}
else {
VALUE r;
rb_scan_args(argc, argv, "01", &r);
recur = RTEST(r);
}
list = st_init_numtable();
for (; mod; mod = RCLASS_SUPER(mod)) {
st_foreach(RCLASS_M_TBL(mod), method_entry, (st_data_t)list);
if (BUILTIN_TYPE(mod) == T_ICLASS) continue;
if (FL_TEST(mod, FL_SINGLETON)) continue;
if (!recur) break;
}
ary = rb_ary_new();
st_foreach(list, func, ary);
st_free_table(list);
return ary;
}
/*
* call-seq:
* mod.instance_methods(include_super=true) => array
*
* Returns an array containing the names of public instance methods in
* the receiver. For a module, these are the public methods; for a
* class, they are the instance (not singleton) methods. With no
* argument, or with an argument that is <code>false</code>, the
* instance methods in <i>mod</i> are returned, otherwise the methods
* in <i>mod</i> and <i>mod</i>'s superclasses are returned.
*
* module A
* def method1() end
* end
* class B
* def method2() end
* end
* class C < B
* def method3() end
* end
*
* A.instance_methods #=> [:method1]
* B.instance_methods(false) #=> [:method2]
* C.instance_methods(false) #=> [:method3]
* C.instance_methods(true).length #=> 43
*/
VALUE
rb_class_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, ins_methods_i);
}
/*
* call-seq:
* mod.protected_instance_methods(include_super=true) => array
*
* Returns a list of the protected instance methods defined in
* <i>mod</i>. If the optional parameter is not <code>false</code>, the
* methods of any ancestors are included.
*/
VALUE
rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, ins_methods_prot_i);
}
/*
* call-seq:
* mod.private_instance_methods(include_super=true) => array
*
* Returns a list of the private instance methods defined in
* <i>mod</i>. If the optional parameter is not <code>false</code>, the
* methods of any ancestors are included.
*
* module Mod
* def method1() end
* private :method1
* def method2() end
* end
* Mod.instance_methods #=> [:method2]
* Mod.private_instance_methods #=> [:method1]
*/
VALUE
rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, ins_methods_priv_i);
}
/*
* call-seq:
* mod.public_instance_methods(include_super=true) => array
*
* Returns a list of the public instance methods defined in <i>mod</i>.
* If the optional parameter is not <code>false</code>, the methods of
* any ancestors are included.
*/
VALUE
rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, ins_methods_pub_i);
}
/*
* call-seq:
* obj.singleton_methods(all=true) => array
*
* Returns an array of the names of singleton methods for <i>obj</i>.
* If the optional <i>all</i> parameter is true, the list will include
* methods in modules included in <i>obj</i>.
*
* module Other
* def three() end
* end
*
* class Single
* def Single.four() end
* end
*
* a = Single.new
*
* def a.one()
* end
*
* class << a
* include Other
* def two()
* end
* end
*
* Single.singleton_methods #=> [:four]
* a.singleton_methods(false) #=> [:two, :one]
* a.singleton_methods #=> [:two, :one, :three]
*/
VALUE
rb_obj_singleton_methods(int argc, VALUE *argv, VALUE obj)
{
VALUE recur, ary, klass;
st_table *list;
if (argc == 0) {
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &recur);
}
klass = CLASS_OF(obj);
list = st_init_numtable();
if (klass && FL_TEST(klass, FL_SINGLETON)) {
st_foreach(RCLASS_M_TBL(klass), method_entry, (st_data_t)list);
klass = RCLASS_SUPER(klass);
}
if (RTEST(recur)) {
while (klass && (FL_TEST(klass, FL_SINGLETON) || TYPE(klass) == T_ICLASS)) {
st_foreach(RCLASS_M_TBL(klass), method_entry, (st_data_t)list);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new();
st_foreach(list, ins_methods_i, ary);
st_free_table(list);
return ary;
}
void
rb_define_method_id(VALUE klass, ID name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method(klass, name, NEW_CFUNC(func,argc), NOEX_PUBLIC);
}
void
rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method(klass, rb_intern(name), NEW_CFUNC(func, argc), NOEX_PUBLIC);
}
void
rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method(klass, rb_intern(name), NEW_CFUNC(func, argc), NOEX_PROTECTED);
}
void
rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method(klass, rb_intern(name), NEW_CFUNC(func, argc), NOEX_PRIVATE);
}
void
rb_undef_method(VALUE klass, const char *name)
{
rb_add_method(klass, rb_intern(name), 0, NOEX_UNDEF);
}
#define SPECIAL_SINGLETON(x,c) do {\
if (obj == (x)) {\
return c;\
}\
} while (0)
VALUE
rb_singleton_class(VALUE obj)
{
VALUE klass;
if (FIXNUM_P(obj) || SYMBOL_P(obj)) {
rb_raise(rb_eTypeError, "can't define singleton");
}
if (rb_special_const_p(obj)) {
SPECIAL_SINGLETON(Qnil, rb_cNilClass);
SPECIAL_SINGLETON(Qfalse, rb_cFalseClass);
SPECIAL_SINGLETON(Qtrue, rb_cTrueClass);
rb_bug("unknown immediate %ld", obj);
}
if (FL_TEST(RBASIC(obj)->klass, FL_SINGLETON) &&
rb_iv_get(RBASIC(obj)->klass, "__attached__") == obj) {
klass = RBASIC(obj)->klass;
}
else {
klass = rb_make_metaclass(obj, RBASIC(obj)->klass);
}
if (OBJ_TAINTED(obj)) {
OBJ_TAINT(klass);
}
else {
FL_UNSET(klass, FL_TAINT);
}
if (OBJ_UNTRUSTED(obj)) {
OBJ_UNTRUST(klass);
}
else {
FL_UNSET(klass, FL_UNTRUSTED);
}
if (OBJ_FROZEN(obj)) OBJ_FREEZE(klass);
return klass;
}
void
rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_method(rb_singleton_class(obj), name, func, argc);
}
void
rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_private_method(module, name, func, argc);
rb_define_singleton_method(module, name, func, argc);
}
void
rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_module_function(rb_mKernel, name, func, argc);
}
void
rb_define_alias(VALUE klass, const char *name1, const char *name2)
{
rb_alias(klass, rb_intern(name1), rb_intern(name2));
}
void
rb_define_attr(VALUE klass, const char *name, int read, int write)
{
rb_attr(klass, rb_intern(name), read, write, Qfalse);
}
#include <stdarg.h>
int
rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
{
int n, i = 0;
const char *p = fmt;
VALUE *var;
va_list vargs;
va_start(vargs, fmt);
if (*p == '*') goto rest_arg;
if (ISDIGIT(*p)) {
n = *p - '0';
if (n > argc)
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, n);
for (i=0; i<n; i++) {
var = va_arg(vargs, VALUE*);
if (var) *var = argv[i];
}
p++;
}
else {
goto error;
}
if (ISDIGIT(*p)) {
n = i + *p - '0';
for (; i<n; i++) {
var = va_arg(vargs, VALUE*);
if (argc > i) {
if (var) *var = argv[i];
}
else {
if (var) *var = Qnil;
}
}
p++;
}
if(*p == '*') {
rest_arg:
var = va_arg(vargs, VALUE*);
if (argc > i) {
if (var) *var = rb_ary_new4(argc-i, argv+i);
i = argc;
}
else {
if (var) *var = rb_ary_new();
}
p++;
}
if (*p == '&') {
var = va_arg(vargs, VALUE*);
if (rb_block_given_p()) {
*var = rb_block_proc();
}
else {
*var = Qnil;
}
p++;
}
va_end(vargs);
if (*p != '\0') {
goto error;
}
if (argc > i) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, i);
}
return argc;
error:
rb_fatal("bad scan arg format: %s", fmt);
return 0;
}