mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 97e05dad7f
			
		
	
	
		97e05dad7f
		
	
	
	
	
		
			
			* include/ruby/ruby.h (UNREACHABLE_RETURN): UNREACHABLE at the end of non-void functions. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@64025 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			4095 lines
		
	
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4095 lines
		
	
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   enum.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Oct  1 15:15:19 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/encoding.h"
 | |
| #include "internal.h"
 | |
| #include "ruby/util.h"
 | |
| #include "id.h"
 | |
| #include "symbol.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| VALUE rb_mEnumerable;
 | |
| 
 | |
| static ID id_next;
 | |
| static ID id_div;
 | |
| 
 | |
| #define id_each idEach
 | |
| #define id_eqq  idEqq
 | |
| #define id_cmp  idCmp
 | |
| #define id_lshift idLTLT
 | |
| #define id_call idCall
 | |
| #define id_size idSize
 | |
| 
 | |
| VALUE
 | |
| rb_enum_values_pack(int argc, const VALUE *argv)
 | |
| {
 | |
|     if (argc == 0) return Qnil;
 | |
|     if (argc == 1) return argv[0];
 | |
|     return rb_ary_new4(argc, argv);
 | |
| }
 | |
| 
 | |
| #define ENUM_WANT_SVALUE() do { \
 | |
|     i = rb_enum_values_pack(argc, argv); \
 | |
| } while (0)
 | |
| 
 | |
| static VALUE
 | |
| enum_yield(int argc, VALUE ary)
 | |
| {
 | |
|     if (argc > 1)
 | |
| 	return rb_yield_force_blockarg(ary);
 | |
|     if (argc == 1)
 | |
| 	return rb_yield(ary);
 | |
|     return rb_yield_values2(0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_yield_array(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (len > 1)
 | |
| 	return rb_yield_force_blockarg(ary);
 | |
|     if (len == 1)
 | |
| 	return rb_yield(RARRAY_AREF(ary, 0));
 | |
|     return rb_yield_values2(0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
 | |
| 	rb_ary_push(memo->v2, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
 | |
| 	rb_ary_push(memo->v2, enum_yield(argc, i));
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.grep(pattern)                  -> array
 | |
|  *     enum.grep(pattern) { |obj| block }  -> array
 | |
|  *
 | |
|  *  Returns an array of every element in <i>enum</i> for which
 | |
|  *  <code>Pattern === element</code>. If the optional <em>block</em> is
 | |
|  *  supplied, each matching element is passed to it, and the block's
 | |
|  *  result is stored in the output array.
 | |
|  *
 | |
|  *     (1..100).grep 38..44   #=> [38, 39, 40, 41, 42, 43, 44]
 | |
|  *     c = IO.constants
 | |
|  *     c.grep(/SEEK/)         #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
 | |
|  *     res = c.grep(/SEEK/) { |v| IO.const_get(v) }
 | |
|  *     res                    #=> [0, 1, 2]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_grep(VALUE obj, VALUE pat)
 | |
| {
 | |
|     VALUE ary = rb_ary_new();
 | |
|     struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);
 | |
| 
 | |
|     rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.grep_v(pattern)                  -> array
 | |
|  *     enum.grep_v(pattern) { |obj| block }  -> array
 | |
|  *
 | |
|  *  Inverted version of Enumerable#grep.
 | |
|  *  Returns an array of every element in <i>enum</i> for which
 | |
|  *  not <code>Pattern === element</code>.
 | |
|  *
 | |
|  *     (1..10).grep_v 2..5   #=> [1, 6, 7, 8, 9, 10]
 | |
|  *     res =(1..10).grep_v(2..5) { |v| v * 2 }
 | |
|  *     res                    #=> [2, 12, 14, 16, 18, 20]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_grep_v(VALUE obj, VALUE pat)
 | |
| {
 | |
|     VALUE ary = rb_ary_new();
 | |
|     struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);
 | |
| 
 | |
|     rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| #define COUNT_BIGNUM IMEMO_FL_USER0
 | |
| #define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
 | |
| 
 | |
| static void
 | |
| imemo_count_up(struct MEMO *memo)
 | |
| {
 | |
|     if (memo->flags & COUNT_BIGNUM) {
 | |
| 	MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
 | |
|     }
 | |
|     else if (++memo->u3.cnt == 0) {
 | |
| 	/* overflow */
 | |
| 	unsigned long buf[2] = {0, 1};
 | |
| 	MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
 | |
| 	memo->flags |= COUNT_BIGNUM;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| imemo_count_value(struct MEMO *memo)
 | |
| {
 | |
|     if (memo->flags & COUNT_BIGNUM) {
 | |
| 	return memo->u3.value;
 | |
|     }
 | |
|     else {
 | |
| 	return ULONG2NUM(memo->u3.cnt);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(memop);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (rb_equal(i, memo->v1)) {
 | |
| 	imemo_count_up(memo);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(memop);
 | |
| 
 | |
|     if (RTEST(rb_yield_values2(argc, argv))) {
 | |
| 	imemo_count_up(memo);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(memop);
 | |
| 
 | |
|     imemo_count_up(memo);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.count                 -> int
 | |
|  *     enum.count(item)           -> int
 | |
|  *     enum.count { |obj| block } -> int
 | |
|  *
 | |
|  *  Returns the number of items in +enum+ through enumeration.
 | |
|  *  If an argument is given, the number of items in +enum+ that
 | |
|  *  are equal to +item+ are counted.  If a block is given, it
 | |
|  *  counts the number of elements yielding a true value.
 | |
|  *
 | |
|  *     ary = [1, 2, 4, 2]
 | |
|  *     ary.count               #=> 4
 | |
|  *     ary.count(2)            #=> 2
 | |
|  *     ary.count{ |x| x%2==0 } #=> 3
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_count(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE item = Qnil;
 | |
|     struct MEMO *memo;
 | |
|     rb_block_call_func *func;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    func = count_iter_i;
 | |
| 	}
 | |
| 	else {
 | |
| 	    func = count_all_i;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "1", &item);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
|         func = count_i;
 | |
|     }
 | |
| 
 | |
|     memo = MEMO_NEW(item, 0, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
 | |
|     return imemo_count_value(memo);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RTEST(enum_yield(argc, i))) {
 | |
| 	struct MEMO *memo = MEMO_CAST(memop);
 | |
| 	MEMO_V1_SET(memo, i);
 | |
| 	memo->u3.cnt = 1;
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.detect(ifnone = nil) { |obj| block } -> obj or nil
 | |
|  *     enum.find(ifnone = nil)   { |obj| block } -> obj or nil
 | |
|  *     enum.detect(ifnone = nil)                 -> an_enumerator
 | |
|  *     enum.find(ifnone = nil)                   -> an_enumerator
 | |
|  *
 | |
|  *  Passes each entry in <i>enum</i> to <em>block</em>. Returns the
 | |
|  *  first for which <em>block</em> is not false.  If no
 | |
|  *  object matches, calls <i>ifnone</i> and returns its result when it
 | |
|  *  is specified, or returns <code>nil</code> otherwise.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..100).detect  #=> #<Enumerator: 1..100:detect>
 | |
|  *     (1..100).find    #=> #<Enumerator: 1..100:find>
 | |
|  *
 | |
|  *     (1..10).detect   { |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
 | |
|  *     (1..10).find     { |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
 | |
|  *     (1..100).detect  { |i| i % 5 == 0 and i % 7 == 0 }   #=> 35
 | |
|  *     (1..100).find    { |i| i % 5 == 0 and i % 7 == 0 }   #=> 35
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_find(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     VALUE if_none;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &if_none);
 | |
|     RETURN_ENUMERATOR(obj, argc, argv);
 | |
|     memo = MEMO_NEW(Qundef, 0, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
 | |
|     if (memo->u3.cnt) {
 | |
| 	return memo->v1;
 | |
|     }
 | |
|     if (!NIL_P(if_none)) {
 | |
| 	return rb_funcallv(if_none, id_call, 0, 0);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(memop);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (rb_equal(i, memo->v2)) {
 | |
| 	MEMO_V1_SET(memo, imemo_count_value(memo));
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     imemo_count_up(memo);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(memop);
 | |
| 
 | |
|     if (RTEST(rb_yield_values2(argc, argv))) {
 | |
| 	MEMO_V1_SET(memo, imemo_count_value(memo));
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     imemo_count_up(memo);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.find_index(value)          -> int or nil
 | |
|  *     enum.find_index { |obj| block } -> int or nil
 | |
|  *     enum.find_index                 -> an_enumerator
 | |
|  *
 | |
|  *  Compares each entry in <i>enum</i> with <em>value</em> or passes
 | |
|  *  to <em>block</em>.  Returns the index for the first for which the
 | |
|  *  evaluated value is non-false.  If no object matches, returns
 | |
|  *  <code>nil</code>
 | |
|  *
 | |
|  *  If neither block nor argument is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..10).find_index  { |i| i % 5 == 0 and i % 7 == 0 }  #=> nil
 | |
|  *     (1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 }  #=> 34
 | |
|  *     (1..100).find_index(50)                                #=> 49
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_find_index(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;	/* [return value, current index, ] */
 | |
|     VALUE condition_value = Qnil;
 | |
|     rb_block_call_func *func;
 | |
| 
 | |
|     if (argc == 0) {
 | |
|         RETURN_ENUMERATOR(obj, 0, 0);
 | |
|         func = find_index_iter_i;
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "1", &condition_value);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
|         func = find_index_i;
 | |
|     }
 | |
| 
 | |
|     memo = MEMO_NEW(Qnil, condition_value, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
 | |
|     return memo->v1;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RTEST(enum_yield(argc, i))) {
 | |
| 	rb_ary_push(ary, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_size(VALUE self, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
 | |
| }
 | |
| 
 | |
| static long
 | |
| limit_by_enum_size(VALUE obj, long n)
 | |
| {
 | |
|     unsigned long limit;
 | |
|     VALUE size = rb_check_funcall(obj, id_size, 0, 0);
 | |
|     if (!FIXNUM_P(size)) return n;
 | |
|     limit = FIX2ULONG(size);
 | |
|     return ((unsigned long)n > limit) ? (long)limit : n;
 | |
| }
 | |
| 
 | |
| static int
 | |
| enum_size_over_p(VALUE obj, long n)
 | |
| {
 | |
|     VALUE size = rb_check_funcall(obj, id_size, 0, 0);
 | |
|     if (!FIXNUM_P(size)) return 0;
 | |
|     return ((unsigned long)n > FIX2ULONG(size));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.find_all { |obj| block } -> array
 | |
|  *     enum.select   { |obj| block } -> array
 | |
|  *     enum.filter   { |obj| block } -> array
 | |
|  *     enum.find_all                 -> an_enumerator
 | |
|  *     enum.select                   -> an_enumerator
 | |
|  *     enum.filter                   -> an_enumerator
 | |
|  *
 | |
|  *  Returns an array containing all elements of +enum+
 | |
|  *  for which the given +block+ returns a true value.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *
 | |
|  *
 | |
|  *     (1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]
 | |
|  *
 | |
|  *     [1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]
 | |
|  *
 | |
|  *     [:foo, :bar].filter { |x| x == :foo }   #=> [:foo]
 | |
|  *
 | |
|  *  See also Enumerable#reject.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_find_all(VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     ary = rb_ary_new();
 | |
|     rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (!RTEST(enum_yield(argc, i))) {
 | |
| 	rb_ary_push(ary, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.reject { |obj| block } -> array
 | |
|  *     enum.reject                 -> an_enumerator
 | |
|  *
 | |
|  *  Returns an array for all elements of +enum+ for which the given
 | |
|  *  +block+ returns <code>false</code>.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..10).reject { |i|  i % 3 == 0 }   #=> [1, 2, 4, 5, 7, 8, 10]
 | |
|  *
 | |
|  *     [1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
 | |
|  *
 | |
|  *  See also Enumerable#find_all.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_reject(VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     ary = rb_ary_new();
 | |
|     rb_block_call(obj, id_each, 0, 0, reject_i, ary);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     rb_ary_push(ary, rb_yield_values2(argc, argv));
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     rb_thread_check_ints();
 | |
|     rb_ary_push(ary, rb_enum_values_pack(argc, argv));
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.collect { |obj| block } -> array
 | |
|  *     enum.map     { |obj| block } -> array
 | |
|  *     enum.collect                 -> an_enumerator
 | |
|  *     enum.map                     -> an_enumerator
 | |
|  *
 | |
|  *  Returns a new array with the results of running <em>block</em> once
 | |
|  *  for every element in <i>enum</i>.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
 | |
|  *     (1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_collect(VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
|     int min_argc, max_argc;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     ary = rb_ary_new();
 | |
|     min_argc = rb_block_min_max_arity(&max_argc);
 | |
|     rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     VALUE tmp;
 | |
| 
 | |
|     i = rb_yield_values2(argc, argv);
 | |
|     tmp = rb_check_array_type(i);
 | |
| 
 | |
|     if (NIL_P(tmp)) {
 | |
| 	rb_ary_push(ary, i);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ary_concat(ary, tmp);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.flat_map       { |obj| block } -> array
 | |
|  *     enum.collect_concat { |obj| block } -> array
 | |
|  *     enum.flat_map                       -> an_enumerator
 | |
|  *     enum.collect_concat                 -> an_enumerator
 | |
|  *
 | |
|  *  Returns a new array with the concatenated results of running
 | |
|  *  <em>block</em> once for every element in <i>enum</i>.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
 | |
|  *     [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_flat_map(VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     ary = rb_ary_new();
 | |
|     rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.to_a(*args)      -> array
 | |
|  *     enum.entries(*args)   -> array
 | |
|  *
 | |
|  *  Returns an array containing the items in <i>enum</i>.
 | |
|  *
 | |
|  *     (1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
 | |
|  *     { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]
 | |
|  *
 | |
|  *     require 'prime'
 | |
|  *     Prime.entries 10                  #=> [2, 3, 5, 7]
 | |
|  */
 | |
| static VALUE
 | |
| enum_to_a(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE ary = rb_ary_new();
 | |
| 
 | |
|     rb_block_call(obj, id_each, argc, argv, collect_all, ary);
 | |
|     OBJ_INFECT(ary, obj);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
 | |
| {
 | |
|     VALUE key_value_pair;
 | |
|     ENUM_WANT_SVALUE();
 | |
|     rb_thread_check_ints();
 | |
|     key_value_pair = rb_check_array_type(i);
 | |
|     if (NIL_P(key_value_pair)) {
 | |
| 	rb_raise(rb_eTypeError, "wrong element type %s (expected array)",
 | |
| 	    rb_builtin_class_name(i));
 | |
|     }
 | |
|     if (RARRAY_LEN(key_value_pair) != 2) {
 | |
|         rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)",
 | |
| 	    RARRAY_LEN(key_value_pair));
 | |
|     }
 | |
|     rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.to_h(*args)  -> hash
 | |
|  *
 | |
|  *  Returns the result of interpreting <i>enum</i> as a list of
 | |
|  *  <tt>[key, value]</tt> pairs.
 | |
|  *
 | |
|  *     %i[hello world].each_with_index.to_h
 | |
|  *       # => {:hello => 0, :world => 1}
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_to_h(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE hash = rb_hash_new();
 | |
|     rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash);
 | |
|     OBJ_INFECT(hash, obj);
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(p);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->v1 == Qundef) {
 | |
| 	MEMO_V1_SET(memo, i);
 | |
|     }
 | |
|     else {
 | |
| 	MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(p);
 | |
|     VALUE name;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->v1 == Qundef) {
 | |
| 	MEMO_V1_SET(memo, i);
 | |
|     }
 | |
|     else if (SYMBOL_P(name = memo->u3.value)) {
 | |
| 	const ID mid = SYM2ID(name);
 | |
| 	MEMO_V1_SET(memo, rb_funcallv(memo->v1, mid, 1, &i));
 | |
|     }
 | |
|     else {
 | |
| 	VALUE args[2];
 | |
| 	args[0] = name;
 | |
| 	args[1] = i;
 | |
| 	MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_inject_op(VALUE ary, VALUE init, VALUE op)
 | |
| {
 | |
|     ID id;
 | |
|     VALUE v, e;
 | |
|     long i, n;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == 0)
 | |
|         return init == Qundef ? Qnil : init;
 | |
| 
 | |
|     if (init == Qundef) {
 | |
|         v = RARRAY_AREF(ary, 0);
 | |
|         i = 1;
 | |
|         if (RARRAY_LEN(ary) == 1)
 | |
|             return v;
 | |
|     }
 | |
|     else {
 | |
|         v = init;
 | |
|         i = 0;
 | |
|     }
 | |
| 
 | |
|     id = SYM2ID(op);
 | |
|     if (id == idPLUS) {
 | |
| 	if (RB_INTEGER_TYPE_P(v) &&
 | |
| 	    rb_method_basic_definition_p(rb_cInteger, idPLUS) &&
 | |
| 	    rb_obj_respond_to(v, idPLUS, FALSE)) {
 | |
|             n = 0;
 | |
|             for (; i < RARRAY_LEN(ary); i++) {
 | |
|                 e = RARRAY_AREF(ary, i);
 | |
|                 if (FIXNUM_P(e)) {
 | |
|                     n += FIX2LONG(e); /* should not overflow long type */
 | |
|                     if (!FIXABLE(n)) {
 | |
|                         v = rb_big_plus(ULONG2NUM(n), v);
 | |
|                         n = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 else if (RB_TYPE_P(e, T_BIGNUM))
 | |
|                     v = rb_big_plus(e, v);
 | |
|                 else
 | |
|                     goto not_integer;
 | |
|             }
 | |
|             if (n != 0)
 | |
|                 v = rb_fix_plus(LONG2FIX(n), v);
 | |
|             return v;
 | |
| 
 | |
|           not_integer:
 | |
|             if (n != 0)
 | |
|                 v = rb_fix_plus(LONG2FIX(n), v);
 | |
|         }
 | |
|     }
 | |
|     for (; i < RARRAY_LEN(ary); i++) {
 | |
|         v = rb_funcallv_public(v, id, 1, &RARRAY_CONST_PTR(ary)[i]);
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.inject(initial, sym) -> obj
 | |
|  *     enum.inject(sym)          -> obj
 | |
|  *     enum.inject(initial) { |memo, obj| block }  -> obj
 | |
|  *     enum.inject          { |memo, obj| block }  -> obj
 | |
|  *     enum.reduce(initial, sym) -> obj
 | |
|  *     enum.reduce(sym)          -> obj
 | |
|  *     enum.reduce(initial) { |memo, obj| block }  -> obj
 | |
|  *     enum.reduce          { |memo, obj| block }  -> obj
 | |
|  *
 | |
|  *  Combines all elements of <i>enum</i> by applying a binary
 | |
|  *  operation, specified by a block or a symbol that names a
 | |
|  *  method or operator.
 | |
|  *
 | |
|  *  The <i>inject</i> and <i>reduce</i> methods are aliases. There
 | |
|  *  is no performance benefit to either.
 | |
|  *
 | |
|  *  If you specify a block, then for each element in <i>enum</i>
 | |
|  *  the block is passed an accumulator value (<i>memo</i>) and the element.
 | |
|  *  If you specify a symbol instead, then each element in the collection
 | |
|  *  will be passed to the named method of <i>memo</i>.
 | |
|  *  In either case, the result becomes the new value for <i>memo</i>.
 | |
|  *  At the end of the iteration, the final value of <i>memo</i> is the
 | |
|  *  return value for the method.
 | |
|  *
 | |
|  *  If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
 | |
|  *  then the first element of collection is used as the initial value
 | |
|  *  of <i>memo</i>.
 | |
|  *
 | |
|  *
 | |
|  *     # Sum some numbers
 | |
|  *     (5..10).reduce(:+)                             #=> 45
 | |
|  *     # Same using a block and inject
 | |
|  *     (5..10).inject { |sum, n| sum + n }            #=> 45
 | |
|  *     # Multiply some numbers
 | |
|  *     (5..10).reduce(1, :*)                          #=> 151200
 | |
|  *     # Same using a block
 | |
|  *     (5..10).inject(1) { |product, n| product * n } #=> 151200
 | |
|  *     # find the longest word
 | |
|  *     longest = %w{ cat sheep bear }.inject do |memo, word|
 | |
|  *        memo.length > word.length ? memo : word
 | |
|  *     end
 | |
|  *     longest                                        #=> "sheep"
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_inject(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     VALUE init, op;
 | |
|     rb_block_call_func *iter = inject_i;
 | |
|     ID id;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "02", &init, &op)) {
 | |
|       case 0:
 | |
| 	init = Qundef;
 | |
| 	break;
 | |
|       case 1:
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	id = rb_check_id(&init);
 | |
| 	op = id ? ID2SYM(id) : init;
 | |
| 	init = Qundef;
 | |
| 	iter = inject_op_i;
 | |
| 	break;
 | |
|       case 2:
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warning("given block not used");
 | |
| 	}
 | |
| 	id = rb_check_id(&op);
 | |
| 	if (id) op = ID2SYM(id);
 | |
| 	iter = inject_op_i;
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     if (iter == inject_op_i &&
 | |
|         SYMBOL_P(op) &&
 | |
|         RB_TYPE_P(obj, T_ARRAY) &&
 | |
|         rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
 | |
|         return ary_inject_op(obj, init, op);
 | |
|     }
 | |
| 
 | |
|     memo = MEMO_NEW(init, Qnil, op);
 | |
|     rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
 | |
|     if (memo->v1 == Qundef) return Qnil;
 | |
|     return memo->v1;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(arys);
 | |
|     VALUE ary;
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RTEST(enum_yield(argc, i))) {
 | |
| 	ary = memo->v1;
 | |
|     }
 | |
|     else {
 | |
| 	ary = memo->v2;
 | |
|     }
 | |
|     rb_ary_push(ary, i);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.partition { |obj| block } -> [ true_array, false_array ]
 | |
|  *     enum.partition                 -> an_enumerator
 | |
|  *
 | |
|  *  Returns two arrays, the first containing the elements of
 | |
|  *  <i>enum</i> for which the block evaluates to true, the second
 | |
|  *  containing the rest.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..6).partition { |v| v.even? }  #=> [[2, 4, 6], [1, 3, 5]]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_partition(VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
 | |
| 
 | |
|     return rb_assoc_new(memo->v1, memo->v2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
 | |
| {
 | |
|     VALUE group;
 | |
|     VALUE values;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     group = enum_yield(argc, i);
 | |
|     values = rb_hash_aref(hash, group);
 | |
|     if (!RB_TYPE_P(values, T_ARRAY)) {
 | |
| 	values = rb_ary_new3(1, i);
 | |
| 	rb_hash_aset(hash, group, values);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ary_push(values, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.group_by { |obj| block } -> a_hash
 | |
|  *     enum.group_by                 -> an_enumerator
 | |
|  *
 | |
|  *  Groups the collection by result of the block.  Returns a hash where the
 | |
|  *  keys are the evaluated result from the block and the values are
 | |
|  *  arrays of elements in the collection that correspond to the key.
 | |
|  *
 | |
|  *  If no block is given an enumerator is returned.
 | |
|  *
 | |
|  *     (1..6).group_by { |i| i%3 }   #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_group_by(VALUE obj)
 | |
| {
 | |
|     VALUE hash;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     hash = rb_hash_new();
 | |
|     rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
 | |
|     OBJ_INFECT(hash, obj);
 | |
| 
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(params);
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     MEMO_V1_SET(memo, i);
 | |
|     rb_iter_break();
 | |
| 
 | |
|     UNREACHABLE_RETURN(Qnil);
 | |
| }
 | |
| 
 | |
| static VALUE enum_take(VALUE obj, VALUE n);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.first       ->  obj or nil
 | |
|  *     enum.first(n)    ->  an_array
 | |
|  *
 | |
|  *  Returns the first element, or the first +n+ elements, of the enumerable.
 | |
|  *  If the enumerable is empty, the first form returns <code>nil</code>, and the
 | |
|  *  second form returns an empty array.
 | |
|  *
 | |
|  *    %w[foo bar baz].first     #=> "foo"
 | |
|  *    %w[foo bar baz].first(2)  #=> ["foo", "bar"]
 | |
|  *    %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
 | |
|  *    [].first                  #=> nil
 | |
|  *    [].first(10)              #=> []
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_first(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (argc > 0) {
 | |
| 	return enum_take(obj, argv[0]);
 | |
|     }
 | |
|     else {
 | |
| 	memo = MEMO_NEW(Qnil, 0, 0);
 | |
| 	rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
 | |
| 	return memo->v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.sort                  -> array
 | |
|  *     enum.sort { |a, b| block } -> array
 | |
|  *
 | |
|  *  Returns an array containing the items in <i>enum</i> sorted.
 | |
|  *
 | |
|  *  Comparisons for the sort will be done using the items' own
 | |
|  *  <code><=></code> operator or using an optional code block.
 | |
|  *
 | |
|  *  The block must implement a comparison between +a+ and +b+ and return
 | |
|  *  an integer less than 0 when +b+ follows +a+, +0+ when +a+ and +b+
 | |
|  *  are equivalent, or an integer greater than 0 when +a+ follows +b+.
 | |
|  *
 | |
|  *  The result is not guaranteed to be stable.  When the comparison of two
 | |
|  *  elements returns +0+, the order of the elements is unpredictable.
 | |
|  *
 | |
|  *     %w(rhea kea flea).sort           #=> ["flea", "kea", "rhea"]
 | |
|  *     (1..10).sort { |a, b| b <=> a }  #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
 | |
|  *
 | |
|  *  See also Enumerable#sort_by. It implements a Schwartzian transform
 | |
|  *  which is useful when key computation or comparison is expensive.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_sort(VALUE obj)
 | |
| {
 | |
|     return rb_ary_sort_bang(enum_to_a(0, 0, obj));
 | |
| }
 | |
| 
 | |
| #define SORT_BY_BUFSIZE 16
 | |
| struct sort_by_data {
 | |
|     const VALUE ary;
 | |
|     const VALUE buf;
 | |
|     long n;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
 | |
| {
 | |
|     struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
 | |
|     VALUE ary = data->ary;
 | |
|     VALUE v;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     v = enum_yield(argc, i);
 | |
| 
 | |
|     if (RBASIC(ary)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort_by reentered");
 | |
|     }
 | |
|     if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort_by reentered");
 | |
|     }
 | |
| 
 | |
|     RARRAY_ASET(data->buf, data->n*2, v);
 | |
|     RARRAY_ASET(data->buf, data->n*2+1, i);
 | |
|     data->n++;
 | |
|     if (data->n == SORT_BY_BUFSIZE) {
 | |
| 	rb_ary_concat(ary, data->buf);
 | |
| 	data->n = 0;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sort_by_cmp(const void *ap, const void *bp, void *data)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     VALUE a;
 | |
|     VALUE b;
 | |
|     VALUE ary = (VALUE)data;
 | |
| 
 | |
|     if (RBASIC(ary)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort_by reentered");
 | |
|     }
 | |
| 
 | |
|     a = *(VALUE *)ap;
 | |
|     b = *(VALUE *)bp;
 | |
| 
 | |
|     return OPTIMIZED_CMP(a, b, cmp_opt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.sort_by { |obj| block }   -> array
 | |
|  *     enum.sort_by                   -> an_enumerator
 | |
|  *
 | |
|  *  Sorts <i>enum</i> using a set of keys generated by mapping the
 | |
|  *  values in <i>enum</i> through the given block.
 | |
|  *
 | |
|  *  The result is not guaranteed to be stable.  When two keys are equal,
 | |
|  *  the order of the corresponding elements is unpredictable.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     %w{apple pear fig}.sort_by { |word| word.length }
 | |
|  *                   #=> ["fig", "pear", "apple"]
 | |
|  *
 | |
|  *  The current implementation of <code>sort_by</code> generates an
 | |
|  *  array of tuples containing the original collection element and the
 | |
|  *  mapped value. This makes <code>sort_by</code> fairly expensive when
 | |
|  *  the keysets are simple.
 | |
|  *
 | |
|  *     require 'benchmark'
 | |
|  *
 | |
|  *     a = (1..100000).map { rand(100000) }
 | |
|  *
 | |
|  *     Benchmark.bm(10) do |b|
 | |
|  *       b.report("Sort")    { a.sort }
 | |
|  *       b.report("Sort by") { a.sort_by { |a| a } }
 | |
|  *     end
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     user     system      total        real
 | |
|  *     Sort        0.180000   0.000000   0.180000 (  0.175469)
 | |
|  *     Sort by     1.980000   0.040000   2.020000 (  2.013586)
 | |
|  *
 | |
|  *  However, consider the case where comparing the keys is a non-trivial
 | |
|  *  operation. The following code sorts some files on modification time
 | |
|  *  using the basic <code>sort</code> method.
 | |
|  *
 | |
|  *     files = Dir["*"]
 | |
|  *     sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
 | |
|  *     sorted   #=> ["mon", "tues", "wed", "thurs"]
 | |
|  *
 | |
|  *  This sort is inefficient: it generates two new <code>File</code>
 | |
|  *  objects during every comparison. A slightly better technique is to
 | |
|  *  use the <code>Kernel#test</code> method to generate the modification
 | |
|  *  times directly.
 | |
|  *
 | |
|  *     files = Dir["*"]
 | |
|  *     sorted = files.sort { |a, b|
 | |
|  *       test(?M, a) <=> test(?M, b)
 | |
|  *     }
 | |
|  *     sorted   #=> ["mon", "tues", "wed", "thurs"]
 | |
|  *
 | |
|  *  This still generates many unnecessary <code>Time</code> objects. A
 | |
|  *  more efficient technique is to cache the sort keys (modification
 | |
|  *  times in this case) before the sort. Perl users often call this
 | |
|  *  approach a Schwartzian transform, after Randal Schwartz. We
 | |
|  *  construct a temporary array, where each element is an array
 | |
|  *  containing our sort key along with the filename. We sort this array,
 | |
|  *  and then extract the filename from the result.
 | |
|  *
 | |
|  *     sorted = Dir["*"].collect { |f|
 | |
|  *        [test(?M, f), f]
 | |
|  *     }.sort.collect { |f| f[1] }
 | |
|  *     sorted   #=> ["mon", "tues", "wed", "thurs"]
 | |
|  *
 | |
|  *  This is exactly what <code>sort_by</code> does internally.
 | |
|  *
 | |
|  *     sorted = Dir["*"].sort_by { |f| test(?M, f) }
 | |
|  *     sorted   #=> ["mon", "tues", "wed", "thurs"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_sort_by(VALUE obj)
 | |
| {
 | |
|     VALUE ary, buf;
 | |
|     struct MEMO *memo;
 | |
|     long i;
 | |
|     struct sort_by_data *data;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
 | |
| 	ary = rb_ary_new2(RARRAY_LEN(obj)*2);
 | |
|     }
 | |
|     else {
 | |
| 	ary = rb_ary_new();
 | |
|     }
 | |
|     RBASIC_CLEAR_CLASS(ary);
 | |
|     buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
 | |
|     rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
 | |
|     memo = MEMO_NEW(0, 0, 0);
 | |
|     OBJ_INFECT(memo, obj);
 | |
|     data = (struct sort_by_data *)&memo->v1;
 | |
|     RB_OBJ_WRITE(memo, &data->ary, ary);
 | |
|     RB_OBJ_WRITE(memo, &data->buf, buf);
 | |
|     data->n = 0;
 | |
|     rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
 | |
|     ary = data->ary;
 | |
|     buf = data->buf;
 | |
|     if (data->n) {
 | |
| 	rb_ary_resize(buf, data->n*2);
 | |
| 	rb_ary_concat(ary, buf);
 | |
|     }
 | |
|     if (RARRAY_LEN(ary) > 2) {
 | |
| 	RARRAY_PTR_USE(ary, ptr,
 | |
| 		      ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
 | |
| 				 sort_by_cmp, (void *)ary));
 | |
|     }
 | |
|     if (RBASIC(ary)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort_by reentered");
 | |
|     }
 | |
|     for (i=1; i<RARRAY_LEN(ary); i+=2) {
 | |
| 	RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
 | |
|     }
 | |
|     rb_ary_resize(ary, RARRAY_LEN(ary)/2);
 | |
|     RBASIC_SET_CLASS_RAW(ary, rb_cArray);
 | |
|     OBJ_INFECT(ary, memo);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| #define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
 | |
| 
 | |
| #define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
 | |
| 
 | |
| #define DEFINE_ENUMFUNCS(name) \
 | |
| static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
 | |
| \
 | |
| static VALUE \
 | |
| name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
 | |
| { \
 | |
|     return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
 | |
| } \
 | |
| \
 | |
| static VALUE \
 | |
| name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
 | |
| { \
 | |
|     return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo));	\
 | |
| } \
 | |
| \
 | |
| static VALUE \
 | |
| name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
 | |
| { \
 | |
|     ENUM_WANT_SVALUE(); \
 | |
|     return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
 | |
| } \
 | |
| \
 | |
| static VALUE \
 | |
| enum_##name##_func(VALUE result, struct MEMO *memo)
 | |
| 
 | |
| DEFINE_ENUMFUNCS(all)
 | |
| {
 | |
|     if (!RTEST(result)) {
 | |
| 	MEMO_V1_SET(memo, Qfalse);
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.all? [{ |obj| block } ]   -> true or false
 | |
|  *     enum.all?(pattern)             -> true or false
 | |
|  *
 | |
|  *  Passes each element of the collection to the given block. The method
 | |
|  *  returns <code>true</code> if the block never returns
 | |
|  *  <code>false</code> or <code>nil</code>. If the block is not given,
 | |
|  *  Ruby adds an implicit block of <code>{ |obj| obj }</code> which will
 | |
|  *  cause #all? to return +true+ when none of the collection members are
 | |
|  *  +false+ or +nil+.
 | |
|  *
 | |
|  *  If instead a pattern is supplied, the method returns whether
 | |
|  *  <code>pattern === element</code> for every collection member.
 | |
|  *
 | |
|  *     %w[ant bear cat].all? { |word| word.length >= 3 } #=> true
 | |
|  *     %w[ant bear cat].all? { |word| word.length >= 4 } #=> false
 | |
|  *     %w[ant bear cat].all?(/t/)                        #=> false
 | |
|  *     [1, 2i, 3.14].all?(Numeric)                       #=> true
 | |
|  *     [nil, true, 99].all?                              #=> false
 | |
|  *     [].all?                                           #=> true
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_all(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
 | |
|     rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
 | |
|     return memo->v1;
 | |
| }
 | |
| 
 | |
| DEFINE_ENUMFUNCS(any)
 | |
| {
 | |
|     if (RTEST(result)) {
 | |
| 	MEMO_V1_SET(memo, Qtrue);
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.any? [{ |obj| block }]   -> true or false
 | |
|  *     enum.any?(pattern)            -> true or false
 | |
|  *
 | |
|  *  Passes each element of the collection to the given block. The method
 | |
|  *  returns <code>true</code> if the block ever returns a value other
 | |
|  *  than <code>false</code> or <code>nil</code>. If the block is not
 | |
|  *  given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that
 | |
|  *  will cause #any? to return +true+ if at least one of the collection
 | |
|  *  members is not +false+ or +nil+.
 | |
|  *
 | |
|  *  If instead a pattern is supplied, the method returns whether
 | |
|  *  <code>pattern === element</code> for any collection member.
 | |
|  *
 | |
|  *     %w[ant bear cat].any? { |word| word.length >= 3 } #=> true
 | |
|  *     %w[ant bear cat].any? { |word| word.length >= 4 } #=> true
 | |
|  *     %w[ant bear cat].any?(/d/)                        #=> false
 | |
|  *     [nil, true, 99].any?(Integer)                     #=> true
 | |
|  *     [nil, true, 99].any?                              #=> true
 | |
|  *     [].any?                                           #=> false
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_any(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
 | |
|     rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
 | |
|     return memo->v1;
 | |
| }
 | |
| 
 | |
| DEFINE_ENUMFUNCS(one)
 | |
| {
 | |
|     if (RTEST(result)) {
 | |
| 	if (memo->v1 == Qundef) {
 | |
| 	    MEMO_V1_SET(memo, Qtrue);
 | |
| 	}
 | |
| 	else if (memo->v1 == Qtrue) {
 | |
| 	    MEMO_V1_SET(memo, Qfalse);
 | |
| 	    rb_iter_break();
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| struct nmin_data {
 | |
|   long n;
 | |
|   long bufmax;
 | |
|   long curlen;
 | |
|   VALUE buf;
 | |
|   VALUE limit;
 | |
|   int (*cmpfunc)(const void *, const void *, void *);
 | |
|   int rev; /* max if 1 */
 | |
|   int by; /* min_by if 1 */
 | |
|   const char *method;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| cmpint_reenter_check(struct nmin_data *data, VALUE val)
 | |
| {
 | |
|     if (RBASIC(data->buf)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "%s reentered", data->method);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static int
 | |
| nmin_cmp(const void *ap, const void *bp, void *_data)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     struct nmin_data *data = (struct nmin_data *)_data;
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
| #define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
 | |
|     return OPTIMIZED_CMP(a, b, cmp_opt);
 | |
| #undef rb_cmpint
 | |
| }
 | |
| 
 | |
| static int
 | |
| nmin_block_cmp(const void *ap, const void *bp, void *_data)
 | |
| {
 | |
|     struct nmin_data *data = (struct nmin_data *)_data;
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
|     VALUE cmp = rb_yield_values(2, a, b);
 | |
|     cmpint_reenter_check(data, cmp);
 | |
|     return rb_cmpint(cmp, a, b);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nmin_filter(struct nmin_data *data)
 | |
| {
 | |
|     long n;
 | |
|     VALUE *beg;
 | |
|     int eltsize;
 | |
|     long numelts;
 | |
| 
 | |
|     long left, right;
 | |
|     long store_index;
 | |
| 
 | |
|     long i, j;
 | |
| 
 | |
|     if (data->curlen <= data->n)
 | |
| 	return;
 | |
| 
 | |
|     n = data->n;
 | |
|     beg = RARRAY_PTR(data->buf);
 | |
|     eltsize = data->by ? 2 : 1;
 | |
|     numelts = data->curlen;
 | |
| 
 | |
|     left = 0;
 | |
|     right = numelts-1;
 | |
| 
 | |
| #define GETPTR(i) (beg+(i)*eltsize)
 | |
| 
 | |
| #define SWAP(i, j) do { \
 | |
|     VALUE tmp[2]; \
 | |
|     memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
 | |
|     memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
 | |
|     memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
 | |
| } while (0)
 | |
| 
 | |
|     while (1) {
 | |
| 	long pivot_index = left + (right-left)/2;
 | |
| 	long num_pivots = 1;
 | |
| 
 | |
| 	SWAP(pivot_index, right);
 | |
| 	pivot_index = right;
 | |
| 
 | |
| 	store_index = left;
 | |
| 	i = left;
 | |
| 	while (i <= right-num_pivots) {
 | |
| 	    int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
 | |
| 	    if (data->rev)
 | |
| 		c = -c;
 | |
| 	    if (c == 0) {
 | |
| 	        SWAP(i, right-num_pivots);
 | |
| 		num_pivots++;
 | |
| 		continue;
 | |
| 	    }
 | |
| 	    if (c < 0) {
 | |
| 		SWAP(i, store_index);
 | |
| 		store_index++;
 | |
| 	    }
 | |
| 	    i++;
 | |
| 	}
 | |
| 	j = store_index;
 | |
| 	for (i = right; right-num_pivots < i; i--) {
 | |
| 	    if (i <= j)
 | |
| 	        break;
 | |
| 	    SWAP(j, i);
 | |
| 	    j++;
 | |
| 	}
 | |
| 
 | |
| 	if (store_index <= n && n <= store_index+num_pivots)
 | |
| 	    break;
 | |
| 
 | |
| 	if (n < store_index) {
 | |
| 	    right = store_index-1;
 | |
| 	}
 | |
| 	else {
 | |
| 	    left = store_index+num_pivots;
 | |
| 	}
 | |
|     }
 | |
| #undef GETPTR
 | |
| #undef SWAP
 | |
| 
 | |
|     data->limit = RARRAY_PTR(data->buf)[store_index*eltsize]; /* the last pivot */
 | |
|     data->curlen = data->n;
 | |
|     rb_ary_resize(data->buf, data->n * eltsize);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nmin_i(VALUE i, VALUE *_data, int argc, VALUE *argv)
 | |
| {
 | |
|     struct nmin_data *data = (struct nmin_data *)_data;
 | |
|     VALUE cmpv;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (data->by)
 | |
| 	cmpv = enum_yield(argc, i);
 | |
|     else
 | |
| 	cmpv = i;
 | |
| 
 | |
|     if (data->limit != Qundef) {
 | |
|         int c = data->cmpfunc(&cmpv, &data->limit, data);
 | |
|         if (data->rev)
 | |
|             c = -c;
 | |
|         if (c >= 0)
 | |
|             return Qnil;
 | |
|     }
 | |
| 
 | |
|     if (data->by)
 | |
| 	rb_ary_push(data->buf, cmpv);
 | |
|     rb_ary_push(data->buf, i);
 | |
| 
 | |
|     data->curlen++;
 | |
| 
 | |
|     if (data->curlen == data->bufmax) {
 | |
| 	nmin_filter(data);
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
 | |
| {
 | |
|     VALUE result;
 | |
|     struct nmin_data data;
 | |
| 
 | |
|     data.n = NUM2LONG(num);
 | |
|     if (data.n < 0)
 | |
|         rb_raise(rb_eArgError, "negative size (%ld)", data.n);
 | |
|     if (data.n == 0)
 | |
|         return rb_ary_new2(0);
 | |
|     if (LONG_MAX/4/(by ? 2 : 1) < data.n)
 | |
|         rb_raise(rb_eArgError, "too big size");
 | |
|     data.bufmax = data.n * 4;
 | |
|     data.curlen = 0;
 | |
|     data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1));
 | |
|     data.limit = Qundef;
 | |
|     data.cmpfunc = by ? nmin_cmp :
 | |
|                    rb_block_given_p() ? nmin_block_cmp :
 | |
| 		   nmin_cmp;
 | |
|     data.rev = rev;
 | |
|     data.by = by;
 | |
|     data.method = rev ? (by ? "max_by" : "max")
 | |
|                       : (by ? "min_by" : "min");
 | |
|     if (ary) {
 | |
| 	long i;
 | |
| 	for (i = 0; i < RARRAY_LEN(obj); i++) {
 | |
| 	    VALUE args[1];
 | |
| 	    args[0] = RARRAY_AREF(obj, i);
 | |
| 	    nmin_i(obj, (VALUE*)&data, 1, args);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
 | |
|     }
 | |
|     nmin_filter(&data);
 | |
|     result = data.buf;
 | |
|     if (by) {
 | |
| 	long i;
 | |
| 	ruby_qsort(RARRAY_PTR(result),
 | |
| 	           RARRAY_LEN(result)/2,
 | |
| 		   sizeof(VALUE)*2,
 | |
| 		   data.cmpfunc, (void *)&data);
 | |
| 	for (i=1; i<RARRAY_LEN(result); i+=2) {
 | |
| 	    RARRAY_PTR(result)[i/2] = RARRAY_PTR(result)[i];
 | |
| 	}
 | |
| 	rb_ary_resize(result, RARRAY_LEN(result)/2);
 | |
|     }
 | |
|     else {
 | |
| 	ruby_qsort(RARRAY_PTR(result), RARRAY_LEN(result), sizeof(VALUE),
 | |
| 		   data.cmpfunc, (void *)&data);
 | |
|     }
 | |
|     if (rev) {
 | |
|         rb_ary_reverse(result);
 | |
|     }
 | |
|     RBASIC_SET_CLASS(result, rb_cArray);
 | |
|     return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.one? [{ |obj| block }]   -> true or false
 | |
|  *     enum.one?(pattern)            -> true or false
 | |
|  *
 | |
|  *  Passes each element of the collection to the given block. The method
 | |
|  *  returns <code>true</code> if the block returns <code>true</code>
 | |
|  *  exactly once. If the block is not given, <code>one?</code> will return
 | |
|  *  <code>true</code> only if exactly one of the collection members is
 | |
|  *  true.
 | |
|  *
 | |
|  *  If instead a pattern is supplied, the method returns whether
 | |
|  *  <code>pattern === element</code> for exactly one collection member.
 | |
|  *
 | |
|  *     %w{ant bear cat}.one? { |word| word.length == 4 }  #=> true
 | |
|  *     %w{ant bear cat}.one? { |word| word.length > 4 }   #=> false
 | |
|  *     %w{ant bear cat}.one? { |word| word.length < 4 }   #=> false
 | |
|  *     %w{ant bear cat}.one?(/t/)                         #=> false
 | |
|  *     [ nil, true, 99 ].one?                             #=> false
 | |
|  *     [ nil, true, false ].one?                          #=> true
 | |
|  *     [ nil, true, 99 ].one?(Integer)                    #=> true
 | |
|  *     [].one?                                            #=> false
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_one(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
 | |
|     VALUE result;
 | |
| 
 | |
|     rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
 | |
|     result = memo->v1;
 | |
|     if (result == Qundef) return Qfalse;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| DEFINE_ENUMFUNCS(none)
 | |
| {
 | |
|     if (RTEST(result)) {
 | |
| 	MEMO_V1_SET(memo, Qfalse);
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.none? [{ |obj| block }]   -> true or false
 | |
|  *     enum.none?(pattern)            -> true or false
 | |
|  *
 | |
|  *  Passes each element of the collection to the given block. The method
 | |
|  *  returns <code>true</code> if the block never returns <code>true</code>
 | |
|  *  for all elements. If the block is not given, <code>none?</code> will return
 | |
|  *  <code>true</code> only if none of the collection members is true.
 | |
|  *
 | |
|  *  If instead a pattern is supplied, the method returns whether
 | |
|  *  <code>pattern === element</code> for none of the collection members.
 | |
|  *
 | |
|  *     %w{ant bear cat}.none? { |word| word.length == 5 } #=> true
 | |
|  *     %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
 | |
|  *     %w{ant bear cat}.none?(/d/)                        #=> true
 | |
|  *     [1, 3.14, 42].none?(Float)                         #=> false
 | |
|  *     [].none?                                           #=> true
 | |
|  *     [nil].none?                                        #=> true
 | |
|  *     [nil, false].none?                                 #=> true
 | |
|  *     [nil, false, true].none?                           #=> false
 | |
|  */
 | |
| static VALUE
 | |
| enum_none(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
 | |
|     rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
 | |
|     return memo->v1;
 | |
| }
 | |
| 
 | |
| struct min_t {
 | |
|     VALUE min;
 | |
|     struct cmp_opt_data cmp_opt;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct min_t *memo = MEMO_FOR(struct min_t, args);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->min == Qundef) {
 | |
| 	memo->min = i;
 | |
|     }
 | |
|     else {
 | |
| 	if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) {
 | |
| 	    memo->min = i;
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     VALUE cmp;
 | |
|     struct min_t *memo = MEMO_FOR(struct min_t, args);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->min == Qundef) {
 | |
| 	memo->min = i;
 | |
|     }
 | |
|     else {
 | |
| 	cmp = rb_yield_values(2, i, memo->min);
 | |
| 	if (rb_cmpint(cmp, i, memo->min) < 0) {
 | |
| 	    memo->min = i;
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.min                     -> obj
 | |
|  *     enum.min { |a, b| block }    -> obj
 | |
|  *     enum.min(n)                  -> array
 | |
|  *     enum.min(n) { |a, b| block } -> array
 | |
|  *
 | |
|  *  Returns the object in _enum_ with the minimum value. The
 | |
|  *  first form assumes all objects implement <code>Comparable</code>;
 | |
|  *  the second uses the block to return <em>a <=> b</em>.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.min                                   #=> "albatross"
 | |
|  *     a.min { |a, b| a.length <=> b.length }  #=> "dog"
 | |
|  *
 | |
|  *  If the +n+ argument is given, minimum +n+ elements are returned
 | |
|  *  as a sorted array.
 | |
|  *
 | |
|  *     a = %w[albatross dog horse]
 | |
|  *     a.min(2)                                  #=> ["albatross", "dog"]
 | |
|  *     a.min(2) {|a, b| a.length <=> b.length }  #=> ["dog", "horse"]
 | |
|  *     [5, 1, 3, 4, 2].min(3)                    #=> [1, 2, 3]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_min(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
|     struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo);
 | |
|     VALUE result;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &num);
 | |
| 
 | |
|     if (!NIL_P(num))
 | |
|        return rb_nmin_run(obj, num, 0, 0, 0);
 | |
| 
 | |
|     m->min = Qundef;
 | |
|     m->cmp_opt.opt_methods = 0;
 | |
|     m->cmp_opt.opt_inited = 0;
 | |
|     if (rb_block_given_p()) {
 | |
| 	rb_block_call(obj, id_each, 0, 0, min_ii, memo);
 | |
|     }
 | |
|     else {
 | |
| 	rb_block_call(obj, id_each, 0, 0, min_i, memo);
 | |
|     }
 | |
|     result = m->min;
 | |
|     if (result == Qundef) return Qnil;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct max_t {
 | |
|     VALUE max;
 | |
|     struct cmp_opt_data cmp_opt;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct max_t *memo = MEMO_FOR(struct max_t, args);
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->max == Qundef) {
 | |
| 	memo->max = i;
 | |
|     }
 | |
|     else {
 | |
| 	if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) {
 | |
| 	    memo->max = i;
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct max_t *memo = MEMO_FOR(struct max_t, args);
 | |
|     VALUE cmp;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->max == Qundef) {
 | |
| 	memo->max = i;
 | |
|     }
 | |
|     else {
 | |
| 	cmp = rb_yield_values(2, i, memo->max);
 | |
| 	if (rb_cmpint(cmp, i, memo->max) > 0) {
 | |
| 	    memo->max = i;
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.max                     -> obj
 | |
|  *     enum.max { |a, b| block }    -> obj
 | |
|  *     enum.max(n)                  -> array
 | |
|  *     enum.max(n) { |a, b| block } -> array
 | |
|  *
 | |
|  *  Returns the object in _enum_ with the maximum value. The
 | |
|  *  first form assumes all objects implement <code>Comparable</code>;
 | |
|  *  the second uses the block to return <em>a <=> b</em>.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.max                                   #=> "horse"
 | |
|  *     a.max { |a, b| a.length <=> b.length }  #=> "albatross"
 | |
|  *
 | |
|  *  If the +n+ argument is given, maximum +n+ elements are returned
 | |
|  *  as an array, sorted in descending order.
 | |
|  *
 | |
|  *     a = %w[albatross dog horse]
 | |
|  *     a.max(2)                                  #=> ["horse", "dog"]
 | |
|  *     a.max(2) {|a, b| a.length <=> b.length }  #=> ["albatross", "horse"]
 | |
|  *     [5, 1, 3, 4, 2].max(3)                    #=> [5, 4, 3]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_max(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
|     struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo);
 | |
|     VALUE result;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &num);
 | |
| 
 | |
|     if (!NIL_P(num))
 | |
|        return rb_nmin_run(obj, num, 0, 1, 0);
 | |
| 
 | |
|     m->max = Qundef;
 | |
|     m->cmp_opt.opt_methods = 0;
 | |
|     m->cmp_opt.opt_inited = 0;
 | |
|     if (rb_block_given_p()) {
 | |
| 	rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
 | |
|     }
 | |
|     else {
 | |
| 	rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
 | |
|     }
 | |
|     result = m->max;
 | |
|     if (result == Qundef) return Qnil;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct minmax_t {
 | |
|     VALUE min;
 | |
|     VALUE max;
 | |
|     VALUE last;
 | |
|     struct cmp_opt_data cmp_opt;
 | |
| };
 | |
| 
 | |
| static void
 | |
| minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     if (memo->min == Qundef) {
 | |
| 	memo->min = i;
 | |
| 	memo->max = j;
 | |
|     }
 | |
|     else {
 | |
| 	n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt);
 | |
| 	if (n < 0) {
 | |
| 	    memo->min = i;
 | |
| 	}
 | |
| 	n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt);
 | |
| 	if (n > 0) {
 | |
| 	    memo->max = j;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
 | |
| {
 | |
|     struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
 | |
|     int n;
 | |
|     VALUE j;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->last == Qundef) {
 | |
|         memo->last = i;
 | |
|         return Qnil;
 | |
|     }
 | |
|     j = memo->last;
 | |
|     memo->last = Qundef;
 | |
| 
 | |
|     n = OPTIMIZED_CMP(j, i, memo->cmp_opt);
 | |
|     if (n == 0)
 | |
|         i = j;
 | |
|     else if (n < 0) {
 | |
|         VALUE tmp;
 | |
|         tmp = i;
 | |
|         i = j;
 | |
|         j = tmp;
 | |
|     }
 | |
| 
 | |
|     minmax_i_update(i, j, memo);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     if (memo->min == Qundef) {
 | |
| 	memo->min = i;
 | |
| 	memo->max = j;
 | |
|     }
 | |
|     else {
 | |
| 	n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
 | |
| 	if (n < 0) {
 | |
| 	    memo->min = i;
 | |
| 	}
 | |
| 	n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
 | |
| 	if (n > 0) {
 | |
| 	    memo->max = j;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
 | |
| {
 | |
|     struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
 | |
|     int n;
 | |
|     VALUE j;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->last == Qundef) {
 | |
|         memo->last = i;
 | |
|         return Qnil;
 | |
|     }
 | |
|     j = memo->last;
 | |
|     memo->last = Qundef;
 | |
| 
 | |
|     n = rb_cmpint(rb_yield_values(2, j, i), j, i);
 | |
|     if (n == 0)
 | |
|         i = j;
 | |
|     else if (n < 0) {
 | |
|         VALUE tmp;
 | |
|         tmp = i;
 | |
|         i = j;
 | |
|         j = tmp;
 | |
|     }
 | |
| 
 | |
|     minmax_ii_update(i, j, memo);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.minmax                  -> [min, max]
 | |
|  *     enum.minmax { |a, b| block } -> [min, max]
 | |
|  *
 | |
|  *  Returns a two element array which contains the minimum and the
 | |
|  *  maximum value in the enumerable.  The first form assumes all
 | |
|  *  objects implement <code>Comparable</code>; the second uses the
 | |
|  *  block to return <em>a <=> b</em>.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.minmax                                  #=> ["albatross", "horse"]
 | |
|  *     a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_minmax(VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
|     struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo);
 | |
| 
 | |
|     m->min = Qundef;
 | |
|     m->last = Qundef;
 | |
|     m->cmp_opt.opt_methods = 0;
 | |
|     m->cmp_opt.opt_inited = 0;
 | |
|     if (rb_block_given_p()) {
 | |
| 	rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
 | |
| 	if (m->last != Qundef)
 | |
| 	    minmax_ii_update(m->last, m->last, m);
 | |
|     }
 | |
|     else {
 | |
| 	rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
 | |
| 	if (m->last != Qundef)
 | |
| 	    minmax_i_update(m->last, m->last, m);
 | |
|     }
 | |
|     if (m->min != Qundef) {
 | |
| 	return rb_assoc_new(m->min, m->max);
 | |
|     }
 | |
|     return rb_assoc_new(Qnil, Qnil);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     VALUE v;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     v = enum_yield(argc, i);
 | |
|     if (memo->v1 == Qundef) {
 | |
| 	MEMO_V1_SET(memo, v);
 | |
| 	MEMO_V2_SET(memo, i);
 | |
|     }
 | |
|     else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) {
 | |
| 	MEMO_V1_SET(memo, v);
 | |
| 	MEMO_V2_SET(memo, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.min_by {|obj| block }      -> obj
 | |
|  *     enum.min_by                     -> an_enumerator
 | |
|  *     enum.min_by(n) {|obj| block }   -> array
 | |
|  *     enum.min_by(n)                  -> an_enumerator
 | |
|  *
 | |
|  *  Returns the object in <i>enum</i> that gives the minimum
 | |
|  *  value from the given block.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.min_by { |x| x.length }   #=> "dog"
 | |
|  *
 | |
|  *  If the +n+ argument is given, minimum +n+ elements are returned
 | |
|  *  as an array. These +n+ elements are sorted by the value from the
 | |
|  *  given block.
 | |
|  *
 | |
|  *     a = %w[albatross dog horse]
 | |
|  *     p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_min_by(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &num);
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
 | |
| 
 | |
|     if (!NIL_P(num))
 | |
|         return rb_nmin_run(obj, num, 1, 0, 0);
 | |
| 
 | |
|     memo = MEMO_NEW(Qundef, Qnil, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
 | |
|     return memo->v2;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     VALUE v;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     v = enum_yield(argc, i);
 | |
|     if (memo->v1 == Qundef) {
 | |
| 	MEMO_V1_SET(memo, v);
 | |
| 	MEMO_V2_SET(memo, i);
 | |
|     }
 | |
|     else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) {
 | |
| 	MEMO_V1_SET(memo, v);
 | |
| 	MEMO_V2_SET(memo, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.max_by {|obj| block }      -> obj
 | |
|  *     enum.max_by                     -> an_enumerator
 | |
|  *     enum.max_by(n) {|obj| block }   -> obj
 | |
|  *     enum.max_by(n)                  -> an_enumerator
 | |
|  *
 | |
|  *  Returns the object in <i>enum</i> that gives the maximum
 | |
|  *  value from the given block.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.max_by { |x| x.length }   #=> "albatross"
 | |
|  *
 | |
|  *  If the +n+ argument is given, maximum +n+ elements are returned
 | |
|  *  as an array. These +n+ elements are sorted by the value from the
 | |
|  *  given block, in descending order.
 | |
|  *
 | |
|  *     a = %w[albatross dog horse]
 | |
|  *     a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
 | |
|  *
 | |
|  *  enum.max_by(n) can be used to implement weighted random sampling.
 | |
|  *  Following example implements and use Enumerable#wsample.
 | |
|  *
 | |
|  *     module Enumerable
 | |
|  *       # weighted random sampling.
 | |
|  *       #
 | |
|  *       # Pavlos S. Efraimidis, Paul G. Spirakis
 | |
|  *       # Weighted random sampling with a reservoir
 | |
|  *       # Information Processing Letters
 | |
|  *       # Volume 97, Issue 5 (16 March 2006)
 | |
|  *       def wsample(n)
 | |
|  *         self.max_by(n) {|v| rand ** (1.0/yield(v)) }
 | |
|  *       end
 | |
|  *     end
 | |
|  *     e = (-20..20).to_a*10000
 | |
|  *     a = e.wsample(20000) {|x|
 | |
|  *       Math.exp(-(x/5.0)**2) # normal distribution
 | |
|  *     }
 | |
|  *     # a is 20000 samples from e.
 | |
|  *     p a.length #=> 20000
 | |
|  *     h = a.group_by {|x| x }
 | |
|  *     -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
 | |
|  *     #=> *
 | |
|  *     #   ***
 | |
|  *     #   ******
 | |
|  *     #   ***********
 | |
|  *     #   ******************
 | |
|  *     #   *****************************
 | |
|  *     #   *****************************************
 | |
|  *     #   ****************************************************
 | |
|  *     #   ***************************************************************
 | |
|  *     #   ********************************************************************
 | |
|  *     #   ***********************************************************************
 | |
|  *     #   ***********************************************************************
 | |
|  *     #   **************************************************************
 | |
|  *     #   ****************************************************
 | |
|  *     #   ***************************************
 | |
|  *     #   ***************************
 | |
|  *     #   ******************
 | |
|  *     #   ***********
 | |
|  *     #   *******
 | |
|  *     #   ***
 | |
|  *     #   *
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_max_by(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &num);
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
 | |
| 
 | |
|     if (!NIL_P(num))
 | |
|         return rb_nmin_run(obj, num, 1, 1, 0);
 | |
| 
 | |
|     memo = MEMO_NEW(Qundef, Qnil, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
 | |
|     return memo->v2;
 | |
| }
 | |
| 
 | |
| struct minmax_by_t {
 | |
|     VALUE min_bv;
 | |
|     VALUE max_bv;
 | |
|     VALUE min;
 | |
|     VALUE max;
 | |
|     VALUE last_bv;
 | |
|     VALUE last;
 | |
| };
 | |
| 
 | |
| static void
 | |
| minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
| 
 | |
|     if (memo->min_bv == Qundef) {
 | |
| 	memo->min_bv = v1;
 | |
| 	memo->max_bv = v2;
 | |
| 	memo->min = i1;
 | |
| 	memo->max = i2;
 | |
|     }
 | |
|     else {
 | |
| 	if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) {
 | |
| 	    memo->min_bv = v1;
 | |
| 	    memo->min = i1;
 | |
| 	}
 | |
| 	if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) {
 | |
| 	    memo->max_bv = v2;
 | |
| 	    memo->max = i2;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
 | |
|     VALUE vi, vj, j;
 | |
|     int n;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     vi = enum_yield(argc, i);
 | |
| 
 | |
|     if (memo->last_bv == Qundef) {
 | |
|         memo->last_bv = vi;
 | |
|         memo->last = i;
 | |
|         return Qnil;
 | |
|     }
 | |
|     vj = memo->last_bv;
 | |
|     j = memo->last;
 | |
|     memo->last_bv = Qundef;
 | |
| 
 | |
|     n = OPTIMIZED_CMP(vj, vi, cmp_opt);
 | |
|     if (n == 0) {
 | |
|         i = j;
 | |
|         vi = vj;
 | |
|     }
 | |
|     else if (n < 0) {
 | |
|         VALUE tmp;
 | |
|         tmp = i;
 | |
|         i = j;
 | |
|         j = tmp;
 | |
|         tmp = vi;
 | |
|         vi = vj;
 | |
|         vj = tmp;
 | |
|     }
 | |
| 
 | |
|     minmax_by_i_update(vi, vj, i, j, memo);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.minmax_by { |obj| block } -> [min, max]
 | |
|  *     enum.minmax_by                 -> an_enumerator
 | |
|  *
 | |
|  *  Returns a two element array containing the objects in
 | |
|  *  <i>enum</i> that correspond to the minimum and maximum values respectively
 | |
|  *  from the given block.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = %w(albatross dog horse)
 | |
|  *     a.minmax_by { |x| x.length }   #=> ["dog", "albatross"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_minmax_by(VALUE obj)
 | |
| {
 | |
|     VALUE memo;
 | |
|     struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
 | |
| 
 | |
|     m->min_bv = Qundef;
 | |
|     m->max_bv = Qundef;
 | |
|     m->min = Qnil;
 | |
|     m->max = Qnil;
 | |
|     m->last_bv = Qundef;
 | |
|     m->last = Qundef;
 | |
|     rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
 | |
|     if (m->last_bv != Qundef)
 | |
|         minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
 | |
|     m = MEMO_FOR(struct minmax_by_t, memo);
 | |
|     return rb_assoc_new(m->min, m->max);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
| 
 | |
|     if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
 | |
| 	MEMO_V2_SET(memo, Qtrue);
 | |
| 	rb_iter_break();
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.include?(obj)     -> true or false
 | |
|  *     enum.member?(obj)      -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if any member of <i>enum</i> equals
 | |
|  *  <i>obj</i>. Equality is tested using <code>==</code>.
 | |
|  *
 | |
|  *     IO.constants.include? :SEEK_SET          #=> true
 | |
|  *     IO.constants.include? :SEEK_NO_FURTHER   #=> false
 | |
|  *     IO.constants.member? :SEEK_SET          #=> true
 | |
|  *     IO.constants.member? :SEEK_NO_FURTHER   #=> false
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_member(VALUE obj, VALUE val)
 | |
| {
 | |
|     struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
 | |
| 
 | |
|     rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
 | |
|     return memo->v2;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
 | |
| {
 | |
|     struct MEMO *m = MEMO_CAST(memo);
 | |
|     VALUE n = imemo_count_value(m);
 | |
| 
 | |
|     imemo_count_up(m);
 | |
|     return rb_yield_values(2, rb_enum_values_pack(argc, argv), n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.each_with_index(*args) { |obj, i| block } ->  enum
 | |
|  *     enum.each_with_index(*args)                    ->  an_enumerator
 | |
|  *
 | |
|  *  Calls <em>block</em> with two arguments, the item and its index,
 | |
|  *  for each item in <i>enum</i>.  Given arguments are passed through
 | |
|  *  to #each().
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     hash = Hash.new
 | |
|  *     %w(cat dog wombat).each_with_index { |item, index|
 | |
|  *       hash[item] = index
 | |
|  *     }
 | |
|  *     hash   #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_each_with_index(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
 | |
| 
 | |
|     memo = MEMO_NEW(0, 0, 0);
 | |
|     rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.reverse_each(*args) { |item| block } ->  enum
 | |
|  *     enum.reverse_each(*args)                  ->  an_enumerator
 | |
|  *
 | |
|  *  Builds a temporary array and traverses that array in reverse order.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     (1..3).reverse_each { |v| p v }
 | |
|  *
 | |
|  *  produces:
 | |
|  *
 | |
|  *     3
 | |
|  *     2
 | |
|  *     1
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_reverse_each(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
|     long i;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
 | |
| 
 | |
|     ary = enum_to_a(argc, argv, obj);
 | |
| 
 | |
|     for (i = RARRAY_LEN(ary); --i >= 0; ) {
 | |
| 	rb_yield(RARRAY_AREF(ary, i));
 | |
|     }
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
|     enum_yield(argc, i);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.each_entry { |obj| block }  -> enum
 | |
|  *     enum.each_entry                  -> an_enumerator
 | |
|  *
 | |
|  *  Calls <i>block</i> once for each element in +self+, passing that
 | |
|  *  element as a parameter, converting multiple values from yield to an
 | |
|  *  array.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     class Foo
 | |
|  *       include Enumerable
 | |
|  *       def each
 | |
|  *         yield 1
 | |
|  *         yield 1, 2
 | |
|  *         yield
 | |
|  *       end
 | |
|  *     end
 | |
|  *     Foo.new.each_entry{ |o| p o }
 | |
|  *
 | |
|  *  produces:
 | |
|  *
 | |
|  *     1
 | |
|  *     [1, 2]
 | |
|  *     nil
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_each_entry(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
 | |
|     rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| add_int(VALUE x, long n)
 | |
| {
 | |
|     const VALUE y = LONG2NUM(n);
 | |
|     if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
 | |
|     return rb_funcallv(x, '+', 1, &y);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| div_int(VALUE x, long n)
 | |
| {
 | |
|     const VALUE y = LONG2NUM(n);
 | |
|     if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
 | |
|     return rb_funcallv(x, id_div, 1, &y);
 | |
| }
 | |
| 
 | |
| #define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
 | |
| 
 | |
| static VALUE
 | |
| each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(m);
 | |
|     VALUE ary = memo->v1;
 | |
|     VALUE v = Qnil;
 | |
|     long size = memo->u3.cnt;
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     rb_ary_push(ary, i);
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == size) {
 | |
| 	v = rb_yield(ary);
 | |
| 
 | |
| 	if (memo->v2) {
 | |
| 	    MEMO_V1_SET(memo, rb_ary_new2(size));
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_ary_clear(ary);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     VALUE n, size;
 | |
|     long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
 | |
|     if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
 | |
| 
 | |
|     size = enum_size(obj, 0, 0);
 | |
|     if (size == Qnil) return Qnil;
 | |
| 
 | |
|     n = add_int(size, slice_size-1);
 | |
|     return div_int(n, slice_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    enum.each_slice(n) { ... }  ->  nil
 | |
|  *    enum.each_slice(n)          ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block for each slice of <n> elements.  If no
 | |
|  *  block is given, returns an enumerator.
 | |
|  *
 | |
|  *      (1..10).each_slice(3) { |a| p a }
 | |
|  *      # outputs below
 | |
|  *      [1, 2, 3]
 | |
|  *      [4, 5, 6]
 | |
|  *      [7, 8, 9]
 | |
|  *      [10]
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_each_slice(VALUE obj, VALUE n)
 | |
| {
 | |
|     long size = NUM2LONG(n);
 | |
|     VALUE ary;
 | |
|     struct MEMO *memo;
 | |
|     int arity;
 | |
| 
 | |
|     if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
 | |
|     size = limit_by_enum_size(obj, size);
 | |
|     ary = rb_ary_new2(size);
 | |
|     arity = rb_block_arity();
 | |
|     memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
 | |
|     rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
 | |
|     ary = memo->v1;
 | |
|     if (RARRAY_LEN(ary) > 0) rb_yield(ary);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     VALUE ary = memo->v1;
 | |
|     VALUE v = Qnil;
 | |
|     long size = memo->u3.cnt;
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == size) {
 | |
| 	rb_ary_shift(ary);
 | |
|     }
 | |
|     rb_ary_push(ary, i);
 | |
|     if (RARRAY_LEN(ary) == size) {
 | |
| 	if (memo->v2) {
 | |
| 	    ary = rb_ary_dup(ary);
 | |
| 	}
 | |
| 	v = rb_yield(ary);
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     const VALUE zero = LONG2FIX(0);
 | |
|     VALUE n, size;
 | |
|     long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
 | |
|     if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
 | |
| 
 | |
|     size = enum_size(obj, 0, 0);
 | |
|     if (size == Qnil) return Qnil;
 | |
| 
 | |
|     n = add_int(size, 1 - cons_size);
 | |
|     return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    enum.each_cons(n) { ... } ->  nil
 | |
|  *    enum.each_cons(n)         ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block for each array of consecutive <n>
 | |
|  *  elements.  If no block is given, returns an enumerator.
 | |
|  *
 | |
|  *  e.g.:
 | |
|  *      (1..10).each_cons(3) { |a| p a }
 | |
|  *      # outputs below
 | |
|  *      [1, 2, 3]
 | |
|  *      [2, 3, 4]
 | |
|  *      [3, 4, 5]
 | |
|  *      [4, 5, 6]
 | |
|  *      [5, 6, 7]
 | |
|  *      [6, 7, 8]
 | |
|  *      [7, 8, 9]
 | |
|  *      [8, 9, 10]
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_each_cons(VALUE obj, VALUE n)
 | |
| {
 | |
|     long size = NUM2LONG(n);
 | |
|     struct MEMO *memo;
 | |
|     int arity;
 | |
| 
 | |
|     if (size <= 0) rb_raise(rb_eArgError, "invalid size");
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
 | |
|     arity = rb_block_arity();
 | |
|     if (enum_size_over_p(obj, size)) return Qnil;
 | |
|     memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
 | |
|     rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
|     return rb_yield_values(2, i, memo);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    enum.each_with_object(obj) { |(*args), memo_obj| ... }  ->  obj
 | |
|  *    enum.each_with_object(obj)                              ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block for each element with an arbitrary
 | |
|  *  object given, and returns the initially given object.
 | |
|  *
 | |
|  *  If no block is given, returns an enumerator.
 | |
|  *
 | |
|  *      evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
 | |
|  *      #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_each_with_object(VALUE obj, VALUE memo)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
 | |
| 
 | |
|     rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
 | |
| 
 | |
|     return memo;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
 | |
| {
 | |
|     struct MEMO *memo = (struct MEMO *)memoval;
 | |
|     VALUE result = memo->v1;
 | |
|     VALUE args = memo->v2;
 | |
|     long n = memo->u3.cnt++;
 | |
|     VALUE tmp;
 | |
|     int i;
 | |
| 
 | |
|     tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
 | |
|     rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
 | |
|     for (i=0; i<RARRAY_LEN(args); i++) {
 | |
| 	VALUE e = RARRAY_AREF(args, i);
 | |
| 
 | |
| 	if (RARRAY_LEN(e) <= n) {
 | |
| 	    rb_ary_push(tmp, Qnil);
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_ary_push(tmp, RARRAY_AREF(e, n));
 | |
| 	}
 | |
|     }
 | |
|     if (NIL_P(result)) {
 | |
| 	enum_yield_array(tmp);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ary_push(result, tmp);
 | |
|     }
 | |
| 
 | |
|     RB_GC_GUARD(args);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| call_next(VALUE *v)
 | |
| {
 | |
|     return v[0] = rb_funcallv(v[1], id_next, 0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| call_stop(VALUE *v)
 | |
| {
 | |
|     return v[0] = Qundef;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
 | |
| {
 | |
|     struct MEMO *memo = (struct MEMO *)memoval;
 | |
|     VALUE result = memo->v1;
 | |
|     VALUE args = memo->v2;
 | |
|     VALUE tmp;
 | |
|     int i;
 | |
| 
 | |
|     tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
 | |
|     rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
 | |
|     for (i=0; i<RARRAY_LEN(args); i++) {
 | |
| 	if (NIL_P(RARRAY_AREF(args, i))) {
 | |
| 	    rb_ary_push(tmp, Qnil);
 | |
| 	}
 | |
| 	else {
 | |
| 	    VALUE v[2];
 | |
| 
 | |
| 	    v[1] = RARRAY_AREF(args, i);
 | |
| 	    rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
 | |
| 	    if (v[0] == Qundef) {
 | |
| 		RARRAY_ASET(args, i, Qnil);
 | |
| 		v[0] = Qnil;
 | |
| 	    }
 | |
| 	    rb_ary_push(tmp, v[0]);
 | |
| 	}
 | |
|     }
 | |
|     if (NIL_P(result)) {
 | |
| 	enum_yield_array(tmp);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ary_push(result, tmp);
 | |
|     }
 | |
| 
 | |
|     RB_GC_GUARD(args);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.zip(arg, ...)                  -> an_array_of_array
 | |
|  *     enum.zip(arg, ...) { |arr| block }  -> nil
 | |
|  *
 | |
|  *  Takes one element from <i>enum</i> and merges corresponding
 | |
|  *  elements from each <i>args</i>.  This generates a sequence of
 | |
|  *  <em>n</em>-element arrays, where <em>n</em> is one more than the
 | |
|  *  count of arguments.  The length of the resulting sequence will be
 | |
|  *  <code>enum#size</code>.  If the size of any argument is less than
 | |
|  *  <code>enum#size</code>, <code>nil</code> values are supplied. If
 | |
|  *  a block is given, it is invoked for each output array, otherwise
 | |
|  *  an array of arrays is returned.
 | |
|  *
 | |
|  *     a = [ 4, 5, 6 ]
 | |
|  *     b = [ 7, 8, 9 ]
 | |
|  *
 | |
|  *     a.zip(b)                 #=> [[4, 7], [5, 8], [6, 9]]
 | |
|  *     [1, 2, 3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
 | |
|  *     [1, 2].zip(a, b)         #=> [[1, 4, 7], [2, 5, 8]]
 | |
|  *     a.zip([1, 2], [8])       #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
 | |
|  *
 | |
|  *     c = []
 | |
|  *     a.zip(b) { |x, y| c << x + y }  #=> nil
 | |
|  *     c                               #=> [11, 13, 15]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_zip(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     int i;
 | |
|     ID conv;
 | |
|     struct MEMO *memo;
 | |
|     VALUE result = Qnil;
 | |
|     VALUE args = rb_ary_new4(argc, argv);
 | |
|     int allary = TRUE;
 | |
| 
 | |
|     argv = RARRAY_PTR(args);
 | |
|     for (i=0; i<argc; i++) {
 | |
| 	VALUE ary = rb_check_array_type(argv[i]);
 | |
| 	if (NIL_P(ary)) {
 | |
| 	    allary = FALSE;
 | |
| 	    break;
 | |
| 	}
 | |
| 	argv[i] = ary;
 | |
|     }
 | |
|     if (!allary) {
 | |
| 	static const VALUE sym_each = STATIC_ID2SYM(id_each);
 | |
| 	CONST_ID(conv, "to_enum");
 | |
| 	for (i=0; i<argc; i++) {
 | |
| 	    if (!rb_respond_to(argv[i], id_each)) {
 | |
| 		rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
 | |
| 			 rb_obj_class(argv[i]));
 | |
|             }
 | |
| 	    argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
 | |
| 	}
 | |
|     }
 | |
|     if (!rb_block_given_p()) {
 | |
| 	result = rb_ary_new();
 | |
|     }
 | |
| 
 | |
|     /* TODO: use NODE_DOT2 as memo(v, v, -) */
 | |
|     memo = MEMO_NEW(result, args, 0);
 | |
|     rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
 | |
|     if (--memo->u3.cnt == 0) rb_iter_break();
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.take(n)               -> array
 | |
|  *
 | |
|  *  Returns first n elements from <i>enum</i>.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.take(3)             #=> [1, 2, 3]
 | |
|  *     a.take(30)            #=> [1, 2, 3, 4, 5, 0]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_take(VALUE obj, VALUE n)
 | |
| {
 | |
|     struct MEMO *memo;
 | |
|     VALUE result;
 | |
|     long len = NUM2LONG(n);
 | |
| 
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to take negative size");
 | |
|     }
 | |
| 
 | |
|     if (len == 0) return rb_ary_new2(0);
 | |
|     result = rb_ary_new2(len);
 | |
|     memo = MEMO_NEW(result, 0, len);
 | |
|     rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break();
 | |
|     rb_ary_push(ary, rb_enum_values_pack(argc, argv));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.take_while { |obj| block } -> array
 | |
|  *     enum.take_while                 -> an_enumerator
 | |
|  *
 | |
|  *  Passes elements to the block until the block returns +nil+ or +false+,
 | |
|  *  then stops iterating and returns an array of all prior elements.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.take_while { |i| i < 3 }   #=> [1, 2]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_take_while(VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     RETURN_ENUMERATOR(obj, 0, 0);
 | |
|     ary = rb_ary_new();
 | |
|     rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     if (memo->u3.cnt == 0) {
 | |
| 	rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
 | |
|     }
 | |
|     else {
 | |
| 	memo->u3.cnt--;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.drop(n)               -> array
 | |
|  *
 | |
|  *  Drops first n elements from <i>enum</i>, and returns rest elements
 | |
|  *  in an array.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.drop(3)             #=> [4, 5, 0]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_drop(VALUE obj, VALUE n)
 | |
| {
 | |
|     VALUE result;
 | |
|     struct MEMO *memo;
 | |
|     long len = NUM2LONG(n);
 | |
| 
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to drop negative size");
 | |
|     }
 | |
| 
 | |
|     result = rb_ary_new();
 | |
|     memo = MEMO_NEW(result, 0, len);
 | |
|     rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     struct MEMO *memo = MEMO_CAST(args);
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
 | |
| 	memo->u3.state = TRUE;
 | |
|     }
 | |
|     if (memo->u3.state) {
 | |
| 	rb_ary_push(memo->v1, i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.drop_while { |obj| block }  -> array
 | |
|  *     enum.drop_while                  -> an_enumerator
 | |
|  *
 | |
|  *  Drops elements up to, but not including, the first element for
 | |
|  *  which the block returns +nil+ or +false+ and returns an array
 | |
|  *  containing the remaining elements.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.drop_while { |i| i < 3 }   #=> [3, 4, 5, 0]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_drop_while(VALUE obj)
 | |
| {
 | |
|     VALUE result;
 | |
|     struct MEMO *memo;
 | |
| 
 | |
|     RETURN_ENUMERATOR(obj, 0, 0);
 | |
|     result = rb_ary_new();
 | |
|     memo = MEMO_NEW(result, 0, FALSE);
 | |
|     rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv));
 | |
|     enum_yield(argc, i);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long mul = 0;
 | |
|     VALUE n = Qnil;
 | |
|     VALUE size;
 | |
| 
 | |
|     if (args && (RARRAY_LEN(args) > 0)) {
 | |
| 	n = RARRAY_AREF(args, 0);
 | |
| 	if (!NIL_P(n)) mul = NUM2LONG(n);
 | |
|     }
 | |
| 
 | |
|     size = enum_size(self, args, 0);
 | |
|     if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
 | |
| 
 | |
|     if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
 | |
|     if (mul <= 0) return INT2FIX(0);
 | |
|     n = LONG2FIX(mul);
 | |
|     return rb_funcallv(size, '*', 1, &n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.cycle(n=nil) { |obj| block }  ->  nil
 | |
|  *     enum.cycle(n=nil)                  ->  an_enumerator
 | |
|  *
 | |
|  *  Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
 | |
|  *  times or forever if none or +nil+ is given.  If a non-positive
 | |
|  *  number is given or the collection is empty, does nothing.  Returns
 | |
|  *  +nil+ if the loop has finished without getting interrupted.
 | |
|  *
 | |
|  *  Enumerable#cycle saves elements in an internal array so changes
 | |
|  *  to <i>enum</i> after the first pass have no effect.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = ["a", "b", "c"]
 | |
|  *     a.cycle { |x| puts x }  # print, a, b, c, a, b, c,.. forever.
 | |
|  *     a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_cycle(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE ary;
 | |
|     VALUE nv = Qnil;
 | |
|     long n, i, len;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &nv);
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
 | |
|     if (NIL_P(nv)) {
 | |
|         n = -1;
 | |
|     }
 | |
|     else {
 | |
|         n = NUM2LONG(nv);
 | |
|         if (n <= 0) return Qnil;
 | |
|     }
 | |
|     ary = rb_ary_new();
 | |
|     RBASIC_CLEAR_CLASS(ary);
 | |
|     rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (len == 0) return Qnil;
 | |
|     while (n < 0 || 0 < --n) {
 | |
|         for (i=0; i<len; i++) {
 | |
| 	    enum_yield_array(RARRAY_AREF(ary, i));
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| struct chunk_arg {
 | |
|     VALUE categorize;
 | |
|     VALUE prev_value;
 | |
|     VALUE prev_elts;
 | |
|     VALUE yielder;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
 | |
| {
 | |
|     struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
 | |
|     VALUE v, s;
 | |
|     VALUE alone = ID2SYM(rb_intern("_alone"));
 | |
|     VALUE separator = ID2SYM(rb_intern("_separator"));
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     v = rb_funcallv(argp->categorize, id_call, 1, &i);
 | |
| 
 | |
|     if (v == alone) {
 | |
|         if (!NIL_P(argp->prev_value)) {
 | |
| 	    s = rb_assoc_new(argp->prev_value, argp->prev_elts);
 | |
|             rb_funcallv(argp->yielder, id_lshift, 1, &s);
 | |
|             argp->prev_value = argp->prev_elts = Qnil;
 | |
|         }
 | |
| 	v = rb_assoc_new(v, rb_ary_new3(1, i));
 | |
|         rb_funcallv(argp->yielder, id_lshift, 1, &v);
 | |
|     }
 | |
|     else if (NIL_P(v) || v == separator) {
 | |
|         if (!NIL_P(argp->prev_value)) {
 | |
| 	    v = rb_assoc_new(argp->prev_value, argp->prev_elts);
 | |
|             rb_funcallv(argp->yielder, id_lshift, 1, &v);
 | |
|             argp->prev_value = argp->prev_elts = Qnil;
 | |
|         }
 | |
|     }
 | |
|     else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
 | |
| 	rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
 | |
|     }
 | |
|     else {
 | |
|         if (NIL_P(argp->prev_value)) {
 | |
|             argp->prev_value = v;
 | |
|             argp->prev_elts = rb_ary_new3(1, i);
 | |
|         }
 | |
|         else {
 | |
|             if (rb_equal(argp->prev_value, v)) {
 | |
|                 rb_ary_push(argp->prev_elts, i);
 | |
|             }
 | |
|             else {
 | |
| 		s = rb_assoc_new(argp->prev_value, argp->prev_elts);
 | |
|                 rb_funcallv(argp->yielder, id_lshift, 1, &s);
 | |
|                 argp->prev_value = v;
 | |
|                 argp->prev_elts = rb_ary_new3(1, i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
 | |
| {
 | |
|     VALUE enumerable;
 | |
|     VALUE arg;
 | |
|     struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
 | |
| 
 | |
|     enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
 | |
|     memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
 | |
|     memo->prev_value = Qnil;
 | |
|     memo->prev_elts = Qnil;
 | |
|     memo->yielder = yielder;
 | |
| 
 | |
|     rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
 | |
|     memo = MEMO_FOR(struct chunk_arg, arg);
 | |
|     if (!NIL_P(memo->prev_elts)) {
 | |
| 	arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
 | |
| 	rb_funcallv(memo->yielder, id_lshift, 1, &arg);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.chunk { |elt| ... }                       -> an_enumerator
 | |
|  *
 | |
|  *  Enumerates over the items, chunking them together based on the return
 | |
|  *  value of the block.
 | |
|  *
 | |
|  *  Consecutive elements which return the same block value are chunked together.
 | |
|  *
 | |
|  *  For example, consecutive even numbers and odd numbers can be
 | |
|  *  chunked as follows.
 | |
|  *
 | |
|  *    [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
 | |
|  *      n.even?
 | |
|  *    }.each { |even, ary|
 | |
|  *      p [even, ary]
 | |
|  *    }
 | |
|  *    #=> [false, [3, 1]]
 | |
|  *    #   [true, [4]]
 | |
|  *    #   [false, [1, 5, 9]]
 | |
|  *    #   [true, [2, 6]]
 | |
|  *    #   [false, [5, 3, 5]]
 | |
|  *
 | |
|  *  This method is especially useful for sorted series of elements.
 | |
|  *  The following example counts words for each initial letter.
 | |
|  *
 | |
|  *    open("/usr/share/dict/words", "r:iso-8859-1") { |f|
 | |
|  *      f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
 | |
|  *    }
 | |
|  *    #=> ["\n", 1]
 | |
|  *    #   ["A", 1327]
 | |
|  *    #   ["B", 1372]
 | |
|  *    #   ["C", 1507]
 | |
|  *    #   ["D", 791]
 | |
|  *    #   ...
 | |
|  *
 | |
|  *  The following key values have special meaning:
 | |
|  *  - +nil+ and +:_separator+ specifies that the elements should be dropped.
 | |
|  *  - +:_alone+ specifies that the element should be chunked by itself.
 | |
|  *
 | |
|  *  Any other symbols that begin with an underscore will raise an error:
 | |
|  *
 | |
|  *    items.chunk { |item| :_underscore }
 | |
|  *    #=> RuntimeError: symbols beginning with an underscore are reserved
 | |
|  *
 | |
|  *  +nil+ and +:_separator+ can be used to ignore some elements.
 | |
|  *
 | |
|  *  For example, the sequence of hyphens in svn log can be eliminated as follows:
 | |
|  *
 | |
|  *    sep = "-"*72 + "\n"
 | |
|  *    IO.popen("svn log README") { |f|
 | |
|  *      f.chunk { |line|
 | |
|  *        line != sep || nil
 | |
|  *      }.each { |_, lines|
 | |
|  *        pp lines
 | |
|  *      }
 | |
|  *    }
 | |
|  *    #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
 | |
|  *    #    "\n",
 | |
|  *    #    "* README, README.ja: Update the portability section.\n",
 | |
|  *    #    "\n"]
 | |
|  *    #   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
 | |
|  *    #    "\n",
 | |
|  *    #    "* README, README.ja: Add a note about default C flags.\n",
 | |
|  *    #    "\n"]
 | |
|  *    #   ...
 | |
|  *
 | |
|  *  Paragraphs separated by empty lines can be parsed as follows:
 | |
|  *
 | |
|  *    File.foreach("README").chunk { |line|
 | |
|  *      /\A\s*\z/ !~ line || nil
 | |
|  *    }.each { |_, lines|
 | |
|  *      pp lines
 | |
|  *    }
 | |
|  *
 | |
|  *  +:_alone+ can be used to force items into their own chunk.
 | |
|  *  For example, you can put lines that contain a URL by themselves,
 | |
|  *  and chunk the rest of the lines together, like this:
 | |
|  *
 | |
|  *    pattern = /http/
 | |
|  *    open(filename) { |f|
 | |
|  *      f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
 | |
|  *        pp lines
 | |
|  *      }
 | |
|  *    }
 | |
|  *
 | |
|  *  If no block is given, an enumerator to `chunk` is returned instead.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chunk(VALUE enumerable)
 | |
| {
 | |
|     VALUE enumerator;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
 | |
| 
 | |
|     enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|     rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
 | |
|     rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
 | |
|     rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct slicebefore_arg {
 | |
|     VALUE sep_pred;
 | |
|     VALUE sep_pat;
 | |
|     VALUE prev_elts;
 | |
|     VALUE yielder;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
 | |
| {
 | |
|     struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
 | |
|     VALUE header_p;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (!NIL_P(argp->sep_pat))
 | |
|         header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
 | |
|     else
 | |
|         header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
 | |
|     if (RTEST(header_p)) {
 | |
|         if (!NIL_P(argp->prev_elts))
 | |
|             rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
 | |
|         argp->prev_elts = rb_ary_new3(1, i);
 | |
|     }
 | |
|     else {
 | |
|         if (NIL_P(argp->prev_elts))
 | |
|             argp->prev_elts = rb_ary_new3(1, i);
 | |
|         else
 | |
|             rb_ary_push(argp->prev_elts, i);
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
 | |
| {
 | |
|     VALUE enumerable;
 | |
|     VALUE arg;
 | |
|     struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
 | |
| 
 | |
|     enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
 | |
|     memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred"));
 | |
|     memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil;
 | |
|     memo->prev_elts = Qnil;
 | |
|     memo->yielder = yielder;
 | |
| 
 | |
|     rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
 | |
|     memo = MEMO_FOR(struct slicebefore_arg, arg);
 | |
|     if (!NIL_P(memo->prev_elts))
 | |
|         rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.slice_before(pattern)                             -> an_enumerator
 | |
|  *     enum.slice_before { |elt| bool }                       -> an_enumerator
 | |
|  *
 | |
|  *  Creates an enumerator for each chunked elements.
 | |
|  *  The beginnings of chunks are defined by _pattern_ and the block.
 | |
| 
 | |
|  *  If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
 | |
|  *  returns <code>true</code> for the element, the element is beginning of a
 | |
|  *  chunk.
 | |
| 
 | |
|  *  The <code>===</code> and _block_ is called from the first element to the last
 | |
|  *  element of _enum_.  The result for the first element is ignored.
 | |
| 
 | |
|  *  The result enumerator yields the chunked elements as an array.
 | |
|  *  So +each+ method can be called as follows:
 | |
|  *
 | |
|  *    enum.slice_before(pattern).each { |ary| ... }
 | |
|  *    enum.slice_before { |elt| bool }.each { |ary| ... }
 | |
|  *
 | |
|  *  Other methods of the Enumerator class and Enumerable module,
 | |
|  *  such as +to_a+, +map+, etc., are also usable.
 | |
|  *
 | |
|  *  For example, iteration over ChangeLog entries can be implemented as
 | |
|  *  follows:
 | |
|  *
 | |
|  *    # iterate over ChangeLog entries.
 | |
|  *    open("ChangeLog") { |f|
 | |
|  *      f.slice_before(/\A\S/).each { |e| pp e }
 | |
|  *    }
 | |
|  *
 | |
|  *    # same as above.  block is used instead of pattern argument.
 | |
|  *    open("ChangeLog") { |f|
 | |
|  *      f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
 | |
|  *    }
 | |
|  *
 | |
|  *
 | |
|  *  "svn proplist -R" produces multiline output for each file.
 | |
|  *  They can be chunked as follows:
 | |
|  *
 | |
|  *    IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
 | |
|  *      f.lines.slice_before(/\AProp/).each { |lines| p lines }
 | |
|  *    }
 | |
|  *    #=> ["Properties on '.':\n", "  svn:ignore\n", "  svk:merge\n"]
 | |
|  *    #   ["Properties on 'goruby.c':\n", "  svn:eol-style\n"]
 | |
|  *    #   ["Properties on 'complex.c':\n", "  svn:mime-type\n", "  svn:eol-style\n"]
 | |
|  *    #   ["Properties on 'regparse.c':\n", "  svn:eol-style\n"]
 | |
|  *    #   ...
 | |
|  *
 | |
|  *  If the block needs to maintain state over multiple elements,
 | |
|  *  local variables can be used.
 | |
|  *  For example, three or more consecutive increasing numbers can be squashed
 | |
|  *  as follows (see +chunk_while+ for a better way):
 | |
|  *
 | |
|  *    a = [0, 2, 3, 4, 6, 7, 9]
 | |
|  *    prev = a[0]
 | |
|  *    p a.slice_before { |e|
 | |
|  *      prev, prev2 = e, prev
 | |
|  *      prev2 + 1 != e
 | |
|  *    }.map { |es|
 | |
|  *      es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
 | |
|  *    }.join(",")
 | |
|  *    #=> "0,2-4,6,7,9"
 | |
|  *
 | |
|  *  However local variables should be used carefully
 | |
|  *  if the result enumerator is enumerated twice or more.
 | |
|  *  The local variables should be initialized for each enumeration.
 | |
|  *  Enumerator.new can be used to do it.
 | |
|  *
 | |
|  *    # Word wrapping.  This assumes all characters have same width.
 | |
|  *    def wordwrap(words, maxwidth)
 | |
|  *      Enumerator.new {|y|
 | |
|  *        # cols is initialized in Enumerator.new.
 | |
|  *        cols = 0
 | |
|  *        words.slice_before { |w|
 | |
|  *          cols += 1 if cols != 0
 | |
|  *          cols += w.length
 | |
|  *          if maxwidth < cols
 | |
|  *            cols = w.length
 | |
|  *            true
 | |
|  *          else
 | |
|  *            false
 | |
|  *          end
 | |
|  *        }.each {|ws| y.yield ws }
 | |
|  *      }
 | |
|  *    end
 | |
|  *    text = (1..20).to_a.join(" ")
 | |
|  *    enum = wordwrap(text.split(/\s+/), 10)
 | |
|  *    puts "-"*10
 | |
|  *    enum.each { |ws| puts ws.join(" ") } # first enumeration.
 | |
|  *    puts "-"*10
 | |
|  *    enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
 | |
|  *    puts "-"*10
 | |
|  *    #=> ----------
 | |
|  *    #   1 2 3 4 5
 | |
|  *    #   6 7 8 9 10
 | |
|  *    #   11 12 13
 | |
|  *    #   14 15 16
 | |
|  *    #   17 18 19
 | |
|  *    #   20
 | |
|  *    #   ----------
 | |
|  *    #   1 2 3 4 5
 | |
|  *    #   6 7 8 9 10
 | |
|  *    #   11 12 13
 | |
|  *    #   14 15 16
 | |
|  *    #   17 18 19
 | |
|  *    #   20
 | |
|  *    #   ----------
 | |
|  *
 | |
|  *  mbox contains series of mails which start with Unix From line.
 | |
|  *  So each mail can be extracted by slice before Unix From line.
 | |
|  *
 | |
|  *    # parse mbox
 | |
|  *    open("mbox") { |f|
 | |
|  *      f.slice_before { |line|
 | |
|  *        line.start_with? "From "
 | |
|  *      }.each { |mail|
 | |
|  *        unix_from = mail.shift
 | |
|  *        i = mail.index("\n")
 | |
|  *        header = mail[0...i]
 | |
|  *        body = mail[(i+1)..-1]
 | |
|  *        body.pop if body.last == "\n"
 | |
|  *        fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
 | |
|  *        p unix_from
 | |
|  *        pp fields
 | |
|  *        pp body
 | |
|  *      }
 | |
|  *    }
 | |
|  *
 | |
|  *    # split mails in mbox (slice before Unix From line after an empty line)
 | |
|  *    open("mbox") { |f|
 | |
|  *      emp = true
 | |
|  *      f.slice_before { |line|
 | |
|  *        prevemp = emp
 | |
|  *        emp = line == "\n"
 | |
|  *        prevemp && line.start_with?("From ")
 | |
|  *      }.each { |mail|
 | |
|  *        mail.pop if mail.last == "\n"
 | |
|  *        pp mail
 | |
|  *      }
 | |
|  *    }
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
 | |
| {
 | |
|     VALUE enumerator;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
|         if (argc != 0)
 | |
|             rb_error_arity(argc, 0, 0);
 | |
|         enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|         rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
 | |
|     }
 | |
|     else {
 | |
|         VALUE sep_pat;
 | |
|         rb_scan_args(argc, argv, "1", &sep_pat);
 | |
|         enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|         rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
 | |
|     }
 | |
|     rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
 | |
|     rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct sliceafter_arg {
 | |
|     VALUE pat;
 | |
|     VALUE pred;
 | |
|     VALUE prev_elts;
 | |
|     VALUE yielder;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
 | |
| {
 | |
| #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
 | |
|     struct sliceafter_arg *memo;
 | |
|     int split_p;
 | |
|     UPDATE_MEMO;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (NIL_P(memo->prev_elts)) {
 | |
|         memo->prev_elts = rb_ary_new3(1, i);
 | |
|     }
 | |
|     else {
 | |
|         rb_ary_push(memo->prev_elts, i);
 | |
|     }
 | |
| 
 | |
|     if (NIL_P(memo->pred)) {
 | |
|         split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
 | |
|         UPDATE_MEMO;
 | |
|     }
 | |
|     else {
 | |
|         split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
 | |
|         UPDATE_MEMO;
 | |
|     }
 | |
| 
 | |
|     if (split_p) {
 | |
|         rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
 | |
|         UPDATE_MEMO;
 | |
|         memo->prev_elts = Qnil;
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| #undef UPDATE_MEMO
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
 | |
| {
 | |
|     VALUE enumerable;
 | |
|     VALUE arg;
 | |
|     struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
 | |
| 
 | |
|     enumerable = rb_ivar_get(enumerator, rb_intern("sliceafter_enum"));
 | |
|     memo->pat = rb_ivar_get(enumerator, rb_intern("sliceafter_pat"));
 | |
|     memo->pred = rb_attr_get(enumerator, rb_intern("sliceafter_pred"));
 | |
|     memo->prev_elts = Qnil;
 | |
|     memo->yielder = yielder;
 | |
| 
 | |
|     rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
 | |
|     memo = MEMO_FOR(struct sliceafter_arg, arg);
 | |
|     if (!NIL_P(memo->prev_elts))
 | |
|         rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.slice_after(pattern)       -> an_enumerator
 | |
|  *     enum.slice_after { |elt| bool } -> an_enumerator
 | |
|  *
 | |
|  *  Creates an enumerator for each chunked elements.
 | |
|  *  The ends of chunks are defined by _pattern_ and the block.
 | |
|  *
 | |
|  *  If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
 | |
|  *  returns <code>true</code> for the element, the element is end of a
 | |
|  *  chunk.
 | |
|  *
 | |
|  *  The <code>===</code> and _block_ is called from the first element to the last
 | |
|  *  element of _enum_.
 | |
|  *
 | |
|  *  The result enumerator yields the chunked elements as an array.
 | |
|  *  So +each+ method can be called as follows:
 | |
|  *
 | |
|  *    enum.slice_after(pattern).each { |ary| ... }
 | |
|  *    enum.slice_after { |elt| bool }.each { |ary| ... }
 | |
|  *
 | |
|  *  Other methods of the Enumerator class and Enumerable module,
 | |
|  *  such as +map+, etc., are also usable.
 | |
|  *
 | |
|  *  For example, continuation lines (lines end with backslash) can be
 | |
|  *  concatenated as follows:
 | |
|  *
 | |
|  *    lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
 | |
|  *    e = lines.slice_after(/(?<!\\)\n\z/)
 | |
|  *    p e.to_a
 | |
|  *    #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
 | |
|  *    p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
 | |
|  *    #=>["foo\n", "barbaz\n", "\n", "qux\n"]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
 | |
| {
 | |
|     VALUE enumerator;
 | |
|     VALUE pat = Qnil, pred = Qnil;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
|         if (0 < argc)
 | |
|             rb_raise(rb_eArgError, "both pattern and block are given");
 | |
|         pred = rb_block_proc();
 | |
|     }
 | |
|     else {
 | |
|         rb_scan_args(argc, argv, "1", &pat);
 | |
|     }
 | |
| 
 | |
|     enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|     rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
 | |
|     rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
 | |
|     rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
 | |
| 
 | |
|     rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| struct slicewhen_arg {
 | |
|     VALUE pred;
 | |
|     VALUE prev_elt;
 | |
|     VALUE prev_elts;
 | |
|     VALUE yielder;
 | |
|     int inverted; /* 0 for slice_when and 1 for chunk_while. */
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
 | |
| {
 | |
| #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
 | |
|     struct slicewhen_arg *memo;
 | |
|     int split_p;
 | |
|     UPDATE_MEMO;
 | |
| 
 | |
|     ENUM_WANT_SVALUE();
 | |
| 
 | |
|     if (memo->prev_elt == Qundef) {
 | |
|         /* The first element */
 | |
|         memo->prev_elt = i;
 | |
|         memo->prev_elts = rb_ary_new3(1, i);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE args[2];
 | |
| 	args[0] = memo->prev_elt;
 | |
| 	args[1] = i;
 | |
|         split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
 | |
|         UPDATE_MEMO;
 | |
| 
 | |
|         if (memo->inverted)
 | |
|             split_p = !split_p;
 | |
| 
 | |
|         if (split_p) {
 | |
|             rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
 | |
|             UPDATE_MEMO;
 | |
|             memo->prev_elts = rb_ary_new3(1, i);
 | |
|         }
 | |
|         else {
 | |
|             rb_ary_push(memo->prev_elts, i);
 | |
|         }
 | |
| 
 | |
|         memo->prev_elt = i;
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| #undef UPDATE_MEMO
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
 | |
| {
 | |
|     VALUE enumerable;
 | |
|     VALUE arg;
 | |
|     struct slicewhen_arg *memo =
 | |
| 	NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted);
 | |
| 
 | |
|     enumerable = rb_ivar_get(enumerator, rb_intern("slicewhen_enum"));
 | |
|     memo->pred = rb_attr_get(enumerator, rb_intern("slicewhen_pred"));
 | |
|     memo->prev_elt = Qundef;
 | |
|     memo->prev_elts = Qnil;
 | |
|     memo->yielder = yielder;
 | |
|     memo->inverted = RTEST(rb_attr_get(enumerator, rb_intern("slicewhen_inverted")));
 | |
| 
 | |
|     rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
 | |
|     memo = MEMO_FOR(struct slicewhen_arg, arg);
 | |
|     if (!NIL_P(memo->prev_elts))
 | |
|         rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
 | |
|  *
 | |
|  *  Creates an enumerator for each chunked elements.
 | |
|  *  The beginnings of chunks are defined by the block.
 | |
|  *
 | |
|  *  This method split each chunk using adjacent elements,
 | |
|  *  _elt_before_ and _elt_after_,
 | |
|  *  in the receiver enumerator.
 | |
|  *  This method split chunks between _elt_before_ and _elt_after_ where
 | |
|  *  the block returns <code>true</code>.
 | |
|  *
 | |
|  *  The block is called the length of the receiver enumerator minus one.
 | |
|  *
 | |
|  *  The result enumerator yields the chunked elements as an array.
 | |
|  *  So +each+ method can be called as follows:
 | |
|  *
 | |
|  *    enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
 | |
|  *
 | |
|  *  Other methods of the Enumerator class and Enumerable module,
 | |
|  *  such as +to_a+, +map+, etc., are also usable.
 | |
|  *
 | |
|  *  For example, one-by-one increasing subsequence can be chunked as follows:
 | |
|  *
 | |
|  *    a = [1,2,4,9,10,11,12,15,16,19,20,21]
 | |
|  *    b = a.slice_when {|i, j| i+1 != j }
 | |
|  *    p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
 | |
|  *    c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
 | |
|  *    p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
 | |
|  *    d = c.join(",")
 | |
|  *    p d #=> "1,2,4,9-12,15,16,19-21"
 | |
|  *
 | |
|  *  Near elements (threshold: 6) in sorted array can be chunked as follows:
 | |
|  *
 | |
|  *    a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
 | |
|  *    p a.slice_when {|i, j| 6 < j - i }.to_a
 | |
|  *    #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
 | |
|  *
 | |
|  *  Increasing (non-decreasing) subsequence can be chunked as follows:
 | |
|  *
 | |
|  *    a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
 | |
|  *    p a.slice_when {|i, j| i > j }.to_a
 | |
|  *    #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
 | |
|  *
 | |
|  *  Adjacent evens and odds can be chunked as follows:
 | |
|  *  (Enumerable#chunk is another way to do it.)
 | |
|  *
 | |
|  *    a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
 | |
|  *    p a.slice_when {|i, j| i.even? != j.even? }.to_a
 | |
|  *    #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
 | |
|  *
 | |
|  *  Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
 | |
|  *  (See Enumerable#chunk to ignore empty lines.)
 | |
|  *
 | |
|  *    lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
 | |
|  *    p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
 | |
|  *    #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
 | |
|  *
 | |
|  *  Enumerable#chunk_while does the same, except splitting when the block
 | |
|  *  returns <code>false</code> instead of <code>true</code>.
 | |
|  */
 | |
| static VALUE
 | |
| enum_slice_when(VALUE enumerable)
 | |
| {
 | |
|     VALUE enumerator;
 | |
|     VALUE pred;
 | |
| 
 | |
|     pred = rb_block_proc();
 | |
| 
 | |
|     enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);
 | |
| 
 | |
|     rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
 | |
|  *
 | |
|  *  Creates an enumerator for each chunked elements.
 | |
|  *  The beginnings of chunks are defined by the block.
 | |
|  *
 | |
|  *  This method split each chunk using adjacent elements,
 | |
|  *  _elt_before_ and _elt_after_,
 | |
|  *  in the receiver enumerator.
 | |
|  *  This method split chunks between _elt_before_ and _elt_after_ where
 | |
|  *  the block returns <code>false</code>.
 | |
|  *
 | |
|  *  The block is called the length of the receiver enumerator minus one.
 | |
|  *
 | |
|  *  The result enumerator yields the chunked elements as an array.
 | |
|  *  So +each+ method can be called as follows:
 | |
|  *
 | |
|  *    enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
 | |
|  *
 | |
|  *  Other methods of the Enumerator class and Enumerable module,
 | |
|  *  such as +to_a+, +map+, etc., are also usable.
 | |
|  *
 | |
|  *  For example, one-by-one increasing subsequence can be chunked as follows:
 | |
|  *
 | |
|  *    a = [1,2,4,9,10,11,12,15,16,19,20,21]
 | |
|  *    b = a.chunk_while {|i, j| i+1 == j }
 | |
|  *    p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
 | |
|  *    c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
 | |
|  *    p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
 | |
|  *    d = c.join(",")
 | |
|  *    p d #=> "1,2,4,9-12,15,16,19-21"
 | |
|  *
 | |
|  *  Increasing (non-decreasing) subsequence can be chunked as follows:
 | |
|  *
 | |
|  *    a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
 | |
|  *    p a.chunk_while {|i, j| i <= j }.to_a
 | |
|  *    #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
 | |
|  *
 | |
|  *  Adjacent evens and odds can be chunked as follows:
 | |
|  *  (Enumerable#chunk is another way to do it.)
 | |
|  *
 | |
|  *    a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
 | |
|  *    p a.chunk_while {|i, j| i.even? == j.even? }.to_a
 | |
|  *    #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
 | |
|  *
 | |
|  *  Enumerable#slice_when does the same, except splitting when the block
 | |
|  *  returns <code>true</code> instead of <code>false</code>.
 | |
|  */
 | |
| static VALUE
 | |
| enum_chunk_while(VALUE enumerable)
 | |
| {
 | |
|     VALUE enumerator;
 | |
|     VALUE pred;
 | |
| 
 | |
|     pred = rb_block_proc();
 | |
| 
 | |
|     enumerator = rb_obj_alloc(rb_cEnumerator);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
 | |
|     rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);
 | |
| 
 | |
|     rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
 | |
|     return enumerator;
 | |
| }
 | |
| 
 | |
| struct enum_sum_memo {
 | |
|     VALUE v, r;
 | |
|     long n;
 | |
|     double f, c;
 | |
|     int block_given;
 | |
|     int float_value;
 | |
| };
 | |
| 
 | |
| static void
 | |
| sum_iter(VALUE i, struct enum_sum_memo *memo)
 | |
| {
 | |
|     const int unused = (assert(memo != NULL), 0);
 | |
| 
 | |
|     long n = memo->n;
 | |
|     VALUE v = memo->v;
 | |
|     VALUE r = memo->r;
 | |
|     double f = memo->f;
 | |
|     double c = memo->c;
 | |
| 
 | |
|     if (memo->block_given)
 | |
|         i = rb_yield(i);
 | |
| 
 | |
|     if (memo->float_value)
 | |
|         goto float_value;
 | |
| 
 | |
|     if (FIXNUM_P(v) || RB_TYPE_P(v, T_BIGNUM) || RB_TYPE_P(v, T_RATIONAL)) {
 | |
|         if (FIXNUM_P(i)) {
 | |
|             n += FIX2LONG(i); /* should not overflow long type */
 | |
|             if (!FIXABLE(n)) {
 | |
|                 v = rb_big_plus(LONG2NUM(n), v);
 | |
|                 n = 0;
 | |
|             }
 | |
|         }
 | |
|         else if (RB_TYPE_P(i, T_BIGNUM))
 | |
|             v = rb_big_plus(i, v);
 | |
|         else if (RB_TYPE_P(i, T_RATIONAL)) {
 | |
|             if (r == Qundef)
 | |
|                 r = i;
 | |
|             else
 | |
|                 r = rb_rational_plus(r, i);
 | |
|         }
 | |
|         else {
 | |
|             if (n != 0) {
 | |
|                 v = rb_fix_plus(LONG2FIX(n), v);
 | |
|                 n = 0;
 | |
|             }
 | |
|             if (r != Qundef) {
 | |
|                 /* r can be an Integer when mathn is loaded */
 | |
|                 if (FIXNUM_P(r))
 | |
|                     v = rb_fix_plus(r, v);
 | |
|                 else if (RB_TYPE_P(r, T_BIGNUM))
 | |
|                     v = rb_big_plus(r, v);
 | |
|                 else
 | |
|                     v = rb_rational_plus(r, v);
 | |
|                 r = Qundef;
 | |
|             }
 | |
|             if (RB_FLOAT_TYPE_P(i)) {
 | |
|                 f = NUM2DBL(v);
 | |
|                 c = 0.0;
 | |
|                 memo->float_value = 1;
 | |
|                 goto float_value;
 | |
|             }
 | |
|             else
 | |
|                 goto some_value;
 | |
|         }
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(v)) {
 | |
|         /*
 | |
|          * Kahan-Babuska balancing compensated summation algorithm
 | |
|          * See http://link.springer.com/article/10.1007/s00607-005-0139-x
 | |
|          */
 | |
|         double x, t;
 | |
| 
 | |
|       float_value:
 | |
|         if (RB_FLOAT_TYPE_P(i))
 | |
|             x = RFLOAT_VALUE(i);
 | |
|         else if (FIXNUM_P(i))
 | |
|             x = FIX2LONG(i);
 | |
|         else if (RB_TYPE_P(i, T_BIGNUM))
 | |
|             x = rb_big2dbl(i);
 | |
|         else if (RB_TYPE_P(i, T_RATIONAL))
 | |
|             x = rb_num2dbl(i);
 | |
|         else {
 | |
|             v = DBL2NUM(f);
 | |
|             memo->float_value = 0;
 | |
|             goto some_value;
 | |
|         }
 | |
| 
 | |
|         if (isnan(f)) return;
 | |
|         if (isnan(x)) {
 | |
|             memo->v = i;
 | |
|             memo->f = x;
 | |
|             return;
 | |
|         }
 | |
|         if (isinf(x)) {
 | |
|             if (isinf(f) && signbit(x) != signbit(f)) {
 | |
|                 memo->f = NAN;
 | |
|                 memo->v = DBL2NUM(f);
 | |
|             }
 | |
|             else {
 | |
|                 memo->f = x;
 | |
|                 memo->v = i;
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|         if (isinf(f)) return;
 | |
| 
 | |
|         t = f + x;
 | |
|         if (fabs(f) >= fabs(x))
 | |
|             c += ((f - t) + x);
 | |
|         else
 | |
|             c += ((x - t) + f);
 | |
|         f = t;
 | |
|     }
 | |
|     else {
 | |
|       some_value:
 | |
|         v = rb_funcallv(v, idPLUS, 1, &i);
 | |
|     }
 | |
| 
 | |
|     memo->v = v;
 | |
|     memo->n = n;
 | |
|     memo->r = r;
 | |
|     memo->f = f;
 | |
|     memo->c = c;
 | |
|     (void)unused;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
|     sum_iter(i, (struct enum_sum_memo *) args);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hash_sum_i(VALUE key, VALUE value, VALUE arg)
 | |
| {
 | |
|     sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| hash_sum(VALUE hash, struct enum_sum_memo *memo)
 | |
| {
 | |
|     assert(RB_TYPE_P(hash, T_HASH));
 | |
|     assert(memo != NULL);
 | |
| 
 | |
|     rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
 | |
| {
 | |
|     if (excl) {
 | |
|         if (FIXNUM_P(end))
 | |
|             end = LONG2FIX(FIX2LONG(end) - 1);
 | |
|         else
 | |
|             end = rb_big_minus(end, LONG2FIX(1));
 | |
|     }
 | |
| 
 | |
|     if (rb_int_ge(end, beg)) {
 | |
|         VALUE a;
 | |
|         a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
 | |
|         a = rb_int_mul(a, rb_int_plus(end, beg));
 | |
|         a = rb_int_idiv(a, LONG2FIX(2));
 | |
|         return rb_int_plus(init, a);
 | |
|     }
 | |
| 
 | |
|     return init;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   enum.sum(init=0)                   -> number
 | |
|  *   enum.sum(init=0) {|e| expr }       -> number
 | |
|  *
 | |
|  * Returns the sum of elements in an Enumerable.
 | |
|  *
 | |
|  * If a block is given, the block is applied to each element
 | |
|  * before addition.
 | |
|  *
 | |
|  * If <i>enum</i> is empty, it returns <i>init</i>.
 | |
|  *
 | |
|  * For example:
 | |
|  *
 | |
|  *   { 1 => 10, 2 => 20 }.sum {|k, v| k * v }  #=> 50
 | |
|  *   (1..10).sum                               #=> 55
 | |
|  *   (1..10).sum {|v| v * 2 }                  #=> 110
 | |
|  *   [Object.new].each.sum                     #=> TypeError
 | |
|  *
 | |
|  * This method can be used for non-numeric objects by
 | |
|  * explicit <i>init</i> argument.
 | |
|  *
 | |
|  *   { 1 => 10, 2 => 20 }.sum([])                   #=> [1, 10, 2, 20]
 | |
|  *   "a\nb\nc".each_line.lazy.map(&:chomp).sum("")  #=> "abc"
 | |
|  *
 | |
|  * Enumerable#sum method may not respect method redefinition of "+"
 | |
|  * methods such as Integer#+.
 | |
|  */
 | |
| static VALUE
 | |
| enum_sum(int argc, VALUE* argv, VALUE obj)
 | |
| {
 | |
|     struct enum_sum_memo memo;
 | |
|     VALUE beg, end;
 | |
|     int excl;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "01", &memo.v) == 0)
 | |
|         memo.v = LONG2FIX(0);
 | |
| 
 | |
|     memo.block_given = rb_block_given_p();
 | |
| 
 | |
|     memo.n = 0;
 | |
|     memo.r = Qundef;
 | |
| 
 | |
|     if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
 | |
|         memo.f = RFLOAT_VALUE(memo.v);
 | |
|         memo.c = 0.0;
 | |
|     }
 | |
| 
 | |
|     if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
 | |
|         if (!memo.block_given && !memo.float_value &&
 | |
|                 (FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) &&
 | |
|                 (FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) {
 | |
|             return int_range_sum(beg, end, excl, memo.v);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(obj, T_HASH) &&
 | |
|             rb_method_basic_definition_p(CLASS_OF(obj), id_each))
 | |
|         hash_sum(obj, &memo);
 | |
|     else
 | |
|         rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
 | |
| 
 | |
|     if (memo.float_value) {
 | |
|         return DBL2NUM(memo.f + memo.c);
 | |
|     }
 | |
|     else {
 | |
|         if (memo.n != 0)
 | |
|             memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
 | |
|         if (memo.r != Qundef) {
 | |
|             /* r can be an Integer when mathn is loaded */
 | |
|             if (FIXNUM_P(memo.r))
 | |
|                 memo.v = rb_fix_plus(memo.r, memo.v);
 | |
|             else if (RB_TYPE_P(memo.r, T_BIGNUM))
 | |
|                 memo.v = rb_big_plus(memo.r, memo.v);
 | |
|             else
 | |
|                 memo.v = rb_rational_plus(memo.r, memo.v);
 | |
|         }
 | |
|         return memo.v;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
|     rb_hash_add_new_element(hash, i, i);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
 | |
| {
 | |
|     ENUM_WANT_SVALUE();
 | |
|     rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     enum.uniq                -> new_ary
 | |
|  *     enum.uniq { |item| ... } -> new_ary
 | |
|  *
 | |
|  *  Returns a new array by removing duplicate values in +self+.
 | |
|  *
 | |
|  *  See also Array#uniq.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| enum_uniq(VALUE obj)
 | |
| {
 | |
|     VALUE hash, ret;
 | |
|     rb_block_call_func *const func =
 | |
| 	rb_block_given_p() ? uniq_iter : uniq_func;
 | |
| 
 | |
|     hash = rb_obj_hide(rb_hash_new());
 | |
|     rb_block_call(obj, id_each, 0, 0, func, hash);
 | |
|     ret = rb_hash_values(hash);
 | |
|     rb_hash_clear(hash);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  The <code>Enumerable</code> mixin provides collection classes with
 | |
|  *  several traversal and searching methods, and with the ability to
 | |
|  *  sort. The class must provide a method <code>each</code>, which
 | |
|  *  yields successive members of the collection. If
 | |
|  *  <code>Enumerable#max</code>, <code>#min</code>, or
 | |
|  *  <code>#sort</code> is used, the objects in the collection must also
 | |
|  *  implement a meaningful <code><=></code> operator, as these methods
 | |
|  *  rely on an ordering between members of the collection.
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Enumerable(void)
 | |
| {
 | |
| #undef rb_intern
 | |
| #define rb_intern(str) rb_intern_const(str)
 | |
| 
 | |
|     rb_mEnumerable = rb_define_module("Enumerable");
 | |
| 
 | |
|     rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
 | |
|     rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
 | |
|     rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
 | |
| 
 | |
|     rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
 | |
|     rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
 | |
|     rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
 | |
|     rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
 | |
|     rb_define_method(rb_mEnumerable, "count", enum_count, -1);
 | |
|     rb_define_method(rb_mEnumerable, "find", enum_find, -1);
 | |
|     rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
 | |
|     rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
 | |
|     rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
 | |
|     rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
 | |
|     rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
 | |
|     rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
 | |
|     rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
 | |
|     rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
 | |
|     rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
 | |
|     rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
 | |
|     rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
 | |
|     rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
 | |
|     rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
 | |
|     rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
 | |
|     rb_define_method(rb_mEnumerable, "first", enum_first, -1);
 | |
|     rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
 | |
|     rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
 | |
|     rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
 | |
|     rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
 | |
|     rb_define_method(rb_mEnumerable, "min", enum_min, -1);
 | |
|     rb_define_method(rb_mEnumerable, "max", enum_max, -1);
 | |
|     rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
 | |
|     rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
 | |
|     rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
 | |
|     rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
 | |
|     rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
 | |
|     rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
 | |
|     rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
 | |
|     rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
 | |
|     rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
 | |
|     rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
 | |
|     rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
 | |
|     rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
 | |
|     rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
 | |
|     rb_define_method(rb_mEnumerable, "take", enum_take, 1);
 | |
|     rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
 | |
|     rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
 | |
|     rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
 | |
|     rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
 | |
|     rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
 | |
|     rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
 | |
|     rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
 | |
|     rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
 | |
|     rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
 | |
|     rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
 | |
|     rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
 | |
| 
 | |
|     id_next = rb_intern("next");
 | |
|     id_div = rb_intern("div");
 | |
| }
 |