mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 5fef2139d4
			
		
	
	
		5fef2139d4
		
	
	
	
	
		
			
			git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61942 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			2200 lines
		
	
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2200 lines
		
	
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This is a public domain general purpose hash table package
 | |
|    originally written by Peter Moore @ UCB.
 | |
| 
 | |
|    The hash table data structures were redesigned and the package was
 | |
|    rewritten by Vladimir Makarov <vmakarov@redhat.com>.  */
 | |
| 
 | |
| /* The original package implemented classic bucket-based hash tables
 | |
|    with entries doubly linked for an access by their insertion order.
 | |
|    To decrease pointer chasing and as a consequence to improve a data
 | |
|    locality the current implementation is based on storing entries in
 | |
|    an array and using hash tables with open addressing.  The current
 | |
|    entries are more compact in comparison with the original ones and
 | |
|    this also improves the data locality.
 | |
| 
 | |
|    The hash table has two arrays called *bins* and *entries*.
 | |
| 
 | |
|      bins:
 | |
|     -------
 | |
|    |       |                  entries array:
 | |
|    |-------|            --------------------------------
 | |
|    | index |           |      | entry:  |        |      |
 | |
|    |-------|           |      |         |        |      |
 | |
|    | ...   |           | ...  | hash    |  ...   | ...  |
 | |
|    |-------|           |      | key     |        |      |
 | |
|    | empty |           |      | record  |        |      |
 | |
|    |-------|            --------------------------------
 | |
|    | ...   |                   ^                  ^
 | |
|    |-------|                   |_ entries start   |_ entries bound
 | |
|    |deleted|
 | |
|     -------
 | |
| 
 | |
|    o The entry array contains table entries in the same order as they
 | |
|      were inserted.
 | |
| 
 | |
|      When the first entry is deleted, a variable containing index of
 | |
|      the current first entry (*entries start*) is changed.  In all
 | |
|      other cases of the deletion, we just mark the entry as deleted by
 | |
|      using a reserved hash value.
 | |
| 
 | |
|      Such organization of the entry storage makes operations of the
 | |
|      table shift and the entries traversal very fast.
 | |
| 
 | |
|    o The bins provide access to the entries by their keys.  The
 | |
|      key hash is mapped to a bin containing *index* of the
 | |
|      corresponding entry in the entry array.
 | |
| 
 | |
|      The bin array size is always power of two, it makes mapping very
 | |
|      fast by using the corresponding lower bits of the hash.
 | |
|      Generally it is not a good idea to ignore some part of the hash.
 | |
|      But alternative approach is worse.  For example, we could use a
 | |
|      modulo operation for mapping and a prime number for the size of
 | |
|      the bin array.  Unfortunately, the modulo operation for big
 | |
|      64-bit numbers are extremely slow (it takes more than 100 cycles
 | |
|      on modern Intel CPUs).
 | |
| 
 | |
|      Still other bits of the hash value are used when the mapping
 | |
|      results in a collision.  In this case we use a secondary hash
 | |
|      value which is a result of a function of the collision bin
 | |
|      index and the original hash value.  The function choice
 | |
|      guarantees that we can traverse all bins and finally find the
 | |
|      corresponding bin as after several iterations the function
 | |
|      becomes a full cycle linear congruential generator because it
 | |
|      satisfies requirements of the Hull-Dobell theorem.
 | |
| 
 | |
|      When an entry is removed from the table besides marking the
 | |
|      hash in the corresponding entry described above, we also mark
 | |
|      the bin by a special value in order to find entries which had
 | |
|      a collision with the removed entries.
 | |
| 
 | |
|      There are two reserved values for the bins.  One denotes an
 | |
|      empty bin, another one denotes a bin for a deleted entry.
 | |
| 
 | |
|    o The length of the bin array is at least two times more than the
 | |
|      entry array length.  This keeps the table load factor healthy.
 | |
|      The trigger of rebuilding the table is always a case when we can
 | |
|      not insert an entry anymore at the entries bound.  We could
 | |
|      change the entries bound too in case of deletion but than we need
 | |
|      a special code to count bins with corresponding deleted entries
 | |
|      and reset the bin values when there are too many bins
 | |
|      corresponding deleted entries
 | |
| 
 | |
|      Table rebuilding is done by creation of a new entry array and
 | |
|      bins of an appropriate size.  We also try to reuse the arrays
 | |
|      in some cases by compacting the array and removing deleted
 | |
|      entries.
 | |
| 
 | |
|    o To save memory very small tables have no allocated arrays
 | |
|      bins.  We use a linear search for an access by a key.
 | |
| 
 | |
|    o To save more memory we use 8-, 16-, 32- and 64- bit indexes in
 | |
|      bins depending on the current hash table size.
 | |
| 
 | |
|    This implementation speeds up the Ruby hash table benchmarks in
 | |
|    average by more 40% on Intel Haswell CPU.
 | |
| 
 | |
| */
 | |
| 
 | |
| #ifdef NOT_RUBY
 | |
| #include "regint.h"
 | |
| #include "st.h"
 | |
| #else
 | |
| #include "internal.h"
 | |
| #endif
 | |
| 
 | |
| #include <stdio.h>
 | |
| #ifdef HAVE_STDLIB_H
 | |
| #include <stdlib.h>
 | |
| #endif
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p)
 | |
| #define EXPECT(expr, val) __builtin_expect(expr, val)
 | |
| #define ATTRIBUTE_UNUSED  __attribute__((unused))
 | |
| #else
 | |
| #define PREFETCH(addr, write_p)
 | |
| #define EXPECT(expr, val) (expr)
 | |
| #define ATTRIBUTE_UNUSED
 | |
| #endif
 | |
| 
 | |
| #ifdef ST_DEBUG
 | |
| #define st_assert assert
 | |
| #else
 | |
| #define st_assert(cond) ((void)(0 && (cond)))
 | |
| #endif
 | |
| 
 | |
| /* The type of hashes.  */
 | |
| typedef st_index_t st_hash_t;
 | |
| 
 | |
| struct st_table_entry {
 | |
|     st_hash_t hash;
 | |
|     st_data_t key;
 | |
|     st_data_t record;
 | |
| };
 | |
| 
 | |
| #define type_numhash st_hashtype_num
 | |
| static const struct st_hash_type st_hashtype_num = {
 | |
|     st_numcmp,
 | |
|     st_numhash,
 | |
| };
 | |
| 
 | |
| /* extern int strcmp(const char *, const char *); */
 | |
| static st_index_t strhash(st_data_t);
 | |
| static const struct st_hash_type type_strhash = {
 | |
|     strcmp,
 | |
|     strhash,
 | |
| };
 | |
| 
 | |
| static st_index_t strcasehash(st_data_t);
 | |
| static const struct st_hash_type type_strcasehash = {
 | |
|     st_locale_insensitive_strcasecmp,
 | |
|     strcasehash,
 | |
| };
 | |
| 
 | |
| /* Value used to catch uninitialized entries/bins during debugging.
 | |
|    There is a possibility for a false alarm, but its probability is
 | |
|    extremely small.  */
 | |
| #define ST_INIT_VAL 0xafafafafafafafaf
 | |
| #define ST_INIT_VAL_BYTE 0xafa
 | |
| 
 | |
| #ifdef RUBY
 | |
| #undef malloc
 | |
| #undef realloc
 | |
| #undef calloc
 | |
| #undef free
 | |
| #define malloc ruby_xmalloc
 | |
| #define calloc ruby_xcalloc
 | |
| #define realloc ruby_xrealloc
 | |
| #define free ruby_xfree
 | |
| #endif
 | |
| 
 | |
| #define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0)
 | |
| #define PTR_EQUAL(tab, ptr, hash_val, key_) \
 | |
|     ((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key))
 | |
| 
 | |
| /* Features of a table.  */
 | |
| struct st_features {
 | |
|     /* Power of 2 used for number of allocated entries.  */
 | |
|     unsigned char entry_power;
 | |
|     /* Power of 2 used for number of allocated bins.  Depending on the
 | |
|        table size, the number of bins is 2-4 times more than the
 | |
|        number of entries.  */
 | |
|     unsigned char bin_power;
 | |
|     /* Enumeration of sizes of bins (8-bit, 16-bit etc).  */
 | |
|     unsigned char size_ind;
 | |
|     /* Bins are packed in words of type st_index_t.  The following is
 | |
|        a size of bins counted by words.  */
 | |
|     st_index_t bins_words;
 | |
| };
 | |
| 
 | |
| /* Features of all possible size tables.  */
 | |
| #if SIZEOF_ST_INDEX_T == 8
 | |
| #define MAX_POWER2 62
 | |
| static const struct st_features features[] = {
 | |
|     {0, 1, 0, 0x0},
 | |
|     {1, 2, 0, 0x1},
 | |
|     {2, 3, 0, 0x1},
 | |
|     {3, 4, 0, 0x2},
 | |
|     {4, 5, 0, 0x4},
 | |
|     {5, 6, 0, 0x8},
 | |
|     {6, 7, 0, 0x10},
 | |
|     {7, 8, 0, 0x20},
 | |
|     {8, 9, 1, 0x80},
 | |
|     {9, 10, 1, 0x100},
 | |
|     {10, 11, 1, 0x200},
 | |
|     {11, 12, 1, 0x400},
 | |
|     {12, 13, 1, 0x800},
 | |
|     {13, 14, 1, 0x1000},
 | |
|     {14, 15, 1, 0x2000},
 | |
|     {15, 16, 1, 0x4000},
 | |
|     {16, 17, 2, 0x10000},
 | |
|     {17, 18, 2, 0x20000},
 | |
|     {18, 19, 2, 0x40000},
 | |
|     {19, 20, 2, 0x80000},
 | |
|     {20, 21, 2, 0x100000},
 | |
|     {21, 22, 2, 0x200000},
 | |
|     {22, 23, 2, 0x400000},
 | |
|     {23, 24, 2, 0x800000},
 | |
|     {24, 25, 2, 0x1000000},
 | |
|     {25, 26, 2, 0x2000000},
 | |
|     {26, 27, 2, 0x4000000},
 | |
|     {27, 28, 2, 0x8000000},
 | |
|     {28, 29, 2, 0x10000000},
 | |
|     {29, 30, 2, 0x20000000},
 | |
|     {30, 31, 2, 0x40000000},
 | |
|     {31, 32, 2, 0x80000000},
 | |
|     {32, 33, 3, 0x200000000},
 | |
|     {33, 34, 3, 0x400000000},
 | |
|     {34, 35, 3, 0x800000000},
 | |
|     {35, 36, 3, 0x1000000000},
 | |
|     {36, 37, 3, 0x2000000000},
 | |
|     {37, 38, 3, 0x4000000000},
 | |
|     {38, 39, 3, 0x8000000000},
 | |
|     {39, 40, 3, 0x10000000000},
 | |
|     {40, 41, 3, 0x20000000000},
 | |
|     {41, 42, 3, 0x40000000000},
 | |
|     {42, 43, 3, 0x80000000000},
 | |
|     {43, 44, 3, 0x100000000000},
 | |
|     {44, 45, 3, 0x200000000000},
 | |
|     {45, 46, 3, 0x400000000000},
 | |
|     {46, 47, 3, 0x800000000000},
 | |
|     {47, 48, 3, 0x1000000000000},
 | |
|     {48, 49, 3, 0x2000000000000},
 | |
|     {49, 50, 3, 0x4000000000000},
 | |
|     {50, 51, 3, 0x8000000000000},
 | |
|     {51, 52, 3, 0x10000000000000},
 | |
|     {52, 53, 3, 0x20000000000000},
 | |
|     {53, 54, 3, 0x40000000000000},
 | |
|     {54, 55, 3, 0x80000000000000},
 | |
|     {55, 56, 3, 0x100000000000000},
 | |
|     {56, 57, 3, 0x200000000000000},
 | |
|     {57, 58, 3, 0x400000000000000},
 | |
|     {58, 59, 3, 0x800000000000000},
 | |
|     {59, 60, 3, 0x1000000000000000},
 | |
|     {60, 61, 3, 0x2000000000000000},
 | |
|     {61, 62, 3, 0x4000000000000000},
 | |
|     {62, 63, 3, 0x8000000000000000},
 | |
| };
 | |
| 
 | |
| #else
 | |
| #define MAX_POWER2 30
 | |
| 
 | |
| static const struct st_features features[] = {
 | |
|     {0, 1, 0, 0x1},
 | |
|     {1, 2, 0, 0x1},
 | |
|     {2, 3, 0, 0x2},
 | |
|     {3, 4, 0, 0x4},
 | |
|     {4, 5, 0, 0x8},
 | |
|     {5, 6, 0, 0x10},
 | |
|     {6, 7, 0, 0x20},
 | |
|     {7, 8, 0, 0x40},
 | |
|     {8, 9, 1, 0x100},
 | |
|     {9, 10, 1, 0x200},
 | |
|     {10, 11, 1, 0x400},
 | |
|     {11, 12, 1, 0x800},
 | |
|     {12, 13, 1, 0x1000},
 | |
|     {13, 14, 1, 0x2000},
 | |
|     {14, 15, 1, 0x4000},
 | |
|     {15, 16, 1, 0x8000},
 | |
|     {16, 17, 2, 0x20000},
 | |
|     {17, 18, 2, 0x40000},
 | |
|     {18, 19, 2, 0x80000},
 | |
|     {19, 20, 2, 0x100000},
 | |
|     {20, 21, 2, 0x200000},
 | |
|     {21, 22, 2, 0x400000},
 | |
|     {22, 23, 2, 0x800000},
 | |
|     {23, 24, 2, 0x1000000},
 | |
|     {24, 25, 2, 0x2000000},
 | |
|     {25, 26, 2, 0x4000000},
 | |
|     {26, 27, 2, 0x8000000},
 | |
|     {27, 28, 2, 0x10000000},
 | |
|     {28, 29, 2, 0x20000000},
 | |
|     {29, 30, 2, 0x40000000},
 | |
|     {30, 31, 2, 0x80000000},
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* The reserved hash value and its substitution.  */
 | |
| #define RESERVED_HASH_VAL (~(st_hash_t) 0)
 | |
| #define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0)
 | |
| 
 | |
| /* Return hash value of KEY for table TAB.  */
 | |
| static inline st_hash_t
 | |
| do_hash(st_data_t key, st_table *tab)
 | |
| {
 | |
|     st_hash_t hash = (st_hash_t)(tab->type->hash)(key);
 | |
| 
 | |
|     /* RESERVED_HASH_VAL is used for a deleted entry.  Map it into
 | |
|        another value.  Such mapping should be extremely rare.  */
 | |
|     return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash;
 | |
| }
 | |
| 
 | |
| /* Power of 2 defining the minimal number of allocated entries.  */
 | |
| #define MINIMAL_POWER2 2
 | |
| 
 | |
| #if MINIMAL_POWER2 < 2
 | |
| #error "MINIMAL_POWER2 should be >= 2"
 | |
| #endif
 | |
| 
 | |
| /* If the power2 of the allocated `entries` is less than the following
 | |
|    value, don't allocate bins and use a linear search.  */
 | |
| #define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4
 | |
| 
 | |
| /* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE.  */
 | |
| static int
 | |
| get_power2(st_index_t size)
 | |
| {
 | |
|     unsigned int n;
 | |
| 
 | |
|     for (n = 0; size != 0; n++)
 | |
|         size >>= 1;
 | |
|     if (n <= MAX_POWER2)
 | |
|         return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n;
 | |
| #ifndef NOT_RUBY
 | |
|     /* Ran out of the table entries */
 | |
|     rb_raise(rb_eRuntimeError, "st_table too big");
 | |
| #endif
 | |
|     /* should raise exception */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Return value of N-th bin in array BINS of table with bins size
 | |
|    index S.  */
 | |
| static inline st_index_t
 | |
| get_bin(st_index_t *bins, int s, st_index_t n)
 | |
| {
 | |
|     return (s == 0 ? ((unsigned char *) bins)[n]
 | |
| 	    : s == 1 ? ((unsigned short *) bins)[n]
 | |
| 	    : s == 2 ? ((unsigned int *) bins)[n]
 | |
| 	    : ((st_index_t *) bins)[n]);
 | |
| }
 | |
| 
 | |
| /* Set up N-th bin in array BINS of table with bins size index S to
 | |
|    value V.  */
 | |
| static inline void
 | |
| set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v)
 | |
| {
 | |
|     if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v;
 | |
|     else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v;
 | |
|     else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v;
 | |
|     else ((st_index_t *) bins)[n] = v;
 | |
| }
 | |
| 
 | |
| /* These macros define reserved values for empty table bin and table
 | |
|    bin which contains a deleted entry.  We will never use such values
 | |
|    for an entry index in bins.  */
 | |
| #define EMPTY_BIN    0
 | |
| #define DELETED_BIN  1
 | |
| /* Base of a real entry index in the bins.  */
 | |
| #define ENTRY_BASE 2
 | |
| 
 | |
| /* Mark I-th bin of table TAB as empty, in other words not
 | |
|    corresponding to any entry.  */
 | |
| #define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN))
 | |
| 
 | |
| /* Values used for not found entry and bin with given
 | |
|    characteristics.  */
 | |
| #define UNDEFINED_ENTRY_IND (~(st_index_t) 0)
 | |
| #define UNDEFINED_BIN_IND (~(st_index_t) 0)
 | |
| 
 | |
| /* Mark I-th bin of table TAB as corresponding to a deleted table
 | |
|    entry.  Update number of entries in the table and number of bins
 | |
|    corresponding to deleted entries. */
 | |
| #define MARK_BIN_DELETED(tab, i)				\
 | |
|     do {                                                        \
 | |
|         st_assert(i != UNDEFINED_BIN_IND);			\
 | |
| 	st_assert(! IND_EMPTY_OR_DELETED_BIN_P(tab, i)); 	\
 | |
|         set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \
 | |
|     } while (0)
 | |
| 
 | |
| /* Macros to check that value B is used empty bins and bins
 | |
|    corresponding deleted entries.  */
 | |
| #define EMPTY_BIN_P(b) ((b) == EMPTY_BIN)
 | |
| #define DELETED_BIN_P(b) ((b) == DELETED_BIN)
 | |
| #define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN)
 | |
| 
 | |
| /* Macros to check empty bins and bins corresponding to deleted
 | |
|    entries.  Bins are given by their index I in table TAB.  */
 | |
| #define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | |
| #define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | |
| #define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | |
| 
 | |
| /* Macros for marking and checking deleted entries given by their
 | |
|    pointer E_PTR.  */
 | |
| #define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL)
 | |
| #define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL)
 | |
| 
 | |
| /* Return bin size index of table TAB.  */
 | |
| static inline unsigned int
 | |
| get_size_ind(const st_table *tab)
 | |
| {
 | |
|     return tab->size_ind;
 | |
| }
 | |
| 
 | |
| /* Return the number of allocated bins of table TAB.  */
 | |
| static inline st_index_t
 | |
| get_bins_num(const st_table *tab)
 | |
| {
 | |
|     return ((st_index_t) 1)<<tab->bin_power;
 | |
| }
 | |
| 
 | |
| /* Return mask for a bin index in table TAB.  */
 | |
| static inline st_index_t
 | |
| bins_mask(const st_table *tab)
 | |
| {
 | |
|     return get_bins_num(tab) - 1;
 | |
| }
 | |
| 
 | |
| /* Return the index of table TAB bin corresponding to
 | |
|    HASH_VALUE.  */
 | |
| static inline st_index_t
 | |
| hash_bin(st_hash_t hash_value, st_table *tab)
 | |
| {
 | |
|     return hash_value & bins_mask(tab);
 | |
| }
 | |
| 
 | |
| /* Return the number of allocated entries of table TAB.  */
 | |
| static inline st_index_t
 | |
| get_allocated_entries(const st_table *tab)
 | |
| {
 | |
|     return ((st_index_t) 1)<<tab->entry_power;
 | |
| }
 | |
| 
 | |
| /* Return size of the allocated bins of table TAB.  */
 | |
| static inline st_index_t
 | |
| bins_size(const st_table *tab)
 | |
| {
 | |
|     return features[tab->entry_power].bins_words * sizeof (st_index_t);
 | |
| }
 | |
| 
 | |
| /* Mark all bins of table TAB as empty.  */
 | |
| static void
 | |
| initialize_bins(st_table *tab)
 | |
| {
 | |
|     memset(tab->bins, 0, bins_size(tab));
 | |
| }
 | |
| 
 | |
| /* Make table TAB empty.  */
 | |
| static void
 | |
| make_tab_empty(st_table *tab)
 | |
| {
 | |
|     tab->num_entries = 0;
 | |
|     tab->entries_start = tab->entries_bound = 0;
 | |
|     if (tab->bins != NULL)
 | |
|         initialize_bins(tab);
 | |
| }
 | |
| 
 | |
| #ifdef ST_DEBUG
 | |
| #define st_assert_notinitial(ent) \
 | |
|     do { \
 | |
| 	st_assert(ent.hash != (st_hash_t) ST_INIT_VAL);  \
 | |
| 	st_assert(ent.key != ST_INIT_VAL); \
 | |
| 	st_assert(ent.record != ST_INIT_VAL); \
 | |
|     } while (0)
 | |
| /* Check the table T consistency.  It can be extremely slow.  So use
 | |
|    it only for debugging.  */
 | |
| static void
 | |
| st_check(st_table *tab)
 | |
| {
 | |
|     st_index_t d, e, i, n, p;
 | |
| 
 | |
|     for (p = get_allocated_entries(tab), i = 0; p > 1; i++, p>>=1)
 | |
|         ;
 | |
|     p = i;
 | |
|     st_assert(p >= MINIMAL_POWER2);
 | |
|     st_assert(tab->entries_bound <= get_allocated_entries(tab));
 | |
|     st_assert(tab->entries_start <= tab->entries_bound);
 | |
|     n = 0;
 | |
|     return;
 | |
|     if (tab->entries_bound != 0)
 | |
|         for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | |
| 	    st_assert_notinitial(tab->entries[i]);
 | |
| 	    if (! DELETED_ENTRY_P(&tab->entries[i]))
 | |
| 	        n++;
 | |
| 	}
 | |
|     st_assert(n == tab->num_entries);
 | |
|     if (tab->bins == NULL)
 | |
|         st_assert(p <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS);
 | |
|     else {
 | |
|         st_assert(p > MAX_POWER2_FOR_TABLES_WITHOUT_BINS);
 | |
| 	for (n = d = i = 0; i < get_bins_num(tab); i++) {
 | |
| 	    st_assert(get_bin(tab->bins, tab->size_ind, i) != ST_INIT_VAL);
 | |
| 	    if (IND_DELETED_BIN_P(tab, i)) {
 | |
| 	        d++;
 | |
| 		continue;
 | |
| 	    }
 | |
| 	    else if (IND_EMPTY_BIN_P(tab, i))
 | |
| 	        continue;
 | |
| 	    n++;
 | |
| 	    e = get_bin(tab->bins, tab->size_ind, i) - ENTRY_BASE;
 | |
| 	    st_assert(tab->entries_start <= e && e < tab->entries_bound);
 | |
| 	    st_assert(! DELETED_ENTRY_P(&tab->entries[e]));
 | |
| 	    st_assert_notinitial(tab->entries[e]);
 | |
| 	}
 | |
| 	st_assert(n == tab->num_entries);
 | |
| 	st_assert(n + d < get_bins_num(tab));
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef HASH_LOG
 | |
| #ifdef HAVE_UNISTD_H
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| static struct {
 | |
|     int all, total, num, str, strcase;
 | |
| }  collision;
 | |
| 
 | |
| /* Flag switching off output of package statistics at the end of
 | |
|    program.  */
 | |
| static int init_st = 0;
 | |
| 
 | |
| /* Output overall number of table searches and collisions into a
 | |
|    temporary file.  */
 | |
| static void
 | |
| stat_col(void)
 | |
| {
 | |
|     char fname[10+sizeof(long)*3];
 | |
|     FILE *f;
 | |
|     if (!collision.total) return;
 | |
|     f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
 | |
|     fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
 | |
|             ((double)collision.all / (collision.total)) * 100);
 | |
|     fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
 | |
|     fclose(f);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Create and return table with TYPE which can hold at least SIZE
 | |
|    entries.  The real number of entries which the table can hold is
 | |
|    the nearest power of two for SIZE.  */
 | |
| st_table *
 | |
| st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
 | |
| {
 | |
|     st_table *tab;
 | |
|     int n;
 | |
| 
 | |
| #ifdef HASH_LOG
 | |
| #if HASH_LOG+0 < 0
 | |
|     {
 | |
|         const char *e = getenv("ST_HASH_LOG");
 | |
|         if (!e || !*e) init_st = 1;
 | |
|     }
 | |
| #endif
 | |
|     if (init_st == 0) {
 | |
|         init_st = 1;
 | |
|         atexit(stat_col);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     n = get_power2(size);
 | |
|     tab = (st_table *) malloc(sizeof (st_table));
 | |
|     tab->type = type;
 | |
|     tab->entry_power = n;
 | |
|     tab->bin_power = features[n].bin_power;
 | |
|     tab->size_ind = features[n].size_ind;
 | |
|     if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | |
|         tab->bins = NULL;
 | |
|     else
 | |
|         tab->bins = (st_index_t *) malloc(bins_size(tab));
 | |
|     tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab)
 | |
| 					     * sizeof(st_table_entry));
 | |
| #ifdef ST_DEBUG
 | |
|     memset(tab->entries, ST_INIT_VAL_BYTE,
 | |
| 	   get_allocated_entries(tab) * sizeof(st_table_entry));
 | |
|     if (tab->bins != NULL)
 | |
|         memset(tab->bins, ST_INIT_VAL_BYTE, bins_size(tab));
 | |
| #endif
 | |
|     make_tab_empty(tab);
 | |
|     tab->rebuilds_num = 0;
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return tab;
 | |
| }
 | |
| 
 | |
| /* Create and return table with TYPE which can hold a minimal number
 | |
|    of entries (see comments for get_power2).  */
 | |
| st_table *
 | |
| st_init_table(const struct st_hash_type *type)
 | |
| {
 | |
|     return st_init_table_with_size(type, 0);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold a minimal number of
 | |
|    numbers.  */
 | |
| st_table *
 | |
| st_init_numtable(void)
 | |
| {
 | |
|     return st_init_table(&type_numhash);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold SIZE numbers.  */
 | |
| st_table *
 | |
| st_init_numtable_with_size(st_index_t size)
 | |
| {
 | |
|     return st_init_table_with_size(&type_numhash, size);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold a minimal number of
 | |
|    strings.  */
 | |
| st_table *
 | |
| st_init_strtable(void)
 | |
| {
 | |
|     return st_init_table(&type_strhash);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold SIZE strings.  */
 | |
| st_table *
 | |
| st_init_strtable_with_size(st_index_t size)
 | |
| {
 | |
|     return st_init_table_with_size(&type_strhash, size);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold a minimal number of strings
 | |
|    whose character case is ignored.  */
 | |
| st_table *
 | |
| st_init_strcasetable(void)
 | |
| {
 | |
|     return st_init_table(&type_strcasehash);
 | |
| }
 | |
| 
 | |
| /* Create and return table which can hold SIZE strings whose character
 | |
|    case is ignored.  */
 | |
| st_table *
 | |
| st_init_strcasetable_with_size(st_index_t size)
 | |
| {
 | |
|     return st_init_table_with_size(&type_strcasehash, size);
 | |
| }
 | |
| 
 | |
| /* Make table TAB empty.  */
 | |
| void
 | |
| st_clear(st_table *tab)
 | |
| {
 | |
|     make_tab_empty(tab);
 | |
|     tab->rebuilds_num++;
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Free table TAB space.  */
 | |
| void
 | |
| st_free_table(st_table *tab)
 | |
| {
 | |
|     if (tab->bins != NULL)
 | |
|         free(tab->bins);
 | |
|     free(tab->entries);
 | |
|     free(tab);
 | |
| }
 | |
| 
 | |
| /* Return byte size of memory allocted for table TAB.  */
 | |
| size_t
 | |
| st_memsize(const st_table *tab)
 | |
| {
 | |
|     return(sizeof(st_table)
 | |
|            + (tab->bins == NULL ? 0 : bins_size(tab))
 | |
|            + get_allocated_entries(tab) * sizeof(st_table_entry));
 | |
| }
 | |
| 
 | |
| static st_index_t
 | |
| find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
 | |
| 
 | |
| static st_index_t
 | |
| find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
 | |
| 
 | |
| static st_index_t
 | |
| find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key);
 | |
| 
 | |
| static st_index_t
 | |
| find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
 | |
| 			       st_data_t key, st_index_t *bin_ind);
 | |
| 
 | |
| #ifdef HASH_LOG
 | |
| static void
 | |
| count_collision(const struct st_hash_type *type)
 | |
| {
 | |
|     collision.all++;
 | |
|     if (type == &type_numhash) {
 | |
|         collision.num++;
 | |
|     }
 | |
|     else if (type == &type_strhash) {
 | |
|         collision.strcase++;
 | |
|     }
 | |
|     else if (type == &type_strcasehash) {
 | |
|         collision.str++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define COLLISION (collision_check ? count_collision(tab->type) : (void)0)
 | |
| #define FOUND_BIN (collision_check ? collision.total++ : (void)0)
 | |
| #define collision_check 0
 | |
| #else
 | |
| #define COLLISION
 | |
| #define FOUND_BIN
 | |
| #endif
 | |
| 
 | |
| /* If the number of entries in the table is at least REBUILD_THRESHOLD
 | |
|    times less than the entry array length, decrease the table
 | |
|    size.  */
 | |
| #define REBUILD_THRESHOLD 4
 | |
| 
 | |
| #if REBUILD_THRESHOLD < 2
 | |
| #error "REBUILD_THRESHOLD should be >= 2"
 | |
| #endif
 | |
| 
 | |
| /* Rebuild table TAB.  Rebuilding removes all deleted bins and entries
 | |
|    and can change size of the table entries and bins arrays.
 | |
|    Rebuilding is implemented by creation of a new table or by
 | |
|    compaction of the existing one.  */
 | |
| static void
 | |
| rebuild_table(st_table *tab)
 | |
| {
 | |
|     st_index_t i, ni, bound;
 | |
|     unsigned int size_ind;
 | |
|     st_table *new_tab;
 | |
|     st_table_entry *entries, *new_entries;
 | |
|     st_table_entry *curr_entry_ptr;
 | |
|     st_index_t *bins;
 | |
|     st_index_t bin_ind;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     bound = tab->entries_bound;
 | |
|     entries = tab->entries;
 | |
|     if ((2 * tab->num_entries <= get_allocated_entries(tab)
 | |
| 	 && REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab))
 | |
| 	|| tab->num_entries < (1 << MINIMAL_POWER2)) {
 | |
|         /* Compaction: */
 | |
|         tab->num_entries = 0;
 | |
| 	if (tab->bins != NULL)
 | |
| 	    initialize_bins(tab);
 | |
| 	new_tab = tab;
 | |
| 	new_entries = entries;
 | |
|     }
 | |
|     else {
 | |
|         new_tab = st_init_table_with_size(tab->type,
 | |
| 					  2 * tab->num_entries - 1);
 | |
| 	new_entries = new_tab->entries;
 | |
|     }
 | |
|     ni = 0;
 | |
|     bins = new_tab->bins;
 | |
|     size_ind = get_size_ind(new_tab);
 | |
|     for (i = tab->entries_start; i < bound; i++) {
 | |
|         curr_entry_ptr = &entries[i];
 | |
| 	PREFETCH(entries + i + 1, 0);
 | |
| 	if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
 | |
| 	    continue;
 | |
| 	if (&new_entries[ni] != curr_entry_ptr)
 | |
| 	    new_entries[ni] = *curr_entry_ptr;
 | |
| 	if (EXPECT(bins != NULL, 1)) {
 | |
| 	    bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash,
 | |
| 						curr_entry_ptr->key);
 | |
| 	    st_assert(bin_ind != UNDEFINED_BIN_IND);
 | |
| 	    st_assert(tab == new_tab || new_tab->rebuilds_num == 0);
 | |
| 	    st_assert(IND_EMPTY_BIN_P(new_tab, bin_ind));
 | |
| 	    set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE);
 | |
| 	}
 | |
| 	new_tab->num_entries++;
 | |
| 	ni++;
 | |
|     }
 | |
|     if (new_tab != tab) {
 | |
|         tab->entry_power = new_tab->entry_power;
 | |
| 	tab->bin_power = new_tab->bin_power;
 | |
| 	tab->size_ind = new_tab->size_ind;
 | |
| 	st_assert(tab->num_entries == ni);
 | |
| 	st_assert(new_tab->num_entries == ni);
 | |
| 	if (tab->bins != NULL)
 | |
| 	    free(tab->bins);
 | |
| 	tab->bins = new_tab->bins;
 | |
| 	free(tab->entries);
 | |
| 	tab->entries = new_tab->entries;
 | |
| 	free(new_tab);
 | |
|     }
 | |
|     tab->entries_start = 0;
 | |
|     tab->entries_bound = tab->num_entries;
 | |
|     tab->rebuilds_num++;
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Return the next secondary hash index for table TAB using previous
 | |
|    index IND and PERTERB.  Finally modulo of the function becomes a
 | |
|    full *cycle linear congruential generator*, in other words it
 | |
|    guarantees traversing all table bins in extreme case.
 | |
| 
 | |
|    According the Hull-Dobell theorem a generator
 | |
|    "Xnext = (a*Xprev + c) mod m" is a full cycle generator iff
 | |
|      o m and c are relatively prime
 | |
|      o a-1 is divisible by all prime factors of m
 | |
|      o a-1 is divisible by 4 if m is divisible by 4.
 | |
| 
 | |
|    For our case a is 5, c is 1, and m is a power of two.  */
 | |
| static inline st_index_t
 | |
| secondary_hash(st_index_t ind, st_table *tab, st_index_t *perterb)
 | |
| {
 | |
|     *perterb >>= 11;
 | |
|     ind = (ind << 2) + ind + *perterb + 1;
 | |
|     return hash_bin(ind, tab);
 | |
| }
 | |
| 
 | |
| /* Find an entry with HASH_VALUE and KEY in TABLE using a linear
 | |
|    search.  Return the index of the found entry in array `entries`.
 | |
|    If it is not found, return UNDEFINED_ENTRY_IND.  */
 | |
| static inline st_index_t
 | |
| find_entry(st_table *tab, st_hash_t hash_value, st_data_t key)
 | |
| {
 | |
|     st_index_t i, bound;
 | |
|     st_table_entry *entries;
 | |
| 
 | |
|     bound = tab->entries_bound;
 | |
|     entries = tab->entries;
 | |
|     for (i = tab->entries_start; i < bound; i++) {
 | |
| 	if (PTR_EQUAL(tab, &entries[i], hash_value, key))
 | |
| 	    return i;
 | |
|     }
 | |
|     return UNDEFINED_ENTRY_IND;
 | |
| }
 | |
| 
 | |
| /* Use the quadratic probing.  The method has a better data locality
 | |
|    but more collisions than the current approach.  In average it
 | |
|    results in a bit slower search.  */
 | |
| /*#define QUADRATIC_PROBE*/
 | |
| 
 | |
| /* Return index of entry with HASH_VALUE and KEY in table TAB.  If
 | |
|    there is no such entry, return UNDEFINED_ENTRY_IND.  */
 | |
| static st_index_t
 | |
| find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
 | |
| {
 | |
|     st_index_t ind;
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     st_index_t d;
 | |
| #else
 | |
|     st_index_t peterb;
 | |
| #endif
 | |
|     st_index_t bin;
 | |
|     st_table_entry *entries = tab->entries;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     st_assert(tab->bins != NULL);
 | |
|     ind = hash_bin(hash_value, tab);
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     d = 1;
 | |
| #else
 | |
|     peterb = hash_value;
 | |
| #endif
 | |
|     FOUND_BIN;
 | |
|     for (;;) {
 | |
|         bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | |
|         if (! EMPTY_OR_DELETED_BIN_P(bin)
 | |
|             && PTR_EQUAL(tab, &entries[bin - ENTRY_BASE], hash_value, key))
 | |
|             break;
 | |
|         else if (EMPTY_BIN_P(bin))
 | |
|             return UNDEFINED_ENTRY_IND;
 | |
| #ifdef QUADRATIC_PROBE
 | |
| 	ind = hash_bin(ind + d, tab);
 | |
| 	d++;
 | |
| #else
 | |
|         ind = secondary_hash(ind, tab, &peterb);
 | |
| #endif
 | |
|         COLLISION;
 | |
|     }
 | |
|     return bin;
 | |
| }
 | |
| 
 | |
| /* Find and return index of table TAB bin corresponding to an entry
 | |
|    with HASH_VALUE and KEY.  If there is no such bin, return
 | |
|    UNDEFINED_BIN_IND.  */
 | |
| static st_index_t
 | |
| find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
 | |
| {
 | |
|     st_index_t ind;
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     st_index_t d;
 | |
| #else
 | |
|     st_index_t peterb;
 | |
| #endif
 | |
|     st_index_t bin;
 | |
|     st_table_entry *entries = tab->entries;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     st_assert(tab->bins != NULL);
 | |
|     ind = hash_bin(hash_value, tab);
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     d = 1;
 | |
| #else
 | |
|     peterb = hash_value;
 | |
| #endif
 | |
|     FOUND_BIN;
 | |
|     for (;;) {
 | |
|         bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | |
|         if (! EMPTY_OR_DELETED_BIN_P(bin)
 | |
|             && PTR_EQUAL(tab, &entries[bin - ENTRY_BASE], hash_value, key))
 | |
|             break;
 | |
|         else if (EMPTY_BIN_P(bin))
 | |
|             return UNDEFINED_BIN_IND;
 | |
| #ifdef QUADRATIC_PROBE
 | |
| 	ind = hash_bin(ind + d, tab);
 | |
| 	d++;
 | |
| #else
 | |
|         ind = secondary_hash(ind, tab, &peterb);
 | |
| #endif
 | |
|         COLLISION;
 | |
|     }
 | |
|     return ind;
 | |
| }
 | |
| 
 | |
| /* Find and return index of table TAB bin corresponding to an entry
 | |
|    with HASH_VALUE and KEY.  The entry should be in the table
 | |
|    already.  */
 | |
| static st_index_t
 | |
| find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key)
 | |
| {
 | |
|     st_index_t ind;
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     st_index_t d;
 | |
| #else
 | |
|     st_index_t peterb;
 | |
| #endif
 | |
|     st_index_t bin;
 | |
|     st_table_entry *entries = tab->entries;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     st_assert(tab->bins != NULL);
 | |
|     ind = hash_bin(hash_value, tab);
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     d = 1;
 | |
| #else
 | |
|     peterb = hash_value;
 | |
| #endif
 | |
|     FOUND_BIN;
 | |
|     for (;;) {
 | |
|         bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | |
|         if (EMPTY_OR_DELETED_BIN_P(bin))
 | |
| 	    return ind;
 | |
| 	st_assert (! PTR_EQUAL(tab, &entries[bin - ENTRY_BASE], hash_value, key));
 | |
| #ifdef QUADRATIC_PROBE
 | |
| 	ind = hash_bin(ind + d, tab);
 | |
| 	d++;
 | |
| #else
 | |
|         ind = secondary_hash(ind, tab, &peterb);
 | |
| #endif
 | |
|         COLLISION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return index of table TAB bin for HASH_VALUE and KEY through
 | |
|    BIN_IND and the pointed value as the function result.  Reserve the
 | |
|    bin for inclusion of the corresponding entry into the table if it
 | |
|    is not there yet.  We always find such bin as bins array length is
 | |
|    bigger entries array.  Although we can reuse a deleted bin, the
 | |
|    result bin value is always empty if the table has no entry with
 | |
|    KEY.  Return the entries array index of the found entry or
 | |
|    UNDEFINED_ENTRY_IND if it is not found.  */
 | |
| static st_index_t
 | |
| find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
 | |
| 			       st_data_t key, st_index_t *bin_ind)
 | |
| {
 | |
|     st_index_t ind;
 | |
|     st_hash_t curr_hash_value = *hash_value;
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     st_index_t d;
 | |
| #else
 | |
|     st_index_t peterb;
 | |
| #endif
 | |
|     st_index_t entry_index;
 | |
|     st_index_t first_deleted_bin_ind;
 | |
|     st_table_entry *entries;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     st_assert(tab->bins != NULL);
 | |
|     st_assert(tab->entries_bound <= get_allocated_entries(tab));
 | |
|     st_assert(tab->entries_start <= tab->entries_bound);
 | |
|     ind = hash_bin(curr_hash_value, tab);
 | |
| #ifdef QUADRATIC_PROBE
 | |
|     d = 1;
 | |
| #else
 | |
|     peterb = curr_hash_value;
 | |
| #endif
 | |
|     FOUND_BIN;
 | |
|     first_deleted_bin_ind = UNDEFINED_BIN_IND;
 | |
|     entries = tab->entries;
 | |
|     for (;;) {
 | |
|         entry_index = get_bin(tab->bins, get_size_ind(tab), ind);
 | |
|         if (EMPTY_BIN_P(entry_index)) {
 | |
|             tab->num_entries++;
 | |
| 	    entry_index = UNDEFINED_ENTRY_IND;
 | |
|             if (first_deleted_bin_ind != UNDEFINED_BIN_IND) {
 | |
|                 /* We can reuse bin of a deleted entry.  */
 | |
|                 ind = first_deleted_bin_ind;
 | |
|                 MARK_BIN_EMPTY(tab, ind);
 | |
|             }
 | |
|             break;
 | |
| 	}
 | |
| 	else if (! DELETED_BIN_P(entry_index)) {
 | |
|             if (PTR_EQUAL(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key))
 | |
|                 break;
 | |
| 	}
 | |
| 	else if (first_deleted_bin_ind == UNDEFINED_BIN_IND)
 | |
|             first_deleted_bin_ind = ind;
 | |
| #ifdef QUADRATIC_PROBE
 | |
| 	ind = hash_bin(ind + d, tab);
 | |
| 	d++;
 | |
| #else
 | |
|         ind = secondary_hash(ind, tab, &peterb);
 | |
| #endif
 | |
|         COLLISION;
 | |
|     }
 | |
|     *bin_ind = ind;
 | |
|     return entry_index;
 | |
| }
 | |
| 
 | |
| /* Find an entry with KEY in table TAB.  Return non-zero if we found
 | |
|    it.  Set up *RECORD to the found entry record.  */
 | |
| int
 | |
| st_lookup(st_table *tab, st_data_t key, st_data_t *value)
 | |
| {
 | |
|     st_index_t bin;
 | |
|     st_hash_t hash = do_hash(key, tab);
 | |
| 
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash, key);
 | |
| 	if (bin == UNDEFINED_ENTRY_IND)
 | |
| 	    return 0;
 | |
|     }
 | |
|     else {
 | |
|         bin = find_table_entry_ind(tab, hash, key);
 | |
| 	if (bin == UNDEFINED_ENTRY_IND)
 | |
| 	    return 0;
 | |
| 	bin -= ENTRY_BASE;
 | |
|     }
 | |
|     if (value != 0)
 | |
|         *value = tab->entries[bin].record;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Find an entry with KEY in table TAB.  Return non-zero if we found
 | |
|    it.  Set up *RESULT to the found table entry key.  */
 | |
| int
 | |
| st_get_key(st_table *tab, st_data_t key, st_data_t *result)
 | |
| {
 | |
|     st_index_t bin;
 | |
|     st_hash_t hash = do_hash(key, tab);
 | |
| 
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash, key);
 | |
| 	if (bin == UNDEFINED_ENTRY_IND)
 | |
| 	    return 0;
 | |
|     }
 | |
|     else {
 | |
|         bin = find_table_entry_ind(tab, hash, key);
 | |
| 	if (bin == UNDEFINED_ENTRY_IND)
 | |
| 	    return 0;
 | |
| 	bin -= ENTRY_BASE;
 | |
|     }
 | |
|     if (result != 0)
 | |
|         *result = tab->entries[bin].key;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Check the table and rebuild it if it is necessary.  */
 | |
| static inline void
 | |
| rebuild_table_if_necessary (st_table *tab)
 | |
| {
 | |
|     st_index_t bound = tab->entries_bound;
 | |
| 
 | |
|     if (bound == get_allocated_entries(tab))
 | |
|         rebuild_table(tab);
 | |
|     st_assert(tab->entries_bound < get_allocated_entries(tab));
 | |
| }
 | |
| 
 | |
| /* Insert (KEY, VALUE) into table TAB and return zero.  If there is
 | |
|    already entry with KEY in the table, return nonzero and and update
 | |
|    the value of the found entry.  */
 | |
| int
 | |
| st_insert(st_table *tab, st_data_t key, st_data_t value)
 | |
| {
 | |
|     st_table_entry *entry;
 | |
|     st_index_t bin;
 | |
|     st_index_t ind;
 | |
|     st_hash_t hash_value;
 | |
|     st_index_t bin_ind;
 | |
|     int new_p;
 | |
| 
 | |
|     rebuild_table_if_necessary(tab);
 | |
|     hash_value = do_hash(key, tab);
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash_value, key);
 | |
| 	new_p = bin == UNDEFINED_ENTRY_IND;
 | |
| 	if (new_p)
 | |
| 	    tab->num_entries++;
 | |
| 	bin_ind = UNDEFINED_BIN_IND;
 | |
|     }
 | |
|     else {
 | |
|         bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
 | |
| 					     key, &bin_ind);
 | |
| 	new_p = bin == UNDEFINED_ENTRY_IND;
 | |
| 	bin -= ENTRY_BASE;
 | |
|     }
 | |
|     if (new_p) {
 | |
|         st_assert(tab->entries_bound < get_allocated_entries(tab));
 | |
| 	ind = tab->entries_bound++;
 | |
|         entry = &tab->entries[ind];
 | |
|         entry->hash = hash_value;
 | |
|         entry->key = key;
 | |
|         entry->record = value;
 | |
| 	if (bin_ind != UNDEFINED_BIN_IND)
 | |
| 	    set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | |
| #ifdef ST_DEBUG
 | |
| 	st_check(tab);
 | |
| #endif
 | |
|         return 0;
 | |
|     }
 | |
|     tab->entries[bin].record = value;
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Insert (KEY, VALUE, HASH) into table TAB.  The table should not have
 | |
|    entry with KEY before the insertion.  */
 | |
| static inline void
 | |
| st_add_direct_with_hash(st_table *tab,
 | |
| 			st_data_t key, st_data_t value, st_hash_t hash)
 | |
| {
 | |
|     st_table_entry *entry;
 | |
|     st_index_t ind;
 | |
|     st_index_t bin_ind;
 | |
| 
 | |
|     rebuild_table_if_necessary(tab);
 | |
|     ind = tab->entries_bound++;
 | |
|     entry = &tab->entries[ind];
 | |
|     entry->hash = hash;
 | |
|     entry->key = key;
 | |
|     entry->record = value;
 | |
|     tab->num_entries++;
 | |
|     if (tab->bins != NULL) {
 | |
|         bin_ind = find_table_bin_ind_direct(tab, hash, key);
 | |
| 	st_assert (bin_ind != UNDEFINED_BIN_IND);
 | |
| 	set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | |
|     }
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Insert (KEY, VALUE) into table TAB.  The table should not have
 | |
|    entry with KEY before the insertion.  */
 | |
| void
 | |
| st_add_direct(st_table *tab, st_data_t key, st_data_t value)
 | |
| {
 | |
|     st_hash_t hash_value;
 | |
| 
 | |
|     hash_value = do_hash(key, tab);
 | |
|     st_add_direct_with_hash(tab, key, value, hash_value);
 | |
| }
 | |
| 
 | |
| /* Insert (FUNC(KEY), VALUE) into table TAB and return zero.  If
 | |
|    there is already entry with KEY in the table, return nonzero and
 | |
|    and update the value of the found entry.  */
 | |
| int
 | |
| st_insert2(st_table *tab, st_data_t key, st_data_t value,
 | |
|            st_data_t (*func)(st_data_t))
 | |
| {
 | |
|     st_table_entry *entry;
 | |
|     st_index_t bin;
 | |
|     st_index_t ind, check;
 | |
|     st_hash_t hash_value;
 | |
|     st_index_t bin_ind;
 | |
|     int new_p;
 | |
| 
 | |
|     rebuild_table_if_necessary (tab);
 | |
|     hash_value = do_hash(key, tab);
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash_value, key);
 | |
| 	new_p = bin == UNDEFINED_ENTRY_IND;
 | |
| 	if (new_p)
 | |
| 	    tab->num_entries++;
 | |
| 	bin_ind = UNDEFINED_BIN_IND;
 | |
|     }
 | |
|     else {
 | |
|         bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
 | |
| 					     key, &bin_ind);
 | |
| 	new_p = bin == UNDEFINED_ENTRY_IND;
 | |
| 	bin -= ENTRY_BASE;
 | |
|     }
 | |
|     if (new_p) {
 | |
|         st_assert(tab->entries_bound < get_allocated_entries(tab));
 | |
|         check = tab->rebuilds_num;
 | |
|         key = (*func)(key);
 | |
|         st_assert(check == tab->rebuilds_num);
 | |
| 	st_assert(do_hash(key, tab) == hash_value);
 | |
|         ind = tab->entries_bound++;
 | |
|         entry = &tab->entries[ind];
 | |
|         entry->hash = hash_value;
 | |
|         entry->key = key;
 | |
|         entry->record = value;
 | |
| 	if (bin_ind != UNDEFINED_BIN_IND)
 | |
| 	    set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | |
| #ifdef ST_DEBUG
 | |
| 	st_check(tab);
 | |
| #endif
 | |
|         return 0;
 | |
|     }
 | |
|     tab->entries[bin].record = value;
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Create and return a copy of table OLD_TAB.  */
 | |
| st_table *
 | |
| st_copy(st_table *old_tab)
 | |
| {
 | |
|     st_table *new_tab;
 | |
| 
 | |
|     new_tab = (st_table *) malloc(sizeof(st_table));
 | |
|     *new_tab = *old_tab;
 | |
|     if (old_tab->bins == NULL)
 | |
|         new_tab->bins = NULL;
 | |
|     else
 | |
|         new_tab->bins = (st_index_t *) malloc(bins_size(old_tab));
 | |
|     new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab)
 | |
| 						 * sizeof(st_table_entry));
 | |
|     MEMCPY(new_tab->entries, old_tab->entries, st_table_entry,
 | |
| 	   get_allocated_entries(old_tab));
 | |
|     if (old_tab->bins != NULL)
 | |
|         MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab));
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(new_tab);
 | |
| #endif
 | |
|     return new_tab;
 | |
| }
 | |
| 
 | |
| /* Update the entries start of table TAB after removing an entry
 | |
|    with index N in the array entries.  */
 | |
| static inline void
 | |
| update_range_for_deleted(st_table *tab, st_index_t n)
 | |
| {
 | |
|     /* Do not update entries_bound here.  Otherwise, we can fill all
 | |
|        bins by deleted entry value before rebuilding the table.  */
 | |
|     if (tab->entries_start == n)
 | |
|         tab->entries_start = n + 1;
 | |
| }
 | |
| 
 | |
| /* Delete entry with KEY from table TAB, set up *VALUE (unless
 | |
|    VALUE is zero) from deleted table entry, and return non-zero.  If
 | |
|    there is no entry with KEY in the table, clear *VALUE (unless VALUE
 | |
|    is zero), and return zero.  */
 | |
| static int
 | |
| st_general_delete(st_table *tab, st_data_t *key, st_data_t *value)
 | |
| {
 | |
|     st_table_entry *entry;
 | |
|     st_index_t bin;
 | |
|     st_index_t bin_ind;
 | |
|     st_hash_t hash;
 | |
| 
 | |
|     st_assert(tab != NULL);
 | |
|     hash = do_hash(*key, tab);
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash, *key);
 | |
| 	if (bin == UNDEFINED_ENTRY_IND) {
 | |
| 	    if (value != 0) *value = 0;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
|         bin_ind = find_table_bin_ind(tab, hash, *key);
 | |
| 	if (bin_ind == UNDEFINED_BIN_IND) {
 | |
| 	    if (value != 0) *value = 0;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | |
| 	MARK_BIN_DELETED(tab, bin_ind);
 | |
|     }
 | |
|     entry = &tab->entries[bin];
 | |
|     *key = entry->key;
 | |
|     if (value != 0) *value = entry->record;
 | |
|     MARK_ENTRY_DELETED(entry);
 | |
|     tab->num_entries--;
 | |
|     update_range_for_deleted(tab, bin);
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| st_delete(st_table *tab, st_data_t *key, st_data_t *value)
 | |
| {
 | |
|     return st_general_delete(tab, key, value);
 | |
| }
 | |
| 
 | |
| /* The function and other functions with suffix '_safe' or '_check'
 | |
|    are originated from the previous implementation of the hash tables.
 | |
|    It was necessary for correct deleting entries during traversing
 | |
|    tables.  The current implementation permits deletion during
 | |
|    traversing without a specific way to do this.  */
 | |
| int
 | |
| st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value,
 | |
|                st_data_t never ATTRIBUTE_UNUSED)
 | |
| {
 | |
|     return st_general_delete(tab, key, value);
 | |
| }
 | |
| 
 | |
| /* If table TAB is empty, clear *VALUE (unless VALUE is zero), and
 | |
|    return zero.  Otherwise, remove the first entry in the table.
 | |
|    Return its key through KEY and its record through VALUE (unless
 | |
|    VALUE is zero).  */
 | |
| int
 | |
| st_shift(st_table *tab, st_data_t *key, st_data_t *value)
 | |
| {
 | |
|     st_index_t i, bound;
 | |
|     st_index_t bin;
 | |
|     st_table_entry *entries, *curr_entry_ptr;
 | |
|     st_index_t bin_ind;
 | |
| 
 | |
|     entries = tab->entries;
 | |
|     bound = tab->entries_bound;
 | |
|     for (i = tab->entries_start; i < bound; i++) {
 | |
|         curr_entry_ptr = &entries[i];
 | |
| 	if (! DELETED_ENTRY_P(curr_entry_ptr)) {
 | |
| 	    if (value != 0) *value = curr_entry_ptr->record;
 | |
| 	    *key = curr_entry_ptr->key;
 | |
| 	    if (tab->bins == NULL) {
 | |
| 	        bin = find_entry(tab, curr_entry_ptr->hash, curr_entry_ptr->key);
 | |
| 		st_assert(bin != UNDEFINED_ENTRY_IND);
 | |
| 		st_assert(&entries[bin] == curr_entry_ptr);
 | |
| 	    }
 | |
| 	    else {
 | |
| 	        bin_ind = find_table_bin_ind(tab, curr_entry_ptr->hash,
 | |
| 					     curr_entry_ptr->key);
 | |
| 		st_assert(bin_ind != UNDEFINED_BIN_IND);
 | |
| 		st_assert(&entries[get_bin(tab->bins, get_size_ind(tab), bin_ind)
 | |
| 				      - ENTRY_BASE] == curr_entry_ptr);
 | |
| 		MARK_BIN_DELETED(tab, bin_ind);
 | |
| 	    }
 | |
| 	    MARK_ENTRY_DELETED(curr_entry_ptr);
 | |
| 	    tab->num_entries--;
 | |
| 	    update_range_for_deleted(tab, i);
 | |
| #ifdef ST_DEBUG
 | |
| 	    st_check(tab);
 | |
| #endif
 | |
| 	    return 1;
 | |
| 	}
 | |
|     }
 | |
|     st_assert(tab->num_entries == 0);
 | |
|     tab->entries_start = tab->entries_bound = 0;
 | |
|     if (value != 0) *value = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* See comments for function st_delete_safe.  */
 | |
| void
 | |
| st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED,
 | |
|                 st_data_t never ATTRIBUTE_UNUSED)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* Find entry with KEY in table TAB, call FUNC with the key and the
 | |
|    value of the found entry, and non-zero as the 3rd argument.  If the
 | |
|    entry is not found, call FUNC with KEY, and 2 zero arguments.  If
 | |
|    the call returns ST_CONTINUE, the table will have an entry with key
 | |
|    and value returned by FUNC through the 1st and 2nd parameters.  If
 | |
|    the call of FUNC returns ST_DELETE, the table will not have entry
 | |
|    with KEY.  The function returns flag of that the entry with KEY was
 | |
|    in the table before the call.  */
 | |
| int
 | |
| st_update(st_table *tab, st_data_t key,
 | |
| 	  st_update_callback_func *func, st_data_t arg)
 | |
| {
 | |
|     st_table_entry *entry = NULL; /* to avoid uninitialized value warning */
 | |
|     st_index_t bin = 0; /* Ditto */
 | |
|     st_table_entry *entries;
 | |
|     st_index_t bin_ind;
 | |
|     st_data_t value = 0, old_key;
 | |
|     st_index_t check;
 | |
|     int retval, existing;
 | |
|     st_hash_t hash = do_hash(key, tab);
 | |
| 
 | |
|     entries = tab->entries;
 | |
|     if (tab->bins == NULL) {
 | |
|         bin = find_entry(tab, hash, key);
 | |
| 	existing = bin != UNDEFINED_ENTRY_IND;
 | |
| 	entry = &entries[bin];
 | |
| 	bin_ind = UNDEFINED_BIN_IND;
 | |
|     }
 | |
|     else {
 | |
|         bin_ind = find_table_bin_ind(tab, hash, key);
 | |
| 	existing = bin_ind != UNDEFINED_BIN_IND;
 | |
| 	if (existing) {
 | |
| 	    bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | |
| 	    entry = &entries[bin];
 | |
| 	}
 | |
|     }
 | |
|     if (existing) {
 | |
|         key = entry->key;
 | |
|         value = entry->record;
 | |
|     }
 | |
|     old_key = key;
 | |
|     check = tab->rebuilds_num;
 | |
|     retval = (*func)(&key, &value, arg, existing);
 | |
|     st_assert(check == tab->rebuilds_num);
 | |
|     switch (retval) {
 | |
|       case ST_CONTINUE:
 | |
|         if (! existing) {
 | |
| 	    st_add_direct_with_hash(tab, key, value, hash);
 | |
|             break;
 | |
|         }
 | |
|         if (old_key != key) {
 | |
|             entry->key = key;
 | |
|         }
 | |
|         entry->record = value;
 | |
|         break;
 | |
|       case ST_DELETE:
 | |
|         if (existing) {
 | |
| 	    if (bin_ind != UNDEFINED_BIN_IND)
 | |
| 	        MARK_BIN_DELETED(tab, bin_ind);
 | |
|             MARK_ENTRY_DELETED(entry);
 | |
| 	    tab->num_entries--;
 | |
| 	    update_range_for_deleted(tab, bin);
 | |
| #ifdef ST_DEBUG
 | |
| 	    st_check(tab);
 | |
| #endif
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return existing;
 | |
| }
 | |
| 
 | |
| /* Traverse all entries in table TAB calling FUNC with current entry
 | |
|    key and value and zero.  If the call returns ST_STOP, stop
 | |
|    traversing.  If the call returns ST_DELETE, delete the current
 | |
|    entry from the table.  In case of ST_CHECK or ST_CONTINUE, continue
 | |
|    traversing.  The function returns zero unless an error is found.
 | |
|    CHECK_P is flag of st_foreach_check call.  The behavior is a bit
 | |
|    different for ST_CHECK and when the current element is removed
 | |
|    during traversing.  */
 | |
| static inline int
 | |
| st_general_foreach(st_table *tab, int (*func)(ANYARGS), st_data_t arg,
 | |
| 		   int check_p)
 | |
| {
 | |
|     st_index_t bin;
 | |
|     st_index_t bin_ind;
 | |
|     st_table_entry *entries, *curr_entry_ptr;
 | |
|     enum st_retval retval;
 | |
|     st_index_t i, rebuilds_num;
 | |
|     st_hash_t hash;
 | |
|     st_data_t key;
 | |
|     int error_p, packed_p = tab->bins == NULL;
 | |
| 
 | |
|     st_assert(tab->entries_start <= tab->entries_bound);
 | |
|     entries = tab->entries;
 | |
|     /* The bound can change inside the loop even without rebuilding
 | |
|        the table, e.g. by an entry inesrtion.  */
 | |
|     for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | |
|         curr_entry_ptr = &entries[i];
 | |
| 	if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
 | |
| 	    continue;
 | |
| 	key = curr_entry_ptr->key;
 | |
| 	rebuilds_num = tab->rebuilds_num;
 | |
| 	hash = curr_entry_ptr->hash;
 | |
| 	retval = (*func)(key, curr_entry_ptr->record, arg, 0);
 | |
| 	if (rebuilds_num != tab->rebuilds_num) {
 | |
| 	    entries = tab->entries;
 | |
| 	    packed_p = tab->bins == NULL;
 | |
| 	    if (packed_p) {
 | |
| 	        i = find_entry(tab, hash, key);
 | |
| 		error_p = i == UNDEFINED_ENTRY_IND;
 | |
| 	    }
 | |
| 	    else {
 | |
| 	        i = find_table_entry_ind(tab, hash, key);
 | |
| 		error_p = i == UNDEFINED_ENTRY_IND;
 | |
| 		i -= ENTRY_BASE;
 | |
| 	    }
 | |
| 	    if (error_p && check_p) {
 | |
| 	        /* call func with error notice */
 | |
| 	        retval = (*func)(0, 0, arg, 1);
 | |
| #ifdef ST_DEBUG
 | |
| 		st_check(tab);
 | |
| #endif
 | |
| 		return 1;
 | |
| 	    }
 | |
| 	    curr_entry_ptr = &entries[i];
 | |
| 	}
 | |
| 	switch (retval) {
 | |
| 	  case ST_CONTINUE:
 | |
| 	    break;
 | |
| 	  case ST_CHECK:
 | |
| 	    if (check_p)
 | |
| 		break;
 | |
| 	  case ST_STOP:
 | |
| #ifdef ST_DEBUG
 | |
| 	    st_check(tab);
 | |
| #endif
 | |
| 	    return 0;
 | |
| 	  case ST_DELETE:
 | |
| 	    if (packed_p) {
 | |
| 	        bin = find_entry(tab, hash, curr_entry_ptr->key);
 | |
| 		if (bin == UNDEFINED_ENTRY_IND)
 | |
| 		    break;
 | |
| 	    }
 | |
| 	    else {
 | |
| 	        bin_ind = find_table_bin_ind(tab, hash, curr_entry_ptr->key);
 | |
| 		if (bin_ind == UNDEFINED_BIN_IND)
 | |
| 		    break;
 | |
| 		bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | |
| 		MARK_BIN_DELETED(tab, bin_ind);
 | |
| 	    }
 | |
| 	    st_assert(&entries[bin] == curr_entry_ptr);
 | |
| 	    MARK_ENTRY_DELETED(curr_entry_ptr);
 | |
| 	    tab->num_entries--;
 | |
| 	    update_range_for_deleted(tab, bin);
 | |
| #ifdef ST_DEBUG
 | |
| 	    st_check(tab);
 | |
| #endif
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| #ifdef ST_DEBUG
 | |
|     st_check(tab);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| st_foreach(st_table *tab, int (*func)(ANYARGS), st_data_t arg)
 | |
| {
 | |
|     return st_general_foreach(tab, func, arg, FALSE);
 | |
| }
 | |
| 
 | |
| /* See comments for function st_delete_safe.  */
 | |
| int
 | |
| st_foreach_check(st_table *tab, int (*func)(ANYARGS), st_data_t arg,
 | |
|                  st_data_t never ATTRIBUTE_UNUSED)
 | |
| {
 | |
|     return st_general_foreach(tab, func, arg, TRUE);
 | |
| }
 | |
| 
 | |
| /* Set up array KEYS by at most SIZE keys of head table TAB entries.
 | |
|    Return the number of keys set up in array KEYS.  */
 | |
| static inline st_index_t
 | |
| st_general_keys(st_table *tab, st_data_t *keys, st_index_t size)
 | |
| {
 | |
|     st_index_t i, bound;
 | |
|     st_data_t key, *keys_start, *keys_end;
 | |
|     st_table_entry *curr_entry_ptr, *entries = tab->entries;
 | |
| 
 | |
|     bound = tab->entries_bound;
 | |
|     keys_start = keys;
 | |
|     keys_end = keys + size;
 | |
|     for (i = tab->entries_start; i < bound; i++) {
 | |
| 	if (keys == keys_end)
 | |
| 	    break;
 | |
| 	curr_entry_ptr = &entries[i];
 | |
| 	key = curr_entry_ptr->key;
 | |
|         if (! DELETED_ENTRY_P(curr_entry_ptr))
 | |
| 	    *keys++ = key;
 | |
|     }
 | |
| 
 | |
|     return keys - keys_start;
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_keys(st_table *tab, st_data_t *keys, st_index_t size)
 | |
| {
 | |
|     return st_general_keys(tab, keys, size);
 | |
| }
 | |
| 
 | |
| /* See comments for function st_delete_safe.  */
 | |
| st_index_t
 | |
| st_keys_check(st_table *tab, st_data_t *keys, st_index_t size,
 | |
|               st_data_t never ATTRIBUTE_UNUSED)
 | |
| {
 | |
|     return st_general_keys(tab, keys, size);
 | |
| }
 | |
| 
 | |
| /* Set up array VALUES by at most SIZE values of head table TAB
 | |
|    entries.  Return the number of values set up in array VALUES.  */
 | |
| static inline st_index_t
 | |
| st_general_values(st_table *tab, st_data_t *values, st_index_t size)
 | |
| {
 | |
|     st_index_t i, bound;
 | |
|     st_data_t *values_start, *values_end;
 | |
|     st_table_entry *curr_entry_ptr, *entries = tab->entries;
 | |
| 
 | |
|     values_start = values;
 | |
|     values_end = values + size;
 | |
|     bound = tab->entries_bound;
 | |
|     st_assert(bound != 0);
 | |
|     for (i = tab->entries_start; i < bound; i++) {
 | |
| 	if (values == values_end)
 | |
| 	    break;
 | |
|         curr_entry_ptr = &entries[i];
 | |
|         if (! DELETED_ENTRY_P(curr_entry_ptr))
 | |
| 	    *values++ = curr_entry_ptr->record;
 | |
|     }
 | |
| 
 | |
|     return values - values_start;
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_values(st_table *tab, st_data_t *values, st_index_t size)
 | |
| {
 | |
|     return st_general_values(tab, values, size);
 | |
| }
 | |
| 
 | |
| /* See comments for function st_delete_safe.  */
 | |
| st_index_t
 | |
| st_values_check(st_table *tab, st_data_t *values, st_index_t size,
 | |
| 		st_data_t never ATTRIBUTE_UNUSED)
 | |
| {
 | |
|     return st_general_values(tab, values, size);
 | |
| }
 | |
| 
 | |
| #define FNV1_32A_INIT 0x811c9dc5
 | |
| 
 | |
| /*
 | |
|  * 32 bit magic FNV-1a prime
 | |
|  */
 | |
| #define FNV_32_PRIME 0x01000193
 | |
| 
 | |
| #ifndef UNALIGNED_WORD_ACCESS
 | |
| # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
 | |
|      defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
 | |
|      defined(__powerpc64__) || \
 | |
|      defined(__mc68020__)
 | |
| #   define UNALIGNED_WORD_ACCESS 1
 | |
| # endif
 | |
| #endif
 | |
| #ifndef UNALIGNED_WORD_ACCESS
 | |
| # define UNALIGNED_WORD_ACCESS 0
 | |
| #endif
 | |
| 
 | |
| /* This hash function is quite simplified MurmurHash3
 | |
|  * Simplification is legal, cause most of magic still happens in finalizator.
 | |
|  * And finalizator is almost the same as in MurmurHash3 */
 | |
| #define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y))
 | |
| #define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n)))
 | |
| 
 | |
| #if ST_INDEX_BITS <= 32
 | |
| #define C1 (st_index_t)0xcc9e2d51
 | |
| #define C2 (st_index_t)0x1b873593
 | |
| #else
 | |
| #define C1 BIG_CONSTANT(0x87c37b91,0x114253d5);
 | |
| #define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f);
 | |
| #endif
 | |
| static inline st_index_t
 | |
| murmur_step(st_index_t h, st_index_t k)
 | |
| {
 | |
| #if ST_INDEX_BITS <= 32
 | |
| #define r1 (17)
 | |
| #define r2 (11)
 | |
| #else
 | |
| #define r1 (33)
 | |
| #define r2 (24)
 | |
| #endif
 | |
|     k *= C1;
 | |
|     h ^= ROTL(k, r1);
 | |
|     h *= C2;
 | |
|     h = ROTL(h, r2);
 | |
|     return h;
 | |
| }
 | |
| #undef r1
 | |
| #undef r2
 | |
| 
 | |
| static inline st_index_t
 | |
| murmur_finish(st_index_t h)
 | |
| {
 | |
| #if ST_INDEX_BITS <= 32
 | |
| #define r1 (16)
 | |
| #define r2 (13)
 | |
| #define r3 (16)
 | |
|     const st_index_t c1 = 0x85ebca6b;
 | |
|     const st_index_t c2 = 0xc2b2ae35;
 | |
| #else
 | |
| /* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */
 | |
| #define r1 (30)
 | |
| #define r2 (27)
 | |
| #define r3 (31)
 | |
|     const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9);
 | |
|     const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb);
 | |
| #endif
 | |
| #if ST_INDEX_BITS > 64
 | |
|     h ^= h >> 64;
 | |
|     h *= c2;
 | |
|     h ^= h >> 65;
 | |
| #endif
 | |
|     h ^= h >> r1;
 | |
|     h *= c1;
 | |
|     h ^= h >> r2;
 | |
|     h *= c2;
 | |
|     h ^= h >> r3;
 | |
|     return h;
 | |
| }
 | |
| #undef r1
 | |
| #undef r2
 | |
| #undef r3
 | |
| 
 | |
| st_index_t
 | |
| st_hash(const void *ptr, size_t len, st_index_t h)
 | |
| {
 | |
|     const char *data = ptr;
 | |
|     st_index_t t = 0;
 | |
|     size_t l = len;
 | |
| 
 | |
| #define data_at(n) (st_index_t)((unsigned char)data[(n)])
 | |
| #define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
 | |
| #if SIZEOF_ST_INDEX_T > 4
 | |
| #define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
 | |
| #if SIZEOF_ST_INDEX_T > 8
 | |
| #define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
 | |
|     UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
 | |
| #define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
 | |
| #endif
 | |
| #define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
 | |
| #else
 | |
| #define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
 | |
| #endif
 | |
| #undef SKIP_TAIL
 | |
|     if (len >= sizeof(st_index_t)) {
 | |
| #if !UNALIGNED_WORD_ACCESS
 | |
| 	int align = (int)((st_data_t)data % sizeof(st_index_t));
 | |
| 	if (align) {
 | |
| 	    st_index_t d = 0;
 | |
| 	    int sl, sr, pack;
 | |
| 
 | |
| 	    switch (align) {
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| # define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
 | |
| 		t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
 | |
| #else
 | |
| # define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1:	\
 | |
| 		t |= data_at(n) << CHAR_BIT*(n)
 | |
| #endif
 | |
| 		UNALIGNED_ADD_ALL;
 | |
| #undef UNALIGNED_ADD
 | |
| 	    }
 | |
| 
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| 	    t >>= (CHAR_BIT * align) - CHAR_BIT;
 | |
| #else
 | |
| 	    t <<= (CHAR_BIT * align);
 | |
| #endif
 | |
| 
 | |
| 	    data += sizeof(st_index_t)-align;
 | |
| 	    len -= sizeof(st_index_t)-align;
 | |
| 
 | |
| 	    sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
 | |
| 	    sr = CHAR_BIT * align;
 | |
| 
 | |
| 	    while (len >= sizeof(st_index_t)) {
 | |
| 		d = *(st_index_t *)data;
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| 		t = (t << sr) | (d >> sl);
 | |
| #else
 | |
| 		t = (t >> sr) | (d << sl);
 | |
| #endif
 | |
| 		h = murmur_step(h, t);
 | |
| 		t = d;
 | |
| 		data += sizeof(st_index_t);
 | |
| 		len -= sizeof(st_index_t);
 | |
| 	    }
 | |
| 
 | |
| 	    pack = len < (size_t)align ? (int)len : align;
 | |
| 	    d = 0;
 | |
| 	    switch (pack) {
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| # define UNALIGNED_ADD(n) case (n) + 1: \
 | |
| 		d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
 | |
| #else
 | |
| # define UNALIGNED_ADD(n) case (n) + 1: \
 | |
| 		d |= data_at(n) << CHAR_BIT*(n)
 | |
| #endif
 | |
| 		UNALIGNED_ADD_ALL;
 | |
| #undef UNALIGNED_ADD
 | |
| 	    }
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| 	    t = (t << sr) | (d >> sl);
 | |
| #else
 | |
| 	    t = (t >> sr) | (d << sl);
 | |
| #endif
 | |
| 
 | |
| 	    if (len < (size_t)align) goto skip_tail;
 | |
| # define SKIP_TAIL 1
 | |
| 	    h = murmur_step(h, t);
 | |
| 	    data += pack;
 | |
| 	    len -= pack;
 | |
| 	}
 | |
| 	else
 | |
| #endif
 | |
| #ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED
 | |
| #define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t))
 | |
| #else
 | |
| #define aligned_data data
 | |
| #endif
 | |
| 	{
 | |
| 	    do {
 | |
| 		h = murmur_step(h, *(st_index_t *)aligned_data);
 | |
| 		data += sizeof(st_index_t);
 | |
| 		len -= sizeof(st_index_t);
 | |
| 	    } while (len >= sizeof(st_index_t));
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     t = 0;
 | |
|     switch (len) {
 | |
| #if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8
 | |
|     /* in this case byteorder doesn't really matter */
 | |
| #if SIZEOF_ST_INDEX_T > 4
 | |
|       case 7: t |= data_at(6) << 48;
 | |
|       case 6: t |= data_at(5) << 40;
 | |
|       case 5: t |= data_at(4) << 32;
 | |
|       case 4:
 | |
| 	t |= (st_index_t)*(uint32_t*)aligned_data;
 | |
| 	goto skip_tail;
 | |
| # define SKIP_TAIL 1
 | |
| #endif
 | |
|       case 3: t |= data_at(2) << 16;
 | |
|       case 2: t |= data_at(1) << 8;
 | |
|       case 1: t |= data_at(0);
 | |
| #else
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| # define UNALIGNED_ADD(n) case (n) + 1: \
 | |
| 	t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
 | |
| #else
 | |
| # define UNALIGNED_ADD(n) case (n) + 1: \
 | |
| 	t |= data_at(n) << CHAR_BIT*(n)
 | |
| #endif
 | |
| 	UNALIGNED_ADD_ALL;
 | |
| #undef UNALIGNED_ADD
 | |
| #endif
 | |
| #ifdef SKIP_TAIL
 | |
|       skip_tail:
 | |
| #endif
 | |
| 	h ^= t; h -= ROTL(t, 7);
 | |
| 	h *= C2;
 | |
|     }
 | |
|     h ^= l;
 | |
| #undef aligned_data
 | |
| 
 | |
|     return murmur_finish(h);
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_hash_uint32(st_index_t h, uint32_t i)
 | |
| {
 | |
|     return murmur_step(h, i);
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_hash_uint(st_index_t h, st_index_t i)
 | |
| {
 | |
|     i += h;
 | |
| /* no matter if it is BigEndian or LittleEndian,
 | |
|  * we hash just integers */
 | |
| #if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
 | |
|     h = murmur_step(h, i >> 8*8);
 | |
| #endif
 | |
|     h = murmur_step(h, i);
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_hash_end(st_index_t h)
 | |
| {
 | |
|     h = murmur_finish(h);
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| #undef st_hash_start
 | |
| st_index_t
 | |
| st_hash_start(st_index_t h)
 | |
| {
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| static st_index_t
 | |
| strhash(st_data_t arg)
 | |
| {
 | |
|     register const char *string = (const char *)arg;
 | |
|     return st_hash(string, strlen(string), FNV1_32A_INIT);
 | |
| }
 | |
| 
 | |
| int
 | |
| st_locale_insensitive_strcasecmp(const char *s1, const char *s2)
 | |
| {
 | |
|     unsigned int c1, c2;
 | |
| 
 | |
|     while (1) {
 | |
|         c1 = (unsigned char)*s1++;
 | |
|         c2 = (unsigned char)*s2++;
 | |
|         if (c1 == '\0' || c2 == '\0') {
 | |
|             if (c1 != '\0') return 1;
 | |
|             if (c2 != '\0') return -1;
 | |
|             return 0;
 | |
|         }
 | |
|         if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
 | |
|         if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
 | |
|         if (c1 != c2) {
 | |
|             if (c1 > c2)
 | |
|                 return 1;
 | |
|             else
 | |
|                 return -1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n)
 | |
| {
 | |
|     unsigned int c1, c2;
 | |
| 
 | |
|     while (n--) {
 | |
|         c1 = (unsigned char)*s1++;
 | |
|         c2 = (unsigned char)*s2++;
 | |
|         if (c1 == '\0' || c2 == '\0') {
 | |
|             if (c1 != '\0') return 1;
 | |
|             if (c2 != '\0') return -1;
 | |
|             return 0;
 | |
|         }
 | |
|         if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
 | |
|         if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
 | |
|         if (c1 != c2) {
 | |
|             if (c1 > c2)
 | |
|                 return 1;
 | |
|             else
 | |
|                 return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| PUREFUNC(static st_index_t strcasehash(st_data_t));
 | |
| static st_index_t
 | |
| strcasehash(st_data_t arg)
 | |
| {
 | |
|     register const char *string = (const char *)arg;
 | |
|     register st_index_t hval = FNV1_32A_INIT;
 | |
| 
 | |
|     /*
 | |
|      * FNV-1a hash each octet in the buffer
 | |
|      */
 | |
|     while (*string) {
 | |
| 	unsigned int c = (unsigned char)*string++;
 | |
| 	if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
 | |
| 	hval ^= c;
 | |
| 
 | |
| 	/* multiply by the 32 bit FNV magic prime mod 2^32 */
 | |
| 	hval *= FNV_32_PRIME;
 | |
|     }
 | |
|     return hval;
 | |
| }
 | |
| 
 | |
| int
 | |
| st_numcmp(st_data_t x, st_data_t y)
 | |
| {
 | |
|     return x != y;
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| st_numhash(st_data_t n)
 | |
| {
 | |
|     enum {s1 = 11, s2 = 3};
 | |
|     return (st_index_t)((n>>s1|(n<<s2)) ^ (n>>s2));
 | |
| }
 | |
| 
 | |
| /* Expand TAB to be suitable for holding SIZ entries in total.
 | |
|    Pre-existing entries remain not deleted inside of TAB, but its bins
 | |
|    are cleared to expect future reconstruction. See rehash below. */
 | |
| static void
 | |
| st_expand_table(st_table *tab, st_index_t siz)
 | |
| {
 | |
|     st_table *tmp;
 | |
|     st_index_t n;
 | |
| 
 | |
|     if (siz <= get_allocated_entries(tab))
 | |
|         return; /* enough room already */
 | |
| 
 | |
|     tmp = st_init_table_with_size(tab->type, siz);
 | |
|     n = get_allocated_entries(tab);
 | |
|     MEMCPY(tmp->entries, tab->entries, st_table_entry, n);
 | |
|     free(tab->entries);
 | |
|     if (tab->bins != NULL)
 | |
|         free(tab->bins);
 | |
|     if (tmp->bins != NULL)
 | |
|         free(tmp->bins);
 | |
|     tab->entry_power = tmp->entry_power;
 | |
|     tab->bin_power = tmp->bin_power;
 | |
|     tab->size_ind = tmp->size_ind;
 | |
|     tab->entries = tmp->entries;
 | |
|     tab->bins = NULL;
 | |
|     tab->rebuilds_num++;
 | |
|     free(tmp);
 | |
| }
 | |
| 
 | |
| /* Rehash using linear search. */
 | |
| static void
 | |
| st_rehash_linear(st_table *tab)
 | |
| {
 | |
|     st_index_t i, j;
 | |
|     st_table_entry *p, *q;
 | |
|     if (tab->bins) {
 | |
|         free(tab->bins);
 | |
|         tab->bins = NULL;
 | |
|     }
 | |
|     for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | |
|         p = &tab->entries[i];
 | |
|         if (DELETED_ENTRY_P(p))
 | |
|             continue;
 | |
|         for (j = i + 1; j < tab->entries_bound; j++) {
 | |
|             q = &tab->entries[j];
 | |
|             if (DELETED_ENTRY_P(q))
 | |
|                 continue;
 | |
|             if (PTR_EQUAL(tab, p, q->hash, q->key)) {
 | |
|                 st_assert(p < q);
 | |
|                 *p = *q;
 | |
|                 MARK_ENTRY_DELETED(q);
 | |
|                 tab->num_entries--;
 | |
|                 update_range_for_deleted(tab, j);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Rehash using index */
 | |
| static void
 | |
| st_rehash_indexed(st_table *tab)
 | |
| {
 | |
|     st_index_t i;
 | |
|     st_index_t const n = bins_size(tab);
 | |
|     unsigned int const size_ind = get_size_ind(tab);
 | |
|     st_index_t *bins = realloc(tab->bins, n);
 | |
|     st_assert(bins != NULL);
 | |
|     tab->bins = bins;
 | |
|     initialize_bins(tab);
 | |
|     for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | |
|         st_table_entry *p = &tab->entries[i];
 | |
|         st_index_t ind;
 | |
| #ifdef QUADRATIC_PROBE
 | |
|         st_index_t d = 1;
 | |
| #else
 | |
|         st_index_t peterb = p->hash;
 | |
| #endif
 | |
| 
 | |
|         if (DELETED_ENTRY_P(p))
 | |
|             continue;
 | |
| 
 | |
|         ind = hash_bin(p->hash, tab);
 | |
|         for(;;) {
 | |
|             st_index_t bin = get_bin(bins, size_ind, ind);
 | |
|             st_table_entry *q = &tab->entries[bin - ENTRY_BASE];
 | |
|             if (EMPTY_OR_DELETED_BIN_P(bin)) {
 | |
|                 /* ok, new room */
 | |
|                 set_bin(bins, size_ind, ind, i + ENTRY_BASE);
 | |
|                 break;
 | |
|             }
 | |
|             else if (PTR_EQUAL(tab, q, p->hash, p->key)) {
 | |
|                 /* duplicated key; delete it */
 | |
|                 st_assert(q < p);
 | |
|                 q->record = p->record;
 | |
|                 MARK_ENTRY_DELETED(p);
 | |
|                 tab->num_entries--;
 | |
|                 update_range_for_deleted(tab, bin);
 | |
|                 break;
 | |
|             }
 | |
|             else {
 | |
|                 /* hash collision; skip it */
 | |
| #ifdef QUADRATIC_PROBE
 | |
|                 ind = hash_bin(ind + d, tab);
 | |
|                 d++;
 | |
| #else
 | |
|                 ind = secondary_hash(ind, tab, &peterb);
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Reconstruct TAB's bins according to TAB's entries. This function
 | |
|    permits conflicting keys inside of entries.  No errors are reported
 | |
|    then.  All but one of them are discarded silently. */
 | |
| static void
 | |
| st_rehash(st_table *tab)
 | |
| {
 | |
|     if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | |
|         st_rehash_linear(tab);
 | |
|     else
 | |
|         st_rehash_indexed(tab);
 | |
| }
 | |
| 
 | |
| #ifdef RUBY
 | |
| static st_data_t
 | |
| st_stringify(VALUE key)
 | |
| {
 | |
|     return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
 | |
|         rb_hash_key_str(key) : key;
 | |
| }
 | |
| 
 | |
| static void
 | |
| st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val)
 | |
| {
 | |
|     st_data_t k = st_stringify(key);
 | |
|     st_table_entry e;
 | |
|     e.hash = do_hash(k, tab);
 | |
|     e.key = k;
 | |
|     e.record = val;
 | |
| 
 | |
|     tab->entries[tab->entries_bound++] = e;
 | |
|     tab->num_entries++;
 | |
|     RB_OBJ_WRITTEN(hash, Qundef, k);
 | |
|     RB_OBJ_WRITTEN(hash, Qundef, val);
 | |
| }
 | |
| 
 | |
| static void
 | |
| st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < argc; /* */) {
 | |
|         st_data_t k = st_stringify(argv[i++]);
 | |
|         st_data_t v = argv[i++];
 | |
|         st_insert(tab, k, v);
 | |
|         RB_OBJ_WRITTEN(hash, Qundef, k);
 | |
|         RB_OBJ_WRITTEN(hash, Qundef, v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     /* push elems */
 | |
|     for (i = 0; i < argc; /* */) {
 | |
|         VALUE key = argv[i++];
 | |
|         VALUE val = argv[i++];
 | |
|         st_insert_single(tab, hash, key, val);
 | |
|     }
 | |
| 
 | |
|     /* reindex */
 | |
|     st_rehash(tab);
 | |
| }
 | |
| 
 | |
| /* Mimics ruby's { foo => bar } syntax. This function is placed here
 | |
|    because it touches table internals and write barriers at once. */
 | |
| void
 | |
| rb_hash_bulk_insert(long argc, const VALUE *argv, VALUE hash)
 | |
| {
 | |
|     st_index_t n;
 | |
|     st_table *tab = RHASH(hash)->ntbl;
 | |
| 
 | |
|     st_assert(argc % 2 == 0);
 | |
|     if (! argc)
 | |
|         return;
 | |
|     if (! tab) {
 | |
|         VALUE tmp = rb_hash_new_with_size(argc / 2);
 | |
|         RBASIC_CLEAR_CLASS(tmp);
 | |
|         RHASH(hash)->ntbl = tab = RHASH(tmp)->ntbl;
 | |
|         RHASH(tmp)->ntbl = NULL;
 | |
|     }
 | |
|     n = tab->num_entries + argc / 2;
 | |
|     st_expand_table(tab, n);
 | |
|     if (UNLIKELY(tab->num_entries))
 | |
|         st_insert_generic(tab, argc, argv, hash);
 | |
|     else if (argc <= 2)
 | |
|         st_insert_single(tab, hash, argv[0], argv[1]);
 | |
|     else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | |
|         st_insert_linear(tab, argc, argv, hash);
 | |
|     else
 | |
|         st_insert_generic(tab, argc, argv, hash);
 | |
| }
 | |
| #endif
 |