1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/test/lib/minitest/benchmark.rb
hsbt f8c6a5dc02 * test/runner.rb: remove dependency test-unit and minitest
from stdlib when running with test-all.
  [Feature #9711][ruby-core:61890]
* test/testunit/*.rb: ditto.
* test/lib: ditto.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@45970 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-05-17 06:26:51 +00:00

423 lines
11 KiB
Ruby

# encoding: utf-8
######################################################################
# This file is imported from the minitest project.
# DO NOT make modifications in this repo. They _will_ be reverted!
# File a patch instead and assign it to Ryan Davis.
######################################################################
require 'minitest/unit'
require 'minitest/spec'
class MiniTest::Unit # :nodoc:
def run_benchmarks # :nodoc:
_run_anything :benchmark
end
def benchmark_suite_header suite # :nodoc:
"\n#{suite}\t#{suite.bench_range.join("\t")}"
end
class TestCase
##
# Returns a set of ranges stepped exponentially from +min+ to
# +max+ by powers of +base+. Eg:
#
# bench_exp(2, 16, 2) # => [2, 4, 8, 16]
def self.bench_exp min, max, base = 10
min = (Math.log10(min) / Math.log10(base)).to_i
max = (Math.log10(max) / Math.log10(base)).to_i
(min..max).map { |m| base ** m }.to_a
end
##
# Returns a set of ranges stepped linearly from +min+ to +max+ by
# +step+. Eg:
#
# bench_linear(20, 40, 10) # => [20, 30, 40]
def self.bench_linear min, max, step = 10
(min..max).step(step).to_a
rescue LocalJumpError # 1.8.6
r = []; (min..max).step(step) { |n| r << n }; r
end
##
# Returns the benchmark methods (methods that start with bench_)
# for that class.
def self.benchmark_methods # :nodoc:
public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort
end
##
# Returns all test suites that have benchmark methods.
def self.benchmark_suites
TestCase.test_suites.reject { |s| s.benchmark_methods.empty? }
end
##
# Specifies the ranges used for benchmarking for that class.
# Defaults to exponential growth from 1 to 10k by powers of 10.
# Override if you need different ranges for your benchmarks.
#
# See also: ::bench_exp and ::bench_linear.
def self.bench_range
bench_exp 1, 10_000
end
##
# Runs the given +work+, gathering the times of each run. Range
# and times are then passed to a given +validation+ proc. Outputs
# the benchmark name and times in tab-separated format, making it
# easy to paste into a spreadsheet for graphing or further
# analysis.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# validation = proc { |x, y| ... }
# assert_performance validation do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance validation, &work
range = self.class.bench_range
io.print "#{__name__}"
times = []
range.each do |x|
GC.start
t0 = Time.now
instance_exec(x, &work)
t = Time.now - t0
io.print "\t%9.6f" % t
times << t
end
io.puts
validation[range, times]
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a constant rate (eg, linear slope == 0) within a given
# +threshold+. Note: because we're testing for a slope of 0, R^2
# is not a good determining factor for the fit, so the threshold
# is applied against the slope itself. As such, you probably want
# to tighten it from the default.
#
# See http://www.graphpad.com/curvefit/goodness_of_fit.htm for
# more details.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_constant 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_constant threshold = 0.99, &work
validation = proc do |range, times|
a, b, rr = fit_linear range, times
assert_in_delta 0, b, 1 - threshold
[a, b, rr]
end
assert_performance validation, &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a exponential curve within a given error +threshold+.
#
# Fit is calculated by #fit_exponential.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_exponential 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_exponential threshold = 0.99, &work
assert_performance validation_for_fit(:exponential, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a logarithmic curve within a given error +threshold+.
#
# Fit is calculated by #fit_logarithmic.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_logarithmic 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_logarithmic threshold = 0.99, &work
assert_performance validation_for_fit(:logarithmic, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a straight line within a given error +threshold+.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_linear 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_linear threshold = 0.99, &work
assert_performance validation_for_fit(:linear, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered curve
# fit to match a power curve within a given error +threshold+.
#
# Fit is calculated by #fit_power.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_power 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_power threshold = 0.99, &work
assert_performance validation_for_fit(:power, threshold), &work
end
##
# Takes an array of x/y pairs and calculates the general R^2 value.
#
# See: http://en.wikipedia.org/wiki/Coefficient_of_determination
def fit_error xys
y_bar = sigma(xys) { |x, y| y } / xys.size.to_f
ss_tot = sigma(xys) { |x, y| (y - y_bar) ** 2 }
ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 }
1 - (ss_err / ss_tot)
end
##
# To fit a functional form: y = ae^(bx).
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
def fit_exponential xs, ys
n = xs.size
xys = xs.zip(ys)
sxlny = sigma(xys) { |x,y| x * Math.log(y) }
slny = sigma(xys) { |x,y| Math.log(y) }
sx2 = sigma(xys) { |x,y| x * x }
sx = sigma xs
c = n * sx2 - sx ** 2
a = (slny * sx2 - sx * sxlny) / c
b = ( n * sxlny - sx * slny ) / c
return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) }
end
##
# To fit a functional form: y = a + b*ln(x).
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
def fit_logarithmic xs, ys
n = xs.size
xys = xs.zip(ys)
slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 }
slnx = sigma(xys) { |x,y| Math.log(x) }
sylnx = sigma(xys) { |x,y| y * Math.log(x) }
sy = sigma(xys) { |x,y| y }
c = n * slnx2 - slnx ** 2
b = ( n * sylnx - sy * slnx ) / c
a = (sy - b * slnx) / n
return a, b, fit_error(xys) { |x| a + b * Math.log(x) }
end
##
# Fits the functional form: a + bx.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFitting.html
def fit_linear xs, ys
n = xs.size
xys = xs.zip(ys)
sx = sigma xs
sy = sigma ys
sx2 = sigma(xs) { |x| x ** 2 }
sxy = sigma(xys) { |x,y| x * y }
c = n * sx2 - sx**2
a = (sy * sx2 - sx * sxy) / c
b = ( n * sxy - sx * sy ) / c
return a, b, fit_error(xys) { |x| a + b * x }
end
##
# To fit a functional form: y = ax^b.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
def fit_power xs, ys
n = xs.size
xys = xs.zip(ys)
slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) }
slnx = sigma(xs) { |x | Math.log(x) }
slny = sigma(ys) { | y| Math.log(y) }
slnx2 = sigma(xs) { |x | Math.log(x) ** 2 }
b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2);
a = (slny - b * slnx) / n
return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) }
end
##
# Enumerates over +enum+ mapping +block+ if given, returning the
# sum of the result. Eg:
#
# sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
# sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
def sigma enum, &block
enum = enum.map(&block) if block
enum.inject { |sum, n| sum + n }
end
##
# Returns a proc that calls the specified fit method and asserts
# that the error is within a tolerable threshold.
def validation_for_fit msg, threshold
proc do |range, times|
a, b, rr = send "fit_#{msg}", range, times
assert_operator rr, :>=, threshold
[a, b, rr]
end
end
end
end
class MiniTest::Spec
##
# This is used to define a new benchmark method. You usually don't
# use this directly and is intended for those needing to write new
# performance curve fits (eg: you need a specific polynomial fit).
#
# See ::bench_performance_linear for an example of how to use this.
def self.bench name, &block
define_method "bench_#{name.gsub(/\W+/, '_')}", &block
end
##
# Specifies the ranges used for benchmarking for that class.
#
# bench_range do
# bench_exp(2, 16, 2)
# end
#
# See Unit::TestCase.bench_range for more details.
def self.bench_range &block
return super unless block
meta = (class << self; self; end)
meta.send :define_method, "bench_range", &block
end
##
# Create a benchmark that verifies that the performance is linear.
#
# describe "my class" do
# bench_performance_linear "fast_algorithm", 0.9999 do |n|
# @obj.fast_algorithm(n)
# end
# end
def self.bench_performance_linear name, threshold = 0.99, &work
bench name do
assert_performance_linear threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is constant.
#
# describe "my class" do
# bench_performance_constant "zoom_algorithm!" do |n|
# @obj.zoom_algorithm!(n)
# end
# end
def self.bench_performance_constant name, threshold = 0.99, &work
bench name do
assert_performance_constant threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is exponential.
#
# describe "my class" do
# bench_performance_exponential "algorithm" do |n|
# @obj.algorithm(n)
# end
# end
def self.bench_performance_exponential name, threshold = 0.99, &work
bench name do
assert_performance_exponential threshold, &work
end
end
end