1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/yjit_codegen.c
Alan Wu 286c07f0dc YJIT: Remove guard_self_is_heap()
It's superseded by functionality added to jit_guard_known_klass().
In weird situations such as the ones in the included test,
guard_self_is_heap() triggered assertions.

Co-authored-by: Jemma Issroff <jemmaissroff@gmail.com>
2021-12-07 17:20:34 -05:00

5051 lines
173 KiB
C

// This file is a fragment of the yjit.o compilation unit. See yjit.c.
#include "internal.h"
#include "gc.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/sanitizers.h"
#include "internal/string.h"
#include "internal/struct.h"
#include "internal/variable.h"
#include "internal/re.h"
#include "probes.h"
#include "probes_helper.h"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_core.h"
#include "yjit_codegen.h"
#include "yjit_asm.h"
// Map from YARV opcodes to code generation functions
static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL };
// Map from method entries to code generation functions
static st_table *yjit_method_codegen_table = NULL;
// Code for exiting back to the interpreter from the leave instruction
static void *leave_exit_code;
// Code for full logic of returning from C method and exiting to the interpreter
static uint32_t outline_full_cfunc_return_pos;
// For implementing global code invalidation
struct codepage_patch {
uint32_t inline_patch_pos;
uint32_t outlined_target_pos;
};
typedef rb_darray(struct codepage_patch) patch_array_t;
static patch_array_t global_inval_patches = NULL;
// Print the current source location for debugging purposes
RBIMPL_ATTR_MAYBE_UNUSED()
static void
jit_print_loc(jitstate_t *jit, const char *msg)
{
char *ptr;
long len;
VALUE path = rb_iseq_path(jit->iseq);
RSTRING_GETMEM(path, ptr, len);
fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
}
// dump an object for debugging purposes
RBIMPL_ATTR_MAYBE_UNUSED()
static void
jit_obj_info_dump(codeblock_t *cb, x86opnd_t opnd) {
push_regs(cb);
mov(cb, C_ARG_REGS[0], opnd);
call_ptr(cb, REG0, (void *)rb_obj_info_dump);
pop_regs(cb);
}
// Get the current instruction's opcode
static int
jit_get_opcode(jitstate_t *jit)
{
return jit->opcode;
}
// Get the index of the next instruction
static uint32_t
jit_next_insn_idx(jitstate_t *jit)
{
return jit->insn_idx + insn_len(jit_get_opcode(jit));
}
// Get an instruction argument by index
static VALUE
jit_get_arg(jitstate_t *jit, size_t arg_idx)
{
RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
return *(jit->pc + arg_idx + 1);
}
// Load a VALUE into a register and keep track of the reference if it is on the GC heap.
static void
jit_mov_gc_ptr(jitstate_t *jit, codeblock_t *cb, x86opnd_t reg, VALUE ptr)
{
RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);
// Load the pointer constant into the specified register
mov(cb, reg, const_ptr_opnd((void*)ptr));
// The pointer immediate is encoded as the last part of the mov written out
uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);
if (!SPECIAL_CONST_P(ptr)) {
if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
rb_bug("allocation failed");
}
}
}
// Check if we are compiling the instruction at the stub PC
// Meaning we are compiling the instruction that is next to execute
static bool
jit_at_current_insn(jitstate_t *jit)
{
const VALUE *ec_pc = jit->ec->cfp->pc;
return (ec_pc == jit->pc);
}
// Peek at the nth topmost value on the Ruby stack.
// Returns the topmost value when n == 0.
static VALUE
jit_peek_at_stack(jitstate_t *jit, ctx_t *ctx, int n)
{
RUBY_ASSERT(jit_at_current_insn(jit));
// Note: this does not account for ctx->sp_offset because
// this is only available when hitting a stub, and while
// hitting a stub, cfp->sp needs to be up to date in case
// codegen functions trigger GC. See :stub-sp-flush:.
VALUE *sp = jit->ec->cfp->sp;
return *(sp - 1 - n);
}
static VALUE
jit_peek_at_self(jitstate_t *jit, ctx_t *ctx)
{
return jit->ec->cfp->self;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static VALUE
jit_peek_at_local(jitstate_t *jit, ctx_t *ctx, int n)
{
RUBY_ASSERT(jit_at_current_insn(jit));
int32_t local_table_size = jit->iseq->body->local_table_size;
RUBY_ASSERT(n < (int)jit->iseq->body->local_table_size);
const VALUE *ep = jit->ec->cfp->ep;
return ep[-VM_ENV_DATA_SIZE - local_table_size + n + 1];
}
// Save the incremented PC on the CFP
// This is necessary when calleees can raise or allocate
static void
jit_save_pc(jitstate_t *jit, x86opnd_t scratch_reg)
{
codeblock_t *cb = jit->cb;
mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode)));
mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg);
}
// Save the current SP on the CFP
// This realigns the interpreter SP with the JIT SP
// Note: this will change the current value of REG_SP,
// which could invalidate memory operands
static void
jit_save_sp(jitstate_t *jit, ctx_t *ctx)
{
if (ctx->sp_offset != 0) {
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
codeblock_t *cb = jit->cb;
lea(cb, REG_SP, stack_pointer);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
ctx->sp_offset = 0;
}
}
// jit_save_pc() + jit_save_sp(). Should be used before calling a routine that
// could:
// - Perform GC allocation
// - Take the VM lock through RB_VM_LOCK_ENTER()
// - Perform Ruby method call
static void
jit_prepare_routine_call(jitstate_t *jit, ctx_t *ctx, x86opnd_t scratch_reg)
{
jit->record_boundary_patch_point = true;
jit_save_pc(jit, scratch_reg);
jit_save_sp(jit, ctx);
}
// Record the current codeblock write position for rewriting into a jump into
// the outlined block later. Used to implement global code invalidation.
static void
record_global_inval_patch(const codeblock_t *cb, uint32_t outline_block_target_pos)
{
struct codepage_patch patch_point = { cb->write_pos, outline_block_target_pos };
if (!rb_darray_append(&global_inval_patches, patch_point)) rb_bug("allocation failed");
}
static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit);
#if YJIT_STATS
// Add a comment at the current position in the code block
static void
_add_comment(codeblock_t *cb, const char *comment_str)
{
// We can't add comments to the outlined code block
if (cb == ocb)
return;
// Avoid adding duplicate comment strings (can happen due to deferred codegen)
size_t num_comments = rb_darray_size(yjit_code_comments);
if (num_comments > 0) {
struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1);
if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) {
return;
}
}
struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str };
rb_darray_append(&yjit_code_comments, new_comment);
}
// Comments for generated machine code
#define ADD_COMMENT(cb, comment) _add_comment((cb), (comment))
// Verify the ctx's types and mappings against the compile-time stack, self,
// and locals.
static void
verify_ctx(jitstate_t *jit, ctx_t *ctx)
{
// Only able to check types when at current insn
RUBY_ASSERT(jit_at_current_insn(jit));
VALUE self_val = jit_peek_at_self(jit, ctx);
if (type_diff(yjit_type_of_value(self_val), ctx->self_type) == INT_MAX) {
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of self: %s", yjit_type_name(ctx->self_type), rb_obj_info(self_val));
}
for (int i = 0; i < ctx->stack_size && i < MAX_TEMP_TYPES; i++) {
temp_type_mapping_t learned = ctx_get_opnd_mapping(ctx, OPND_STACK(i));
VALUE val = jit_peek_at_stack(jit, ctx, i);
val_type_t detected = yjit_type_of_value(val);
if (learned.mapping.kind == TEMP_SELF) {
if (self_val != val) {
rb_bug("verify_ctx: stack value was mapped to self, but values did not match\n"
" stack: %s\n"
" self: %s",
rb_obj_info(val),
rb_obj_info(self_val));
}
}
if (learned.mapping.kind == TEMP_LOCAL) {
int local_idx = learned.mapping.idx;
VALUE local_val = jit_peek_at_local(jit, ctx, local_idx);
if (local_val != val) {
rb_bug("verify_ctx: stack value was mapped to local, but values did not match\n"
" stack: %s\n"
" local %i: %s",
rb_obj_info(val),
local_idx,
rb_obj_info(local_val));
}
}
if (type_diff(detected, learned.type) == INT_MAX) {
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value on stack: %s", yjit_type_name(learned.type), rb_obj_info(val));
}
}
int32_t local_table_size = jit->iseq->body->local_table_size;
for (int i = 0; i < local_table_size && i < MAX_TEMP_TYPES; i++) {
val_type_t learned = ctx->local_types[i];
VALUE val = jit_peek_at_local(jit, ctx, i);
val_type_t detected = yjit_type_of_value(val);
if (type_diff(detected, learned) == INT_MAX) {
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of local: %s", yjit_type_name(learned), rb_obj_info(val));
}
}
}
#else
#define ADD_COMMENT(cb, comment) ((void)0)
#define verify_ctx(jit, ctx) ((void)0)
#endif // if YJIT_STATS
#if YJIT_STATS
// Increment a profiling counter with counter_name
#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name))
static void
_gen_counter_inc(codeblock_t *cb, int64_t *counter)
{
if (!rb_yjit_opts.gen_stats) return;
// Use REG1 because there might be return value in REG0
mov(cb, REG1, const_ptr_opnd(counter));
cb_write_lock_prefix(cb); // for ractors.
add(cb, mem_opnd(64, REG1, 0), imm_opnd(1));
}
// Increment a counter then take an existing side exit.
#define COUNTED_EXIT(jit, side_exit, counter_name) _counted_side_exit(jit, side_exit, &(yjit_runtime_counters . counter_name))
static uint8_t *
_counted_side_exit(jitstate_t* jit, uint8_t *existing_side_exit, int64_t *counter)
{
if (!rb_yjit_opts.gen_stats) return existing_side_exit;
uint8_t *start = cb_get_ptr(jit->ocb, jit->ocb->write_pos);
_gen_counter_inc(jit->ocb, counter);
jmp_ptr(jit->ocb, existing_side_exit);
return start;
}
#else
#define GEN_COUNTER_INC(cb, counter_name) ((void)0)
#define COUNTED_EXIT(jit, side_exit, counter_name) side_exit
#endif // if YJIT_STATS
// Generate an exit to return to the interpreter
static uint32_t
yjit_gen_exit(VALUE *exit_pc, ctx_t *ctx, codeblock_t *cb)
{
const uint32_t code_pos = cb->write_pos;
ADD_COMMENT(cb, "exit to interpreter");
// Generate the code to exit to the interpreters
// Write the adjusted SP back into the CFP
if (ctx->sp_offset != 0) {
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
lea(cb, REG_SP, stack_pointer);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
}
// Update CFP->PC
mov(cb, RAX, const_ptr_opnd(exit_pc));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
// Accumulate stats about interpreter exits
#if YJIT_STATS
if (rb_yjit_opts.gen_stats) {
mov(cb, RDI, const_ptr_opnd(exit_pc));
call_ptr(cb, RSI, (void *)&yjit_count_side_exit_op);
}
#endif
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
mov(cb, RAX, imm_opnd(Qundef));
ret(cb);
return code_pos;
}
// Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc.
static uint8_t *
yjit_gen_leave_exit(codeblock_t *cb)
{
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
// Note, gen_leave() fully reconstructs interpreter state and leaves the
// return value in RAX before coming here.
// Every exit to the interpreter should be counted
GEN_COUNTER_INC(cb, leave_interp_return);
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
ret(cb);
return code_ptr;
}
// Fill code_for_exit_from_stub. This is used by branch_stub_hit() to exit
// to the interpreter when it cannot service a stub by generating new code.
// Before coming here, branch_stub_hit() takes care of fully reconstructing
// interpreter state.
static void
gen_code_for_exit_from_stub(void)
{
codeblock_t *cb = ocb;
code_for_exit_from_stub = cb_get_ptr(cb, cb->write_pos);
GEN_COUNTER_INC(cb, exit_from_branch_stub);
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
mov(cb, RAX, imm_opnd(Qundef));
ret(cb);
}
// :side-exit:
// Get an exit for the current instruction in the outlined block. The code
// for each instruction often begins with several guards before proceeding
// to do work. When guards fail, an option we have is to exit to the
// interpreter at an instruction boundary. The piece of code that takes
// care of reconstructing interpreter state and exiting out of generated
// code is called the side exit.
//
// No guards change the logic for reconstructing interpreter state at the
// moment, so there is one unique side exit for each context. Note that
// it's incorrect to jump to the side exit after any ctx stack push/pop operations
// since they change the logic required for reconstructing interpreter state.
static uint8_t *
yjit_side_exit(jitstate_t *jit, ctx_t *ctx)
{
if (!jit->side_exit_for_pc) {
codeblock_t *ocb = jit->ocb;
uint32_t pos = yjit_gen_exit(jit->pc, ctx, ocb);
jit->side_exit_for_pc = cb_get_ptr(ocb, pos);
}
return jit->side_exit_for_pc;
}
// Ensure that there is an exit for the start of the block being compiled.
// Block invalidation uses this exit.
static void
jit_ensure_block_entry_exit(jitstate_t *jit)
{
block_t *block = jit->block;
if (block->entry_exit) return;
if (jit->insn_idx == block->blockid.idx) {
// We are compiling the first instruction in the block.
// Generate the exit with the cache in jitstate.
block->entry_exit = yjit_side_exit(jit, &block->ctx);
}
else {
VALUE *pc = yjit_iseq_pc_at_idx(block->blockid.iseq, block->blockid.idx);
uint32_t pos = yjit_gen_exit(pc, &block->ctx, ocb);
block->entry_exit = cb_get_ptr(ocb, pos);
}
}
// Generate a runtime guard that ensures the PC is at the start of the iseq,
// otherwise take a side exit. This is to handle the situation of optional
// parameters. When a function with optional parameters is called, the entry
// PC for the method isn't necessarily 0, but we always generated code that
// assumes the entry point is 0.
static void
yjit_pc_guard(codeblock_t *cb, const rb_iseq_t *iseq)
{
RUBY_ASSERT(cb != NULL);
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, pc));
mov(cb, REG1, const_ptr_opnd(iseq->body->iseq_encoded));
xor(cb, REG0, REG1);
// xor should impact ZF, so we can jz here
uint32_t pc_is_zero = cb_new_label(cb, "pc_is_zero");
jz_label(cb, pc_is_zero);
// We're not starting at the first PC, so we need to exit.
GEN_COUNTER_INC(cb, leave_start_pc_non_zero);
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
mov(cb, RAX, imm_opnd(Qundef));
ret(cb);
// PC should be at the beginning
cb_write_label(cb, pc_is_zero);
cb_link_labels(cb);
}
// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event
// like the interpreter. When tracing for c_return is enabled, we patch the code after
// the C method return to call into this to fire the event.
static void
full_cfunc_return(rb_execution_context_t *ec, VALUE return_value)
{
rb_control_frame_t *cfp = ec->cfp;
RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp);
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp));
RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC);
// CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this
// Pop the C func's frame and fire the c_return TracePoint event
// Note that this is the same order as vm_call_cfunc_with_frame().
rb_vm_pop_frame(ec);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value);
// Note, this deviates from the interpreter in that users need to enable
// a c_return TracePoint for this DTrace hook to work. A reasonable change
// since the Ruby return event works this way as well.
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
// Push return value into the caller's stack. We know that it's a frame that
// uses cfp->sp because we are patching a call done with gen_send_cfunc().
ec->cfp->sp[0] = return_value;
ec->cfp->sp++;
}
// Landing code for when c_return tracing is enabled. See full_cfunc_return().
static void
gen_full_cfunc_return(void)
{
codeblock_t *cb = ocb;
outline_full_cfunc_return_pos = ocb->write_pos;
// This chunk of code expect REG_EC to be filled properly and
// RAX to contain the return value of the C method.
// Call full_cfunc_return()
mov(cb, C_ARG_REGS[0], REG_EC);
mov(cb, C_ARG_REGS[1], RAX);
call_ptr(cb, REG0, (void *)full_cfunc_return);
// Count the exit
GEN_COUNTER_INC(cb, traced_cfunc_return);
// Return to the interpreter
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
mov(cb, RAX, imm_opnd(Qundef));
ret(cb);
}
/*
Compile an interpreter entry block to be inserted into an iseq
Returns `NULL` if compilation fails.
*/
static uint8_t *
yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq)
{
RUBY_ASSERT(cb != NULL);
enum { MAX_PROLOGUE_SIZE = 1024 };
// Check if we have enough executable memory
if (cb->write_pos + MAX_PROLOGUE_SIZE >= cb->mem_size) {
return NULL;
}
const uint32_t old_write_pos = cb->write_pos;
// Align the current write position to cache line boundaries
cb_align_pos(cb, 64);
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
ADD_COMMENT(cb, "yjit entry");
push(cb, REG_CFP);
push(cb, REG_EC);
push(cb, REG_SP);
// We are passed EC and CFP
mov(cb, REG_EC, C_ARG_REGS[0]);
mov(cb, REG_CFP, C_ARG_REGS[1]);
// Load the current SP from the CFP into REG_SP
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
// Setup cfp->jit_return
// TODO: this could use an IP relative LEA instead of an 8 byte immediate
mov(cb, REG0, const_ptr_opnd(leave_exit_code));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
// We're compiling iseqs that we *expect* to start at `insn_idx`. But in
// the case of optional parameters, the interpreter can set the pc to a
// different location depending on the optional parameters. If an iseq
// has optional parameters, we'll add a runtime check that the PC we've
// compiled for is the same PC that the interpreter wants us to run with.
// If they don't match, then we'll take a side exit.
if (iseq->body->param.flags.has_opt) {
yjit_pc_guard(cb, iseq);
}
// Verify MAX_PROLOGUE_SIZE
RUBY_ASSERT_ALWAYS(cb->write_pos - old_write_pos <= MAX_PROLOGUE_SIZE);
return code_ptr;
}
// Generate code to check for interrupts and take a side-exit.
// Warning: this function clobbers REG0
static void
yjit_check_ints(codeblock_t *cb, uint8_t *side_exit)
{
// Check for interrupts
// see RUBY_VM_CHECK_INTS(ec) macro
ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)");
mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
not(cb, REG0_32);
test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
jnz_ptr(cb, side_exit);
}
// Generate a stubbed unconditional jump to the next bytecode instruction.
// Blocks that are part of a guard chain can use this to share the same successor.
static void
jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context)
{
// Reset the depth since in current usages we only ever jump to to
// chain_depth > 0 from the same instruction.
ctx_t reset_depth = *current_context;
reset_depth.chain_depth = 0;
blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) };
// We are at the end of the current instruction. Record the boundary.
if (jit->record_boundary_patch_point) {
uint32_t exit_pos = yjit_gen_exit(jit->pc + insn_len(jit->opcode), &reset_depth, jit->ocb);
record_global_inval_patch(jit->cb, exit_pos);
jit->record_boundary_patch_point = false;
}
// Generate the jump instruction
gen_direct_jump(
jit,
&reset_depth,
jump_block
);
}
// Compile a sequence of bytecode instructions for a given basic block version.
// Part of gen_block_version().
static block_t *
gen_single_block(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec)
{
RUBY_ASSERT(cb != NULL);
verify_blockid(blockid);
// Allocate the new block
block_t *block = calloc(1, sizeof(block_t));
if (!block) {
return NULL;
}
// Copy the starting context to avoid mutating it
ctx_t ctx_copy = *start_ctx;
ctx_t *ctx = &ctx_copy;
// Limit the number of specialized versions for this block
*ctx = limit_block_versions(blockid, ctx);
// Save the starting context on the block.
block->blockid = blockid;
block->ctx = *ctx;
RUBY_ASSERT(!(blockid.idx == 0 && start_ctx->stack_size > 0));
const rb_iseq_t *iseq = block->blockid.iseq;
const unsigned int iseq_size = iseq->body->iseq_size;
uint32_t insn_idx = block->blockid.idx;
const uint32_t starting_insn_idx = insn_idx;
// Initialize a JIT state object
jitstate_t jit = {
.cb = cb,
.ocb = ocb,
.block = block,
.iseq = iseq,
.ec = ec
};
// Mark the start position of the block
block->start_addr = cb_get_write_ptr(cb);
// For each instruction to compile
while (insn_idx < iseq_size) {
// Get the current pc and opcode
VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx);
int opcode = yjit_opcode_at_pc(iseq, pc);
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
// opt_getinlinecache wants to be in a block all on its own. Cut the block short
// if we run into it. See gen_opt_getinlinecache() for details.
if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) {
jit_jump_to_next_insn(&jit, ctx);
break;
}
// Set the current instruction
jit.insn_idx = insn_idx;
jit.opcode = opcode;
jit.pc = pc;
jit.side_exit_for_pc = NULL;
// If previous instruction requested to record the boundary
if (jit.record_boundary_patch_point) {
// Generate an exit to this instruction and record it
uint32_t exit_pos = yjit_gen_exit(jit.pc, ctx, ocb);
record_global_inval_patch(cb, exit_pos);
jit.record_boundary_patch_point = false;
}
// Verify our existing assumption (DEBUG)
if (jit_at_current_insn(&jit)) {
verify_ctx(&jit, ctx);
}
// Lookup the codegen function for this instruction
codegen_fn gen_fn = gen_fns[opcode];
codegen_status_t status = YJIT_CANT_COMPILE;
if (gen_fn) {
if (0) {
fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
print_str(cb, insn_name(opcode));
}
// :count-placement:
// Count bytecode instructions that execute in generated code.
// Note that the increment happens even when the output takes side exit.
GEN_COUNTER_INC(cb, exec_instruction);
// Add a comment for the name of the YARV instruction
ADD_COMMENT(cb, insn_name(opcode));
// Call the code generation function
status = gen_fn(&jit, ctx, cb);
}
// If we can't compile this instruction
// exit to the interpreter and stop compiling
if (status == YJIT_CANT_COMPILE) {
// TODO: if the codegen function makes changes to ctx and then return YJIT_CANT_COMPILE,
// the exit this generates would be wrong. We could save a copy of the entry context
// and assert that ctx is the same here.
uint32_t exit_off = yjit_gen_exit(jit.pc, ctx, cb);
// If this is the first instruction in the block, then we can use
// the exit for block->entry_exit.
if (insn_idx == block->blockid.idx) {
block->entry_exit = cb_get_ptr(cb, exit_off);
}
break;
}
// For now, reset the chain depth after each instruction as only the
// first instruction in the block can concern itself with the depth.
ctx->chain_depth = 0;
// Move to the next instruction to compile
insn_idx += insn_len(opcode);
// If the instruction terminates this block
if (status == YJIT_END_BLOCK) {
break;
}
}
// Mark the end position of the block
block->end_addr = cb_get_write_ptr(cb);
// Store the index of the last instruction in the block
block->end_idx = insn_idx;
// We currently can't handle cases where the request is for a block that
// doesn't go to the next instruction.
RUBY_ASSERT(!jit.record_boundary_patch_point);
// If code for the block doesn't fit, free the block and fail.
if (cb->dropped_bytes || ocb->dropped_bytes) {
yjit_free_block(block);
return NULL;
}
if (YJIT_DUMP_MODE >= 2) {
// Dump list of compiled instrutions
fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) {
int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx));
fprintf(stderr, " %04d %s\n", idx, insn_name(opcode));
idx += insn_len(opcode);
}
}
return block;
}
static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb);
static codegen_status_t
gen_nop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Do nothing
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_dup(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Get the top value and its type
x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
// Push the same value on top
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
mov(cb, REG0, dup_val);
mov(cb, loc0, REG0);
return YJIT_KEEP_COMPILING;
}
// duplicate stack top n elements
static codegen_status_t
gen_dupn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
// In practice, seems to be only used for n==2
if (n != 2) {
return YJIT_CANT_COMPILE;
}
x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1);
x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0);
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(1));
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
x86opnd_t dst1 = ctx_stack_push_mapping(ctx, mapping1);
mov(cb, REG0, opnd1);
mov(cb, dst1, REG0);
x86opnd_t dst0 = ctx_stack_push_mapping(ctx, mapping0);
mov(cb, REG0, opnd0);
mov(cb, dst0, REG0);
return YJIT_KEEP_COMPILING;
}
static void
stack_swap(ctx_t *ctx, codeblock_t *cb, int offset0, int offset1, x86opnd_t reg0, x86opnd_t reg1)
{
x86opnd_t opnd0 = ctx_stack_opnd(ctx, offset0);
x86opnd_t opnd1 = ctx_stack_opnd(ctx, offset1);
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset0));
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset1));
mov(cb, reg0, opnd0);
mov(cb, reg1, opnd1);
mov(cb, opnd0, reg1);
mov(cb, opnd1, reg0);
ctx_set_opnd_mapping(ctx, OPND_STACK(offset0), mapping1);
ctx_set_opnd_mapping(ctx, OPND_STACK(offset1), mapping0);
}
// Swap top 2 stack entries
static codegen_status_t
gen_swap(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
stack_swap(ctx , cb, 0, 1, REG0, REG1);
return YJIT_KEEP_COMPILING;
}
// set Nth stack entry to stack top
static codegen_status_t
gen_setn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
// Set the destination
x86opnd_t top_val = ctx_stack_pop(ctx, 0);
x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n);
mov(cb, REG0, top_val);
mov(cb, dst_opnd, REG0);
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0));
ctx_set_opnd_mapping(ctx, OPND_STACK(n), mapping);
return YJIT_KEEP_COMPILING;
}
// get nth stack value, then push it
static codegen_status_t
gen_topn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t n = (int32_t)jit_get_arg(jit, 0);
// Get top n type / operand
x86opnd_t top_n_val = ctx_stack_opnd(ctx, n);
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(n));
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping);
mov(cb, REG0, top_n_val);
mov(cb, loc0, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_pop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Decrement SP
ctx_stack_pop(ctx, 1);
return YJIT_KEEP_COMPILING;
}
// Pop n values off the stack
static codegen_status_t
gen_adjuststack(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
ctx_stack_pop(ctx, n);
return YJIT_KEEP_COMPILING;
}
// new array initialized from top N values
static codegen_status_t
gen_newarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
// Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, REG0);
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));
// call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
mov(cb, C_ARG_REGS[0], REG_EC);
mov(cb, C_ARG_REGS[1], imm_opnd(n));
lea(cb, C_ARG_REGS[2], values_ptr);
call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values);
ctx_stack_pop(ctx, n);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
// dup array
static codegen_status_t
gen_duparray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE ary = jit_get_arg(jit, 0);
// Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, REG0);
// call rb_ary_resurrect(VALUE ary);
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary);
call_ptr(cb, REG0, (void *)rb_ary_resurrect);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
// dup hash
static codegen_status_t
gen_duphash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE hash = jit_get_arg(jit, 0);
// Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, REG0);
// call rb_hash_resurrect(VALUE hash);
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], hash);
call_ptr(cb, REG0, (void *)rb_hash_resurrect);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
VALUE rb_vm_splat_array(VALUE flag, VALUE ary);
// call to_a on the array on the stack
static codegen_status_t
gen_splatarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE flag = (VALUE) jit_get_arg(jit, 0);
// Save the PC and SP because the callee may allocate
// Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, REG0);
// Get the operands from the stack
x86opnd_t ary_opnd = ctx_stack_pop(ctx, 1);
// Call rb_vm_splat_array(flag, ary)
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], flag);
mov(cb, C_ARG_REGS[1], ary_opnd);
call_ptr(cb, REG1, (void *) rb_vm_splat_array);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
// new range initialized from top 2 values
static codegen_status_t
gen_newrange(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t flag = (rb_num_t)jit_get_arg(jit, 0);
// rb_range_new() allocates and can raise
jit_prepare_routine_call(jit, ctx, REG0);
// val = rb_range_new(low, high, (int)flag);
mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, 1));
mov(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, 0));
mov(cb, C_ARG_REGS[2], imm_opnd(flag));
call_ptr(cb, REG0, (void *)rb_range_new);
ctx_stack_pop(ctx, 2);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static void
guard_object_is_heap(codeblock_t *cb, x86opnd_t object_opnd, ctx_t *ctx, uint8_t *side_exit)
{
ADD_COMMENT(cb, "guard object is heap");
// Test that the object is not an immediate
test(cb, object_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
jnz_ptr(cb, side_exit);
// Test that the object is not false or nil
cmp(cb, object_opnd, imm_opnd(Qnil));
RUBY_ASSERT(Qfalse < Qnil);
jbe_ptr(cb, side_exit);
}
static inline void
guard_object_is_array(codeblock_t *cb, x86opnd_t object_opnd, x86opnd_t flags_opnd, ctx_t *ctx, uint8_t *side_exit)
{
ADD_COMMENT(cb, "guard object is array");
// Pull out the type mask
mov(cb, flags_opnd, member_opnd(object_opnd, struct RBasic, flags));
and(cb, flags_opnd, imm_opnd(RUBY_T_MASK));
// Compare the result with T_ARRAY
cmp(cb, flags_opnd, imm_opnd(T_ARRAY));
jne_ptr(cb, side_exit);
}
// push enough nils onto the stack to fill out an array
static codegen_status_t
gen_expandarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int flag = (int) jit_get_arg(jit, 1);
// If this instruction has the splat flag, then bail out.
if (flag & 0x01) {
GEN_COUNTER_INC(cb, expandarray_splat);
return YJIT_CANT_COMPILE;
}
// If this instruction has the postarg flag, then bail out.
if (flag & 0x02) {
GEN_COUNTER_INC(cb, expandarray_postarg);
return YJIT_CANT_COMPILE;
}
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// num is the number of requested values. If there aren't enough in the
// array then we're going to push on nils.
int num = (int)jit_get_arg(jit, 0);
val_type_t array_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
x86opnd_t array_opnd = ctx_stack_pop(ctx, 1);
if (array_type.type == ETYPE_NIL) {
// special case for a, b = nil pattern
// push N nils onto the stack
for (int i = 0; i < num; i++) {
x86opnd_t push = ctx_stack_push(ctx, TYPE_NIL);
mov(cb, push, imm_opnd(Qnil));
}
return YJIT_KEEP_COMPILING;
}
// Move the array from the stack into REG0 and check that it's an array.
mov(cb, REG0, array_opnd);
guard_object_is_heap(cb, REG0, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array));
guard_object_is_array(cb, REG0, REG1, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array));
// If we don't actually want any values, then just return.
if (num == 0) {
return YJIT_KEEP_COMPILING;
}
// Pull out the embed flag to check if it's an embedded array.
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
mov(cb, REG1, flags_opnd);
// Move the length of the embedded array into REG1.
and(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_MASK));
shr(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_SHIFT));
// Conditionally move the length of the heap array into REG1.
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.len));
// Only handle the case where the number of values in the array is greater
// than or equal to the number of values requested.
cmp(cb, REG1, imm_opnd(num));
jl_ptr(cb, COUNTED_EXIT(jit, side_exit, expandarray_rhs_too_small));
// Load the address of the embedded array into REG1.
// (struct RArray *)(obj)->as.ary
lea(cb, REG1, member_opnd(REG0, struct RArray, as.ary));
// Conditionally load the address of the heap array into REG1.
// (struct RArray *)(obj)->as.heap.ptr
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG));
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.ptr));
// Loop backward through the array and push each element onto the stack.
for (int32_t i = (int32_t) num - 1; i >= 0; i--) {
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, REG0, mem_opnd(64, REG1, i * SIZEOF_VALUE));
mov(cb, top, REG0);
}
return YJIT_KEEP_COMPILING;
}
// new hash initialized from top N values
static codegen_status_t
gen_newhash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t num = (int32_t)jit_get_arg(jit, 0);
// Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, REG0);
if (num) {
// val = rb_hash_new_with_size(num / 2);
mov(cb, C_ARG_REGS[0], imm_opnd(num / 2));
call_ptr(cb, REG0, (void *)rb_hash_new_with_size);
// save the allocated hash as we want to push it after insertion
push(cb, RAX);
push(cb, RAX); // alignment
// rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val);
mov(cb, C_ARG_REGS[0], imm_opnd(num));
lea(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, num - 1));
mov(cb, C_ARG_REGS[2], RAX);
call_ptr(cb, REG0, (void *)rb_hash_bulk_insert);
pop(cb, RAX); // alignment
pop(cb, RAX);
ctx_stack_pop(ctx, num);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
mov(cb, stack_ret, RAX);
}
else {
// val = rb_hash_new();
call_ptr(cb, REG0, (void *)rb_hash_new);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH);
mov(cb, stack_ret, RAX);
}
return YJIT_KEEP_COMPILING;
}
// Push a constant value to the stack, including type information.
// The constant may be a heap object or a special constant.
static void
jit_putobject(jitstate_t *jit, ctx_t *ctx, VALUE arg)
{
val_type_t val_type = yjit_type_of_value(arg);
x86opnd_t stack_top = ctx_stack_push(ctx, val_type);
if (SPECIAL_CONST_P(arg)) {
// Immediates will not move and do not need to be tracked for GC
// Thanks to this we can mov directly to memory when possible.
// NOTE: VALUE -> int64_t cast below is implementation defined.
// Hopefully it preserves the the bit pattern or raise a signal.
// See N1256 section 6.3.1.3.
x86opnd_t imm = imm_opnd((int64_t)arg);
// 64-bit immediates can't be directly written to memory
if (imm.num_bits <= 32) {
mov(cb, stack_top, imm);
}
else {
mov(cb, REG0, imm);
mov(cb, stack_top, REG0);
}
}
else {
// Load the value to push into REG0
// Note that this value may get moved by the GC
jit_mov_gc_ptr(jit, cb, REG0, arg);
// Write argument at SP
mov(cb, stack_top, REG0);
}
}
static codegen_status_t
gen_putnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
jit_putobject(jit, ctx, Qnil);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_putobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE arg = jit_get_arg(jit, 0);
jit_putobject(jit, ctx, arg);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_putstring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE put_val = jit_get_arg(jit, 0);
// Save the PC and SP because the callee will allocate
jit_prepare_routine_call(jit, ctx, REG0);
mov(cb, C_ARG_REGS[0], REG_EC);
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], put_val);
call_ptr(cb, REG0, (void *)rb_ec_str_resurrect);
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_STRING);
mov(cb, stack_top, RAX);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_putobject_int2fix(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int opcode = jit_get_opcode(jit);
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
jit_putobject(jit, ctx, INT2FIX(cst_val));
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_putself(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Load self from CFP
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
// Write it on the stack
x86opnd_t stack_top = ctx_stack_push_self(ctx);
mov(cb, stack_top, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_putspecialobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
enum vm_special_object_type type = (enum vm_special_object_type)jit_get_arg(jit, 0);
if (type == VM_SPECIAL_OBJECT_VMCORE) {
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_HEAP);
jit_mov_gc_ptr(jit, cb, REG0, rb_mRubyVMFrozenCore);
mov(cb, stack_top, REG0);
return YJIT_KEEP_COMPILING;
}
else {
// TODO: implement for VM_SPECIAL_OBJECT_CBASE and
// VM_SPECIAL_OBJECT_CONST_BASE
return YJIT_CANT_COMPILE;
}
}
// Get EP at level from CFP
static void
gen_get_ep(codeblock_t *cb, x86opnd_t reg, uint32_t level)
{
// Load environment pointer EP from CFP
mov(cb, reg, member_opnd(REG_CFP, rb_control_frame_t, ep));
while (level--) {
// Get the previous EP from the current EP
// See GET_PREV_EP(ep) macro
// VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
mov(cb, reg, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
and(cb, reg, imm_opnd(~0x03));
}
}
// Compute the index of a local variable from its slot index
static uint32_t
slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx)
{
// Convoluted rules from local_var_name() in iseq.c
int32_t local_table_size = iseq->body->local_table_size;
int32_t op = slot_idx - VM_ENV_DATA_SIZE;
int32_t local_idx = local_idx = local_table_size - op - 1;
RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size);
return (uint32_t)local_idx;
}
static codegen_status_t
gen_getlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Compute the offset from BP to the local
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
const int32_t offs = -(SIZEOF_VALUE * slot_idx);
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);
// Load environment pointer EP (level 0) from CFP
gen_get_ep(cb, REG0, 0);
// Load the local from the EP
mov(cb, REG0, mem_opnd(64, REG0, offs));
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx);
mov(cb, stack_top, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_getlocal_generic(ctx_t *ctx, uint32_t local_idx, uint32_t level)
{
gen_get_ep(cb, REG0, level);
// Load the local from the block
// val = *(vm_get_ep(GET_EP(), level) - idx);
const int32_t offs = -(SIZEOF_VALUE * local_idx);
mov(cb, REG0, mem_opnd(64, REG0, offs));
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_top, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_getlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t idx = (int32_t)jit_get_arg(jit, 0);
int32_t level = (int32_t)jit_get_arg(jit, 1);
return gen_getlocal_generic(ctx, idx, level);
}
static codegen_status_t
gen_getlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t idx = (int32_t)jit_get_arg(jit, 0);
return gen_getlocal_generic(ctx, idx, 1);
}
static codegen_status_t
gen_setlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
/*
vm_env_write(const VALUE *ep, int index, VALUE v)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
VM_STACK_ENV_WRITE(ep, index, v);
}
else {
vm_env_write_slowpath(ep, index, v);
}
}
*/
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0);
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx);
// Load environment pointer EP (level 0) from CFP
gen_get_ep(cb, REG0, 0);
// flags & VM_ENV_FLAG_WB_REQUIRED
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
jnz_ptr(cb, side_exit);
// Set the type of the local variable in the context
val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
ctx_set_local_type(ctx, local_idx, temp_type);
// Pop the value to write from the stack
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
mov(cb, REG1, stack_top);
// Write the value at the environment pointer
const int32_t offs = -8 * slot_idx;
mov(cb, mem_opnd(64, REG0, offs), REG1);
return YJIT_KEEP_COMPILING;
}
// Push Qtrue or Qfalse depending on whether the given keyword was supplied by
// the caller
static codegen_status_t
gen_checkkeyword(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// When a keyword is unspecified past index 32, a hash will be used
// instead. This can only happen in iseqs taking more than 32 keywords.
if (jit->iseq->body->param.keyword->num >= 32) {
return YJIT_CANT_COMPILE;
}
// The EP offset to the undefined bits local
int32_t bits_offset = (int32_t)jit_get_arg(jit, 0);
// The index of the keyword we want to check
int32_t index = (int32_t)jit_get_arg(jit, 1);
// Load environment pointer EP
gen_get_ep(cb, REG0, 0);
// VALUE kw_bits = *(ep - bits);
x86opnd_t bits_opnd = mem_opnd(64, REG0, sizeof(VALUE) * -bits_offset);
// unsigned int b = (unsigned int)FIX2ULONG(kw_bits);
// if ((b & (0x01 << idx))) {
//
// We can skip the FIX2ULONG conversion by shifting the bit we test
int64_t bit_test = 0x01 << (index + 1);
test(cb, bits_opnd, imm_opnd(bit_test));
mov(cb, REG0, imm_opnd(Qfalse));
mov(cb, REG1, imm_opnd(Qtrue));
cmovz(cb, REG0, REG1);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
mov(cb, stack_ret, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_setlocal_generic(jitstate_t *jit, ctx_t *ctx, uint32_t local_idx, uint32_t level)
{
// Load environment pointer EP at level
gen_get_ep(cb, REG0, level);
// flags & VM_ENV_FLAG_WB_REQUIRED
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
jnz_ptr(cb, side_exit);
// Pop the value to write from the stack
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
mov(cb, REG1, stack_top);
// Write the value at the environment pointer
const int32_t offs = -(SIZEOF_VALUE * local_idx);
mov(cb, mem_opnd(64, REG0, offs), REG1);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_setlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t idx = (int32_t)jit_get_arg(jit, 0);
int32_t level = (int32_t)jit_get_arg(jit, 1);
return gen_setlocal_generic(jit, ctx, idx, level);
}
static codegen_status_t
gen_setlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t idx = (int32_t)jit_get_arg(jit, 0);
return gen_setlocal_generic(jit, ctx, idx, 1);
}
static void
gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
case SHAPE_NEXT1:
RUBY_ASSERT(false);
break;
case SHAPE_DEFAULT:
jnz_ptr(cb, target0);
break;
}
}
static void
gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
case SHAPE_NEXT1:
RUBY_ASSERT(false);
break;
case SHAPE_DEFAULT:
jz_ptr(cb, target0);
break;
}
}
static void
gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
case SHAPE_NEXT1:
RUBY_ASSERT(false);
break;
case SHAPE_DEFAULT:
jbe_ptr(cb, target0);
break;
}
}
enum jcc_kinds {
JCC_JNE,
JCC_JNZ,
JCC_JZ,
JCC_JE,
JCC_JBE,
JCC_JNA,
};
// Generate a jump to a stub that recompiles the current YARV instruction on failure.
// When depth_limitk is exceeded, generate a jump to a side exit.
static void
jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit)
{
branchgen_fn target0_gen_fn;
switch (jcc) {
case JCC_JNE:
case JCC_JNZ:
target0_gen_fn = gen_jnz_to_target0;
break;
case JCC_JZ:
case JCC_JE:
target0_gen_fn = gen_jz_to_target0;
break;
case JCC_JBE:
case JCC_JNA:
target0_gen_fn = gen_jbe_to_target0;
break;
default:
rb_bug("yjit: unimplemented jump kind");
break;
};
if (ctx->chain_depth < depth_limit) {
ctx_t deeper = *ctx;
deeper.chain_depth++;
gen_branch(
jit,
ctx,
(blockid_t) { jit->iseq, jit->insn_idx },
&deeper,
BLOCKID_NULL,
NULL,
target0_gen_fn
);
}
else {
target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT);
}
}
enum {
GETIVAR_MAX_DEPTH = 10, // up to 5 different classes, and embedded or not for each
OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays
SEND_MAX_DEPTH = 5, // up to 5 different classes
};
VALUE rb_vm_set_ivar_idx(VALUE obj, uint32_t idx, VALUE val);
// Codegen for setting an instance variable.
// Preconditions:
// - receiver is in REG0
// - receiver has the same class as CLASS_OF(comptime_receiver)
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, VALUE recv, VALUE klass, ID ivar_name)
{
// Save the PC and SP because the callee may allocate
// Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, REG0);
// Get the operands from the stack
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(recv, ivar_name);
// Call rb_vm_set_ivar_idx with the receiver, the index of the ivar, and the value
mov(cb, C_ARG_REGS[0], recv_opnd);
mov(cb, C_ARG_REGS[1], imm_opnd(ivar_index));
mov(cb, C_ARG_REGS[2], val_opnd);
call_ptr(cb, REG0, (void *)rb_vm_set_ivar_idx);
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, out_opnd, RAX);
return YJIT_KEEP_COMPILING;
}
// Codegen for getting an instance variable.
// Preconditions:
// - receiver is in REG0
// - receiver has the same class as CLASS_OF(comptime_receiver)
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
{
VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard
// If the class uses the default allocator, instances should all be T_OBJECT
// NOTE: This assumes nobody changes the allocator of the class after allocation.
// Eventually, we can encode whether an object is T_OBJECT or not
// inside object shapes.
if (!RB_TYPE_P(comptime_receiver, T_OBJECT) ||
rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
// General case. Call rb_ivar_get().
// VALUE rb_ivar_get(VALUE obj, ID id)
ADD_COMMENT(cb, "call rb_ivar_get()");
// The function could raise exceptions.
jit_prepare_routine_call(jit, ctx, REG1);
mov(cb, C_ARG_REGS[0], REG0);
mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name));
call_ptr(cb, REG1, (void *)rb_ivar_get);
if (!reg0_opnd.is_self) {
(void)ctx_stack_pop(ctx, 1);
}
// Push the ivar on the stack
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, out_opnd, RAX);
// Jump to next instruction. This allows guard chains to share the same successor.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
/*
// FIXME:
// This check was added because of a failure in a test involving the
// Nokogiri Document class where we see a T_DATA that still has the default
// allocator.
// Aaron Patterson argues that this is a bug in the C extension, because
// people could call .allocate() on the class and still get a T_OBJECT
// For now I added an extra dynamic check that the receiver is T_OBJECT
// so we can safely pass all the tests in Shopify Core.
//
// Guard that the receiver is T_OBJECT
// #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK)
ADD_COMMENT(cb, "guard receiver is T_OBJECT");
mov(cb, REG1, member_opnd(REG0, struct RBasic, flags));
and(cb, REG1, imm_opnd(RUBY_T_MASK));
cmp(cb, REG1, imm_opnd(T_OBJECT));
jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit);
*/
// FIXME: Mapping the index could fail when there is too many ivar names. If we're
// compiling for a branch stub that can cause the exception to be thrown from the
// wrong PC.
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(comptime_receiver, ivar_name);
// Pop receiver if it's on the temp stack
if (!reg0_opnd.is_self) {
(void)ctx_stack_pop(ctx, 1);
}
// Compile time self is embedded and the ivar index lands within the object
if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
// Guard that self is embedded
// TODO: BT and JC is shorter
ADD_COMMENT(cb, "guard embedded getivar");
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic));
// Load the variable
x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
mov(cb, REG1, ivar_opnd);
// Guard that the variable is not Qundef
cmp(cb, REG1, imm_opnd(Qundef));
mov(cb, REG0, imm_opnd(Qnil));
cmove(cb, REG1, REG0);
// Push the ivar on the stack
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, out_opnd, REG1);
}
else {
// Compile time value is *not* embeded.
// Guard that value is *not* embedded
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
ADD_COMMENT(cb, "guard extended getivar");
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic));
// check that the extended table is big enough
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
// Check that the slot is inside the extended table (num_slots > index)
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
cmp(cb, num_slots, imm_opnd(ivar_index));
jle_ptr(cb, COUNTED_EXIT(jit, side_exit, getivar_idx_out_of_range));
}
// Get a pointer to the extended table
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
mov(cb, REG0, tbl_opnd);
// Read the ivar from the extended table
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
mov(cb, REG0, ivar_opnd);
// Check that the ivar is not Qundef
cmp(cb, REG0, imm_opnd(Qundef));
mov(cb, REG1, imm_opnd(Qnil));
cmove(cb, REG0, REG1);
// Push the ivar on the stack
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, out_opnd, REG0);
}
// Jump to next instruction. This allows guard chains to share the same successor.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
static codegen_status_t
gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
ID ivar_name = (ID)jit_get_arg(jit, 0);
VALUE comptime_val = jit_peek_at_self(jit, ctx);
VALUE comptime_val_klass = CLASS_OF(comptime_val);
// Generate a side exit
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Guard that the receiver has the same class as the one from compile time.
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit);
return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
}
void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic);
static codegen_status_t
gen_setinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
ID id = (ID)jit_get_arg(jit, 0);
IVC ic = (IVC)jit_get_arg(jit, 1);
// Save the PC and SP because the callee may allocate
// Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, REG0);
// Get the operands from the stack
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
// Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
mov(cb, C_ARG_REGS[3], val_opnd);
mov(cb, C_ARG_REGS[2], imm_opnd(id));
mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic));
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq);
call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable);
return YJIT_KEEP_COMPILING;
}
bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v);
static codegen_status_t
gen_defined(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0);
VALUE obj = (VALUE)jit_get_arg(jit, 1);
VALUE pushval = (VALUE)jit_get_arg(jit, 2);
// Save the PC and SP because the callee may allocate
// Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, REG0);
// Get the operands from the stack
x86opnd_t v_opnd = ctx_stack_pop(ctx, 1);
// Call vm_defined(ec, reg_cfp, op_type, obj, v)
mov(cb, C_ARG_REGS[0], REG_EC);
mov(cb, C_ARG_REGS[1], REG_CFP);
mov(cb, C_ARG_REGS[2], imm_opnd(op_type));
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj);
mov(cb, C_ARG_REGS[4], v_opnd);
call_ptr(cb, REG0, (void *)rb_vm_defined);
// if (vm_defined(ec, GET_CFP(), op_type, obj, v)) {
// val = pushval;
// }
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval);
cmp(cb, AL, imm_opnd(0));
mov(cb, RAX, imm_opnd(Qnil));
cmovnz(cb, RAX, REG1);
// Push the return value onto the stack
val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN;
x86opnd_t stack_ret = ctx_stack_push(ctx, out_type);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_checktype(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0);
// Only three types are emitted by compile.c
if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) {
val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
x86opnd_t val = ctx_stack_pop(ctx, 1);
x86opnd_t stack_ret;
// Check if we know from type information
if ((type_val == T_STRING && val_type.type == ETYPE_STRING) ||
(type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) ||
(type_val == T_HASH && val_type.type == ETYPE_HASH)) {
// guaranteed type match
stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
mov(cb, stack_ret, imm_opnd(Qtrue));
return YJIT_KEEP_COMPILING;
}
else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) {
// guaranteed not to match T_STRING/T_ARRAY/T_HASH
stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
mov(cb, stack_ret, imm_opnd(Qfalse));
return YJIT_KEEP_COMPILING;
}
mov(cb, REG0, val);
mov(cb, REG1, imm_opnd(Qfalse));
uint32_t ret = cb_new_label(cb, "ret");
if (!val_type.is_heap) {
// if (SPECIAL_CONST_P(val)) {
// Return Qfalse via REG1 if not on heap
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
jnz_label(cb, ret);
cmp(cb, REG0, imm_opnd(Qnil));
jbe_label(cb, ret);
}
// Check type on object
mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags)));
and(cb, REG0, imm_opnd(RUBY_T_MASK));
cmp(cb, REG0, imm_opnd(type_val));
mov(cb, REG0, imm_opnd(Qtrue));
// REG1 contains Qfalse from above
cmove(cb, REG1, REG0);
cb_write_label(cb, ret);
stack_ret = ctx_stack_push(ctx, TYPE_IMM);
mov(cb, stack_ret, REG1);
cb_link_labels(cb);
return YJIT_KEEP_COMPILING;
}
else {
return YJIT_CANT_COMPILE;
}
}
static codegen_status_t
gen_concatstrings(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0);
// Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, REG0);
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n));
// call rb_str_concat_literals(long n, const VALUE *strings);
mov(cb, C_ARG_REGS[0], imm_opnd(n));
lea(cb, C_ARG_REGS[1], values_ptr);
call_ptr(cb, REG0, (void *)rb_str_concat_literals);
ctx_stack_pop(ctx, n);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static void
guard_two_fixnums(ctx_t *ctx, uint8_t *side_exit)
{
// Get the stack operand types
val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0));
val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1));
if (arg0_type.is_heap || arg1_type.is_heap) {
jmp_ptr(cb, side_exit);
return;
}
if (arg0_type.type != ETYPE_FIXNUM && arg0_type.type != ETYPE_UNKNOWN) {
jmp_ptr(cb, side_exit);
return;
}
if (arg1_type.type != ETYPE_FIXNUM && arg1_type.type != ETYPE_UNKNOWN) {
jmp_ptr(cb, side_exit);
return;
}
RUBY_ASSERT(!arg0_type.is_heap);
RUBY_ASSERT(!arg1_type.is_heap);
RUBY_ASSERT(arg0_type.type == ETYPE_FIXNUM || arg0_type.type == ETYPE_UNKNOWN);
RUBY_ASSERT(arg1_type.type == ETYPE_FIXNUM || arg1_type.type == ETYPE_UNKNOWN);
// Get stack operands without popping them
x86opnd_t arg1 = ctx_stack_opnd(ctx, 0);
x86opnd_t arg0 = ctx_stack_opnd(ctx, 1);
// If not fixnums, fall back
if (arg0_type.type != ETYPE_FIXNUM) {
ADD_COMMENT(cb, "guard arg0 fixnum");
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
}
if (arg1_type.type != ETYPE_FIXNUM) {
ADD_COMMENT(cb, "guard arg1 fixnum");
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
}
// Set stack types in context
ctx_upgrade_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM);
ctx_upgrade_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM);
}
// Conditional move operation used by comparison operators
typedef void (*cmov_fn)(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1);
static codegen_status_t
gen_fixnum_cmp(jitstate_t *jit, ctx_t *ctx, cmov_fn cmov_op)
{
// Defer compilation so we can specialize base on a runtime receiver
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
// Create a side-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) {
return YJIT_CANT_COMPILE;
}
// Check that both operands are fixnums
guard_two_fixnums(ctx, side_exit);
// Get the operands from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Compare the arguments
xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
mov(cb, REG1, arg0);
cmp(cb, REG1, arg1);
mov(cb, REG1, imm_opnd(Qtrue));
cmov_op(cb, REG0, REG1);
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, dst, REG0);
return YJIT_KEEP_COMPILING;
}
else {
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_lt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_fixnum_cmp(jit, ctx, cmovl);
}
static codegen_status_t
gen_opt_le(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_fixnum_cmp(jit, ctx, cmovle);
}
static codegen_status_t
gen_opt_ge(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_fixnum_cmp(jit, ctx, cmovge);
}
static codegen_status_t
gen_opt_gt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_fixnum_cmp(jit, ctx, cmovg);
}
// Implements specialized equality for either two fixnum or two strings
// Returns true if code was generated, otherwise false
static bool
gen_equality_specialized(jitstate_t *jit, ctx_t *ctx, uint8_t *side_exit)
{
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
x86opnd_t a_opnd = ctx_stack_opnd(ctx, 1);
x86opnd_t b_opnd = ctx_stack_opnd(ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_EQ)) {
// if overridden, emit the generic version
return false;
}
guard_two_fixnums(ctx, side_exit);
mov(cb, REG0, a_opnd);
cmp(cb, REG0, b_opnd);
mov(cb, REG0, imm_opnd(Qfalse));
mov(cb, REG1, imm_opnd(Qtrue));
cmove(cb, REG0, REG1);
// Push the output on the stack
ctx_stack_pop(ctx, 2);
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
mov(cb, dst, REG0);
return true;
}
else if (CLASS_OF(comptime_a) == rb_cString &&
CLASS_OF(comptime_b) == rb_cString) {
if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_EQ)) {
// if overridden, emit the generic version
return false;
}
// Load a and b in preparation for call later
mov(cb, C_ARG_REGS[0], a_opnd);
mov(cb, C_ARG_REGS[1], b_opnd);
// Guard that a is a String
mov(cb, REG0, C_ARG_REGS[0]);
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(1), comptime_a, SEND_MAX_DEPTH, side_exit);
uint32_t ret = cb_new_label(cb, "ret");
// If they are equal by identity, return true
cmp(cb, C_ARG_REGS[0], C_ARG_REGS[1]);
mov(cb, RAX, imm_opnd(Qtrue));
je_label(cb, ret);
// Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard)
if (ctx_get_opnd_type(ctx, OPND_STACK(0)).type != ETYPE_STRING) {
mov(cb, REG0, C_ARG_REGS[1]);
// Note: any T_STRING is valid here, but we check for a ::String for simplicity
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(0), comptime_b, SEND_MAX_DEPTH, side_exit);
}
// Call rb_str_eql_internal(a, b)
call_ptr(cb, REG0, (void *)rb_str_eql_internal);
// Push the output on the stack
cb_write_label(cb, ret);
ctx_stack_pop(ctx, 2);
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM);
mov(cb, dst, RAX);
cb_link_labels(cb);
return true;
}
else {
return false;
}
}
static codegen_status_t
gen_opt_eq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize base on a runtime receiver
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (gen_equality_specialized(jit, ctx, side_exit)) {
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
else {
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block);
static codegen_status_t
gen_opt_neq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// opt_neq is passed two rb_call_data as arguments:
// first for ==, second for !=
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1);
return gen_send_general(jit, ctx, cd, NULL);
}
static codegen_status_t
gen_opt_aref(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
// Only JIT one arg calls like `ary[6]`
if (argc != 1) {
GEN_COUNTER_INC(cb, oaref_argc_not_one);
return YJIT_CANT_COMPILE;
}
// Defer compilation so we can specialize base on a runtime receiver
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
// Remember the context on entry for adding guard chains
const ctx_t starting_context = *ctx;
// Specialize base on compile time values
VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0);
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1);
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) {
if (!assume_bop_not_redefined(jit, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) {
return YJIT_CANT_COMPILE;
}
// Pop the stack operands
x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
mov(cb, REG0, recv_opnd);
// if (SPECIAL_CONST_P(recv)) {
// Bail if receiver is not a heap object
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
jnz_ptr(cb, side_exit);
cmp(cb, REG0, imm_opnd(Qfalse));
je_ptr(cb, side_exit);
cmp(cb, REG0, imm_opnd(Qnil));
je_ptr(cb, side_exit);
// Bail if recv has a class other than ::Array.
// BOP_AREF check above is only good for ::Array.
mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
cmp(cb, REG0, REG1);
jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);
// Bail if idx is not a FIXNUM
mov(cb, REG1, idx_opnd);
test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, COUNTED_EXIT(jit, side_exit, oaref_arg_not_fixnum));
// Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
// It never raises or allocates, so we don't need to write to cfp->pc.
{
mov(cb, RDI, recv_opnd);
sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
mov(cb, RSI, REG1);
call_ptr(cb, REG0, (void *)rb_ary_entry_internal);
// Push the return value onto the stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
}
// Jump to next instruction. This allows guard chains to share the same successor.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
else if (CLASS_OF(comptime_recv) == rb_cHash) {
if (!assume_bop_not_redefined(jit, HASH_REDEFINED_OP_FLAG, BOP_AREF)) {
return YJIT_CANT_COMPILE;
}
x86opnd_t key_opnd = ctx_stack_opnd(ctx, 0);
x86opnd_t recv_opnd = ctx_stack_opnd(ctx, 1);
// Guard that the receiver is a hash
mov(cb, REG0, recv_opnd);
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(1), comptime_recv, OPT_AREF_MAX_CHAIN_DEPTH, side_exit);
// Setup arguments for rb_hash_aref().
mov(cb, C_ARG_REGS[0], REG0);
mov(cb, C_ARG_REGS[1], key_opnd);
// Prepare to call rb_hash_aref(). It might call #hash on the key.
jit_prepare_routine_call(jit, ctx, REG0);
call_ptr(cb, REG0, (void *)rb_hash_aref);
// Pop the key and the reciever
(void)ctx_stack_pop(ctx, 2);
// Push the return value onto the stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
// Jump to next instruction. This allows guard chains to share the same successor.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
else {
// General case. Call the [] method.
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_aset(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 2);
VALUE comptime_key = jit_peek_at_stack(jit, ctx, 1);
// Get the operands from the stack
x86opnd_t recv = ctx_stack_opnd(ctx, 2);
x86opnd_t key = ctx_stack_opnd(ctx, 1);
x86opnd_t val = ctx_stack_opnd(ctx, 0);
if (CLASS_OF(comptime_recv) == rb_cArray && FIXNUM_P(comptime_key)) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Guard receiver is an Array
mov(cb, REG0, recv);
jit_guard_known_klass(jit, ctx, rb_cArray, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);
// Guard key is a fixnum
mov(cb, REG0, key);
jit_guard_known_klass(jit, ctx, rb_cInteger, OPND_STACK(1), comptime_key, SEND_MAX_DEPTH, side_exit);
// Call rb_ary_store
mov(cb, C_ARG_REGS[0], recv);
mov(cb, C_ARG_REGS[1], key);
sar(cb, C_ARG_REGS[1], imm_opnd(1)); // FIX2LONG(key)
mov(cb, C_ARG_REGS[2], val);
// We might allocate or raise
jit_prepare_routine_call(jit, ctx, REG0);
call_ptr(cb, REG0, (void *)rb_ary_store);
// rb_ary_store returns void
// stored value should still be on stack
mov(cb, REG0, ctx_stack_opnd(ctx, 0));
// Push the return value onto the stack
ctx_stack_pop(ctx, 3);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, REG0);
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
else if (CLASS_OF(comptime_recv) == rb_cHash) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Guard receiver is a Hash
mov(cb, REG0, recv);
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit);
// Call rb_hash_aset
mov(cb, C_ARG_REGS[0], recv);
mov(cb, C_ARG_REGS[1], key);
mov(cb, C_ARG_REGS[2], val);
// We might allocate or raise
jit_prepare_routine_call(jit, ctx, REG0);
call_ptr(cb, REG0, (void *)rb_hash_aset);
// Push the return value onto the stack
ctx_stack_pop(ctx, 3);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
else {
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_and(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
// Create a side-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) {
return YJIT_CANT_COMPILE;
}
// Check that both operands are fixnums
guard_two_fixnums(ctx, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Do the bitwise and arg0 & arg1
mov(cb, REG0, arg0);
and(cb, REG0, arg1);
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
mov(cb, dst, REG0);
return YJIT_KEEP_COMPILING;
}
else {
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_or(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
// Create a side-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) {
return YJIT_CANT_COMPILE;
}
// Check that both operands are fixnums
guard_two_fixnums(ctx, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Do the bitwise or arg0 | arg1
mov(cb, REG0, arg0);
or(cb, REG0, arg1);
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
mov(cb, dst, REG0);
return YJIT_KEEP_COMPILING;
}
else {
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_minus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
// Create a side-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) {
return YJIT_CANT_COMPILE;
}
// Check that both operands are fixnums
guard_two_fixnums(ctx, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Subtract arg0 - arg1 and test for overflow
mov(cb, REG0, arg0);
sub(cb, REG0, arg1);
jo_ptr(cb, side_exit);
add(cb, REG0, imm_opnd(1));
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
mov(cb, dst, REG0);
return YJIT_KEEP_COMPILING;
}
else {
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_plus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1);
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0);
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) {
// Create a side-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) {
return YJIT_CANT_COMPILE;
}
// Check that both operands are fixnums
guard_two_fixnums(ctx, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Add arg0 + arg1 and test for overflow
mov(cb, REG0, arg0);
sub(cb, REG0, imm_opnd(1));
add(cb, REG0, arg1);
jo_ptr(cb, side_exit);
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM);
mov(cb, dst, REG0);
return YJIT_KEEP_COMPILING;
}
else {
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
}
static codegen_status_t
gen_opt_mult(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_div(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
VALUE rb_vm_opt_mod(VALUE recv, VALUE obj);
static codegen_status_t
gen_opt_mod(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Save the PC and SP because the callee may allocate bignums
// Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, REG0);
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Get the operands from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// Call rb_vm_opt_mod(VALUE recv, VALUE obj)
mov(cb, C_ARG_REGS[0], arg0);
mov(cb, C_ARG_REGS[1], arg1);
call_ptr(cb, REG0, (void *)rb_vm_opt_mod);
// If val == Qundef, bail to do a method call
cmp(cb, RAX, imm_opnd(Qundef));
je_ptr(cb, side_exit);
// Push the return value onto the stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_opt_ltlt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_nil_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_empty_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Delegate to send, call the method on the recv
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_str_freeze(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) {
return YJIT_CANT_COMPILE;
}
VALUE str = jit_get_arg(jit, 0);
jit_mov_gc_ptr(jit, cb, REG0, str);
// Push the return value onto the stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
mov(cb, stack_ret, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_opt_str_uminus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) {
return YJIT_CANT_COMPILE;
}
VALUE str = jit_get_arg(jit, 0);
jit_mov_gc_ptr(jit, cb, REG0, str);
// Push the return value onto the stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
mov(cb, stack_ret, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_opt_not(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_size(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_length(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_regexpmatch2(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
return gen_opt_send_without_block(jit, ctx, cb);
}
static codegen_status_t
gen_opt_case_dispatch(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Normally this instruction would lookup the key in a hash and jump to an
// offset based on that.
// Instead we can take the fallback case and continue with the next
// instruciton.
// We'd hope that our jitted code will be sufficiently fast without the
// hash lookup, at least for small hashes, but it's worth revisiting this
// assumption in the future.
ctx_stack_pop(ctx, 1);
return YJIT_KEEP_COMPILING; // continue with the next instruction
}
static void
gen_branchif_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
jz_ptr(cb, target1);
break;
case SHAPE_NEXT1:
jnz_ptr(cb, target0);
break;
case SHAPE_DEFAULT:
jnz_ptr(cb, target0);
jmp_ptr(cb, target1);
break;
}
}
static codegen_status_t
gen_branchif(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
// Check for interrupts, but only on backward branches that may create loops
if (jump_offset < 0) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
yjit_check_ints(cb, side_exit);
}
// Test if any bit (outside of the Qnil bit) is on
// RUBY_Qfalse /* ...0000 0000 */
// RUBY_Qnil /* ...0000 1000 */
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
test(cb, val_opnd, imm_opnd(~Qnil));
// Get the branch target instruction offsets
uint32_t next_idx = jit_next_insn_idx(jit);
uint32_t jump_idx = next_idx + jump_offset;
blockid_t next_block = { jit->iseq, next_idx };
blockid_t jump_block = { jit->iseq, jump_idx };
// Generate the branch instructions
gen_branch(
jit,
ctx,
jump_block,
ctx,
next_block,
ctx,
gen_branchif_branch
);
return YJIT_END_BLOCK;
}
static void
gen_branchunless_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
jnz_ptr(cb, target1);
break;
case SHAPE_NEXT1:
jz_ptr(cb, target0);
break;
case SHAPE_DEFAULT:
jz_ptr(cb, target0);
jmp_ptr(cb, target1);
break;
}
}
static codegen_status_t
gen_branchunless(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
// Check for interrupts, but only on backward branches that may create loops
if (jump_offset < 0) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
yjit_check_ints(cb, side_exit);
}
// Test if any bit (outside of the Qnil bit) is on
// RUBY_Qfalse /* ...0000 0000 */
// RUBY_Qnil /* ...0000 1000 */
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
test(cb, val_opnd, imm_opnd(~Qnil));
// Get the branch target instruction offsets
uint32_t next_idx = jit_next_insn_idx(jit);
uint32_t jump_idx = next_idx + jump_offset;
blockid_t next_block = { jit->iseq, next_idx };
blockid_t jump_block = { jit->iseq, jump_idx };
// Generate the branch instructions
gen_branch(
jit,
ctx,
jump_block,
ctx,
next_block,
ctx,
gen_branchunless_branch
);
return YJIT_END_BLOCK;
}
static void
gen_branchnil_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
jne_ptr(cb, target1);
break;
case SHAPE_NEXT1:
je_ptr(cb, target0);
break;
case SHAPE_DEFAULT:
je_ptr(cb, target0);
jmp_ptr(cb, target1);
break;
}
}
static codegen_status_t
gen_branchnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
// Check for interrupts, but only on backward branches that may create loops
if (jump_offset < 0) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
yjit_check_ints(cb, side_exit);
}
// Test if the value is Qnil
// RUBY_Qnil /* ...0000 1000 */
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
cmp(cb, val_opnd, imm_opnd(Qnil));
// Get the branch target instruction offsets
uint32_t next_idx = jit_next_insn_idx(jit);
uint32_t jump_idx = next_idx + jump_offset;
blockid_t next_block = { jit->iseq, next_idx };
blockid_t jump_block = { jit->iseq, jump_idx };
// Generate the branch instructions
gen_branch(
jit,
ctx,
jump_block,
ctx,
next_block,
ctx,
gen_branchnil_branch
);
return YJIT_END_BLOCK;
}
static codegen_status_t
gen_jump(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0);
// Check for interrupts, but only on backward branches that may create loops
if (jump_offset < 0) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
yjit_check_ints(cb, side_exit);
}
// Get the branch target instruction offsets
uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset;
blockid_t jump_block = { jit->iseq, jump_idx };
// Generate the jump instruction
gen_direct_jump(
jit,
ctx,
jump_block
);
return YJIT_END_BLOCK;
}
/*
Guard that self or a stack operand has the same class as `known_klass`, using
`sample_instance` to speculate about the shape of the runtime value.
FIXNUM and on-heap integers are treated as if they have distinct classes, and
the guard generated for one will fail for the other.
Recompile as contingency if possible, or take side exit a last resort.
*/
static bool
jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit)
{
val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd);
if (known_klass == rb_cNilClass) {
RUBY_ASSERT(!val_type.is_heap);
if (val_type.type != ETYPE_NIL) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
ADD_COMMENT(cb, "guard object is nil");
cmp(cb, REG0, imm_opnd(Qnil));
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_NIL);
}
}
else if (known_klass == rb_cTrueClass) {
RUBY_ASSERT(!val_type.is_heap);
if (val_type.type != ETYPE_TRUE) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
ADD_COMMENT(cb, "guard object is true");
cmp(cb, REG0, imm_opnd(Qtrue));
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_TRUE);
}
}
else if (known_klass == rb_cFalseClass) {
RUBY_ASSERT(!val_type.is_heap);
if (val_type.type != ETYPE_FALSE) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
ADD_COMMENT(cb, "guard object is false");
STATIC_ASSERT(qfalse_is_zero, Qfalse == 0);
test(cb, REG0, REG0);
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FALSE);
}
}
else if (known_klass == rb_cInteger && FIXNUM_P(sample_instance)) {
RUBY_ASSERT(!val_type.is_heap);
// We will guard fixnum and bignum as though they were separate classes
// BIGNUM can be handled by the general else case below
if (val_type.type != ETYPE_FIXNUM || !val_type.is_imm) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
ADD_COMMENT(cb, "guard object is fixnum");
test(cb, REG0, imm_opnd(RUBY_FIXNUM_FLAG));
jit_chain_guard(JCC_JZ, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FIXNUM);
}
}
else if (known_klass == rb_cSymbol && STATIC_SYM_P(sample_instance)) {
RUBY_ASSERT(!val_type.is_heap);
// We will guard STATIC vs DYNAMIC as though they were separate classes
// DYNAMIC symbols can be handled by the general else case below
if (val_type.type != ETYPE_SYMBOL || !val_type.is_imm) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
ADD_COMMENT(cb, "guard object is static symbol");
STATIC_ASSERT(special_shift_is_8, RUBY_SPECIAL_SHIFT == 8);
cmp(cb, REG0_8, imm_opnd(RUBY_SYMBOL_FLAG));
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_STATIC_SYMBOL);
}
}
else if (known_klass == rb_cFloat && FLONUM_P(sample_instance)) {
RUBY_ASSERT(!val_type.is_heap);
if (val_type.type != ETYPE_FLONUM || !val_type.is_imm) {
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN);
// We will guard flonum vs heap float as though they were separate classes
ADD_COMMENT(cb, "guard object is flonum");
mov(cb, REG1, REG0);
and(cb, REG1, imm_opnd(RUBY_FLONUM_MASK));
cmp(cb, REG1, imm_opnd(RUBY_FLONUM_FLAG));
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FLONUM);
}
}
else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) {
// Singleton classes are attached to one specific object, so we can
// avoid one memory access (and potentially the is_heap check) by
// looking for the expected object directly.
// Note that in case the sample instance has a singleton class that
// doesn't attach to the sample instance, it means the sample instance
// has an empty singleton class that hasn't been materialized yet. In
// this case, comparing against the sample instance doesn't gurantee
// that its singleton class is empty, so we can't avoid the memory
// access. As an example, `Object.new.singleton_class` is an object in
// this situation.
ADD_COMMENT(cb, "guard known object with singleton class");
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object.
jit_mov_gc_ptr(jit, cb, REG1, sample_instance);
cmp(cb, REG0, REG1);
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
}
else {
RUBY_ASSERT(!val_type.is_imm);
// Check that the receiver is a heap object
// Note: if we get here, the class doesn't have immediate instances.
if (!val_type.is_heap) {
ADD_COMMENT(cb, "guard not immediate");
RUBY_ASSERT(Qfalse < Qnil);
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit);
cmp(cb, REG0, imm_opnd(Qnil));
jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit);
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_HEAP);
}
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
// Bail if receiver class is different from known_klass
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class.
ADD_COMMENT(cb, "guard known class");
jit_mov_gc_ptr(jit, cb, REG1, known_klass);
cmp(cb, klass_opnd, REG1);
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit);
}
return true;
}
// Generate ancestry guard for protected callee.
// Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee).
static void
jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit)
{
// See vm_call_method().
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self));
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class);
// Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
// VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of);
test(cb, RAX, RAX);
jz_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_protected_check_failed));
}
// Return true when the codegen function generates code.
// known_recv_klass is non-NULL when the caller has used jit_guard_known_klass().
// See yjit_reg_method().
typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass);
// Register a specialized codegen function for a particular method. Note that
// the if the function returns true, the code it generates runs without a
// control frame and without interrupt checks. To avoid creating observable
// behavior changes, the codegen function should only target simple code paths
// that do not allocate and do not make method calls.
static void
yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn)
{
ID mid = rb_intern(mid_str);
const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
if (!me) {
rb_bug("undefined optimized method: %s", rb_id2name(mid));
}
// For now, only cfuncs are supported
RUBY_ASSERT(me && me->def);
RUBY_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC);
st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn);
}
// Codegen for rb_obj_not().
// Note, caller is responsible for generating all the right guards, including
// arity guards.
static bool
jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0));
if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) {
ADD_COMMENT(cb, "rb_obj_not(nil_or_false)");
ctx_stack_pop(ctx, 1);
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_TRUE);
mov(cb, out_opnd, imm_opnd(Qtrue));
}
else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) {
// Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE.
ADD_COMMENT(cb, "rb_obj_not(truthy)");
ctx_stack_pop(ctx, 1);
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FALSE);
mov(cb, out_opnd, imm_opnd(Qfalse));
}
else {
// jit_guard_known_klass() already ran on the receiver which should
// have deduced deduced the type of the receiver. This case should be
// rare if not unreachable.
return false;
}
return true;
}
// Codegen for rb_true()
static bool
jit_rb_true(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
ADD_COMMENT(cb, "nil? == true");
ctx_stack_pop(ctx, 1);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_TRUE);
mov(cb, stack_ret, imm_opnd(Qtrue));
return true;
}
// Codegen for rb_false()
static bool
jit_rb_false(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
ADD_COMMENT(cb, "nil? == false");
ctx_stack_pop(ctx, 1);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_FALSE);
mov(cb, stack_ret, imm_opnd(Qfalse));
return true;
}
// Codegen for rb_obj_equal()
// object identity comparison
static bool
jit_rb_obj_equal(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
ADD_COMMENT(cb, "equal?");
x86opnd_t obj1 = ctx_stack_pop(ctx, 1);
x86opnd_t obj2 = ctx_stack_pop(ctx, 1);
mov(cb, REG0, obj1);
cmp(cb, REG0, obj2);
mov(cb, REG0, imm_opnd(Qtrue));
mov(cb, REG1, imm_opnd(Qfalse));
cmovne(cb, REG0, REG1);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM);
mov(cb, stack_ret, REG0);
return true;
}
static VALUE
yjit_str_bytesize(VALUE str)
{
return LONG2NUM(RSTRING_LEN(str));
}
static bool
jit_rb_str_bytesize(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass)
{
ADD_COMMENT(cb, "String#bytesize");
x86opnd_t recv = ctx_stack_pop(ctx, 1);
mov(cb, C_ARG_REGS[0], recv);
call_ptr(cb, REG0, (void *)&yjit_str_bytesize);
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FIXNUM);
mov(cb, out_opnd, RAX);
return true;
}
// Codegen for rb_str_to_s()
// When String#to_s is called on a String instance, the method returns self and
// most of the overhead comes from setting up the method call. We observed that
// this situation happens a lot in some workloads.
static bool
jit_rb_str_to_s(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
if (recv_known_klass && *recv_known_klass == rb_cString) {
ADD_COMMENT(cb, "to_s on plain string");
// The method returns the receiver, which is already on the stack.
// No stack movement.
return true;
}
return false;
}
static bool
jit_thread_s_current(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
ADD_COMMENT(cb, "Thread.current");
ctx_stack_pop(ctx, 1);
// ec->thread_ptr
mov(cb, REG0, member_opnd(REG_EC, rb_execution_context_t, thread_ptr));
// thread->self
mov(cb, REG0, member_opnd(REG0, rb_thread_t, self));
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP);
mov(cb, stack_ret, REG0);
return true;
}
// Check if we know how to codegen for a particular cfunc method
static method_codegen_t
lookup_cfunc_codegen(const rb_method_definition_t *def)
{
method_codegen_t gen_fn;
if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) {
return gen_fn;
}
return NULL;
}
// Is anyone listening for :c_call and :c_return event currently?
static bool
c_method_tracing_currently_enabled(const jitstate_t *jit)
{
rb_event_flag_t tracing_events;
if (rb_multi_ractor_p()) {
tracing_events = ruby_vm_event_enabled_global_flags;
}
else {
// At the time of writing, events are never removed from
// ruby_vm_event_enabled_global_flags so always checking using it would
// mean we don't compile even after tracing is disabled.
tracing_events = rb_ec_ractor_hooks(jit->ec)->events;
}
return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN);
}
static codegen_status_t
gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass)
{
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
// If the function expects a Ruby array of arguments
if (cfunc->argc < 0 && cfunc->argc != -1) {
GEN_COUNTER_INC(cb, send_cfunc_ruby_array_varg);
return YJIT_CANT_COMPILE;
}
// If the argument count doesn't match
if (cfunc->argc >= 0 && cfunc->argc != argc) {
GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch);
return YJIT_CANT_COMPILE;
}
// Don't JIT functions that need C stack arguments for now
if (cfunc->argc >= 0 && argc + 1 > NUM_C_ARG_REGS) {
GEN_COUNTER_INC(cb, send_cfunc_toomany_args);
return YJIT_CANT_COMPILE;
}
if (c_method_tracing_currently_enabled(jit)) {
// Don't JIT if tracing c_call or c_return
GEN_COUNTER_INC(cb, send_cfunc_tracing);
return YJIT_CANT_COMPILE;
}
// Delegate to codegen for C methods if we have it.
{
method_codegen_t known_cfunc_codegen;
if ((known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) {
if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc, recv_known_klass)) {
// cfunc codegen generated code. Terminate the block so
// there isn't multiple calls in the same block.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
}
}
// Callee method ID
//ID mid = vm_ci_mid(ci);
//printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
//print_str(cb, "");
//print_str(cb, "calling CFUNC:");
//print_str(cb, rb_id2name(mid));
//print_str(cb, "recv");
//print_ptr(cb, recv);
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Check for interrupts
yjit_check_ints(cb, side_exit);
// Stack overflow check
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
// REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + 2 * sizeof(rb_control_frame_t)));
cmp(cb, REG_CFP, REG0);
jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow));
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
// Store incremented PC into current control frame in case callee raises.
jit_save_pc(jit, REG0);
if (block) {
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
// with cfp->block_code.
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
}
// Increment the stack pointer by 3 (in the callee)
// sp += 3
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));
// Write method entry at sp[-3]
// sp[-3] = me;
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
// any cme we depend on become outdated. See rb_yjit_method_lookup_change().
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
// Write block handler at sp[-2]
// sp[-2] = block_handler;
if (block) {
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
or(cb, REG1, imm_opnd(1));
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
}
else {
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
}
// Write env flags at sp[-1]
// sp[-1] = frame_type;
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
// Allocate a new CFP (ec->cfp--)
sub(
cb,
member_opnd(REG_EC, rb_execution_context_t, cfp),
imm_opnd(sizeof(rb_control_frame_t))
);
// Setup the new frame
// *cfp = (const struct rb_control_frame_struct) {
// .pc = 0,
// .sp = sp,
// .iseq = 0,
// .self = recv,
// .ep = sp - 1,
// .block_code = 0,
// .__bp__ = sp,
// };
mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
mov(cb, REG0, recv);
mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
// Verify that we are calling the right function
if (YJIT_CHECK_MODE > 0) {
// Call check_cfunc_dispatch
mov(cb, C_ARG_REGS[0], recv);
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci);
mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func));
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme);
call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
}
// Copy SP into RAX because REG_SP will get overwritten
lea(cb, RAX, ctx_sp_opnd(ctx, 0));
// Pop the C function arguments from the stack (in the caller)
ctx_stack_pop(ctx, argc + 1);
// Write interpreter SP into CFP.
// Needed in case the callee yields to the block.
jit_save_sp(jit, ctx);
// Non-variadic method
if (cfunc->argc >= 0) {
// Copy the arguments from the stack to the C argument registers
// self is the 0th argument and is at index argc from the stack top
for (int32_t i = 0; i < argc + 1; ++i)
{
x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * SIZEOF_VALUE);
x86opnd_t c_arg_reg = C_ARG_REGS[i];
mov(cb, c_arg_reg, stack_opnd);
}
}
// Variadic method
if (cfunc->argc == -1) {
// The method gets a pointer to the first argument
// rb_f_puts(int argc, VALUE *argv, VALUE recv)
mov(cb, C_ARG_REGS[0], imm_opnd(argc));
lea(cb, C_ARG_REGS[1], mem_opnd(64, RAX, -(argc) * SIZEOF_VALUE));
mov(cb, C_ARG_REGS[2], mem_opnd(64, RAX, -(argc + 1) * SIZEOF_VALUE));
}
// Call the C function
// VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
// cfunc comes from compile-time cme->def, which we assume to be stable.
// Invalidation logic is in rb_yjit_method_lookup_change()
call_ptr(cb, REG0, (void*)cfunc->func);
// Record code position for TracePoint patching. See full_cfunc_return().
record_global_inval_patch(cb, outline_full_cfunc_return_pos);
// Push the return value on the Ruby stack
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
// Pop the stack frame (ec->cfp++)
add(
cb,
member_opnd(REG_EC, rb_execution_context_t, cfp),
imm_opnd(sizeof(rb_control_frame_t))
);
// cfunc calls may corrupt types
ctx_clear_local_types(ctx);
// Note: the return block of gen_send_iseq() has ctx->sp_offset == 1
// which allows for sharing the same successor.
// Jump (fall through) to the call continuation block
// We do this to end the current block after the call
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
static void
gen_return_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape)
{
switch (shape) {
case SHAPE_NEXT0:
case SHAPE_NEXT1:
RUBY_ASSERT(false);
break;
case SHAPE_DEFAULT:
mov(cb, REG0, const_ptr_opnd(target0));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
break;
}
}
// Returns whether the iseq only needs positional (lead) argument setup.
static bool
iseq_lead_only_arg_setup_p(const rb_iseq_t *iseq)
{
// When iseq->body->local_iseq == iseq, setup_parameters_complex()
// doesn't do anything to setup the block parameter.
bool takes_block = iseq->body->param.flags.has_block;
return (!takes_block || iseq->body->local_iseq == iseq) &&
iseq->body->param.flags.has_opt == false &&
iseq->body->param.flags.has_rest == false &&
iseq->body->param.flags.has_post == false &&
iseq->body->param.flags.has_kw == false &&
iseq->body->param.flags.has_kwrest == false &&
iseq->body->param.flags.accepts_no_kwarg == false;
}
bool rb_iseq_only_optparam_p(const rb_iseq_t *iseq);
bool rb_iseq_only_kwparam_p(const rb_iseq_t *iseq);
// If true, the iseq is leaf and it can be replaced by a single C call.
static bool
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq)
{
unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave));
unsigned int leave_len = insn_len(BIN(leave));
return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) &&
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) &&
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) &&
iseq->body->builtin_inline_p
);
}
// Return an rb_builtin_function if the iseq contains only that leaf builtin function.
static const struct rb_builtin_function*
rb_leaf_builtin_function(const rb_iseq_t *iseq)
{
if (!rb_leaf_invokebuiltin_iseq_p(iseq))
return NULL;
return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
}
static codegen_status_t
gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, int32_t argc)
{
const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
// When you have keyword arguments, there is an extra object that gets
// placed on the stack the represents a bitmap of the keywords that were not
// specified at the call site. We need to keep track of the fact that this
// value is present on the stack in order to properly set up the callee's
// stack pointer.
bool doing_kw_call = false;
if (vm_ci_flag(ci) & VM_CALL_TAILCALL) {
// We can't handle tailcalls
GEN_COUNTER_INC(cb, send_iseq_tailcall);
return YJIT_CANT_COMPILE;
}
// Arity handling and optional parameter setup
int num_params = iseq->body->param.size;
uint32_t start_pc_offset = 0;
if (iseq_lead_only_arg_setup_p(iseq)) {
// If we have keyword arguments being passed to a callee that only takes
// positionals, then we need to allocate a hash. For now we're going to
// call that too complex and bail.
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
num_params = iseq->body->param.lead_num;
if (num_params != argc) {
GEN_COUNTER_INC(cb, send_iseq_arity_error);
return YJIT_CANT_COMPILE;
}
}
else if (rb_iseq_only_optparam_p(iseq)) {
// If we have keyword arguments being passed to a callee that only takes
// positionals and optionals, then we need to allocate a hash. For now
// we're going to call that too complex and bail.
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
// These are iseqs with 0 or more required parameters followed by 1
// or more optional parameters.
// We follow the logic of vm_call_iseq_setup_normal_opt_start()
// and these are the preconditions required for using that fast path.
RUBY_ASSERT(vm_ci_markable(ci) && ((vm_ci_flag(ci) &
(VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT)) == 0));
const int required_num = iseq->body->param.lead_num;
const int opts_filled = argc - required_num;
const int opt_num = iseq->body->param.opt_num;
if (opts_filled < 0 || opts_filled > opt_num) {
GEN_COUNTER_INC(cb, send_iseq_arity_error);
return YJIT_CANT_COMPILE;
}
num_params -= opt_num - opts_filled;
start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled];
}
else if (rb_iseq_only_kwparam_p(iseq)) {
const int lead_num = iseq->body->param.lead_num;
doing_kw_call = true;
// Here we're calling a method with keyword arguments and specifying
// keyword arguments at this call site.
// This struct represents the metadata about the caller-specified
// keyword arguments.
const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci);
// This struct represents the metadata about the callee-specified
// keyword parameters.
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword;
if (keyword->num > 30) {
// We have so many keywords that (1 << num) encoded as a FIXNUM
// (which shifts it left one more) no longer fits inside a 32-bit
// immediate.
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
// Check that the size of non-keyword arguments matches
if (lead_num != argc - kw_arg->keyword_len) {
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
// This is the list of keyword arguments that the callee specified
// in its initial declaration.
const ID *callee_kwargs = keyword->table;
// Here we're going to build up a list of the IDs that correspond to
// the caller-specified keyword arguments. If they're not in the
// same order as the order specified in the callee declaration, then
// we're going to need to generate some code to swap values around
// on the stack.
ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len);
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++)
caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]);
// First, we're going to be sure that the names of every
// caller-specified keyword argument correspond to a name in the
// list of callee-specified keyword parameters.
for (int caller_idx = 0; caller_idx < kw_arg->keyword_len; caller_idx++) {
int callee_idx;
for (callee_idx = 0; callee_idx < keyword->num; callee_idx++) {
if (caller_kwargs[caller_idx] == callee_kwargs[callee_idx]) {
break;
}
}
// If the keyword was never found, then we know we have a
// mismatch in the names of the keyword arguments, so we need to
// bail.
if (callee_idx == keyword->num) {
GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch);
return YJIT_CANT_COMPILE;
}
}
}
else if (argc == lead_num) {
// Here we are calling a method that accepts keyword arguments
// (optional or required) but we're not passing any keyword
// arguments at this call site
if (keyword->required_num != 0) {
// If any of the keywords are required this is a mismatch
GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch);
return YJIT_CANT_COMPILE;
}
doing_kw_call = true;
}
else {
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
}
else {
// Only handle iseqs that have simple parameter setup.
// See vm_callee_setup_arg().
GEN_COUNTER_INC(cb, send_iseq_complex_callee);
return YJIT_CANT_COMPILE;
}
// Number of locals that are not parameters
const int num_locals = iseq->body->local_table_size - num_params;
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Check for interrupts
yjit_check_ints(cb, side_exit);
const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq);
if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) {
ADD_COMMENT(cb, "inlined leaf builtin");
// Call the builtin func (ec, recv, arg1, arg2, ...)
mov(cb, C_ARG_REGS[0], REG_EC);
// Copy self and arguments
for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) {
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, leaf_builtin->argc - i);
x86opnd_t c_arg_reg = C_ARG_REGS[i + 1];
mov(cb, c_arg_reg, stack_opnd);
}
ctx_stack_pop(ctx, leaf_builtin->argc + 1);
call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr);
// Push the return value
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
// Note: assuming that the leaf builtin doesn't change local variables here.
// Seems like a safe assumption.
return YJIT_KEEP_COMPILING;
}
// Stack overflow check
// Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2.
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
ADD_COMMENT(cb, "stack overflow check");
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + 2 * sizeof(rb_control_frame_t)));
cmp(cb, REG_CFP, REG0);
jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow));
if (doing_kw_call) {
// Here we're calling a method with keyword arguments and specifying
// keyword arguments at this call site.
const int lead_num = iseq->body->param.lead_num;
// This struct represents the metadata about the caller-specified
// keyword arguments.
int caller_keyword_len = 0;
const VALUE *caller_keywords = NULL;
if (vm_ci_kwarg(ci)) {
caller_keyword_len = vm_ci_kwarg(ci)->keyword_len;
caller_keywords = &vm_ci_kwarg(ci)->keywords[0];
}
// This struct represents the metadata about the callee-specified
// keyword parameters.
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword;
ADD_COMMENT(cb, "keyword args");
// This is the list of keyword arguments that the callee specified
// in its initial declaration.
const ID *callee_kwargs = keyword->table;
int total_kwargs = keyword->num;
// Here we're going to build up a list of the IDs that correspond to
// the caller-specified keyword arguments. If they're not in the
// same order as the order specified in the callee declaration, then
// we're going to need to generate some code to swap values around
// on the stack.
ID *caller_kwargs = ALLOCA_N(VALUE, total_kwargs);
int kwarg_idx;
for (kwarg_idx = 0; kwarg_idx < caller_keyword_len; kwarg_idx++) {
caller_kwargs[kwarg_idx] = SYM2ID(caller_keywords[kwarg_idx]);
}
int unspecified_bits = 0;
for (int callee_idx = keyword->required_num; callee_idx < total_kwargs; callee_idx++) {
bool already_passed = false;
ID callee_kwarg = callee_kwargs[callee_idx];
for (int caller_idx = 0; caller_idx < caller_keyword_len; caller_idx++) {
if (caller_kwargs[caller_idx] == callee_kwarg) {
already_passed = true;
break;
}
}
if (!already_passed) {
// Reserve space on the stack for each default value we'll be
// filling in (which is done in the next loop). Also increments
// argc so that the callee's SP is recorded correctly.
argc++;
x86opnd_t default_arg = ctx_stack_push(ctx, TYPE_UNKNOWN);
VALUE default_value = keyword->default_values[callee_idx - keyword->required_num];
if (default_value == Qundef) {
// Qundef means that this value is not constant and must be
// recalculated at runtime, so we record it in unspecified_bits
// (Qnil is then used as a placeholder instead of Qundef).
unspecified_bits |= 0x01 << (callee_idx - keyword->required_num);
default_value = Qnil;
}
mov(cb, default_arg, imm_opnd(default_value));
caller_kwargs[kwarg_idx++] = callee_kwarg;
}
}
RUBY_ASSERT(kwarg_idx == total_kwargs);
// Next, we're going to loop through every keyword that was
// specified by the caller and make sure that it's in the correct
// place. If it's not we're going to swap it around with another one.
for (kwarg_idx = 0; kwarg_idx < total_kwargs; kwarg_idx++) {
ID callee_kwarg = callee_kwargs[kwarg_idx];
// If the argument is already in the right order, then we don't
// need to generate any code since the expected value is already
// in the right place on the stack.
if (callee_kwarg == caller_kwargs[kwarg_idx]) continue;
// In this case the argument is not in the right place, so we
// need to find its position where it _should_ be and swap with
// that location.
for (int swap_idx = kwarg_idx + 1; swap_idx < total_kwargs; swap_idx++) {
if (callee_kwarg == caller_kwargs[swap_idx]) {
// First we're going to generate the code that is going
// to perform the actual swapping at runtime.
stack_swap(ctx, cb, argc - 1 - swap_idx - lead_num, argc - 1 - kwarg_idx - lead_num, REG1, REG0);
// Next we're going to do some bookkeeping on our end so
// that we know the order that the arguments are
// actually in now.
ID tmp = caller_kwargs[kwarg_idx];
caller_kwargs[kwarg_idx] = caller_kwargs[swap_idx];
caller_kwargs[swap_idx] = tmp;
break;
}
}
}
// Keyword arguments cause a special extra local variable to be
// pushed onto the stack that represents the parameters that weren't
// explicitly given a value and have a non-constant default.
mov(cb, ctx_stack_opnd(ctx, -1), imm_opnd(INT2FIX(unspecified_bits)));
}
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
// Store the updated SP on the current frame (pop arguments and receiver)
ADD_COMMENT(cb, "store caller sp");
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
// Store the next PC in the current frame
jit_save_pc(jit, REG0);
if (block) {
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block().
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases
// with cfp->block_code.
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0);
}
// Adjust the callee's stack pointer
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals + doing_kw_call)));
// Initialize local variables to Qnil
for (int i = 0; i < num_locals; i++) {
mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
}
ADD_COMMENT(cb, "push env");
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
// any cme we depend on become outdated. See rb_yjit_method_lookup_change().
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
// Write method entry at sp[-3]
// sp[-3] = me;
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
// Write block handler at sp[-2]
// sp[-2] = block_handler;
if (block) {
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp));
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self));
or(cb, REG1, imm_opnd(1));
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1);
}
else {
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
}
// Write env flags at sp[-1]
// sp[-1] = frame_type;
uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
ADD_COMMENT(cb, "push callee CFP");
// Allocate a new CFP (ec->cfp--)
sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
// Setup the new frame
// *cfp = (const struct rb_control_frame_struct) {
// .pc = pc,
// .sp = sp,
// .iseq = iseq,
// .self = recv,
// .ep = sp - 1,
// .block_code = 0,
// .__bp__ = sp,
// };
mov(cb, REG1, recv);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG1);
mov(cb, REG_SP, REG0); // Switch to the callee's REG_SP
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
// No need to set cfp->pc since the callee sets it whenever calling into routines
// that could look at it through jit_save_pc().
// mov(cb, REG0, const_ptr_opnd(start_pc));
// mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);
// Stub so we can return to JITted code
blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };
// Create a context for the callee
ctx_t callee_ctx = DEFAULT_CTX;
// Set the argument types in the callee's context
for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) {
val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1));
ctx_set_local_type(&callee_ctx, arg_idx, arg_type);
}
val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc));
ctx_upgrade_opnd_type(&callee_ctx, OPND_SELF, recv_type);
// The callee might change locals through Kernel#binding and other means.
ctx_clear_local_types(ctx);
// Pop arguments and receiver in return context, push the return value
// After the return, sp_offset will be 1. The codegen for leave writes
// the return value in case of JIT-to-JIT return.
ctx_t return_ctx = *ctx;
ctx_stack_pop(&return_ctx, argc + 1);
ctx_stack_push(&return_ctx, TYPE_UNKNOWN);
return_ctx.sp_offset = 1;
return_ctx.chain_depth = 0;
// Write the JIT return address on the callee frame
gen_branch(
jit,
ctx,
return_block,
&return_ctx,
return_block,
&return_ctx,
gen_return_branch
);
//print_str(cb, "calling Ruby func:");
//print_str(cb, rb_id2name(vm_ci_mid(ci)));
// Directly jump to the entry point of the callee
gen_direct_jump(
jit,
&callee_ctx,
(blockid_t){ iseq, start_pc_offset }
);
return YJIT_END_BLOCK;
}
static codegen_status_t
gen_struct_aref(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) {
if (vm_ci_argc(ci) != 0) {
return YJIT_CANT_COMPILE;
}
const unsigned int off = cme->def->body.optimized.index;
// Confidence checks
RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT));
RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv));
// We are going to use an encoding that takes a 4-byte immediate which
// limits the offset to INT32_MAX.
{
uint64_t native_off = (uint64_t)off * (uint64_t)SIZEOF_VALUE;
if (native_off > (uint64_t)INT32_MAX) {
return YJIT_CANT_COMPILE;
}
}
// All structs from the same Struct class should have the same
// length. So if our comptime_recv is embedded all runtime
// structs of the same class should be as well, and the same is
// true of the converse.
bool embedded = FL_TEST_RAW(comptime_recv, RSTRUCT_EMBED_LEN_MASK);
ADD_COMMENT(cb, "struct aref");
x86opnd_t recv = ctx_stack_pop(ctx, 1);
mov(cb, REG0, recv);
if (embedded) {
mov(cb, REG0, member_opnd_idx(REG0, struct RStruct, as.ary, off));
}
else {
mov(cb, REG0, member_opnd(REG0, struct RStruct, as.heap.ptr));
mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * off));
}
x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, ret, REG0);
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
static codegen_status_t
gen_struct_aset(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) {
if (vm_ci_argc(ci) != 1) {
return YJIT_CANT_COMPILE;
}
const unsigned int off = cme->def->body.optimized.index;
// Confidence checks
RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT));
RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv));
ADD_COMMENT(cb, "struct aset");
x86opnd_t val = ctx_stack_pop(ctx, 1);
x86opnd_t recv = ctx_stack_pop(ctx, 1);
mov(cb, C_ARG_REGS[0], recv);
mov(cb, C_ARG_REGS[1], imm_opnd(off));
mov(cb, C_ARG_REGS[2], val);
call_ptr(cb, REG0, (void *)RSTRUCT_SET);
x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, ret, RAX);
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
const rb_callable_method_entry_t *
rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me);
static codegen_status_t
gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block)
{
// Relevant definitions:
// rb_execution_context_t : vm_core.h
// invoker, cfunc logic : method.h, vm_method.c
// rb_callinfo : vm_callinfo.h
// rb_callable_method_entry_t : method.h
// vm_call_cfunc_with_frame : vm_insnhelper.c
//
// For a general overview for how the interpreter calls methods,
// see vm_call_method().
const struct rb_callinfo *ci = cd->ci; // info about the call site
int32_t argc = (int32_t)vm_ci_argc(ci);
ID mid = vm_ci_mid(ci);
// Don't JIT calls with keyword splat
if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) {
GEN_COUNTER_INC(cb, send_kw_splat);
return YJIT_CANT_COMPILE;
}
// Don't JIT calls that aren't simple
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
GEN_COUNTER_INC(cb, send_args_splat);
return YJIT_CANT_COMPILE;
}
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
GEN_COUNTER_INC(cb, send_block_arg);
return YJIT_CANT_COMPILE;
}
// Defer compilation so we can specialize on class of receiver
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
VALUE comptime_recv_klass = CLASS_OF(comptime_recv);
// Guard that the receiver has the same class as the one from compile time
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
insn_opnd_t recv_opnd = OPND_STACK(argc);
mov(cb, REG0, recv);
if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) {
return YJIT_CANT_COMPILE;
}
// Do method lookup
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid);
if (!cme) {
// TODO: counter
return YJIT_CANT_COMPILE;
}
switch (METHOD_ENTRY_VISI(cme)) {
case METHOD_VISI_PUBLIC:
// Can always call public methods
break;
case METHOD_VISI_PRIVATE:
if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) {
// Can only call private methods with FCALL callsites.
// (at the moment they are callsites without a receiver or an explicit `self` receiver)
return YJIT_CANT_COMPILE;
}
break;
case METHOD_VISI_PROTECTED:
jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit);
break;
case METHOD_VISI_UNDEF:
RUBY_ASSERT(false && "cmes should always have a visibility");
break;
}
// Register block for invalidation
RUBY_ASSERT(cme->called_id == mid);
assume_method_lookup_stable(comptime_recv_klass, cme, jit);
// To handle the aliased method case (VM_METHOD_TYPE_ALIAS)
while (true) {
// switch on the method type
switch (cme->def->type) {
case VM_METHOD_TYPE_ISEQ:
return gen_send_iseq(jit, ctx, ci, cme, block, argc);
case VM_METHOD_TYPE_CFUNC:
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
GEN_COUNTER_INC(cb, send_cfunc_kwargs);
return YJIT_CANT_COMPILE;
}
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, &comptime_recv_klass);
case VM_METHOD_TYPE_IVAR:
if (argc != 0) {
// Argument count mismatch. Getters take no arguments.
GEN_COUNTER_INC(cb, send_getter_arity);
return YJIT_CANT_COMPILE;
}
if (c_method_tracing_currently_enabled(jit)) {
// Can't generate code for firing c_call and c_return events
// :attr-tracing:
// Handling the C method tracing events for attr_accessor
// methods is easier than regular C methods as we know the
// "method" we are calling into never enables those tracing
// events. Once global invalidation runs, the code for the
// attr_accessor is invalidated and we exit at the closest
// instruction boundary which is always outside of the body of
// the attr_accessor code.
GEN_COUNTER_INC(cb, send_cfunc_tracing);
return YJIT_CANT_COMPILE;
}
mov(cb, REG0, recv);
ID ivar_name = cme->def->body.attr.id;
return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit);
case VM_METHOD_TYPE_ATTRSET:
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
GEN_COUNTER_INC(cb, send_attrset_kwargs);
return YJIT_CANT_COMPILE;
}
else if (argc != 1 || !RB_TYPE_P(comptime_recv, T_OBJECT)) {
GEN_COUNTER_INC(cb, send_ivar_set_method);
return YJIT_CANT_COMPILE;
}
else if (c_method_tracing_currently_enabled(jit)) {
// Can't generate code for firing c_call and c_return events
// See :attr-tracing:
GEN_COUNTER_INC(cb, send_cfunc_tracing);
return YJIT_CANT_COMPILE;
}
else {
ID ivar_name = cme->def->body.attr.id;
return gen_set_ivar(jit, ctx, comptime_recv, comptime_recv_klass, ivar_name);
}
// Block method, e.g. define_method(:foo) { :my_block }
case VM_METHOD_TYPE_BMETHOD:
GEN_COUNTER_INC(cb, send_bmethod);
return YJIT_CANT_COMPILE;
case VM_METHOD_TYPE_ZSUPER:
GEN_COUNTER_INC(cb, send_zsuper_method);
return YJIT_CANT_COMPILE;
case VM_METHOD_TYPE_ALIAS: {
// Retrieve the alised method and re-enter the switch
cme = rb_aliased_callable_method_entry(cme);
continue;
}
case VM_METHOD_TYPE_UNDEF:
GEN_COUNTER_INC(cb, send_undef_method);
return YJIT_CANT_COMPILE;
case VM_METHOD_TYPE_NOTIMPLEMENTED:
GEN_COUNTER_INC(cb, send_not_implemented_method);
return YJIT_CANT_COMPILE;
// Send family of methods, e.g. call/apply
case VM_METHOD_TYPE_OPTIMIZED:
switch (cme->def->body.optimized.type) {
case OPTIMIZED_METHOD_TYPE_SEND:
GEN_COUNTER_INC(cb, send_optimized_method_send);
return YJIT_CANT_COMPILE;
case OPTIMIZED_METHOD_TYPE_CALL:
GEN_COUNTER_INC(cb, send_optimized_method_call);
return YJIT_CANT_COMPILE;
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
GEN_COUNTER_INC(cb, send_optimized_method_block_call);
return YJIT_CANT_COMPILE;
case OPTIMIZED_METHOD_TYPE_STRUCT_AREF:
return gen_struct_aref(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass);
case OPTIMIZED_METHOD_TYPE_STRUCT_ASET:
return gen_struct_aset(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass);
default:
rb_bug("unknown optimized method type (%d)", cme->def->body.optimized.type);
UNREACHABLE_RETURN(YJIT_CANT_COMPILE);
}
case VM_METHOD_TYPE_MISSING:
GEN_COUNTER_INC(cb, send_missing_method);
return YJIT_CANT_COMPILE;
case VM_METHOD_TYPE_REFINED:
GEN_COUNTER_INC(cb, send_refined_method);
return YJIT_CANT_COMPILE;
// no default case so compiler issues a warning if this is not exhaustive
}
// Unreachable
RUBY_ASSERT(false);
}
}
static codegen_status_t
gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
return gen_send_general(jit, ctx, cd, NULL);
}
static codegen_status_t
gen_send(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
return gen_send_general(jit, ctx, cd, block);
}
static codegen_status_t
gen_invokesuper(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1);
// Defer compilation so we can specialize on class of receiver
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp);
if (!me) {
return YJIT_CANT_COMPILE;
}
// FIXME: We should track and invalidate this block when this cme is invalidated
VALUE current_defined_class = me->defined_class;
ID mid = me->def->original_id;
if (me != rb_callable_method_entry(current_defined_class, me->called_id)) {
// Though we likely could generate this call, as we are only concerned
// with the method entry remaining valid, assume_method_lookup_stable
// below requires that the method lookup matches as well
return YJIT_CANT_COMPILE;
}
// vm_search_normal_superclass
if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) {
return YJIT_CANT_COMPILE;
}
VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class));
const struct rb_callinfo *ci = cd->ci;
int32_t argc = (int32_t)vm_ci_argc(ci);
// Don't JIT calls that aren't simple
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) {
GEN_COUNTER_INC(cb, send_args_splat);
return YJIT_CANT_COMPILE;
}
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) {
GEN_COUNTER_INC(cb, send_keywords);
return YJIT_CANT_COMPILE;
}
if ((vm_ci_flag(ci) & VM_CALL_KW_SPLAT) != 0) {
GEN_COUNTER_INC(cb, send_kw_splat);
return YJIT_CANT_COMPILE;
}
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) {
GEN_COUNTER_INC(cb, send_block_arg);
return YJIT_CANT_COMPILE;
}
// Ensure we haven't rebound this method onto an incompatible class.
// In the interpreter we try to avoid making this check by performing some
// cheaper calculations first, but since we specialize on the method entry
// and so only have to do this once at compile time this is fine to always
// check and side exit.
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc);
if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) {
return YJIT_CANT_COMPILE;
}
// Do method lookup
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid);
if (!cme) {
return YJIT_CANT_COMPILE;
}
// Check that we'll be able to write this method dispatch before generating checks
switch (cme->def->type) {
case VM_METHOD_TYPE_ISEQ:
case VM_METHOD_TYPE_CFUNC:
break;
default:
// others unimplemented
return YJIT_CANT_COMPILE;
}
// Guard that the receiver has the same class as the one from compile time
uint8_t *side_exit = yjit_side_exit(jit, ctx);
if (jit->ec->cfp->ep[VM_ENV_DATA_INDEX_ME_CREF] != (VALUE)me) {
// This will be the case for super within a block
return YJIT_CANT_COMPILE;
}
ADD_COMMENT(cb, "guard known me");
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
x86opnd_t ep_me_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_ME_CREF);
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)me);
cmp(cb, ep_me_opnd, REG1);
jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_me_changed));
if (!block) {
// Guard no block passed
// rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE
// note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep))
//
// TODO: this could properly forward the current block handler, but
// would require changes to gen_send_*
ADD_COMMENT(cb, "guard no block given");
// EP is in REG0 from above
x86opnd_t ep_specval_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL);
cmp(cb, ep_specval_opnd, imm_opnd(VM_BLOCK_HANDLER_NONE));
jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_block));
}
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
mov(cb, REG0, recv);
// We need to assume that both our current method entry and the super
// method entry we invoke remain stable
assume_method_lookup_stable(current_defined_class, me, jit);
assume_method_lookup_stable(comptime_superclass, cme, jit);
// Method calls may corrupt types
ctx_clear_local_types(ctx);
switch (cme->def->type) {
case VM_METHOD_TYPE_ISEQ:
return gen_send_iseq(jit, ctx, ci, cme, block, argc);
case VM_METHOD_TYPE_CFUNC:
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, NULL);
default:
break;
}
RUBY_ASSERT_ALWAYS(false);
}
static codegen_status_t
gen_leave(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Only the return value should be on the stack
RUBY_ASSERT(ctx->stack_size == 1);
// Create a side-exit to fall back to the interpreter
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Load environment pointer EP from CFP
mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, ep));
// Check for interrupts
ADD_COMMENT(cb, "check for interrupts");
yjit_check_ints(cb, COUNTED_EXIT(jit, side_exit, leave_se_interrupt));
// Load the return value
mov(cb, REG0, ctx_stack_pop(ctx, 1));
// Pop the current frame (ec->cfp++)
// Note: the return PC is already in the previous CFP
add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
// Reload REG_SP for the caller and write the return value.
// Top of the stack is REG_SP[0] since the caller has sp_offset=1.
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
mov(cb, mem_opnd(64, REG_SP, 0), REG0);
// Jump to the JIT return address on the frame that was just popped
const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return);
jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return));
return YJIT_END_BLOCK;
}
RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state;
static codegen_status_t
gen_getglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
ID gid = jit_get_arg(jit, 0);
// Save the PC and SP because we might make a Ruby call for warning
jit_prepare_routine_call(jit, ctx, REG0);
mov(cb, C_ARG_REGS[0], imm_opnd(gid));
call_ptr(cb, REG0, (void *)&rb_gvar_get);
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, top, RAX);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_setglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
ID gid = jit_get_arg(jit, 0);
// Save the PC and SP because we might make a Ruby call for
// Kernel#set_trace_var
jit_prepare_routine_call(jit, ctx, REG0);
mov(cb, C_ARG_REGS[0], imm_opnd(gid));
x86opnd_t val = ctx_stack_pop(ctx, 1);
mov(cb, C_ARG_REGS[1], val);
call_ptr(cb, REG0, (void *)&rb_gvar_set);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_anytostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// Save the PC and SP because we might make a Ruby call for
// Kernel#set_trace_var
jit_prepare_routine_call(jit, ctx, REG0);
x86opnd_t str = ctx_stack_pop(ctx, 1);
x86opnd_t val = ctx_stack_pop(ctx, 1);
mov(cb, C_ARG_REGS[0], str);
mov(cb, C_ARG_REGS[1], val);
call_ptr(cb, REG0, (void *)&rb_obj_as_string_result);
// Push the return value
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_objtostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
if (!jit_at_current_insn(jit)) {
defer_compilation(jit, ctx);
return YJIT_END_BLOCK;
}
x86opnd_t recv = ctx_stack_opnd(ctx, 0);
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 0);
if (RB_TYPE_P(comptime_recv, T_STRING)) {
uint8_t *side_exit = yjit_side_exit(jit, ctx);
mov(cb, REG0, recv);
jit_guard_known_klass(jit, ctx, CLASS_OF(comptime_recv), OPND_STACK(0), comptime_recv, SEND_MAX_DEPTH, side_exit);
// No work needed. The string value is already on the top of the stack.
return YJIT_KEEP_COMPILING;
}
else {
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0);
return gen_send_general(jit, ctx, cd, NULL);
}
}
static codegen_status_t
gen_toregexp(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
rb_num_t opt = jit_get_arg(jit, 0);
rb_num_t cnt = jit_get_arg(jit, 1);
// Save the PC and SP because this allocates an object and could
// raise an exception.
jit_prepare_routine_call(jit, ctx, REG0);
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)cnt));
ctx_stack_pop(ctx, cnt);
mov(cb, C_ARG_REGS[0], imm_opnd(0));
mov(cb, C_ARG_REGS[1], imm_opnd(cnt));
lea(cb, C_ARG_REGS[2], values_ptr);
call_ptr(cb, REG0, (void *)&rb_ary_tmp_new_from_values);
// Save the array so we can clear it later
push(cb, RAX);
push(cb, RAX); // Alignment
mov(cb, C_ARG_REGS[0], RAX);
mov(cb, C_ARG_REGS[1], imm_opnd(opt));
call_ptr(cb, REG0, (void *)&rb_reg_new_ary);
// The actual regex is in RAX now. Pop the temp array from
// rb_ary_tmp_new_from_values into C arg regs so we can clear it
pop(cb, REG1); // Alignment
pop(cb, C_ARG_REGS[0]);
// The value we want to push on the stack is in RAX right now
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
// Clear the temp array.
call_ptr(cb, REG0, (void *)&rb_ary_clear);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_getspecial(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// This takes two arguments, key and type
// key is only used when type == 0
// A non-zero type determines which type of backref to fetch
//rb_num_t key = jit_get_arg(jit, 0);
rb_num_t type = jit_get_arg(jit, 1);
if (type == 0) {
// not yet implemented
return YJIT_CANT_COMPILE;
}
else if (type & 0x01) {
// Fetch a "special" backref based on a char encoded by shifting by 1
// Can raise if matchdata uninitialized
jit_prepare_routine_call(jit, ctx, REG0);
// call rb_backref_get()
ADD_COMMENT(cb, "rb_backref_get");
call_ptr(cb, REG0, (void *)rb_backref_get);
mov(cb, C_ARG_REGS[0], RAX);
switch (type >> 1) {
case '&':
ADD_COMMENT(cb, "rb_reg_last_match");
call_ptr(cb, REG0, (void *)rb_reg_last_match);
break;
case '`':
ADD_COMMENT(cb, "rb_reg_match_pre");
call_ptr(cb, REG0, (void *)rb_reg_match_pre);
break;
case '\'':
ADD_COMMENT(cb, "rb_reg_match_post");
call_ptr(cb, REG0, (void *)rb_reg_match_post);
break;
case '+':
ADD_COMMENT(cb, "rb_reg_match_last");
call_ptr(cb, REG0, (void *)rb_reg_match_last);
break;
default:
rb_bug("invalid back-ref");
}
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
else {
// Fetch the N-th match from the last backref based on type shifted by 1
// Can raise if matchdata uninitialized
jit_prepare_routine_call(jit, ctx, REG0);
// call rb_backref_get()
ADD_COMMENT(cb, "rb_backref_get");
call_ptr(cb, REG0, (void *)rb_backref_get);
// rb_reg_nth_match((int)(type >> 1), backref);
ADD_COMMENT(cb, "rb_reg_nth_match");
mov(cb, C_ARG_REGS[0], imm_opnd(type >> 1));
mov(cb, C_ARG_REGS[1], RAX);
call_ptr(cb, REG0, (void *)rb_reg_nth_match);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
}
VALUE
rb_vm_getclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, ICVARC ic);
static codegen_status_t
gen_getclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb)
{
// rb_vm_getclassvariable can raise exceptions.
jit_prepare_routine_call(jit, ctx, REG0);
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq));
mov(cb, C_ARG_REGS[1], REG_CFP);
mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0)));
mov(cb, C_ARG_REGS[3], imm_opnd(jit_get_arg(jit, 1)));
call_ptr(cb, REG0, (void *)rb_vm_getclassvariable);
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_top, RAX);
return YJIT_KEEP_COMPILING;
}
VALUE
rb_vm_setclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, VALUE val, ICVARC ic);
static codegen_status_t
gen_setclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb)
{
// rb_vm_setclassvariable can raise exceptions.
jit_prepare_routine_call(jit, ctx, REG0);
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq));
mov(cb, C_ARG_REGS[1], REG_CFP);
mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0)));
mov(cb, C_ARG_REGS[3], ctx_stack_pop(ctx, 1));
mov(cb, C_ARG_REGS[4], imm_opnd(jit_get_arg(jit, 1)));
call_ptr(cb, REG0, (void *)rb_vm_setclassvariable);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
VALUE jump_offset = jit_get_arg(jit, 0);
VALUE const_cache_as_value = jit_get_arg(jit, 1);
IC ic = (IC)const_cache_as_value;
// See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update().
struct iseq_inline_constant_cache_entry *ice = ic->entry;
if (!ice || // cache not filled
GET_IC_SERIAL(ice) != ruby_vm_global_constant_state /* cache out of date */) {
// In these cases, leave a block that unconditionally side exits
// for the interpreter to invalidate.
return YJIT_CANT_COMPILE;
}
// Make sure there is an exit for this block as the interpreter might want
// to invalidate this block from yjit_constant_ic_update().
jit_ensure_block_entry_exit(jit);
if (ice->ic_cref) {
// Cache is keyed on a certain lexical scope. Use the interpreter's cache.
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Call function to verify the cache. It doesn't allocate or call methods.
bool rb_vm_ic_hit_p(IC ic, const VALUE *reg_ep);
mov(cb, C_ARG_REGS[0], const_ptr_opnd((void *)ic));
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, ep));
call_ptr(cb, REG0, (void *)rb_vm_ic_hit_p);
// Check the result. _Bool is one byte in SysV.
test(cb, AL, AL);
jz_ptr(cb, COUNTED_EXIT(jit, side_exit, opt_getinlinecache_miss));
// Push ic->entry->value
mov(cb, REG0, const_ptr_opnd((void *)ic));
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache, entry));
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache_entry, value));
mov(cb, stack_top, REG0);
}
else {
// Optimize for single ractor mode.
// FIXME: This leaks when st_insert raises NoMemoryError
if (!assume_single_ractor_mode(jit)) return YJIT_CANT_COMPILE;
// Invalidate output code on any and all constant writes
// FIXME: This leaks when st_insert raises NoMemoryError
assume_stable_global_constant_state(jit);
jit_putobject(jit, ctx, ice->value);
}
// Jump over the code for filling the cache
uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset;
gen_direct_jump(
jit,
ctx,
(blockid_t){ .iseq = jit->iseq, .idx = jump_idx }
);
return YJIT_END_BLOCK;
}
// Push the explict block parameter onto the temporary stack. Part of the
// interpreter's scheme for avoiding Proc allocations when delegating
// explict block parameters.
static codegen_status_t
gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
// A mirror of the interpreter code. Checking for the case
// where it's pushing rb_block_param_proxy.
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// EP level
uint32_t level = (uint32_t)jit_get_arg(jit, 1);
// Load environment pointer EP from CFP
gen_get_ep(cb, REG0, level);
// Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero
test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM));
jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_param_modified));
// Load the block handler for the current frame
// note, VM_ASSERT(VM_ENV_LOCAL_P(ep))
mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
// Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P().
and(cb, REG0_8, imm_opnd(0x3));
// Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null.
cmp(cb, REG0_8, imm_opnd(0x1));
jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_handler_not_iseq));
// Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr.
mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy));
RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy));
x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP);
mov(cb, top, REG0);
return YJIT_KEEP_COMPILING;
}
static codegen_status_t
gen_invokebuiltin(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
// ec, self, and arguments
if (bf->argc + 2 > NUM_C_ARG_REGS) {
return YJIT_CANT_COMPILE;
}
// If the calls don't allocate, do they need up to date PC, SP?
jit_prepare_routine_call(jit, ctx, REG0);
// Call the builtin func (ec, recv, arg1, arg2, ...)
mov(cb, C_ARG_REGS[0], REG_EC);
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
// Copy arguments from locals
for (int32_t i = 0; i < bf->argc; i++) {
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, bf->argc - i - 1);
x86opnd_t c_arg_reg = C_ARG_REGS[2 + i];
mov(cb, c_arg_reg, stack_opnd);
}
call_ptr(cb, REG0, (void *)bf->func_ptr);
// Push the return value
ctx_stack_pop(ctx, bf->argc);
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
// opt_invokebuiltin_delegate calls a builtin function, like
// invokebuiltin does, but instead of taking arguments from the top of the
// stack uses the argument locals (and self) from the current method.
static codegen_status_t
gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0);
int32_t start_index = (int32_t)jit_get_arg(jit, 1);
// ec, self, and arguments
if (bf->argc + 2 > NUM_C_ARG_REGS) {
return YJIT_CANT_COMPILE;
}
// If the calls don't allocate, do they need up to date PC, SP?
jit_prepare_routine_call(jit, ctx, REG0);
if (bf->argc > 0) {
// Load environment pointer EP from CFP
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
}
// Call the builtin func (ec, recv, arg1, arg2, ...)
mov(cb, C_ARG_REGS[0], REG_EC);
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self));
// Copy arguments from locals
for (int32_t i = 0; i < bf->argc; i++) {
const int32_t offs = -jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1 + start_index + i;
x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE);
x86opnd_t c_arg_reg = C_ARG_REGS[i + 2];
mov(cb, c_arg_reg, local_opnd);
}
call_ptr(cb, REG0, (void *)bf->func_ptr);
// Push the return value
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN);
mov(cb, stack_ret, RAX);
return YJIT_KEEP_COMPILING;
}
static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data);
static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq);
// Invalidate all generated code and patch C method return code to contain
// logic for firing the c_return TracePoint event. Once rb_vm_barrier()
// returns, all other ractors are pausing inside RB_VM_LOCK_ENTER(), which
// means they are inside a C routine. If there are any generated code on-stack,
// they are waiting for a return from a C routine. For every routine call, we
// patch in an exit after the body of the containing VM instruction. This makes
// it so all the invalidated code exit as soon as execution logically reaches
// the next VM instruction. The interpreter takes care of firing the tracing
// event if it so happens that the next VM instruction has one attached.
//
// The c_return event needs special handling as our codegen never outputs code
// that contains tracing logic. If we let the normal output code run until the
// start of the next VM instruction by relying on the patching scheme above, we
// would fail to fire the c_return event. The interpreter doesn't fire the
// event at an instruction boundary, so simply exiting to the interpreter isn't
// enough. To handle it, we patch in the full logic at the return address. See
// full_cfunc_return().
//
// In addition to patching, we prevent future entries into invalidated code by
// removing all live blocks from their iseq.
void
rb_yjit_tracing_invalidate_all(void)
{
if (!rb_yjit_enabled_p()) return;
// Stop other ractors since we are going to patch machine code.
RB_VM_LOCK_ENTER();
rb_vm_barrier();
// Make it so all live block versions are no longer valid branch targets
rb_objspace_each_objects(tracing_invalidate_all_i, NULL);
// Apply patches
const uint32_t old_pos = cb->write_pos;
rb_darray_for(global_inval_patches, patch_idx) {
struct codepage_patch patch = rb_darray_get(global_inval_patches, patch_idx);
cb_set_pos(cb, patch.inline_patch_pos);
uint8_t *jump_target = cb_get_ptr(ocb, patch.outlined_target_pos);
jmp_ptr(cb, jump_target);
}
cb_set_pos(cb, old_pos);
// Freeze invalidated part of the codepage. We only want to wait for
// running instances of the code to exit from now on, so we shouldn't
// change the code. There could be other ractors sleeping in
// branch_stub_hit(), for example. We could harden this by changing memory
// protection on the frozen range.
RUBY_ASSERT_ALWAYS(yjit_codepage_frozen_bytes <= old_pos && "frozen bytes should increase monotonically");
yjit_codepage_frozen_bytes = old_pos;
cb_mark_all_executable(ocb);
cb_mark_all_executable(cb);
RB_VM_LOCK_LEAVE();
}
static int
tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
if (rb_obj_is_iseq(v)) {
rb_iseq_t *iseq = (rb_iseq_t *)v;
invalidate_all_blocks_for_tracing(iseq);
}
asan_poison_object_if(ptr, v);
}
return 0;
}
static void
invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq)
{
struct rb_iseq_constant_body *body = iseq->body;
if (!body) return; // iseq yet to be initialized
ASSERT_vm_locking();
// Empty all blocks on the iseq so we don't compile new blocks that jump to the
// invalidted region.
// TODO Leaking the blocks for now since we might have situations where
// a different ractor is waiting in branch_stub_hit(). If we free the block
// that ractor can wake up with a dangling block.
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, version_idx) {
// Stop listening for invalidation events like basic operation redefinition.
block_t *block = rb_darray_get(version_array, version_idx);
yjit_unlink_method_lookup_dependency(block);
yjit_block_assumptions_free(block);
}
rb_darray_free(version_array);
}
rb_darray_free(body->yjit_blocks);
body->yjit_blocks = NULL;
#if USE_MJIT
// Reset output code entry point
body->jit_func = NULL;
#endif
}
static void
yjit_reg_op(int opcode, codegen_fn gen_fn)
{
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE);
// Check that the op wasn't previously registered
RUBY_ASSERT(gen_fns[opcode] == NULL);
gen_fns[opcode] = gen_fn;
}
void
yjit_init_codegen(void)
{
// Initialize the code blocks
uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024;
uint8_t *mem_block = alloc_exec_mem(mem_size);
cb = &block;
cb_init(cb, mem_block, mem_size/2);
ocb = &outline_block;
cb_init(ocb, mem_block + mem_size/2, mem_size/2);
// Generate the interpreter exit code for leave
leave_exit_code = yjit_gen_leave_exit(cb);
// Generate full exit code for C func
gen_full_cfunc_return();
cb_mark_all_executable(cb);
// Map YARV opcodes to the corresponding codegen functions
yjit_reg_op(BIN(nop), gen_nop);
yjit_reg_op(BIN(dup), gen_dup);
yjit_reg_op(BIN(dupn), gen_dupn);
yjit_reg_op(BIN(swap), gen_swap);
yjit_reg_op(BIN(setn), gen_setn);
yjit_reg_op(BIN(topn), gen_topn);
yjit_reg_op(BIN(pop), gen_pop);
yjit_reg_op(BIN(adjuststack), gen_adjuststack);
yjit_reg_op(BIN(newarray), gen_newarray);
yjit_reg_op(BIN(duparray), gen_duparray);
yjit_reg_op(BIN(duphash), gen_duphash);
yjit_reg_op(BIN(splatarray), gen_splatarray);
yjit_reg_op(BIN(expandarray), gen_expandarray);
yjit_reg_op(BIN(newhash), gen_newhash);
yjit_reg_op(BIN(newrange), gen_newrange);
yjit_reg_op(BIN(concatstrings), gen_concatstrings);
yjit_reg_op(BIN(putnil), gen_putnil);
yjit_reg_op(BIN(putobject), gen_putobject);
yjit_reg_op(BIN(putstring), gen_putstring);
yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix);
yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix);
yjit_reg_op(BIN(putself), gen_putself);
yjit_reg_op(BIN(putspecialobject), gen_putspecialobject);
yjit_reg_op(BIN(getlocal), gen_getlocal);
yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0);
yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1);
yjit_reg_op(BIN(setlocal), gen_setlocal);
yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0);
yjit_reg_op(BIN(setlocal_WC_1), gen_setlocal_wc1);
yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable);
yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable);
yjit_reg_op(BIN(defined), gen_defined);
yjit_reg_op(BIN(checktype), gen_checktype);
yjit_reg_op(BIN(checkkeyword), gen_checkkeyword);
yjit_reg_op(BIN(opt_lt), gen_opt_lt);
yjit_reg_op(BIN(opt_le), gen_opt_le);
yjit_reg_op(BIN(opt_ge), gen_opt_ge);
yjit_reg_op(BIN(opt_gt), gen_opt_gt);
yjit_reg_op(BIN(opt_eq), gen_opt_eq);
yjit_reg_op(BIN(opt_neq), gen_opt_neq);
yjit_reg_op(BIN(opt_aref), gen_opt_aref);
yjit_reg_op(BIN(opt_aset), gen_opt_aset);
yjit_reg_op(BIN(opt_and), gen_opt_and);
yjit_reg_op(BIN(opt_or), gen_opt_or);
yjit_reg_op(BIN(opt_minus), gen_opt_minus);
yjit_reg_op(BIN(opt_plus), gen_opt_plus);
yjit_reg_op(BIN(opt_mult), gen_opt_mult);
yjit_reg_op(BIN(opt_div), gen_opt_div);
yjit_reg_op(BIN(opt_mod), gen_opt_mod);
yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt);
yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p);
yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p);
yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze);
yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus);
yjit_reg_op(BIN(opt_not), gen_opt_not);
yjit_reg_op(BIN(opt_size), gen_opt_size);
yjit_reg_op(BIN(opt_length), gen_opt_length);
yjit_reg_op(BIN(opt_regexpmatch2), gen_opt_regexpmatch2);
yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache);
yjit_reg_op(BIN(invokebuiltin), gen_invokebuiltin);
yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate);
yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate);
yjit_reg_op(BIN(opt_case_dispatch), gen_opt_case_dispatch);
yjit_reg_op(BIN(branchif), gen_branchif);
yjit_reg_op(BIN(branchunless), gen_branchunless);
yjit_reg_op(BIN(branchnil), gen_branchnil);
yjit_reg_op(BIN(jump), gen_jump);
yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy);
yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block);
yjit_reg_op(BIN(send), gen_send);
yjit_reg_op(BIN(invokesuper), gen_invokesuper);
yjit_reg_op(BIN(leave), gen_leave);
yjit_reg_op(BIN(getglobal), gen_getglobal);
yjit_reg_op(BIN(setglobal), gen_setglobal);
yjit_reg_op(BIN(anytostring), gen_anytostring);
yjit_reg_op(BIN(objtostring), gen_objtostring);
yjit_reg_op(BIN(toregexp), gen_toregexp);
yjit_reg_op(BIN(getspecial), gen_getspecial);
yjit_reg_op(BIN(getclassvariable), gen_getclassvariable);
yjit_reg_op(BIN(setclassvariable), gen_setclassvariable);
yjit_method_codegen_table = st_init_numtable();
// Specialization for C methods. See yjit_reg_method() for details.
yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not);
yjit_reg_method(rb_cNilClass, "nil?", jit_rb_true);
yjit_reg_method(rb_mKernel, "nil?", jit_rb_false);
yjit_reg_method(rb_cBasicObject, "==", jit_rb_obj_equal);
yjit_reg_method(rb_cBasicObject, "equal?", jit_rb_obj_equal);
yjit_reg_method(rb_mKernel, "eql?", jit_rb_obj_equal);
yjit_reg_method(rb_cModule, "==", jit_rb_obj_equal);
yjit_reg_method(rb_cSymbol, "==", jit_rb_obj_equal);
yjit_reg_method(rb_cSymbol, "===", jit_rb_obj_equal);
// rb_str_to_s() methods in string.c
yjit_reg_method(rb_cString, "to_s", jit_rb_str_to_s);
yjit_reg_method(rb_cString, "to_str", jit_rb_str_to_s);
yjit_reg_method(rb_cString, "bytesize", jit_rb_str_bytesize);
// Thread.current
yjit_reg_method(rb_singleton_class(rb_cThread), "current", jit_thread_s_current);
}