mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 8ebd0d4320
			
		
	
	
		8ebd0d4320
		
	
	
	
	
		
			
			c.f. [ruby-core:23075] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23144 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			3324 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3324 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   numeric.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Aug 13 18:33:09 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/ruby.h"
 | |
| #include "ruby/encoding.h"
 | |
| #include <ctype.h>
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #if defined(__FreeBSD__) && __FreeBSD__ < 4
 | |
| #include <floatingpoint.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_FLOAT_H
 | |
| #include <float.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| 
 | |
| /* use IEEE 64bit values if not defined */
 | |
| #ifndef FLT_RADIX
 | |
| #define FLT_RADIX 2
 | |
| #endif
 | |
| #ifndef FLT_ROUNDS
 | |
| #define FLT_ROUNDS 1
 | |
| #endif
 | |
| #ifndef DBL_MIN
 | |
| #define DBL_MIN 2.2250738585072014e-308
 | |
| #endif
 | |
| #ifndef DBL_MAX
 | |
| #define DBL_MAX 1.7976931348623157e+308
 | |
| #endif
 | |
| #ifndef DBL_MIN_EXP
 | |
| #define DBL_MIN_EXP (-1021)
 | |
| #endif
 | |
| #ifndef DBL_MAX_EXP
 | |
| #define DBL_MAX_EXP 1024
 | |
| #endif
 | |
| #ifndef DBL_MIN_10_EXP
 | |
| #define DBL_MIN_10_EXP (-307)
 | |
| #endif
 | |
| #ifndef DBL_MAX_10_EXP
 | |
| #define DBL_MAX_10_EXP 308
 | |
| #endif
 | |
| #ifndef DBL_DIG
 | |
| #define DBL_DIG 15
 | |
| #endif
 | |
| #ifndef DBL_MANT_DIG
 | |
| #define DBL_MANT_DIG 53
 | |
| #endif
 | |
| #ifndef DBL_EPSILON
 | |
| #define DBL_EPSILON 2.2204460492503131e-16
 | |
| #endif
 | |
| 
 | |
| #ifndef HAVE_ROUND
 | |
| double
 | |
| round(double x)
 | |
| {
 | |
|     double f;
 | |
| 
 | |
|     if (x > 0.0) {
 | |
| 	f = floor(x);
 | |
| 	x = f + (x - f >= 0.5);
 | |
|     }
 | |
|     else if (x < 0.0) {
 | |
| 	f = ceil(x);
 | |
| 	x = f - (f - x >= 0.5);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| #elif defined(__BEOS__)
 | |
| /* appears to be a bug in the BeOS headers */
 | |
| double round(double x);
 | |
| #endif
 | |
| 
 | |
| static ID id_coerce, id_to_i, id_eq;
 | |
| 
 | |
| VALUE rb_cNumeric;
 | |
| VALUE rb_cFloat;
 | |
| VALUE rb_cInteger;
 | |
| VALUE rb_cFixnum;
 | |
| 
 | |
| VALUE rb_eZeroDivError;
 | |
| VALUE rb_eFloatDomainError;
 | |
| 
 | |
| void
 | |
| rb_num_zerodiv(void)
 | |
| {
 | |
|     rb_raise(rb_eZeroDivError, "divided by 0");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.coerce(numeric)   => array
 | |
|  *
 | |
|  *  If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
 | |
|  *  containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
 | |
|  *  array with both <i>aNumeric</i> and <i>num</i> represented as
 | |
|  *  <code>Float</code> objects. This coercion mechanism is used by
 | |
|  *  Ruby to handle mixed-type numeric operations: it is intended to
 | |
|  *  find a compatible common type between the two operands of the operator.
 | |
|  *
 | |
|  *     1.coerce(2.5)   #=> [2.5, 1.0]
 | |
|  *     1.2.coerce(3)   #=> [3.0, 1.2]
 | |
|  *     1.coerce(2)     #=> [2, 1]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     if (CLASS_OF(x) == CLASS_OF(y))
 | |
| 	return rb_assoc_new(y, x);
 | |
|     x = rb_Float(x);
 | |
|     y = rb_Float(y);
 | |
|     return rb_assoc_new(y, x);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| coerce_body(VALUE *x)
 | |
| {
 | |
|     return rb_funcall(x[1], id_coerce, 1, x[0]);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| coerce_rescue(VALUE *x)
 | |
| {
 | |
|     volatile VALUE v = rb_inspect(x[1]);
 | |
| 
 | |
|     rb_raise(rb_eTypeError, "%s can't be coerced into %s",
 | |
| 	     rb_special_const_p(x[1])?
 | |
| 	     RSTRING_PTR(v):
 | |
| 	     rb_obj_classname(x[1]),
 | |
| 	     rb_obj_classname(x[0]));
 | |
|     return Qnil;		/* dummy */
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_coerce(VALUE *x, VALUE *y, int err)
 | |
| {
 | |
|     VALUE ary;
 | |
|     VALUE a[2];
 | |
| 
 | |
|     a[0] = *x; a[1] = *y;
 | |
| 
 | |
|     ary = rb_rescue(coerce_body, (VALUE)a, err?coerce_rescue:0, (VALUE)a);
 | |
|     if (TYPE(ary) != T_ARRAY || RARRAY_LEN(ary) != 2) {
 | |
| 	if (err) {
 | |
| 	    rb_raise(rb_eTypeError, "coerce must return [x, y]");
 | |
| 	}
 | |
| 	return Qfalse;
 | |
|     }
 | |
| 
 | |
|     *x = RARRAY_PTR(ary)[0];
 | |
|     *y = RARRAY_PTR(ary)[1];
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_bin(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     do_coerce(&x, &y, Qtrue);
 | |
|     return rb_funcall(x, func, 1, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     if (do_coerce(&x, &y, Qfalse))
 | |
| 	return rb_funcall(x, func, 1, y);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_relop(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     VALUE c, x0 = x, y0 = y;
 | |
| 
 | |
|     if (!do_coerce(&x, &y, Qfalse) ||
 | |
| 	NIL_P(c = rb_funcall(x, func, 1, y))) {
 | |
| 	rb_cmperr(x0, y0);
 | |
| 	return Qnil;		/* not reached */
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trap attempts to add methods to <code>Numeric</code> objects. Always
 | |
|  * raises a <code>TypeError</code>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_sadded(VALUE x, VALUE name)
 | |
| {
 | |
|     const char *nstr = rb_id2name(rb_to_id(name));
 | |
|     /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
 | |
|     /* Numerics should be values; singleton_methods should not be added to them */
 | |
|     rb_remove_method(rb_singleton_class(x), nstr);
 | |
|     rb_raise(rb_eTypeError,
 | |
| 	     "can't define singleton method \"%s\" for %s",
 | |
| 	     nstr,
 | |
| 	     rb_obj_classname(x));
 | |
|     return Qnil;		/* not reached */
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| num_init_copy(VALUE x, VALUE y)
 | |
| {
 | |
|     /* Numerics are immutable values, which should not be copied */
 | |
|     rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x));
 | |
|     return Qnil;		/* not reached */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     +num    => num
 | |
|  *
 | |
|  *  Unary Plus---Returns the receiver's value.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_uplus(VALUE num)
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     -num    => numeric
 | |
|  *
 | |
|  *  Unary Minus---Returns the receiver's value, negated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_uminus(VALUE num)
 | |
| {
 | |
|     VALUE zero;
 | |
| 
 | |
|     zero = INT2FIX(0);
 | |
|     do_coerce(&zero, &num, Qtrue);
 | |
| 
 | |
|     return rb_funcall(zero, '-', 1, num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.quo(numeric)    =>   result
 | |
|  *
 | |
|  *  Returns most exact division (rational for integers, float for floats).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_quo(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_funcall(rb_rational_raw1(x), '/', 1, y);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.fdiv(numeric)    =>   float
 | |
|  *
 | |
|  *  Returns float division.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_funcall(rb_Float(x), '/', 1, y);
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE num_floor(VALUE num);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.div(numeric)    => integer
 | |
|  *
 | |
|  *  Uses <code>/</code> to perform division, then converts the result to
 | |
|  *  an integer. <code>Numeric</code> does not define the <code>/</code>
 | |
|  *  operator; this is left to subclasses.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
 | |
|     return num_floor(rb_funcall(x, '/', 1, y));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.divmod( aNumeric ) -> anArray
 | |
|  *
 | |
|  *  Returns an array containing the quotient and modulus obtained by
 | |
|  *  dividing <i>num</i> by <i>aNumeric</i>. If <code>q, r =
 | |
|  *  x.divmod(y)</code>, then
 | |
|  *
 | |
|  *      q = floor(float(x)/float(y))
 | |
|  *      x = q*y + r
 | |
|  *
 | |
|  *  The quotient is rounded toward -infinity, as shown in the following table:
 | |
|  *
 | |
|  *     a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     13   |  4  |   3,    1     |   3     |    1        |     1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     13   | -4  |  -4,   -3     |  -3     |   -3        |     1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -13   |  4  |  -4,    3     |  -4     |    3        |    -1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -13   | -4  |   3,   -1     |   3     |   -1        |    -1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -11.5 | -4  |   2,   -3.5   |   2.875 |   -3.5      |    -3.5
 | |
|  *
 | |
|  *
 | |
|  *  Examples
 | |
|  *
 | |
|  *     11.divmod(3)         #=> [3, 2]
 | |
|  *     11.divmod(-3)        #=> [-4, -1]
 | |
|  *     11.divmod(3.5)       #=> [3, 0.5]
 | |
|  *     (-11).divmod(3.5)    #=> [-4, 3.0]
 | |
|  *     (11.5).divmod(3.5)   #=> [3, 1.0]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.modulo(numeric)    => result
 | |
|  *
 | |
|  *  Equivalent to
 | |
|  *  <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_modulo(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_funcall(x, '%', 1, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.remainder(numeric)    => result
 | |
|  *
 | |
|  *  If <i>num</i> and <i>numeric</i> have different signs, returns
 | |
|  *  <em>mod</em>-<i>numeric</i>; otherwise, returns <em>mod</em>. In
 | |
|  *  both cases <em>mod</em> is the value
 | |
|  *  <i>num</i>.<code>modulo(</code><i>numeric</i><code>)</code>. The
 | |
|  *  differences between <code>remainder</code> and modulo
 | |
|  *  (<code>%</code>) are shown in the table under <code>Numeric#divmod</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_remainder(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z = rb_funcall(x, '%', 1, y);
 | |
| 
 | |
|     if ((!rb_equal(z, INT2FIX(0))) &&
 | |
| 	((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
 | |
| 	  RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
 | |
| 	 (RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
 | |
| 	  RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
 | |
| 	return rb_funcall(z, '-', 1, y);
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.real? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>num</i> is a <code>Real</code>
 | |
|  *  (i.e. non <code>Complex</code>).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_real_p(VALUE num)
 | |
| {
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.integer? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
 | |
|  *  (including <code>Fixnum</code> and <code>Bignum</code>).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_int_p(VALUE num)
 | |
| {
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.abs   => num or numeric
 | |
|  *
 | |
|  *  Returns the absolute value of <i>num</i>.
 | |
|  *
 | |
|  *     12.abs         #=> 12
 | |
|  *     (-34.56).abs   #=> 34.56
 | |
|  *     -34.56.abs     #=> 34.56
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_abs(VALUE num)
 | |
| {
 | |
|     if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
 | |
| 	return rb_funcall(num, rb_intern("-@"), 0);
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.zero?    => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>num</i> has a zero value.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_zero_p(VALUE num)
 | |
| {
 | |
|     if (rb_equal(num, INT2FIX(0))) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.nonzero?    => num or nil
 | |
|  *
 | |
|  *  Returns <i>num</i> if <i>num</i> is not zero, <code>nil</code>
 | |
|  *  otherwise. This behavior is useful when chaining comparisons:
 | |
|  *
 | |
|  *     a = %w( z Bb bB bb BB a aA Aa AA A )
 | |
|  *     b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
 | |
|  *     b   #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_nonzero_p(VALUE num)
 | |
| {
 | |
|     if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.to_int    => integer
 | |
|  *
 | |
|  *  Invokes the child class's <code>to_i</code> method to convert
 | |
|  *  <i>num</i> to an integer.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_to_int(VALUE num)
 | |
| {
 | |
|     return rb_funcall(num, id_to_i, 0, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************************
 | |
|  *
 | |
|  * Document-class: Float
 | |
|  *
 | |
|  *  <code>Float</code> objects represent real numbers using the native
 | |
|  *  architecture's double-precision floating point representation.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_new(double d)
 | |
| {
 | |
|     NEWOBJ(flt, struct RFloat);
 | |
|     OBJSETUP(flt, rb_cFloat, T_FLOAT);
 | |
| 
 | |
|     flt->float_value = d;
 | |
|     return (VALUE)flt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.to_s    => string
 | |
|  *
 | |
|  *  Returns a string containing a representation of self. As well as a
 | |
|  *  fixed or exponential form of the number, the call may return
 | |
|  *  ``<code>NaN</code>'', ``<code>Infinity</code>'', and
 | |
|  *  ``<code>-Infinity</code>''.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_to_s(VALUE flt)
 | |
| {
 | |
|     enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
 | |
|     enum {float_dig = DBL_DIG+1};
 | |
|     char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
 | |
|     double value = RFLOAT_VALUE(flt);
 | |
|     char *p, *e;
 | |
| 
 | |
|     if (isinf(value))
 | |
| 	return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
 | |
|     else if(isnan(value))
 | |
| 	return rb_usascii_str_new2("NaN");
 | |
| 
 | |
| # define FLOFMT(buf, size, fmt, prec, val) snprintf(buf, size, fmt, prec, val), \
 | |
|     (void)((atof(buf) == val) || snprintf(buf, size, fmt, (prec)+1, val))
 | |
| 
 | |
|     FLOFMT(buf, sizeof(buf), "%#.*g", float_dig, value); /* ensure to print decimal point */
 | |
|     if (!(e = strchr(buf, 'e'))) {
 | |
| 	e = buf + strlen(buf);
 | |
|     }
 | |
|     if (!ISDIGIT(e[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */
 | |
| 	FLOFMT(buf, sizeof(buf), "%#.*e", float_dig - 1, value);
 | |
| 	if (!(e = strchr(buf, 'e'))) {
 | |
| 	    e = buf + strlen(buf);
 | |
| 	}
 | |
|     }
 | |
|     p = e;
 | |
|     while (p[-1]=='0' && ISDIGIT(p[-2]))
 | |
| 	p--;
 | |
|     memmove(p, e, strlen(e)+1);
 | |
|     return rb_usascii_str_new2(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MISSING: documentation
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_assoc_new(rb_Float(y), x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    -float   => float
 | |
|  *
 | |
|  * Returns float, negated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_uminus(VALUE flt)
 | |
| {
 | |
|     return DBL2NUM(-RFLOAT_VALUE(flt));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float + other   => float
 | |
|  *
 | |
|  * Returns a new float which is the sum of <code>float</code>
 | |
|  * and <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
 | |
|       case T_BIGNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float + other   => float
 | |
|  *
 | |
|  * Returns a new float which is the difference of <code>float</code>
 | |
|  * and <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
 | |
|       case T_BIGNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float * other   => float
 | |
|  *
 | |
|  * Returns a new float which is the product of <code>float</code>
 | |
|  * and <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
 | |
|       case T_BIGNUM:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float / other   => float
 | |
|  *
 | |
|  * Returns a new float which is the result of dividing
 | |
|  * <code>float</code> by <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_div(VALUE x, VALUE y)
 | |
| {
 | |
|     long f_y;
 | |
|     double d;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	f_y = FIX2LONG(y);
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
 | |
|       case T_BIGNUM:
 | |
| 	d = rb_big2dbl(y);
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) / d);
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '/');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flo_quo(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_funcall(x, '/', 1, y);
 | |
| }
 | |
| 
 | |
| static void
 | |
| flodivmod(double x, double y, double *divp, double *modp)
 | |
| {
 | |
|     double div, mod;
 | |
| 
 | |
|     if (y == 0.0) rb_num_zerodiv();
 | |
| #ifdef HAVE_FMOD
 | |
|     mod = fmod(x, y);
 | |
| #else
 | |
|     {
 | |
| 	double z;
 | |
| 
 | |
| 	modf(x/y, &z);
 | |
| 	mod = x - z * y;
 | |
|     }
 | |
| #endif
 | |
|     if (isinf(x) && !isinf(y) && !isnan(y))
 | |
| 	div = x;
 | |
|     else
 | |
| 	div = (x - mod) / y;
 | |
|     if (y*mod < 0) {
 | |
| 	mod += y;
 | |
| 	div -= 1.0;
 | |
|     }
 | |
|     if (modp) *modp = mod;
 | |
|     if (divp) *divp = div;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt % other         => float
 | |
|  *     flt.modulo(other)   => float
 | |
|  *
 | |
|  *  Return the modulo after division of <code>flt</code> by <code>other</code>.
 | |
|  *
 | |
|  *     6543.21.modulo(137)      #=> 104.21
 | |
|  *     6543.21.modulo(137.24)   #=> 92.9299999999996
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_mod(VALUE x, VALUE y)
 | |
| {
 | |
|     double fy, mod;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	fy = (double)FIX2LONG(y);
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	fy = rb_big2dbl(y);
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	fy = RFLOAT_VALUE(y);
 | |
| 	break;
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
|     flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
 | |
|     return DBL2NUM(mod);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| dbl2ival(double d)
 | |
| {
 | |
|     if (FIXABLE(d)) {
 | |
| 	d = round(d);
 | |
| 	return LONG2FIX((long)d);
 | |
|     }
 | |
|     else if (isnan(d) || isinf(d)) {
 | |
| 	/* special case: cannot return integer value */
 | |
| 	return rb_float_new(d);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_dbl2big(d);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.divmod(numeric)    => array
 | |
|  *
 | |
|  *  See <code>Numeric#divmod</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     double fy, div, mod;
 | |
|     volatile VALUE a, b;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	fy = (double)FIX2LONG(y);
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	fy = rb_big2dbl(y);
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	fy = RFLOAT_VALUE(y);
 | |
| 	break;
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
 | |
|     }
 | |
|     flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
 | |
|     a = dbl2ival(div);
 | |
|     b = DBL2NUM(mod);
 | |
|     return rb_assoc_new(a, b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *
 | |
|  *  flt ** other   => float
 | |
|  *
 | |
|  * Raises <code>float</code> the <code>other</code> power.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
 | |
|       case T_BIGNUM:
 | |
| 	return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM(pow(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("**"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.eql?(numeric)    => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
 | |
|  *  same type and have equal values.
 | |
|  *
 | |
|  *     1 == 1.0          #=> true
 | |
|  *     1.eql?(1.0)       #=> false
 | |
|  *     (1.0).eql?(1.0)   #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (TYPE(x) != TYPE(y)) return Qfalse;
 | |
| 
 | |
|     return rb_equal(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num <=> other -> 0 or nil
 | |
|  *
 | |
|  *  Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
 | |
|  *  otherwise.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return INT2FIX(0);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return Qtrue;
 | |
|     return rb_funcall(y, id_eq, 1, x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt == obj   => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> only if <i>obj</i> has the same value
 | |
|  *  as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
 | |
|  *  requires <i>obj</i> to be a <code>Float</code>.
 | |
|  *
 | |
|  *     1.0 == 1   #=> true
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_eq(VALUE x, VALUE y)
 | |
| {
 | |
|     volatile double a, b;
 | |
| 
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = FIX2LONG(y);
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	break;
 | |
|       default:
 | |
| 	return num_equal(x, y);
 | |
|     }
 | |
|     a = RFLOAT_VALUE(x);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a == b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt.hash   => integer
 | |
|  *
 | |
|  * Returns a hash code for this float.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_hash(VALUE num)
 | |
| {
 | |
|     double d;
 | |
|     int hash;
 | |
| 
 | |
|     d = RFLOAT_VALUE(num);
 | |
|     hash = rb_memhash(&d, sizeof(d));
 | |
|     return INT2FIX(hash);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_dbl_cmp(double a, double b)
 | |
| {
 | |
|     if (isnan(a) || isnan(b)) return Qnil;
 | |
|     if (a == b) return INT2FIX(0);
 | |
|     if (a > b) return INT2FIX(1);
 | |
|     if (a < b) return INT2FIX(-1);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt <=> numeric   => -1, 0, +1
 | |
|  *
 | |
|  *  Returns -1, 0, or +1 depending on whether <i>flt</i> is less than,
 | |
|  *  equal to, or greater than <i>numeric</i>. This is the basis for the
 | |
|  *  tests in <code>Comparable</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
 | |
|     }
 | |
|     return rb_dbl_cmp(a, b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt > other    =>  true or false
 | |
|  *
 | |
|  * <code>true</code> if <code>flt</code> is greater than <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, '>');
 | |
|     }
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a > b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt >= other    =>  true or false
 | |
|  *
 | |
|  * <code>true</code> if <code>flt</code> is greater than
 | |
|  * or equal to <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, rb_intern(">="));
 | |
|     }
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a >= b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt < other    =>  true or false
 | |
|  *
 | |
|  * <code>true</code> if <code>flt</code> is less than <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, '<');
 | |
|     }
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a < b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt <= other    =>  true or false
 | |
|  *
 | |
|  * <code>true</code> if <code>flt</code> is less than
 | |
|  * or equal to <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_le(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     switch (TYPE(y)) {
 | |
|       case T_FIXNUM:
 | |
| 	b = (double)FIX2LONG(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	b = rb_big2dbl(y);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, rb_intern("<="));
 | |
|     }
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a <= b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.eql?(obj)   => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> only if <i>obj</i> is a
 | |
|  *  <code>Float</code> with the same value as <i>flt</i>. Contrast this
 | |
|  *  with <code>Float#==</code>, which performs type conversions.
 | |
|  *
 | |
|  *     1.0.eql?(1)   #=> false
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (TYPE(y) == T_FLOAT) {
 | |
| 	double a = RFLOAT_VALUE(x);
 | |
| 	double b = RFLOAT_VALUE(y);
 | |
| #if defined(_MSC_VER) && _MSC_VER < 1300
 | |
| 	if (isnan(a) || isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	if (a == b)
 | |
| 	    return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   flt.to_f   => flt
 | |
|  *
 | |
|  * As <code>flt</code> is already a float, returns <i>self</i>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_to_f(VALUE num)
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.abs    => float
 | |
|  *
 | |
|  *  Returns the absolute value of <i>flt</i>.
 | |
|  *
 | |
|  *     (-34.56).abs   #=> 34.56
 | |
|  *     -34.56.abs     #=> 34.56
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_abs(VALUE flt)
 | |
| {
 | |
|     double val = fabs(RFLOAT_VALUE(flt));
 | |
|     return DBL2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.zero? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>flt</i> is 0.0.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_zero_p(VALUE num)
 | |
| {
 | |
|     if (RFLOAT_VALUE(num) == 0.0) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.nan? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>flt</i> is an invalid IEEE floating
 | |
|  *  point number.
 | |
|  *
 | |
|  *     a = -1.0      #=> -1.0
 | |
|  *     a.nan?        #=> false
 | |
|  *     a = 0.0/0.0   #=> NaN
 | |
|  *     a.nan?        #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_is_nan_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
|     return isnan(value) ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.infinite? -> nil, -1, +1
 | |
|  *
 | |
|  *  Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
 | |
|  *  is finite, -infinity, or +infinity.
 | |
|  *
 | |
|  *     (0.0).infinite?        #=> nil
 | |
|  *     (-1.0/0.0).infinite?   #=> -1
 | |
|  *     (+1.0/0.0).infinite?   #=> 1
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_is_infinite_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
|     if (isinf(value)) {
 | |
| 	return INT2FIX( value < 0 ? -1 : 1 );
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.finite? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
 | |
|  *  point number (it is not infinite, and <code>nan?</code> is
 | |
|  *  <code>false</code>).
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_is_finite_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
| #if HAVE_FINITE
 | |
|     if (!finite(value))
 | |
| 	return Qfalse;
 | |
| #else
 | |
|     if (isinf(value) || isnan(value))
 | |
| 	return Qfalse;
 | |
| #endif
 | |
| 
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.floor   => integer
 | |
|  *
 | |
|  *  Returns the largest integer less than or equal to <i>flt</i>.
 | |
|  *
 | |
|  *     1.2.floor      #=> 1
 | |
|  *     2.0.floor      #=> 2
 | |
|  *     (-1.2).floor   #=> -2
 | |
|  *     (-2.0).floor   #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_floor(VALUE num)
 | |
| {
 | |
|     double f = floor(RFLOAT_VALUE(num));
 | |
|     long val;
 | |
| 
 | |
|     if (!FIXABLE(f)) {
 | |
| 	return rb_dbl2big(f);
 | |
|     }
 | |
|     val = (long)f;
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.ceil    => integer
 | |
|  *
 | |
|  *  Returns the smallest <code>Integer</code> greater than or equal to
 | |
|  *  <i>flt</i>.
 | |
|  *
 | |
|  *     1.2.ceil      #=> 2
 | |
|  *     2.0.ceil      #=> 2
 | |
|  *     (-1.2).ceil   #=> -1
 | |
|  *     (-2.0).ceil   #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_ceil(VALUE num)
 | |
| {
 | |
|     double f = ceil(RFLOAT_VALUE(num));
 | |
|     long val;
 | |
| 
 | |
|     if (!FIXABLE(f)) {
 | |
| 	return rb_dbl2big(f);
 | |
|     }
 | |
|     val = (long)f;
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.round([ndigits])   => integer or float
 | |
|  *
 | |
|  *  Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
 | |
|  *  Precision may be negative.  Returns a a floating point number when ndigits
 | |
|  *  is more than one.
 | |
|  *
 | |
|  *     1.5.round      #=> 2
 | |
|  *     (-1.5).round   #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_round(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     VALUE nd;
 | |
|     double number, f;
 | |
|     int ndigits = 0, i;
 | |
|     long val;
 | |
| 
 | |
|     if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
 | |
| 	ndigits = NUM2INT(nd);
 | |
|     }
 | |
|     number  = RFLOAT_VALUE(num);
 | |
|     f = 1.0;
 | |
|     i = abs(ndigits);
 | |
|     while  (--i >= 0)
 | |
| 	f = f*10.0;
 | |
| 
 | |
|     if (isinf(f)) {
 | |
| 	if (ndigits < 0) number = 0;
 | |
|     }
 | |
|     else {
 | |
| 	if (ndigits < 0) number /= f;
 | |
| 	else number *= f;
 | |
| 	number = round(number);
 | |
| 	if (ndigits < 0) number *= f;
 | |
| 	else number /= f;
 | |
|     }
 | |
| 
 | |
|     if (ndigits > 0) return DBL2NUM(number);
 | |
| 
 | |
|     if (!FIXABLE(number)) {
 | |
| 	return rb_dbl2big(number);
 | |
|     }
 | |
|     val = (long)number;
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     flt.to_i       => integer
 | |
|  *     flt.to_int     => integer
 | |
|  *     flt.truncate   => integer
 | |
|  *
 | |
|  *  Returns <i>flt</i> truncated to an <code>Integer</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_truncate(VALUE num)
 | |
| {
 | |
|     double f = RFLOAT_VALUE(num);
 | |
|     long val;
 | |
| 
 | |
|     if (f > 0.0) f = floor(f);
 | |
|     if (f < 0.0) f = ceil(f);
 | |
| 
 | |
|     if (!FIXABLE(f)) {
 | |
| 	return rb_dbl2big(f);
 | |
|     }
 | |
|     val = (long)f;
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flo_numerator(VALUE num)
 | |
| {
 | |
|     double d = RFLOAT_VALUE(num);
 | |
|     if (isinf(d) || isnan(d))
 | |
| 	return num;
 | |
|     return rb_call_super(0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flo_denominator(VALUE num)
 | |
| {
 | |
|     double d = RFLOAT_VALUE(num);
 | |
|     if (isinf(d) || isnan(d))
 | |
| 	return INT2FIX(1);
 | |
|     return rb_call_super(0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.floor    => integer
 | |
|  *
 | |
|  *  Returns the largest integer less than or equal to <i>num</i>.
 | |
|  *  <code>Numeric</code> implements this by converting <i>anInteger</i>
 | |
|  *  to a <code>Float</code> and invoking <code>Float#floor</code>.
 | |
|  *
 | |
|  *     1.floor      #=> 1
 | |
|  *     (-1).floor   #=> -1
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_floor(VALUE num)
 | |
| {
 | |
|     return flo_floor(rb_Float(num));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.ceil    => integer
 | |
|  *
 | |
|  *  Returns the smallest <code>Integer</code> greater than or equal to
 | |
|  *  <i>num</i>. Class <code>Numeric</code> achieves this by converting
 | |
|  *  itself to a <code>Float</code> then invoking
 | |
|  *  <code>Float#ceil</code>.
 | |
|  *
 | |
|  *     1.ceil        #=> 1
 | |
|  *     1.2.ceil      #=> 2
 | |
|  *     (-1.2).ceil   #=> -1
 | |
|  *     (-1.0).ceil   #=> -1
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_ceil(VALUE num)
 | |
| {
 | |
|     return flo_ceil(rb_Float(num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.round([ndigits])    => integer or float
 | |
|  *
 | |
|  *  Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
 | |
|  *  Precision may be negative.  Returns a a floating point number when ndigits
 | |
|  *  is more than one.  <code>Numeric</code> implements this by converting itself
 | |
|  *  to a <code>Float</code> and invoking <code>Float#round</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_round(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     return flo_round(argc, argv, rb_Float(num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.truncate    => integer
 | |
|  *
 | |
|  *  Returns <i>num</i> truncated to an integer. <code>Numeric</code>
 | |
|  *  implements this by converting its value to a float and invoking
 | |
|  *  <code>Float#truncate</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_truncate(VALUE num)
 | |
| {
 | |
|     return flo_truncate(rb_Float(num));
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| ruby_float_step(VALUE from, VALUE to, VALUE step, int excl)
 | |
| {
 | |
|     if (TYPE(from) == T_FLOAT || TYPE(to) == T_FLOAT || TYPE(step) == T_FLOAT) {
 | |
| 	const double epsilon = DBL_EPSILON;
 | |
| 	double beg = NUM2DBL(from);
 | |
| 	double end = NUM2DBL(to);
 | |
| 	double unit = NUM2DBL(step);
 | |
| 	double n = (end - beg)/unit;
 | |
| 	double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
 | |
| 	long i;
 | |
| 
 | |
| 	if (isinf(unit)) {
 | |
| 	    if (unit > 0) rb_yield(DBL2NUM(beg));
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (err>0.5) err=0.5;
 | |
| 	    n = floor(n + err);
 | |
| 	    if (!excl) n++;
 | |
| 	    for (i=0; i<n; i++) {
 | |
| 		rb_yield(DBL2NUM(i*unit+beg));
 | |
| 	    }
 | |
| 	}
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.step(limit, step ) {|i| block }     => num
 | |
|  *
 | |
|  *  Invokes <em>block</em> with the sequence of numbers starting at
 | |
|  *  <i>num</i>, incremented by <i>step</i> on each call. The loop
 | |
|  *  finishes when the value to be passed to the block is greater than
 | |
|  *  <i>limit</i> (if <i>step</i> is positive) or less than
 | |
|  *  <i>limit</i> (if <i>step</i> is negative). If all the arguments are
 | |
|  *  integers, the loop operates using an integer counter. If any of the
 | |
|  *  arguments are floating point numbers, all are converted to floats,
 | |
|  *  and the loop is executed <i>floor(n + n*epsilon)+ 1</i> times,
 | |
|  *  where <i>n = (limit - num)/step</i>. Otherwise, the loop
 | |
|  *  starts at <i>num</i>, uses either the <code><</code> or
 | |
|  *  <code>></code> operator to compare the counter against
 | |
|  *  <i>limit</i>, and increments itself using the <code>+</code>
 | |
|  *  operator.
 | |
|  *
 | |
|  *     1.step(10, 2) { |i| print i, " " }
 | |
|  *     Math::E.step(Math::PI, 0.2) { |f| print f, " " }
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     1 3 5 7 9
 | |
|  *     2.71828182845905 2.91828182845905 3.11828182845905
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_step(int argc, VALUE *argv, VALUE from)
 | |
| {
 | |
|     VALUE to, step;
 | |
| 
 | |
|     RETURN_ENUMERATOR(from, argc, argv);
 | |
|     if (argc == 1) {
 | |
| 	to = argv[0];
 | |
| 	step = INT2FIX(1);
 | |
|     }
 | |
|     else {
 | |
| 	if (argc == 2) {
 | |
| 	    to = argv[0];
 | |
| 	    step = argv[1];
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_raise(rb_eArgError, "wrong number of arguments");
 | |
| 	}
 | |
| 	if (rb_equal(step, INT2FIX(0))) {
 | |
| 	    rb_raise(rb_eArgError, "step can't be 0");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
 | |
| 	long i, end, diff;
 | |
| 
 | |
| 	i = FIX2LONG(from);
 | |
| 	end = FIX2LONG(to);
 | |
| 	diff = FIX2LONG(step);
 | |
| 
 | |
| 	if (diff > 0) {
 | |
| 	    while (i <= end) {
 | |
| 		rb_yield(LONG2FIX(i));
 | |
| 		i += diff;
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    while (i >= end) {
 | |
| 		rb_yield(LONG2FIX(i));
 | |
| 		i += diff;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     else if (!ruby_float_step(from, to, step, Qfalse)) {
 | |
| 	VALUE i = from;
 | |
| 	ID cmp;
 | |
| 
 | |
| 	if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) {
 | |
| 	    cmp = '>';
 | |
| 	}
 | |
| 	else {
 | |
| 	    cmp = '<';
 | |
| 	}
 | |
| 	for (;;) {
 | |
| 	    if (RTEST(rb_funcall(i, cmp, 1, to))) break;
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '+', 1, step);
 | |
| 	}
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| SIGNED_VALUE
 | |
| rb_num2long(VALUE val)
 | |
| {
 | |
|   again:
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(val)) return FIX2LONG(val);
 | |
| 
 | |
|     switch (TYPE(val)) {
 | |
|       case T_FLOAT:
 | |
| 	if (RFLOAT_VALUE(val) <= (double)LONG_MAX
 | |
| 	    && RFLOAT_VALUE(val) >= (double)LONG_MIN) {
 | |
| 	    return (SIGNED_VALUE)(RFLOAT_VALUE(val));
 | |
| 	}
 | |
| 	else {
 | |
| 	    char buf[24];
 | |
| 	    char *s;
 | |
| 
 | |
| 	    snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val));
 | |
| 	    if ((s = strchr(buf, ' ')) != 0) *s = '\0';
 | |
| 	    rb_raise(rb_eRangeError, "float %s out of range of integer", buf);
 | |
| 	}
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big2long(val);
 | |
| 
 | |
|       default:
 | |
| 	val = rb_to_int(val);
 | |
| 	goto again;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num2ulong(VALUE val)
 | |
| {
 | |
|     if (TYPE(val) == T_BIGNUM) {
 | |
| 	return rb_big2ulong(val);
 | |
|     }
 | |
|     return (VALUE)rb_num2long(val);
 | |
| }
 | |
| 
 | |
| #if SIZEOF_INT < SIZEOF_VALUE
 | |
| static void
 | |
| check_int(SIGNED_VALUE num)
 | |
| {
 | |
|     const char *s;
 | |
| 
 | |
|     if (num < INT_MIN) {
 | |
| 	s = "small";
 | |
|     }
 | |
|     else if (num > INT_MAX) {
 | |
| 	s = "big";
 | |
|     }
 | |
|     else {
 | |
| 	return;
 | |
|     }
 | |
|     rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", num, s);
 | |
| }
 | |
| 
 | |
| static void
 | |
| check_uint(VALUE num, VALUE sign)
 | |
| {
 | |
|     static const VALUE mask = ~(VALUE)UINT_MAX;
 | |
| 
 | |
|     if (RTEST(sign)) {
 | |
| 	/* minus */
 | |
| 	if ((num & mask) != mask || (num & ~mask) <= INT_MAX + 1UL)
 | |
| 	    rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too small to convert to `unsigned int'", num);
 | |
|     }
 | |
|     else {
 | |
| 	/* plus */
 | |
| 	if ((num & mask) != 0)
 | |
| 	    rb_raise(rb_eRangeError, "integer %"PRIuVALUE " too big to convert to `unsigned int'", num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_num2int(VALUE val)
 | |
| {
 | |
|     long num = rb_num2long(val);
 | |
| 
 | |
|     check_int(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_fix2int(VALUE val)
 | |
| {
 | |
|     long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
 | |
| 
 | |
|     check_int(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_num2uint(VALUE val)
 | |
| {
 | |
|     unsigned long num = rb_num2ulong(val);
 | |
| 
 | |
|     check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0)));
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_fix2uint(VALUE val)
 | |
| {
 | |
|     unsigned long num;
 | |
| 
 | |
|     if (!FIXNUM_P(val)) {
 | |
| 	return rb_num2uint(val);
 | |
|     }
 | |
|     num = FIX2ULONG(val);
 | |
| 
 | |
|     check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0)));
 | |
|     return num;
 | |
| }
 | |
| #else
 | |
| long
 | |
| rb_num2int(VALUE val)
 | |
| {
 | |
|     return rb_num2long(val);
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_fix2int(VALUE val)
 | |
| {
 | |
|     return FIX2INT(val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| VALUE
 | |
| rb_num2fix(VALUE val)
 | |
| {
 | |
|     long v;
 | |
| 
 | |
|     if (FIXNUM_P(val)) return val;
 | |
| 
 | |
|     v = rb_num2long(val);
 | |
|     if (!FIXABLE(v))
 | |
| 	rb_raise(rb_eRangeError, "integer %"PRIdVALUE " out of range of fixnum", v);
 | |
|     return LONG2FIX(v);
 | |
| }
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| LONG_LONG
 | |
| rb_num2ll(VALUE val)
 | |
| {
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from nil");
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
 | |
| 
 | |
|     switch (TYPE(val)) {
 | |
|       case T_FLOAT:
 | |
| 	if (RFLOAT_VALUE(val) <= (double)LLONG_MAX
 | |
| 	    && RFLOAT_VALUE(val) >= (double)LLONG_MIN) {
 | |
| 	    return (LONG_LONG)(RFLOAT_VALUE(val));
 | |
| 	}
 | |
| 	else {
 | |
| 	    char buf[24];
 | |
| 	    char *s;
 | |
| 
 | |
| 	    snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val));
 | |
| 	    if ((s = strchr(buf, ' ')) != 0) *s = '\0';
 | |
| 	    rb_raise(rb_eRangeError, "float %s out of range of long long", buf);
 | |
| 	}
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big2ll(val);
 | |
| 
 | |
|       case T_STRING:
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from string");
 | |
| 	return Qnil;            /* not reached */
 | |
| 
 | |
|       case T_TRUE:
 | |
|       case T_FALSE:
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from boolean");
 | |
| 	return Qnil;		/* not reached */
 | |
| 
 | |
|       default:
 | |
| 	val = rb_to_int(val);
 | |
| 	return NUM2LL(val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| unsigned LONG_LONG
 | |
| rb_num2ull(VALUE val)
 | |
| {
 | |
|     if (TYPE(val) == T_BIGNUM) {
 | |
| 	return rb_big2ull(val);
 | |
|     }
 | |
|     return (unsigned LONG_LONG)rb_num2ll(val);
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| static VALUE
 | |
| num_numerator(VALUE num)
 | |
| {
 | |
|     return rb_funcall(rb_Rational1(num), rb_intern("numerator"), 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_denominator(VALUE num)
 | |
| {
 | |
|     return rb_funcall(rb_Rational1(num), rb_intern("denominator"), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: Integer
 | |
|  *
 | |
|  *  <code>Integer</code> is the basis for the two concrete classes that
 | |
|  *  hold whole numbers, <code>Bignum</code> and <code>Fixnum</code>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.to_i      => int
 | |
|  *     int.to_int    => int
 | |
|  *     int.floor     => int
 | |
|  *     int.ceil      => int
 | |
|  *     int.round     => int
 | |
|  *     int.truncate  => int
 | |
|  *
 | |
|  *  As <i>int</i> is already an <code>Integer</code>, all these
 | |
|  *  methods simply return the receiver.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_to_i(VALUE num)
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.integer? -> true
 | |
|  *
 | |
|  *  Always returns <code>true</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_int_p(VALUE num)
 | |
| {
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.odd? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>int</i> is an odd number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_odd_p(VALUE num)
 | |
| {
 | |
|     if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.even? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>int</i> is an even number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_even_p(VALUE num)
 | |
| {
 | |
|     if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fixnum.next    => integer
 | |
|  *     fixnum.succ    => integer
 | |
|  *
 | |
|  *  Returns the <code>Integer</code> equal to <i>int</i> + 1.
 | |
|  *
 | |
|  *     1.next      #=> 2
 | |
|  *     (-1).next   #=> 0
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_succ(VALUE num)
 | |
| {
 | |
|     long i = FIX2LONG(num) + 1;
 | |
|     return LONG2NUM(i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.next    => integer
 | |
|  *     int.succ    => integer
 | |
|  *
 | |
|  *  Returns the <code>Integer</code> equal to <i>int</i> + 1.
 | |
|  *
 | |
|  *     1.next      #=> 2
 | |
|  *     (-1).next   #=> 0
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_succ(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i = FIX2LONG(num) + 1;
 | |
| 	return LONG2NUM(i);
 | |
|     }
 | |
|     return rb_funcall(num, '+', 1, INT2FIX(1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.pred    => integer
 | |
|  *
 | |
|  *  Returns the <code>Integer</code> equal to <i>int</i> - 1.
 | |
|  *
 | |
|  *     1.pred      #=> 0
 | |
|  *     (-1).pred   #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_pred(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i = FIX2LONG(num) - 1;
 | |
| 	return LONG2NUM(i);
 | |
|     }
 | |
|     return rb_funcall(num, '-', 1, INT2FIX(1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.chr([encoding])    => string
 | |
|  *
 | |
|  *  Returns a string containing the character represented by the
 | |
|  *  receiver's value according to +encoding+.
 | |
|  *
 | |
|  *     65.chr    #=> "A"
 | |
|  *     230.chr   #=> "\346"
 | |
|  *     255.chr(Encoding::UTF_8)   #=> "\303\277"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_chr(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     char c;
 | |
|     int n;
 | |
|     long i = NUM2LONG(num);
 | |
|     rb_encoding *enc;
 | |
|     VALUE str;
 | |
| 
 | |
|     switch (argc) {
 | |
|       case 0:
 | |
| 	if (i < 0 || 0xff < i) {
 | |
| 	  out_of_range:
 | |
| 	    rb_raise(rb_eRangeError, "%"PRIdVALUE " out of char range", i);
 | |
| 	}
 | |
| 	c = (char)i;
 | |
| 	if (i < 0x80) {
 | |
| 	    return rb_usascii_str_new(&c, 1);
 | |
| 	}
 | |
| 	else {
 | |
| 	    return rb_str_new(&c, 1);
 | |
| 	}
 | |
|       case 1:
 | |
| 	break;
 | |
|       default:
 | |
| 	rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc);
 | |
| 	break;
 | |
|     }
 | |
|     enc = rb_to_encoding(argv[0]);
 | |
|     if (!enc) enc = rb_ascii8bit_encoding();
 | |
| #if SIZEOF_INT < SIZEOF_LONG
 | |
|     if (i > INT_MAX) goto out_of_range;
 | |
| #endif
 | |
|     if (i < 0 || (n = rb_enc_codelen((int)i, enc)) <= 0) goto out_of_range;
 | |
|     str = rb_enc_str_new(0, n, enc);
 | |
|     rb_enc_mbcput((int)i, RSTRING_PTR(str), enc);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.ord    => int
 | |
|  *
 | |
|  *  Returns the int itself.
 | |
|  *
 | |
|  *     ?a.ord    #=> 97
 | |
|  *
 | |
|  *  This method is intended for compatibility to
 | |
|  *  character constant in Ruby 1.9.
 | |
|  *  For example, ?a.ord returns 97 both in 1.8 and 1.9.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_ord(num)
 | |
|     VALUE num;
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_numerator(VALUE num)
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_denominator(VALUE num)
 | |
| {
 | |
|     return INT2FIX(1);
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  *
 | |
|  * Document-class: Fixnum
 | |
|  *
 | |
|  *  A <code>Fixnum</code> holds <code>Integer</code> values that can be
 | |
|  *  represented in a native machine word (minus 1 bit). If any operation
 | |
|  *  on a <code>Fixnum</code> exceeds this range, the value is
 | |
|  *  automatically converted to a <code>Bignum</code>.
 | |
|  *
 | |
|  *  <code>Fixnum</code> objects have immediate value. This means that
 | |
|  *  when they are assigned or passed as parameters, the actual object is
 | |
|  *  passed, rather than a reference to that object. Assignment does not
 | |
|  *  alias <code>Fixnum</code> objects. There is effectively only one
 | |
|  *  <code>Fixnum</code> object instance for any given integer value, so,
 | |
|  *  for example, you cannot add a singleton method to a
 | |
|  *  <code>Fixnum</code>.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   -fix   =>  integer
 | |
|  *
 | |
|  * Negates <code>fix</code> (which might return a Bignum).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_uminus(VALUE num)
 | |
| {
 | |
|     return LONG2NUM(-FIX2LONG(num));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fix2str(VALUE x, int base)
 | |
| {
 | |
|     extern const char ruby_digitmap[];
 | |
|     char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf;
 | |
|     long val = FIX2LONG(x);
 | |
|     int neg = 0;
 | |
| 
 | |
|     if (base < 2 || 36 < base) {
 | |
| 	rb_raise(rb_eArgError, "invalid radix %d", base);
 | |
|     }
 | |
|     if (val == 0) {
 | |
| 	return rb_usascii_str_new2("0");
 | |
|     }
 | |
|     if (val < 0) {
 | |
| 	val = -val;
 | |
| 	neg = 1;
 | |
|     }
 | |
|     *--b = '\0';
 | |
|     do {
 | |
| 	*--b = ruby_digitmap[(int)(val % base)];
 | |
|     } while (val /= base);
 | |
|     if (neg) {
 | |
| 	*--b = '-';
 | |
|     }
 | |
| 
 | |
|     return rb_usascii_str_new2(b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.to_s( base=10 ) -> aString
 | |
|  *
 | |
|  *  Returns a string containing the representation of <i>fix</i> radix
 | |
|  *  <i>base</i> (between 2 and 36).
 | |
|  *
 | |
|  *     12345.to_s       #=> "12345"
 | |
|  *     12345.to_s(2)    #=> "11000000111001"
 | |
|  *     12345.to_s(8)    #=> "30071"
 | |
|  *     12345.to_s(10)   #=> "12345"
 | |
|  *     12345.to_s(16)   #=> "3039"
 | |
|  *     12345.to_s(36)   #=> "9ix"
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| fix_to_s(int argc, VALUE *argv, VALUE x)
 | |
| {
 | |
|     int base;
 | |
| 
 | |
|     if (argc == 0) base = 10;
 | |
|     else {
 | |
| 	VALUE b;
 | |
| 
 | |
| 	rb_scan_args(argc, argv, "01", &b);
 | |
| 	base = NUM2INT(b);
 | |
|     }
 | |
| 
 | |
|     return rb_fix2str(x, base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix + numeric   =>  numeric_result
 | |
|  *
 | |
|  * Performs addition: the class of the resulting object depends on
 | |
|  * the class of <code>numeric</code> and on the magnitude of the
 | |
|  * result.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long a, b, c;
 | |
| 	VALUE r;
 | |
| 
 | |
| 	a = FIX2LONG(x);
 | |
| 	b = FIX2LONG(y);
 | |
| 	c = a + b;
 | |
| 	r = LONG2NUM(c);
 | |
| 
 | |
| 	return r;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big_plus(y, x);
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix - numeric   =>  numeric_result
 | |
|  *
 | |
|  * Performs subtraction: the class of the resulting object depends on
 | |
|  * the class of <code>numeric</code> and on the magnitude of the
 | |
|  * result.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long a, b, c;
 | |
| 	VALUE r;
 | |
| 
 | |
| 	a = FIX2LONG(x);
 | |
| 	b = FIX2LONG(y);
 | |
| 	c = a - b;
 | |
| 	r = LONG2NUM(c);
 | |
| 
 | |
| 	return r;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_minus(x, y);
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2))
 | |
| /*tests if N*N would overflow*/
 | |
| #define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix * numeric   =>  numeric_result
 | |
|  *
 | |
|  * Performs multiplication: the class of the resulting object depends on
 | |
|  * the class of <code>numeric</code> and on the magnitude of the
 | |
|  * result.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| #ifdef __HP_cc
 | |
| /* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */
 | |
| 	volatile
 | |
| #endif
 | |
| 	SIGNED_VALUE a, b;
 | |
| #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
 | |
| 	LONG_LONG d;
 | |
| #else
 | |
| 	SIGNED_VALUE c;
 | |
| 	VALUE r;
 | |
| #endif
 | |
| 
 | |
| 	a = FIX2LONG(x);
 | |
| 	b = FIX2LONG(y);
 | |
| 
 | |
| #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
 | |
| 	d = (LONG_LONG)a * b;
 | |
| 	if (FIXABLE(d)) return LONG2FIX(d);
 | |
| 	return rb_ll2inum(d);
 | |
| #else
 | |
| 	if (FIT_SQRT_LONG(a) && FIT_SQRT_LONG(b))
 | |
| 	    return LONG2FIX(a*b);
 | |
| 	c = a * b;
 | |
| 	r = LONG2FIX(c);
 | |
| 
 | |
| 	if (a == 0) return x;
 | |
| 	if (FIX2LONG(r) != c || c/a != b) {
 | |
| 	    r = rb_big_mul(rb_int2big(a), rb_int2big(b));
 | |
| 	}
 | |
| 	return r;
 | |
| #endif
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big_mul(y, x);
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| fixdivmod(long x, long y, long *divp, long *modp)
 | |
| {
 | |
|     long div, mod;
 | |
| 
 | |
|     if (y == 0) rb_num_zerodiv();
 | |
|     if (y < 0) {
 | |
| 	if (x < 0)
 | |
| 	    div = -x / -y;
 | |
| 	else
 | |
| 	    div = - (x / -y);
 | |
|     }
 | |
|     else {
 | |
| 	if (x < 0)
 | |
| 	    div = - (-x / y);
 | |
| 	else
 | |
| 	    div = x / y;
 | |
|     }
 | |
|     mod = x - div*y;
 | |
|     if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) {
 | |
| 	mod += y;
 | |
| 	div -= 1;
 | |
|     }
 | |
|     if (divp) *divp = div;
 | |
|     if (modp) *modp = mod;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.fdiv(numeric)   => float
 | |
|  *
 | |
|  *  Returns the floating point result of dividing <i>fix</i> by
 | |
|  *  <i>numeric</i>.
 | |
|  *
 | |
|  *     654321.fdiv(13731)      #=> 47.6528293642124
 | |
|  *     654321.fdiv(13731.24)   #=> 47.6519964693647
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return DBL2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y));
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return DBL2NUM((double)FIX2LONG(x) / rb_big2dbl(y));
 | |
|       case T_FLOAT:
 | |
| 	return DBL2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_divide(VALUE x, VALUE y, ID op)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long div;
 | |
| 
 | |
| 	fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0);
 | |
| 	return LONG2NUM(div);
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_div(x, y);
 | |
|       case T_FLOAT:
 | |
| 	{
 | |
| 	    double div;
 | |
| 
 | |
| 	    if (op == '/') {
 | |
| 		div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
 | |
| 		return DBL2NUM(div);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
 | |
| 		div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
 | |
| 		return rb_dbl2big(floor(div));
 | |
| 	    }
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix / numeric      =>  numeric_result
 | |
|  *
 | |
|  * Performs division: the class of the resulting object depends on
 | |
|  * the class of <code>numeric</code> and on the magnitude of the
 | |
|  * result.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_div(VALUE x, VALUE y)
 | |
| {
 | |
|     return fix_divide(x, y, '/');
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix.div(numeric)   =>  numeric_result
 | |
|  *
 | |
|  * Performs integer division: returns integer value.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return fix_divide(x, y, rb_intern("div"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    fix % other         => Numeric
 | |
|  *    fix.modulo(other)   => Numeric
 | |
|  *
 | |
|  *  Returns <code>fix</code> modulo <code>other</code>.
 | |
|  *  See <code>Numeric.divmod</code> for more information.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_mod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long mod;
 | |
| 
 | |
| 	fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod);
 | |
| 	return LONG2NUM(mod);
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_modulo(x, y);
 | |
|       case T_FLOAT:
 | |
| 	{
 | |
| 	    double mod;
 | |
| 
 | |
| 	    flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), 0, &mod);
 | |
| 	    return DBL2NUM(mod);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.divmod(numeric)    => array
 | |
|  *
 | |
|  *  See <code>Numeric#divmod</code>.
 | |
|  */
 | |
| static VALUE
 | |
| fix_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long div, mod;
 | |
| 
 | |
| 	fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod);
 | |
| 
 | |
| 	return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod));
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_divmod(x, y);
 | |
|       case T_FLOAT:
 | |
| 	{
 | |
| 	    double div, mod;
 | |
| 	    volatile VALUE a, b;
 | |
| 
 | |
| 	    flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
 | |
| 	    a = dbl2ival(div);
 | |
| 	    b = DBL2NUM(mod);
 | |
| 	    return rb_assoc_new(a, b);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_pow(long x, unsigned long y)
 | |
| {
 | |
|     int neg = x < 0;
 | |
|     long z = 1;
 | |
| 
 | |
|     if (neg) x = -x;
 | |
|     if (y & 1)
 | |
| 	z = x;
 | |
|     else
 | |
| 	neg = 0;
 | |
|     y &= ~1;
 | |
|     do {
 | |
| 	while (y % 2 == 0) {
 | |
| 	    if (!FIT_SQRT_LONG(x)) {
 | |
| 		VALUE v;
 | |
| 	      bignum:
 | |
| 		v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
 | |
| 		if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
 | |
| 		return v;
 | |
| 	    }
 | |
| 	    x = x * x;
 | |
| 	    y >>= 1;
 | |
| 	}
 | |
| 	{
 | |
| 	    long xz = x * z;
 | |
| 	    if (!POSFIXABLE(xz) || xz / x != z) {
 | |
| 		goto bignum;
 | |
| 	    }
 | |
| 	    z = xz;
 | |
| 	}
 | |
|     } while (--y);
 | |
|     if (neg) z = -z;
 | |
|     return LONG2NUM(z);
 | |
| }
 | |
| 
 | |
| #if defined _MSC_VER && _MSC_VER >= 1300
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4723)
 | |
| #endif
 | |
| static inline double
 | |
| infinite_value(void)
 | |
| {
 | |
|     static const double zero = 0.0;
 | |
|     return 1.0 / zero;
 | |
| }
 | |
| #if defined _MSC_VER && _MSC_VER >= 1300
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    fix ** other         => Numeric
 | |
|  *
 | |
|  *  Raises <code>fix</code> to the <code>other</code> power, which may
 | |
|  *  be negative or fractional.
 | |
|  *
 | |
|  *    2 ** 3      #=> 8
 | |
|  *    2 ** -1     #=> 0.5
 | |
|  *    2 ** 0.5    #=> 1.4142135623731
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     long a = FIX2LONG(x);
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long b = FIX2LONG(y);
 | |
| 
 | |
| 	if (b < 0)
 | |
| 	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
 | |
| 
 | |
| 	if (b == 0) return INT2FIX(1);
 | |
| 	if (b == 1) return x;
 | |
| 	if (a == 0) {
 | |
| 	    if (b > 0) return INT2FIX(0);
 | |
| 	    return DBL2NUM(infinite_value());
 | |
| 	}
 | |
| 	if (a == 1) return INT2FIX(1);
 | |
| 	if (a == -1) {
 | |
| 	    if (b % 2 == 0)
 | |
| 		return INT2FIX(1);
 | |
| 	    else
 | |
| 		return INT2FIX(-1);
 | |
| 	}
 | |
| 	return int_pow(a, b);
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 
 | |
| 	if (rb_funcall(y, '<', 1, INT2FIX(0)))
 | |
| 	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
 | |
| 
 | |
| 	if (a == 0) return INT2FIX(0);
 | |
| 	if (a == 1) return INT2FIX(1);
 | |
| 	if (a == -1) {
 | |
| 	    if (int_even_p(y)) return INT2FIX(1);
 | |
| 	    else return INT2FIX(-1);
 | |
| 	}
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_pow(x, y);
 | |
|       case T_FLOAT:
 | |
| 	if (RFLOAT_VALUE(y) == 0.0) return DBL2NUM(1.0);
 | |
| 	if (a == 0) {
 | |
| 	    return DBL2NUM(RFLOAT_VALUE(y) < 0 ? infinite_value() : 0.0);
 | |
| 	}
 | |
| 	if (a == 1) return DBL2NUM(1.0);
 | |
| 	return DBL2NUM(pow((double)a, RFLOAT_VALUE(y)));
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("**"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix == other
 | |
|  *
 | |
|  * Return <code>true</code> if <code>fix</code> equals <code>other</code>
 | |
|  * numerically.
 | |
|  *
 | |
|  *   1 == 2      #=> false
 | |
|  *   1 == 1.0    #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return Qtrue;
 | |
|     if (FIXNUM_P(y)) return Qfalse;
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big_eq(y, x);
 | |
|       case T_FLOAT:
 | |
| 	return (double)FIX2LONG(x) == RFLOAT_VALUE(y) ? Qtrue : Qfalse;
 | |
|       default:
 | |
| 	return num_equal(x, y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix <=> numeric    => -1, 0, +1
 | |
|  *
 | |
|  *  Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
 | |
|  *  less than, equal to, or greater than <i>numeric</i>. This is the
 | |
|  *  basis for the tests in <code>Comparable</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return INT2FIX(0);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
 | |
| 	return INT2FIX(-1);
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big_cmp(rb_int2big(FIX2LONG(x)), y);
 | |
|       case T_FLOAT:
 | |
| 	return rb_dbl_cmp((double)FIX2LONG(x), RFLOAT_VALUE(y));
 | |
|       default:
 | |
| 	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix > other     => true or false
 | |
|  *
 | |
|  * Returns <code>true</code> if the value of <code>fix</code> is
 | |
|  * greater than that of <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse;
 | |
|       case T_FLOAT:
 | |
| 	return (double)FIX2LONG(x) > RFLOAT_VALUE(y) ? Qtrue : Qfalse;
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, '>');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix >= other     => true or false
 | |
|  *
 | |
|  * Returns <code>true</code> if the value of <code>fix</code> is
 | |
|  * greater than or equal to that of <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse;
 | |
|       case T_FLOAT:
 | |
| 	return (double)FIX2LONG(x) >= RFLOAT_VALUE(y) ? Qtrue : Qfalse;
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, rb_intern(">="));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix < other     => true or false
 | |
|  *
 | |
|  * Returns <code>true</code> if the value of <code>fix</code> is
 | |
|  * less than that of <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse;
 | |
|       case T_FLOAT:
 | |
| 	return (double)FIX2LONG(x) < RFLOAT_VALUE(y) ? Qtrue : Qfalse;
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, '<');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix <= other     => true or false
 | |
|  *
 | |
|  * Returns <code>true</code> if the value of <code>fix</code> is
 | |
|  * less than or equal to that of <code>other</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_le(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     switch (TYPE(y)) {
 | |
|       case T_BIGNUM:
 | |
| 	return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse;
 | |
|       case T_FLOAT:
 | |
| 	return (double)FIX2LONG(x) <= RFLOAT_VALUE(y) ? Qtrue : Qfalse;
 | |
|       default:
 | |
| 	return rb_num_coerce_relop(x, y, rb_intern("<="));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   ~fix     => integer
 | |
|  *
 | |
|  * One's complement: returns a number where each bit is flipped.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_rev(VALUE num)
 | |
| {
 | |
|     long val = FIX2LONG(num);
 | |
| 
 | |
|     val = ~val;
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bit_coerce(VALUE x)
 | |
| {
 | |
|     while (!FIXNUM_P(x) && TYPE(x) != T_BIGNUM) {
 | |
| 	if (TYPE(x) == T_FLOAT) {
 | |
| 	    rb_raise(rb_eTypeError, "can't convert Float into Integer");
 | |
| 	}
 | |
| 	x = rb_to_int(x);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix & other     => integer
 | |
|  *
 | |
|  * Bitwise AND.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_and(VALUE x, VALUE y)
 | |
| {
 | |
|     long val;
 | |
| 
 | |
|     if (!FIXNUM_P(y = bit_coerce(y))) {
 | |
| 	return rb_big_and(y, x);
 | |
|     }
 | |
|     val = FIX2LONG(x) & FIX2LONG(y);
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix | other     => integer
 | |
|  *
 | |
|  * Bitwise OR.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_or(VALUE x, VALUE y)
 | |
| {
 | |
|     long val;
 | |
| 
 | |
|     if (!FIXNUM_P(y = bit_coerce(y))) {
 | |
| 	return rb_big_or(y, x);
 | |
|     }
 | |
|     val = FIX2LONG(x) | FIX2LONG(y);
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix ^ other     => integer
 | |
|  *
 | |
|  * Bitwise EXCLUSIVE OR.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_xor(VALUE x, VALUE y)
 | |
| {
 | |
|     long val;
 | |
| 
 | |
|     if (!FIXNUM_P(y = bit_coerce(y))) {
 | |
| 	return rb_big_xor(y, x);
 | |
|     }
 | |
|     val = FIX2LONG(x) ^ FIX2LONG(y);
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| static VALUE fix_lshift(long, unsigned long);
 | |
| static VALUE fix_rshift(long, unsigned long);
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix << count     => integer
 | |
|  *
 | |
|  * Shifts _fix_ left _count_ positions (right if _count_ is negative).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_lshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long val, width;
 | |
| 
 | |
|     val = NUM2LONG(x);
 | |
|     if (!FIXNUM_P(y))
 | |
| 	return rb_big_lshift(rb_int2big(val), y);
 | |
|     width = FIX2LONG(y);
 | |
|     if (width < 0)
 | |
| 	return fix_rshift(val, (unsigned long)-width);
 | |
|     return fix_lshift(val, width);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_lshift(long val, unsigned long width)
 | |
| {
 | |
|     if (width > (SIZEOF_LONG*CHAR_BIT-1)
 | |
| 	|| ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
 | |
| 	return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
 | |
|     }
 | |
|     val = val << width;
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fix >> count     => integer
 | |
|  *
 | |
|  * Shifts _fix_ right _count_ positions (left if _count_ is negative).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_rshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long i, val;
 | |
| 
 | |
|     val = FIX2LONG(x);
 | |
|     if (!FIXNUM_P(y))
 | |
| 	return rb_big_rshift(rb_int2big(val), y);
 | |
|     i = FIX2LONG(y);
 | |
|     if (i == 0) return x;
 | |
|     if (i < 0)
 | |
| 	return fix_lshift(val, (unsigned long)-i);
 | |
|     return fix_rshift(val, i);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_rshift(long val, unsigned long i)
 | |
| {
 | |
|     if (i >= sizeof(long)*CHAR_BIT-1) {
 | |
| 	if (val < 0) return INT2FIX(-1);
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     val = RSHIFT(val, i);
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix[n]     => 0, 1
 | |
|  *
 | |
|  *  Bit Reference---Returns the <em>n</em>th bit in the binary
 | |
|  *  representation of <i>fix</i>, where <i>fix</i>[0] is the least
 | |
|  *  significant bit.
 | |
|  *
 | |
|  *     a = 0b11001100101010
 | |
|  *     30.downto(0) do |n| print a[n] end
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     0000000000000000011001100101010
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_aref(VALUE fix, VALUE idx)
 | |
| {
 | |
|     long val = FIX2LONG(fix);
 | |
|     long i;
 | |
| 
 | |
|     idx = rb_to_int(idx);
 | |
|     if (!FIXNUM_P(idx)) {
 | |
| 	idx = rb_big_norm(idx);
 | |
| 	if (!FIXNUM_P(idx)) {
 | |
| 	    if (!RBIGNUM_SIGN(idx) || val >= 0)
 | |
| 		return INT2FIX(0);
 | |
| 	    return INT2FIX(1);
 | |
| 	}
 | |
|     }
 | |
|     i = FIX2LONG(idx);
 | |
| 
 | |
|     if (i < 0) return INT2FIX(0);
 | |
|     if (SIZEOF_LONG*CHAR_BIT-1 < i) {
 | |
| 	if (val < 0) return INT2FIX(1);
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     if (val & (1L<<i))
 | |
| 	return INT2FIX(1);
 | |
|     return INT2FIX(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.to_f -> float
 | |
|  *
 | |
|  *  Converts <i>fix</i> to a <code>Float</code>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_to_f(VALUE num)
 | |
| {
 | |
|     double val;
 | |
| 
 | |
|     val = (double)FIX2LONG(num);
 | |
| 
 | |
|     return DBL2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.abs -> aFixnum
 | |
|  *
 | |
|  *  Returns the absolute value of <i>fix</i>.
 | |
|  *
 | |
|  *     -12345.abs   #=> 12345
 | |
|  *     12345.abs    #=> 12345
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_abs(VALUE fix)
 | |
| {
 | |
|     long i = FIX2LONG(fix);
 | |
| 
 | |
|     if (i < 0) i = -i;
 | |
| 
 | |
|     return LONG2NUM(i);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.size -> fixnum
 | |
|  *
 | |
|  *  Returns the number of <em>bytes</em> in the machine representation
 | |
|  *  of a <code>Fixnum</code>.
 | |
|  *
 | |
|  *     1.size            #=> 4
 | |
|  *     -1.size           #=> 4
 | |
|  *     2147483647.size   #=> 4
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_size(VALUE fix)
 | |
| {
 | |
|     return INT2FIX(sizeof(long));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.upto(limit) {|i| block }     => int
 | |
|  *
 | |
|  *  Iterates <em>block</em>, passing in integer values from <i>int</i>
 | |
|  *  up to and including <i>limit</i>.
 | |
|  *
 | |
|  *     5.upto(10) { |i| print i, " " }
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     5 6 7 8 9 10
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_upto(VALUE from, VALUE to)
 | |
| {
 | |
|     RETURN_ENUMERATOR(from, 1, &to);
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(to);
 | |
| 	for (i = FIX2LONG(from); i <= end; i++) {
 | |
| 	    rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = from, c;
 | |
| 
 | |
| 	while (!(c = rb_funcall(i, '>', 1, to))) {
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '+', 1, INT2FIX(1));
 | |
| 	}
 | |
| 	if (NIL_P(c)) rb_cmperr(i, to);
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.downto(limit) {|i| block }     => int
 | |
|  *
 | |
|  *  Iterates <em>block</em>, passing decreasing values from <i>int</i>
 | |
|  *  down to and including <i>limit</i>.
 | |
|  *
 | |
|  *     5.downto(1) { |n| print n, ".. " }
 | |
|  *     print "  Liftoff!\n"
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     5.. 4.. 3.. 2.. 1..   Liftoff!
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_downto(VALUE from, VALUE to)
 | |
| {
 | |
|     RETURN_ENUMERATOR(from, 1, &to);
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(to);
 | |
| 	for (i=FIX2LONG(from); i >= end; i--) {
 | |
| 	    rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = from, c;
 | |
| 
 | |
| 	while (!(c = rb_funcall(i, '<', 1, to))) {
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '-', 1, INT2FIX(1));
 | |
| 	}
 | |
| 	if (NIL_P(c)) rb_cmperr(i, to);
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.times {|i| block }     => int
 | |
|  *
 | |
|  *  Iterates block <i>int</i> times, passing in values from zero to
 | |
|  *  <i>int</i> - 1.
 | |
|  *
 | |
|  *     5.times do |i|
 | |
|  *       print i, " "
 | |
|  *     end
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     0 1 2 3 4
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_dotimes(VALUE num)
 | |
| {
 | |
|     RETURN_ENUMERATOR(num, 0, 0);
 | |
| 
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(num);
 | |
| 	for (i=0; i<end; i++) {
 | |
| 	    rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = INT2FIX(0);
 | |
| 
 | |
| 	for (;;) {
 | |
| 	    if (!RTEST(rb_funcall(i, '<', 1, num))) break;
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '+', 1, INT2FIX(1));
 | |
| 	}
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_round(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     VALUE n, f, h, r;
 | |
|     int ndigits;
 | |
| 
 | |
|     if (argc == 0) return num;
 | |
|     rb_scan_args(argc, argv, "1", &n);
 | |
|     ndigits = NUM2INT(n);
 | |
|     if (ndigits > 0) {
 | |
| 	return rb_Float(num);
 | |
|     }
 | |
|     if (ndigits == 0) {
 | |
| 	return num;
 | |
|     }
 | |
|     ndigits = -ndigits;
 | |
|     if (ndigits < 0) {
 | |
| 	rb_raise(rb_eArgError, "ndigits out of range");
 | |
|     }
 | |
|     f = int_pow(10, ndigits);
 | |
|     if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | |
| 	SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | |
| 	int neg = x < 0;
 | |
| 	if (neg) x = -x;
 | |
| 	x = (x + y / 2) / y * y;
 | |
| 	if (neg) x = -x;
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     h = rb_funcall(f, '/', 1, INT2FIX(2));
 | |
|     r = rb_funcall(num, '%', 1, f);
 | |
|     n = rb_funcall(num, '-', 1, r);
 | |
|     if (!RTEST(rb_funcall(r, '<', 1, h))) {
 | |
| 	n = rb_funcall(n, '+', 1, f);
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.zero?    => true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>fix</i> is zero.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_zero_p(VALUE num)
 | |
| {
 | |
|     if (FIX2LONG(num) == 0) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.odd? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>fix</i> is an odd number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_odd_p(VALUE num)
 | |
| {
 | |
|     if (num & 2) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fix.even? -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>fix</i> is an even number.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_even_p(VALUE num)
 | |
| {
 | |
|     if (num & 2) {
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| void
 | |
| Init_Numeric(void)
 | |
| {
 | |
| #undef rb_intern
 | |
| #define rb_intern(str) rb_intern_const(str)
 | |
| 
 | |
| #if defined(__FreeBSD__) && __FreeBSD__ < 4
 | |
|     /* allow divide by zero -- Inf */
 | |
|     fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL));
 | |
| #elif defined(_UNICOSMP)
 | |
|     /* Turn off floating point exceptions for divide by zero, etc. */
 | |
|     _set_Creg(0, 0);
 | |
| #elif defined(__BORLANDC__)
 | |
|     /* Turn off floating point exceptions for overflow, etc. */
 | |
|     _control87(MCW_EM, MCW_EM);
 | |
| #endif
 | |
|     id_coerce = rb_intern("coerce");
 | |
|     id_to_i = rb_intern("to_i");
 | |
|     id_eq = rb_intern("==");
 | |
| 
 | |
|     rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
 | |
|     rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
 | |
|     rb_cNumeric = rb_define_class("Numeric", rb_cObject);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
 | |
|     rb_include_module(rb_cNumeric, rb_mComparable);
 | |
|     rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1);
 | |
|     rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
 | |
|     rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
 | |
|     rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
 | |
|     rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
 | |
|     rb_define_method(rb_cNumeric, "quo", num_quo, 1);
 | |
|     rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
 | |
|     rb_define_method(rb_cNumeric, "div", num_div, 1);
 | |
|     rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
 | |
|     rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
 | |
|     rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
 | |
|     rb_define_method(rb_cNumeric, "abs", num_abs, 0);
 | |
|     rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
 | |
|     rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "real?", num_real_p, 0);
 | |
|     rb_define_method(rb_cNumeric, "integer?", num_int_p, 0);
 | |
|     rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
 | |
|     rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "floor", num_floor, 0);
 | |
|     rb_define_method(rb_cNumeric, "ceil", num_ceil, 0);
 | |
|     rb_define_method(rb_cNumeric, "round", num_round, -1);
 | |
|     rb_define_method(rb_cNumeric, "truncate", num_truncate, 0);
 | |
|     rb_define_method(rb_cNumeric, "step", num_step, -1);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "numerator", num_numerator, 0);
 | |
|     rb_define_method(rb_cNumeric, "denominator", num_denominator, 0);
 | |
| 
 | |
|     rb_cInteger = rb_define_class("Integer", rb_cNumeric);
 | |
|     rb_undef_alloc_func(rb_cInteger);
 | |
|     rb_undef_method(CLASS_OF(rb_cInteger), "new");
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "integer?", int_int_p, 0);
 | |
|     rb_define_method(rb_cInteger, "odd?", int_odd_p, 0);
 | |
|     rb_define_method(rb_cInteger, "even?", int_even_p, 0);
 | |
|     rb_define_method(rb_cInteger, "upto", int_upto, 1);
 | |
|     rb_define_method(rb_cInteger, "downto", int_downto, 1);
 | |
|     rb_define_method(rb_cInteger, "times", int_dotimes, 0);
 | |
|     rb_define_method(rb_cInteger, "succ", int_succ, 0);
 | |
|     rb_define_method(rb_cInteger, "next", int_succ, 0);
 | |
|     rb_define_method(rb_cInteger, "pred", int_pred, 0);
 | |
|     rb_define_method(rb_cInteger, "chr", int_chr, -1);
 | |
|     rb_define_method(rb_cInteger, "ord", int_ord, 0);
 | |
|     rb_define_method(rb_cInteger, "to_i", int_to_i, 0);
 | |
|     rb_define_method(rb_cInteger, "to_int", int_to_i, 0);
 | |
|     rb_define_method(rb_cInteger, "floor", int_to_i, 0);
 | |
|     rb_define_method(rb_cInteger, "ceil", int_to_i, 0);
 | |
|     rb_define_method(rb_cInteger, "truncate", int_to_i, 0);
 | |
|     rb_define_method(rb_cInteger, "round", int_round, -1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "numerator", int_numerator, 0);
 | |
|     rb_define_method(rb_cInteger, "denominator", int_denominator, 0);
 | |
| 
 | |
|     rb_cFixnum = rb_define_class("Fixnum", rb_cInteger);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "-@", fix_uminus, 0);
 | |
|     rb_define_method(rb_cFixnum, "+", fix_plus, 1);
 | |
|     rb_define_method(rb_cFixnum, "-", fix_minus, 1);
 | |
|     rb_define_method(rb_cFixnum, "*", fix_mul, 1);
 | |
|     rb_define_method(rb_cFixnum, "/", fix_div, 1);
 | |
|     rb_define_method(rb_cFixnum, "div", fix_idiv, 1);
 | |
|     rb_define_method(rb_cFixnum, "%", fix_mod, 1);
 | |
|     rb_define_method(rb_cFixnum, "modulo", fix_mod, 1);
 | |
|     rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1);
 | |
|     rb_define_method(rb_cFixnum, "fdiv", fix_fdiv, 1);
 | |
|     rb_define_method(rb_cFixnum, "**", fix_pow, 1);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "abs", fix_abs, 0);
 | |
|     rb_define_method(rb_cFixnum, "magnitude", fix_abs, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "==", fix_equal, 1);
 | |
|     rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1);
 | |
|     rb_define_method(rb_cFixnum, ">",  fix_gt, 1);
 | |
|     rb_define_method(rb_cFixnum, ">=", fix_ge, 1);
 | |
|     rb_define_method(rb_cFixnum, "<",  fix_lt, 1);
 | |
|     rb_define_method(rb_cFixnum, "<=", fix_le, 1);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "~", fix_rev, 0);
 | |
|     rb_define_method(rb_cFixnum, "&", fix_and, 1);
 | |
|     rb_define_method(rb_cFixnum, "|", fix_or,  1);
 | |
|     rb_define_method(rb_cFixnum, "^", fix_xor, 1);
 | |
|     rb_define_method(rb_cFixnum, "[]", fix_aref, 1);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "<<", rb_fix_lshift, 1);
 | |
|     rb_define_method(rb_cFixnum, ">>", rb_fix_rshift, 1);
 | |
| 
 | |
|     rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0);
 | |
|     rb_define_method(rb_cFixnum, "size", fix_size, 0);
 | |
|     rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0);
 | |
|     rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0);
 | |
|     rb_define_method(rb_cFixnum, "even?", fix_even_p, 0);
 | |
|     rb_define_method(rb_cFixnum, "succ", fix_succ, 0);
 | |
| 
 | |
|     rb_cFloat  = rb_define_class("Float", rb_cNumeric);
 | |
| 
 | |
|     rb_undef_alloc_func(rb_cFloat);
 | |
|     rb_undef_method(CLASS_OF(rb_cFloat), "new");
 | |
| 
 | |
|     rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS));
 | |
|     rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
 | |
|     rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
 | |
|     rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
 | |
|     rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
 | |
|     rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
 | |
|     rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
 | |
|     rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
 | |
|     rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
 | |
|     rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
 | |
|     rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
 | |
|     rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
 | |
|     rb_define_method(rb_cFloat, "-@", flo_uminus, 0);
 | |
|     rb_define_method(rb_cFloat, "+", flo_plus, 1);
 | |
|     rb_define_method(rb_cFloat, "-", flo_minus, 1);
 | |
|     rb_define_method(rb_cFloat, "*", flo_mul, 1);
 | |
|     rb_define_method(rb_cFloat, "/", flo_div, 1);
 | |
|     rb_define_method(rb_cFloat, "quo", flo_quo, 1);
 | |
|     rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
 | |
|     rb_define_method(rb_cFloat, "%", flo_mod, 1);
 | |
|     rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
 | |
|     rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
 | |
|     rb_define_method(rb_cFloat, "**", flo_pow, 1);
 | |
|     rb_define_method(rb_cFloat, "==", flo_eq, 1);
 | |
|     rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
 | |
|     rb_define_method(rb_cFloat, ">",  flo_gt, 1);
 | |
|     rb_define_method(rb_cFloat, ">=", flo_ge, 1);
 | |
|     rb_define_method(rb_cFloat, "<",  flo_lt, 1);
 | |
|     rb_define_method(rb_cFloat, "<=", flo_le, 1);
 | |
|     rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
 | |
|     rb_define_method(rb_cFloat, "hash", flo_hash, 0);
 | |
|     rb_define_method(rb_cFloat, "to_f", flo_to_f, 0);
 | |
|     rb_define_method(rb_cFloat, "abs", flo_abs, 0);
 | |
|     rb_define_method(rb_cFloat, "magnitude", flo_abs, 0);
 | |
|     rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "to_i", flo_truncate, 0);
 | |
|     rb_define_method(rb_cFloat, "to_int", flo_truncate, 0);
 | |
|     rb_define_method(rb_cFloat, "floor", flo_floor, 0);
 | |
|     rb_define_method(rb_cFloat, "ceil", flo_ceil, 0);
 | |
|     rb_define_method(rb_cFloat, "round", flo_round, -1);
 | |
|     rb_define_method(rb_cFloat, "truncate", flo_truncate, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "numerator", flo_numerator, 0);
 | |
|     rb_define_method(rb_cFloat, "denominator", flo_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "nan?",      flo_is_nan_p, 0);
 | |
|     rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0);
 | |
|     rb_define_method(rb_cFloat, "finite?",   flo_is_finite_p, 0);
 | |
| }
 |