mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			8470 lines
		
	
	
	
		
			226 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8470 lines
		
	
	
	
		
			226 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   array.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Aug  6 09:46:12 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
|   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
 | |
|   Copyright (C) 2000  Information-technology Promotion Agency, Japan
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "debug_counter.h"
 | |
| #include "id.h"
 | |
| #include "internal.h"
 | |
| #include "internal/array.h"
 | |
| #include "internal/compar.h"
 | |
| #include "internal/enum.h"
 | |
| #include "internal/gc.h"
 | |
| #include "internal/hash.h"
 | |
| #include "internal/numeric.h"
 | |
| #include "internal/object.h"
 | |
| #include "internal/proc.h"
 | |
| #include "internal/rational.h"
 | |
| #include "internal/vm.h"
 | |
| #include "probes.h"
 | |
| #include "ruby/encoding.h"
 | |
| #include "ruby/st.h"
 | |
| #include "ruby/util.h"
 | |
| #include "transient_heap.h"
 | |
| #include "builtin.h"
 | |
| 
 | |
| #if !ARRAY_DEBUG
 | |
| # undef NDEBUG
 | |
| # define NDEBUG
 | |
| #endif
 | |
| #include "ruby_assert.h"
 | |
| 
 | |
| VALUE rb_cArray;
 | |
| 
 | |
| /* for OPTIMIZED_CMP: */
 | |
| #define id_cmp idCmp
 | |
| 
 | |
| #define ARY_DEFAULT_SIZE 16
 | |
| #define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
 | |
| #define SMALL_ARRAY_LEN 16
 | |
| 
 | |
| RBIMPL_ATTR_MAYBE_UNUSED()
 | |
| static int
 | |
| should_be_T_ARRAY(VALUE ary)
 | |
| {
 | |
|     return RB_TYPE_P(ary, T_ARRAY);
 | |
| }
 | |
| 
 | |
| RBIMPL_ATTR_MAYBE_UNUSED()
 | |
| static int
 | |
| should_not_be_shared_and_embedded(VALUE ary)
 | |
| {
 | |
|     return !FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG);
 | |
| }
 | |
| 
 | |
| #define ARY_SHARED_P(ary) \
 | |
|   (assert(should_be_T_ARRAY((VALUE)(ary))), \
 | |
|    assert(should_not_be_shared_and_embedded((VALUE)ary)), \
 | |
|    FL_TEST_RAW((ary),ELTS_SHARED)!=0)
 | |
| 
 | |
| #define ARY_EMBED_P(ary) \
 | |
|   (assert(should_be_T_ARRAY((VALUE)(ary))), \
 | |
|    assert(should_not_be_shared_and_embedded((VALUE)ary)), \
 | |
|    FL_TEST_RAW((ary), RARRAY_EMBED_FLAG) != 0)
 | |
| 
 | |
| #define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
 | |
| #define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
 | |
| #define ARY_HEAP_CAPA(a) (assert(!ARY_EMBED_P(a)), assert(!ARY_SHARED_ROOT_P(a)), \
 | |
|                           RARRAY(a)->as.heap.aux.capa)
 | |
| 
 | |
| #define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
 | |
| #define ARY_EMBED_LEN(a) \
 | |
|     (assert(ARY_EMBED_P(a)), \
 | |
|      (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
 | |
| 	 (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
 | |
| #define ARY_HEAP_SIZE(a) (assert(!ARY_EMBED_P(a)), assert(ARY_OWNS_HEAP_P(a)), ARY_CAPA(a) * sizeof(VALUE))
 | |
| 
 | |
| #define ARY_OWNS_HEAP_P(a) (assert(should_be_T_ARRAY((VALUE)(a))), \
 | |
|                             !FL_TEST_RAW((a), ELTS_SHARED|RARRAY_EMBED_FLAG))
 | |
| 
 | |
| #define FL_SET_EMBED(a) do { \
 | |
|     assert(!ARY_SHARED_P(a)); \
 | |
|     FL_SET((a), RARRAY_EMBED_FLAG); \
 | |
|     RARY_TRANSIENT_UNSET(a); \
 | |
|     ary_verify(a); \
 | |
| } while (0)
 | |
| 
 | |
| #define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
 | |
| #define FL_SET_SHARED(ary) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     FL_SET((ary), ELTS_SHARED); \
 | |
| } while (0)
 | |
| #define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED)
 | |
| 
 | |
| #define ARY_SET_PTR(ary, p) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.ptr = (p); \
 | |
| } while (0)
 | |
| #define ARY_SET_EMBED_LEN(ary, n) do { \
 | |
|     long tmp_n = (n); \
 | |
|     assert(ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
 | |
|     RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
 | |
| } while (0)
 | |
| #define ARY_SET_HEAP_LEN(ary, n) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     RARRAY(ary)->as.heap.len = (n); \
 | |
| } while (0)
 | |
| #define ARY_SET_LEN(ary, n) do { \
 | |
|     if (ARY_EMBED_P(ary)) { \
 | |
|         ARY_SET_EMBED_LEN((ary), (n)); \
 | |
|     } \
 | |
|     else { \
 | |
|         ARY_SET_HEAP_LEN((ary), (n)); \
 | |
|     } \
 | |
|     assert(RARRAY_LEN(ary) == (n)); \
 | |
| } while (0)
 | |
| #define ARY_INCREASE_PTR(ary, n) do  { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.ptr += (n); \
 | |
| } while (0)
 | |
| #define ARY_INCREASE_LEN(ary, n) do  { \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     if (ARY_EMBED_P(ary)) { \
 | |
|         ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \
 | |
|     } \
 | |
|     else { \
 | |
|         RARRAY(ary)->as.heap.len += (n); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| #define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
 | |
|                        ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : ARY_HEAP_CAPA(ary))
 | |
| #define ARY_SET_CAPA(ary, n) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!ARY_SHARED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.aux.capa = (n); \
 | |
| } while (0)
 | |
| 
 | |
| #define ARY_SHARED_ROOT(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared_root)
 | |
| #define ARY_SET_SHARED(ary, value) do { \
 | |
|     const VALUE _ary_ = (ary); \
 | |
|     const VALUE _value_ = (value); \
 | |
|     assert(!ARY_EMBED_P(_ary_)); \
 | |
|     assert(ARY_SHARED_P(_ary_)); \
 | |
|     assert(ARY_SHARED_ROOT_P(_value_)); \
 | |
|     RB_OBJ_WRITE(_ary_, &RARRAY(_ary_)->as.heap.aux.shared_root, _value_); \
 | |
| } while (0)
 | |
| #define RARRAY_SHARED_ROOT_FLAG FL_USER5
 | |
| #define ARY_SHARED_ROOT_P(ary) (assert(should_be_T_ARRAY((VALUE)(ary))), \
 | |
|                                 FL_TEST_RAW((ary), RARRAY_SHARED_ROOT_FLAG))
 | |
| #define ARY_SHARED_ROOT_REFCNT(ary) \
 | |
|     (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
 | |
| #define ARY_SHARED_ROOT_OCCUPIED(ary) (ARY_SHARED_ROOT_REFCNT(ary) == 1)
 | |
| #define ARY_SET_SHARED_ROOT_REFCNT(ary, value) do { \
 | |
|     assert(ARY_SHARED_ROOT_P(ary)); \
 | |
|     RARRAY(ary)->as.heap.aux.capa = (value); \
 | |
| } while (0)
 | |
| #define FL_SET_SHARED_ROOT(ary) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!RARRAY_TRANSIENT_P(ary)); \
 | |
|     FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \
 | |
| } while (0)
 | |
| 
 | |
| static inline void
 | |
| ARY_SET(VALUE a, long i, VALUE v)
 | |
| {
 | |
|     assert(!ARY_SHARED_P(a));
 | |
|     assert(!OBJ_FROZEN(a));
 | |
| 
 | |
|     RARRAY_ASET(a, i, v);
 | |
| }
 | |
| #undef RARRAY_ASET
 | |
| 
 | |
| 
 | |
| #if ARRAY_DEBUG
 | |
| #define ary_verify(ary) ary_verify_(ary, __FILE__, __LINE__)
 | |
| 
 | |
| static VALUE
 | |
| ary_verify_(VALUE ary, const char *file, int line)
 | |
| {
 | |
|     assert(RB_TYPE_P(ary, T_ARRAY));
 | |
| 
 | |
|     if (FL_TEST(ary, ELTS_SHARED)) {
 | |
|         VALUE root = RARRAY(ary)->as.heap.aux.shared_root;
 | |
|         const VALUE *ptr = ARY_HEAP_PTR(ary);
 | |
|         const VALUE *root_ptr = RARRAY_CONST_PTR_TRANSIENT(root);
 | |
|         long len = ARY_HEAP_LEN(ary), root_len = RARRAY_LEN(root);
 | |
|         assert(FL_TEST(root, RARRAY_SHARED_ROOT_FLAG));
 | |
|         assert(root_ptr <= ptr && ptr + len <= root_ptr + root_len);
 | |
|         ary_verify(root);
 | |
|     }
 | |
|     else if (ARY_EMBED_P(ary)) {
 | |
|         assert(!RARRAY_TRANSIENT_P(ary));
 | |
|         assert(!ARY_SHARED_P(ary));
 | |
|         assert(RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX);
 | |
|     }
 | |
|     else {
 | |
| #if 1
 | |
|         const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|         long i, len = RARRAY_LEN(ary);
 | |
|         volatile VALUE v;
 | |
|         if (len > 1) len = 1; /* check only HEAD */
 | |
|         for (i=0; i<len; i++) {
 | |
|             v = ptr[i]; /* access check */
 | |
|         }
 | |
|         v = v;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if USE_TRANSIENT_HEAP
 | |
|     if (RARRAY_TRANSIENT_P(ary)) {
 | |
|         assert(rb_transient_heap_managed_ptr_p(RARRAY_CONST_PTR_TRANSIENT(ary)));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     rb_transient_heap_verify();
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_verify(VALUE ary)
 | |
| {
 | |
|     ary_verify(ary);
 | |
| }
 | |
| #else
 | |
| #define ary_verify(ary) ((void)0)
 | |
| #endif
 | |
| 
 | |
| VALUE *
 | |
| rb_ary_ptr_use_start(VALUE ary)
 | |
| {
 | |
| #if ARRAY_DEBUG
 | |
|     FL_SET_RAW(ary, RARRAY_PTR_IN_USE_FLAG);
 | |
| #endif
 | |
|     return (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_ptr_use_end(VALUE ary)
 | |
| {
 | |
| #if ARRAY_DEBUG
 | |
|     FL_UNSET_RAW(ary, RARRAY_PTR_IN_USE_FLAG);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_mem_clear(VALUE *mem, long size)
 | |
| {
 | |
|     while (size--) {
 | |
| 	*mem++ = Qnil;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_mem_clear(VALUE ary, long beg, long size)
 | |
| {
 | |
|     RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 	rb_mem_clear(ptr + beg, size);
 | |
|     });
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| memfill(register VALUE *mem, register long size, register VALUE val)
 | |
| {
 | |
|     while (size--) {
 | |
| 	*mem++ = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_memfill(VALUE ary, long beg, long size, VALUE val)
 | |
| {
 | |
|     RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 	memfill(ptr + beg, size, val);
 | |
| 	RB_OBJ_WRITTEN(ary, Qundef, val);
 | |
|     });
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_memcpy0(VALUE ary, long beg, long argc, const VALUE *argv, VALUE buff_owner_ary)
 | |
| {
 | |
|     assert(!ARY_SHARED_P(buff_owner_ary));
 | |
| 
 | |
|     if (argc > (int)(128/sizeof(VALUE)) /* is magic number (cache line size) */) {
 | |
|         rb_gc_writebarrier_remember(buff_owner_ary);
 | |
|         RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
|             MEMCPY(ptr+beg, argv, VALUE, argc);
 | |
|         });
 | |
|     }
 | |
|     else {
 | |
|         int i;
 | |
|         RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
|             for (i=0; i<argc; i++) {
 | |
|                 RB_OBJ_WRITE(buff_owner_ary, &ptr[i+beg], argv[i]);
 | |
|             }
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_memcpy(VALUE ary, long beg, long argc, const VALUE *argv)
 | |
| {
 | |
|     ary_memcpy0(ary, beg, argc, argv, ary);
 | |
| }
 | |
| 
 | |
| static VALUE *
 | |
| ary_heap_alloc(VALUE ary, size_t capa)
 | |
| {
 | |
|     VALUE *ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * capa);
 | |
| 
 | |
|     if (ptr != NULL) {
 | |
|         RARY_TRANSIENT_SET(ary);
 | |
|     }
 | |
|     else {
 | |
|         RARY_TRANSIENT_UNSET(ary);
 | |
|         ptr = ALLOC_N(VALUE, capa);
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_heap_free_ptr(VALUE ary, const VALUE *ptr, long size)
 | |
| {
 | |
|     if (RARRAY_TRANSIENT_P(ary)) {
 | |
|         /* ignore it */
 | |
|     }
 | |
|     else {
 | |
|         ruby_sized_xfree((void *)ptr, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_heap_free(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_TRANSIENT_P(ary)) {
 | |
|         RARY_TRANSIENT_UNSET(ary);
 | |
|     }
 | |
|     else {
 | |
|         ary_heap_free_ptr(ary, ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| ary_heap_realloc(VALUE ary, size_t new_capa)
 | |
| {
 | |
|     size_t alloc_capa = new_capa;
 | |
|     size_t old_capa = ARY_HEAP_CAPA(ary);
 | |
| 
 | |
|     if (RARRAY_TRANSIENT_P(ary)) {
 | |
|         if (new_capa <= old_capa) {
 | |
|             /* do nothing */
 | |
|             alloc_capa = old_capa;
 | |
|         }
 | |
|         else {
 | |
|             VALUE *new_ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * new_capa);
 | |
| 
 | |
|             if (new_ptr == NULL) {
 | |
|                 new_ptr = ALLOC_N(VALUE, new_capa);
 | |
|                 RARY_TRANSIENT_UNSET(ary);
 | |
|             }
 | |
| 
 | |
|             MEMCPY(new_ptr, ARY_HEAP_PTR(ary), VALUE, old_capa);
 | |
|             ARY_SET_PTR(ary, new_ptr);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, new_capa, old_capa);
 | |
|     }
 | |
|     ary_verify(ary);
 | |
| 
 | |
|     return alloc_capa;
 | |
| }
 | |
| 
 | |
| #if USE_TRANSIENT_HEAP
 | |
| static inline void
 | |
| rb_ary_transient_heap_evacuate_(VALUE ary, int transient, int promote)
 | |
| {
 | |
|     if (transient) {
 | |
|         VALUE *new_ptr;
 | |
|         const VALUE *old_ptr = ARY_HEAP_PTR(ary);
 | |
|         long capa = ARY_HEAP_CAPA(ary);
 | |
|         long len  = ARY_HEAP_LEN(ary);
 | |
| 
 | |
|         if (ARY_SHARED_ROOT_P(ary)) {
 | |
|             capa = len;
 | |
|         }
 | |
| 
 | |
|         assert(ARY_OWNS_HEAP_P(ary));
 | |
|         assert(RARRAY_TRANSIENT_P(ary));
 | |
|         assert(!ARY_PTR_USING_P(ary));
 | |
| 
 | |
|         if (promote) {
 | |
|             new_ptr = ALLOC_N(VALUE, capa);
 | |
|             RARY_TRANSIENT_UNSET(ary);
 | |
|         }
 | |
|         else {
 | |
|             new_ptr = ary_heap_alloc(ary, capa);
 | |
|         }
 | |
| 
 | |
|         MEMCPY(new_ptr, old_ptr, VALUE, capa);
 | |
|         /* do not use ARY_SET_PTR() because they assert !frozen */
 | |
|         RARRAY(ary)->as.heap.ptr = new_ptr;
 | |
|     }
 | |
| 
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_transient_heap_evacuate(VALUE ary, int promote)
 | |
| {
 | |
|     rb_ary_transient_heap_evacuate_(ary, RARRAY_TRANSIENT_P(ary), promote);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_detransient(VALUE ary)
 | |
| {
 | |
|     assert(RARRAY_TRANSIENT_P(ary));
 | |
|     rb_ary_transient_heap_evacuate_(ary, TRUE, TRUE);
 | |
| }
 | |
| #else
 | |
| void
 | |
| rb_ary_detransient(VALUE ary)
 | |
| {
 | |
|     /* do nothing */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| ary_resize_capa(VALUE ary, long capacity)
 | |
| {
 | |
|     assert(RARRAY_LEN(ary) <= capacity);
 | |
|     assert(!OBJ_FROZEN(ary));
 | |
|     assert(!ARY_SHARED_P(ary));
 | |
| 
 | |
|     if (capacity > RARRAY_EMBED_LEN_MAX) {
 | |
|         size_t new_capa = capacity;
 | |
|         if (ARY_EMBED_P(ary)) {
 | |
|             long len = ARY_EMBED_LEN(ary);
 | |
|             VALUE *ptr = ary_heap_alloc(ary, capacity);
 | |
| 
 | |
|             MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
 | |
|             FL_UNSET_EMBED(ary);
 | |
|             ARY_SET_PTR(ary, ptr);
 | |
|             ARY_SET_HEAP_LEN(ary, len);
 | |
|         }
 | |
|         else {
 | |
|             new_capa = ary_heap_realloc(ary, capacity);
 | |
|         }
 | |
|         ARY_SET_CAPA(ary, new_capa);
 | |
|     }
 | |
|     else {
 | |
|         if (!ARY_EMBED_P(ary)) {
 | |
|             long len = ARY_HEAP_LEN(ary);
 | |
|             long old_capa = ARY_HEAP_CAPA(ary);
 | |
|             const VALUE *ptr = ARY_HEAP_PTR(ary);
 | |
| 
 | |
|             if (len > capacity) len = capacity;
 | |
|             MEMCPY((VALUE *)RARRAY(ary)->as.ary, ptr, VALUE, len);
 | |
|             ary_heap_free_ptr(ary, ptr, old_capa);
 | |
| 
 | |
|             FL_SET_EMBED(ary);
 | |
|             ARY_SET_LEN(ary, len);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ary_shrink_capa(VALUE ary)
 | |
| {
 | |
|     long capacity = ARY_HEAP_LEN(ary);
 | |
|     long old_capa = ARY_HEAP_CAPA(ary);
 | |
|     assert(!ARY_SHARED_P(ary));
 | |
|     assert(old_capa >= capacity);
 | |
|     if (old_capa > capacity) ary_heap_realloc(ary, capacity);
 | |
| 
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_double_capa(VALUE ary, long min)
 | |
| {
 | |
|     long new_capa = ARY_CAPA(ary) / 2;
 | |
| 
 | |
|     if (new_capa < ARY_DEFAULT_SIZE) {
 | |
| 	new_capa = ARY_DEFAULT_SIZE;
 | |
|     }
 | |
|     if (new_capa >= ARY_MAX_SIZE - min) {
 | |
| 	new_capa = (ARY_MAX_SIZE - min) / 2;
 | |
|     }
 | |
|     new_capa += min;
 | |
|     ary_resize_capa(ary, new_capa);
 | |
| 
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_decrement_share(VALUE shared_root)
 | |
| {
 | |
|     if (shared_root) {
 | |
|         long num = ARY_SHARED_ROOT_REFCNT(shared_root) - 1;
 | |
| 	if (num == 0) {
 | |
|             rb_ary_free(shared_root);
 | |
|             rb_gc_force_recycle(shared_root);
 | |
| 	}
 | |
| 	else if (num > 0) {
 | |
|             ARY_SET_SHARED_ROOT_REFCNT(shared_root, num);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_unshare(VALUE ary)
 | |
| {
 | |
|     VALUE shared_root = RARRAY(ary)->as.heap.aux.shared_root;
 | |
|     rb_ary_decrement_share(shared_root);
 | |
|     FL_UNSET_SHARED(ary);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rb_ary_unshare_safe(VALUE ary)
 | |
| {
 | |
|     if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
 | |
| 	rb_ary_unshare(ary);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_increment_share(VALUE shared_root)
 | |
| {
 | |
|     long num = ARY_SHARED_ROOT_REFCNT(shared_root);
 | |
|     if (num >= 0) {
 | |
|         ARY_SET_SHARED_ROOT_REFCNT(shared_root, num + 1);
 | |
|     }
 | |
|     return shared_root;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_set_shared(VALUE ary, VALUE shared_root)
 | |
| {
 | |
|     rb_ary_increment_share(shared_root);
 | |
|     FL_SET_SHARED(ary);
 | |
|     RB_DEBUG_COUNTER_INC(obj_ary_shared_create);
 | |
|     ARY_SET_SHARED(ary, shared_root);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rb_ary_modify_check(VALUE ary)
 | |
| {
 | |
|     rb_check_frozen(ary);
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_cancel_sharing(VALUE ary)
 | |
| {
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
|         long shared_len, len = RARRAY_LEN(ary);
 | |
|         VALUE shared_root = ARY_SHARED_ROOT(ary);
 | |
| 
 | |
|         ary_verify(shared_root);
 | |
| 
 | |
|         if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
|             const VALUE *ptr = ARY_HEAP_PTR(ary);
 | |
|             FL_UNSET_SHARED(ary);
 | |
|             FL_SET_EMBED(ary);
 | |
|             MEMCPY((VALUE *)ARY_EMBED_PTR(ary), ptr, VALUE, len);
 | |
|             rb_ary_decrement_share(shared_root);
 | |
|             ARY_SET_EMBED_LEN(ary, len);
 | |
|         }
 | |
|         else if (ARY_SHARED_ROOT_OCCUPIED(shared_root) && len > ((shared_len = RARRAY_LEN(shared_root))>>1)) {
 | |
|             long shift = RARRAY_CONST_PTR_TRANSIENT(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root);
 | |
|             FL_UNSET_SHARED(ary);
 | |
|             ARY_SET_PTR(ary, RARRAY_CONST_PTR_TRANSIENT(shared_root));
 | |
|             ARY_SET_CAPA(ary, shared_len);
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
|                 MEMMOVE(ptr, ptr+shift, VALUE, len);
 | |
|             });
 | |
|             FL_SET_EMBED(shared_root);
 | |
|             rb_ary_decrement_share(shared_root);
 | |
|         }
 | |
|         else {
 | |
|             VALUE *ptr = ary_heap_alloc(ary, len);
 | |
|             MEMCPY(ptr, ARY_HEAP_PTR(ary), VALUE, len);
 | |
|             rb_ary_unshare(ary);
 | |
|             ARY_SET_CAPA(ary, len);
 | |
|             ARY_SET_PTR(ary, ptr);
 | |
|         }
 | |
| 
 | |
|         rb_gc_writebarrier_remember(ary);
 | |
|     }
 | |
|     ary_verify(ary);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_modify(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
|     rb_ary_cancel_sharing(ary);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_ensure_room_for_push(VALUE ary, long add_len)
 | |
| {
 | |
|     long old_len = RARRAY_LEN(ary);
 | |
|     long new_len = old_len + add_len;
 | |
|     long capa;
 | |
| 
 | |
|     if (old_len > ARY_MAX_SIZE - add_len) {
 | |
| 	rb_raise(rb_eIndexError, "index %ld too big", new_len);
 | |
|     }
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	if (new_len > RARRAY_EMBED_LEN_MAX) {
 | |
|             VALUE shared_root = ARY_SHARED_ROOT(ary);
 | |
|             if (ARY_SHARED_ROOT_OCCUPIED(shared_root)) {
 | |
|                 if (ARY_HEAP_PTR(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root) + new_len <= RARRAY_LEN(shared_root)) {
 | |
| 		    rb_ary_modify_check(ary);
 | |
| 
 | |
|                     ary_verify(ary);
 | |
|                     ary_verify(shared_root);
 | |
|                     return shared_root;
 | |
| 		}
 | |
| 		else {
 | |
| 		    /* if array is shared, then it is likely it participate in push/shift pattern */
 | |
| 		    rb_ary_modify(ary);
 | |
| 		    capa = ARY_CAPA(ary);
 | |
| 		    if (new_len > capa - (capa >> 6)) {
 | |
| 			ary_double_capa(ary, new_len);
 | |
| 		    }
 | |
|                     ary_verify(ary);
 | |
| 		    return ary;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|         ary_verify(ary);
 | |
|         rb_ary_modify(ary);
 | |
|     }
 | |
|     else {
 | |
| 	rb_ary_modify_check(ary);
 | |
|     }
 | |
|     capa = ARY_CAPA(ary);
 | |
|     if (new_len > capa) {
 | |
| 	ary_double_capa(ary, new_len);
 | |
|     }
 | |
| 
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.freeze -> self
 | |
|  *
 | |
|  *  Freezes +self+; returns +self+:
 | |
|  *    a = []
 | |
|  *    a.frozen? # => false
 | |
|  *    a.freeze
 | |
|  *    a.frozen? # => true
 | |
|  *
 | |
|  *  An attempt to modify a frozen \Array raises FrozenError.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_freeze(VALUE ary)
 | |
| {
 | |
|     return rb_obj_freeze(ary);
 | |
| }
 | |
| 
 | |
| /* This can be used to take a snapshot of an array (with
 | |
|    e.g. rb_ary_replace) and check later whether the array has been
 | |
|    modified from the snapshot.  The snapshot is cheap, though if
 | |
|    something does modify the array it will pay the cost of copying
 | |
|    it.  If Array#pop or Array#shift has been called, the array will
 | |
|    be still shared with the snapshot, but the array length will
 | |
|    differ. */
 | |
| VALUE
 | |
| rb_ary_shared_with_p(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     if (!ARY_EMBED_P(ary1) && ARY_SHARED_P(ary1) &&
 | |
| 	!ARY_EMBED_P(ary2) && ARY_SHARED_P(ary2) &&
 | |
|         RARRAY(ary1)->as.heap.aux.shared_root == RARRAY(ary2)->as.heap.aux.shared_root &&
 | |
| 	RARRAY(ary1)->as.heap.len == RARRAY(ary2)->as.heap.len) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_alloc(VALUE klass)
 | |
| {
 | |
|     NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
 | |
|     /* Created array is:
 | |
|      *   FL_SET_EMBED((VALUE)ary);
 | |
|      *   ARY_SET_EMBED_LEN((VALUE)ary, 0);
 | |
|      */
 | |
|     return (VALUE)ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| empty_ary_alloc(VALUE klass)
 | |
| {
 | |
|     RUBY_DTRACE_CREATE_HOOK(ARRAY, 0);
 | |
|     return ary_alloc(klass);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_new(VALUE klass, long capa)
 | |
| {
 | |
|     VALUE ary,*ptr;
 | |
| 
 | |
|     if (capa < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size (or size too big)");
 | |
|     }
 | |
|     if (capa > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eArgError, "array size too big");
 | |
|     }
 | |
| 
 | |
|     RUBY_DTRACE_CREATE_HOOK(ARRAY, capa);
 | |
| 
 | |
|     ary = ary_alloc(klass);
 | |
|     if (capa > RARRAY_EMBED_LEN_MAX) {
 | |
|         ptr = ary_heap_alloc(ary, capa);
 | |
|         FL_UNSET_EMBED(ary);
 | |
|         ARY_SET_PTR(ary, ptr);
 | |
|         ARY_SET_CAPA(ary, capa);
 | |
|         ARY_SET_HEAP_LEN(ary, 0);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new_capa(long capa)
 | |
| {
 | |
|     return ary_new(rb_cArray, capa);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new(void)
 | |
| {
 | |
|     return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| (rb_ary_new_from_args)(long n, ...)
 | |
| {
 | |
|     va_list ar;
 | |
|     VALUE ary;
 | |
|     long i;
 | |
| 
 | |
|     ary = rb_ary_new2(n);
 | |
| 
 | |
|     va_start(ar, n);
 | |
|     for (i=0; i<n; i++) {
 | |
| 	ARY_SET(ary, i, va_arg(ar, VALUE));
 | |
|     }
 | |
|     va_end(ar);
 | |
| 
 | |
|     ARY_SET_LEN(ary, n);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_ary_tmp_new_from_values(VALUE klass, long n, const VALUE *elts)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     ary = ary_new(klass, n);
 | |
|     if (n > 0 && elts) {
 | |
| 	ary_memcpy(ary, 0, n, elts);
 | |
| 	ARY_SET_LEN(ary, n);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new_from_values(long n, const VALUE *elts)
 | |
| {
 | |
|     return rb_ary_tmp_new_from_values(rb_cArray, n, elts);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ec_ary_alloc(rb_execution_context_t *ec, VALUE klass)
 | |
| {
 | |
|     RB_EC_NEWOBJ_OF(ec, ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
 | |
|     /* Created array is:
 | |
|      *   FL_SET_EMBED((VALUE)ary);
 | |
|      *   ARY_SET_EMBED_LEN((VALUE)ary, 0);
 | |
|      */
 | |
|     return (VALUE)ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ec_ary_new(rb_execution_context_t *ec, VALUE klass, long capa)
 | |
| {
 | |
|     VALUE ary,*ptr;
 | |
| 
 | |
|     if (capa < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size (or size too big)");
 | |
|     }
 | |
|     if (capa > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eArgError, "array size too big");
 | |
|     }
 | |
| 
 | |
|     RUBY_DTRACE_CREATE_HOOK(ARRAY, capa);
 | |
| 
 | |
|     ary = ec_ary_alloc(ec, klass);
 | |
| 
 | |
|     if (capa > RARRAY_EMBED_LEN_MAX) {
 | |
|         ptr = ary_heap_alloc(ary, capa);
 | |
|         FL_UNSET_EMBED(ary);
 | |
|         ARY_SET_PTR(ary, ptr);
 | |
|         ARY_SET_CAPA(ary, capa);
 | |
|         ARY_SET_HEAP_LEN(ary, 0);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ec_ary_new_from_values(rb_execution_context_t *ec, long n, const VALUE *elts)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     ary = ec_ary_new(ec, rb_cArray, n);
 | |
|     if (n > 0 && elts) {
 | |
| 	ary_memcpy(ary, 0, n, elts);
 | |
| 	ARY_SET_LEN(ary, n);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_tmp_new(long capa)
 | |
| {
 | |
|     VALUE ary = ary_new(0, capa);
 | |
|     rb_ary_transient_heap_evacuate(ary, TRUE);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_tmp_new_fill(long capa)
 | |
| {
 | |
|     VALUE ary = ary_new(0, capa);
 | |
|     ary_memfill(ary, 0, capa, Qnil);
 | |
|     ARY_SET_LEN(ary, capa);
 | |
|     rb_ary_transient_heap_evacuate(ary, TRUE);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_free(VALUE ary)
 | |
| {
 | |
|     if (ARY_OWNS_HEAP_P(ary)) {
 | |
|         if (USE_DEBUG_COUNTER &&
 | |
|             !ARY_SHARED_ROOT_P(ary) &&
 | |
|             ARY_HEAP_CAPA(ary) > RARRAY_LEN(ary)) {
 | |
|             RB_DEBUG_COUNTER_INC(obj_ary_extracapa);
 | |
|         }
 | |
| 
 | |
|         if (RARRAY_TRANSIENT_P(ary)) {
 | |
|             RB_DEBUG_COUNTER_INC(obj_ary_transient);
 | |
|         }
 | |
|         else {
 | |
|             RB_DEBUG_COUNTER_INC(obj_ary_ptr);
 | |
|             ary_heap_free(ary);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         RB_DEBUG_COUNTER_INC(obj_ary_embed);
 | |
|     }
 | |
| 
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
|         RB_DEBUG_COUNTER_INC(obj_ary_shared);
 | |
|     }
 | |
|     if (ARY_SHARED_ROOT_P(ary) && ARY_SHARED_ROOT_OCCUPIED(ary)) {
 | |
|         RB_DEBUG_COUNTER_INC(obj_ary_shared_root_occupied);
 | |
|     }
 | |
| }
 | |
| 
 | |
| RUBY_FUNC_EXPORTED size_t
 | |
| rb_ary_memsize(VALUE ary)
 | |
| {
 | |
|     if (ARY_OWNS_HEAP_P(ary)) {
 | |
| 	return ARY_CAPA(ary) * sizeof(VALUE);
 | |
|     }
 | |
|     else {
 | |
| 	return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ary_discard(VALUE ary)
 | |
| {
 | |
|     rb_ary_free(ary);
 | |
|     RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
 | |
|     RBASIC(ary)->flags &= ~(RARRAY_EMBED_LEN_MASK | RARRAY_TRANSIENT_FLAG);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_shared(VALUE ary)
 | |
| {
 | |
|     assert(!ARY_EMBED_P(ary));
 | |
|     ary_verify(ary);
 | |
| 
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
|         return ARY_SHARED_ROOT(ary);
 | |
|     }
 | |
|     else if (ARY_SHARED_ROOT_P(ary)) {
 | |
| 	return ary;
 | |
|     }
 | |
|     else if (OBJ_FROZEN(ary)) {
 | |
|         rb_ary_transient_heap_evacuate(ary, TRUE);
 | |
| 	ary_shrink_capa(ary);
 | |
| 	FL_SET_SHARED_ROOT(ary);
 | |
|         ARY_SET_SHARED_ROOT_REFCNT(ary, 1);
 | |
| 	return ary;
 | |
|     }
 | |
|     else {
 | |
| 	long capa = ARY_CAPA(ary), len = RARRAY_LEN(ary);
 | |
|         const VALUE *ptr;
 | |
| 	NEWOBJ_OF(shared, struct RArray, 0, T_ARRAY | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
 | |
|         VALUE vshared = (VALUE)shared;
 | |
| 
 | |
|         rb_ary_transient_heap_evacuate(ary, TRUE);
 | |
|         ptr = ARY_HEAP_PTR(ary);
 | |
| 
 | |
|         FL_UNSET_EMBED(vshared);
 | |
|         ARY_SET_LEN(vshared, capa);
 | |
|         ARY_SET_PTR(vshared, ptr);
 | |
|         ary_mem_clear(vshared, len, capa - len);
 | |
|         FL_SET_SHARED_ROOT(vshared);
 | |
|         ARY_SET_SHARED_ROOT_REFCNT(vshared, 1);
 | |
| 	FL_SET_SHARED(ary);
 | |
|         RB_DEBUG_COUNTER_INC(obj_ary_shared_create);
 | |
|         ARY_SET_SHARED(ary, vshared);
 | |
|         OBJ_FREEZE(vshared);
 | |
| 
 | |
|         ary_verify(vshared);
 | |
|         ary_verify(ary);
 | |
| 
 | |
|         return vshared;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_substitution(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
| 	VALUE subst = rb_ary_new2(len);
 | |
|         ary_memcpy(subst, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary));
 | |
|         ARY_SET_EMBED_LEN(subst, len);
 | |
|         return subst;
 | |
|     }
 | |
|     else {
 | |
|         return rb_ary_increment_share(ary_make_shared(ary));
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_assoc_new(VALUE car, VALUE cdr)
 | |
| {
 | |
|     return rb_ary_new3(2, car, cdr);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_to_array_type(VALUE ary)
 | |
| {
 | |
|     return rb_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary);
 | |
| }
 | |
| #define to_ary rb_to_array_type
 | |
| 
 | |
| VALUE
 | |
| rb_check_array_type(VALUE ary)
 | |
| {
 | |
|     return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_check_to_array(VALUE ary)
 | |
| {
 | |
|     return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_a);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_to_array(VALUE ary)
 | |
| {
 | |
|     return rb_convert_type_with_id(ary, T_ARRAY, "Array", idTo_a);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    Array.try_convert(object) -> object, new_array, or nil
 | |
|  *
 | |
|  *  If +object+ is an \Array object, returns +object+.
 | |
|  *
 | |
|  *  Otherwise if +object+ responds to <tt>:to_ary</tt>,
 | |
|  *  calls <tt>object.to_ary</tt> and returns the result.
 | |
|  *
 | |
|  *  Returns +nil+ if +object+ does not respond to <tt>:to_ary</tt>
 | |
|  *
 | |
|  *  Raises an exception unless <tt>object.to_ary</tt> returns an \Array object.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_s_try_convert(VALUE dummy, VALUE ary)
 | |
| {
 | |
|     return rb_check_array_type(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    Array.new -> new_empty_array
 | |
|  *    Array.new(array) -> new_array
 | |
|  *    Array.new(size) -> new_array
 | |
|  *    Array.new(size, default_value) -> new_array
 | |
|  *    Array.new(size) {|index| ... } -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array.
 | |
|  *
 | |
|  *  With no block and no arguments, returns a new empty \Array object.
 | |
|  *
 | |
|  *  With no block and a single \Array argument +array+,
 | |
|  *  returns a new \Array formed from +array+:
 | |
|  *    a = Array.new([:foo, 'bar', 2])
 | |
|  *    a.class # => Array
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  With no block and a single \Integer argument +size+,
 | |
|  *  returns a new \Array of the given size
 | |
|  *  whose elements are all +nil+:
 | |
|  *    a = Array.new(3)
 | |
|  *    a # => [nil, nil, nil]
 | |
|  *
 | |
|  *  With no block and arguments +size+ and +default_value+,
 | |
|  *  returns an \Array of the given size;
 | |
|  *  each element is that same +default_value+:
 | |
|  *    a = Array.new(3, 'x')
 | |
|  *    a # => ['x', 'x', 'x']
 | |
|  *
 | |
|  *  With a block and argument +size+,
 | |
|  *  returns an \Array of the given size;
 | |
|  *  the block is called with each successive integer +index+;
 | |
|  *  the element for that +index+ is the return value from the block:
 | |
|  *    a = Array.new(3) {|index| "Element #{index}" }
 | |
|  *    a # => ["Element 0", "Element 1", "Element 2"]
 | |
|  *
 | |
|  *  Raises ArgumentError if +size+ is negative.
 | |
|  *
 | |
|  *  With a block and no argument,
 | |
|  *  or a single argument +0+,
 | |
|  *  ignores the block and returns a new empty \Array.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long len;
 | |
|     VALUE size, val;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (argc == 0) {
 | |
|         if (ARY_OWNS_HEAP_P(ary) && ARY_HEAP_PTR(ary) != NULL) {
 | |
|             ary_heap_free(ary);
 | |
| 	}
 | |
|         rb_ary_unshare_safe(ary);
 | |
|         FL_SET_EMBED(ary);
 | |
| 	ARY_SET_EMBED_LEN(ary, 0);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warning("given block not used");
 | |
| 	}
 | |
| 	return ary;
 | |
|     }
 | |
|     rb_scan_args(argc, argv, "02", &size, &val);
 | |
|     if (argc == 1 && !FIXNUM_P(size)) {
 | |
| 	val = rb_check_array_type(size);
 | |
| 	if (!NIL_P(val)) {
 | |
| 	    rb_ary_replace(ary, val);
 | |
| 	    return ary;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     len = NUM2LONG(size);
 | |
|     /* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size");
 | |
|     }
 | |
|     if (len > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eArgError, "array size too big");
 | |
|     }
 | |
|     /* recheck after argument conversion */
 | |
|     rb_ary_modify(ary);
 | |
|     ary_resize_capa(ary, len);
 | |
|     if (rb_block_given_p()) {
 | |
| 	long i;
 | |
| 
 | |
| 	if (argc == 2) {
 | |
| 	    rb_warn("block supersedes default value argument");
 | |
| 	}
 | |
| 	for (i=0; i<len; i++) {
 | |
| 	    rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
 | |
| 	    ARY_SET_LEN(ary, i + 1);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	ary_memfill(ary, 0, len, val);
 | |
| 	ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a new array populated with the given objects.
 | |
|  *
 | |
|  *   Array.[]( 1, 'a', /^A/)  # => [1, "a", /^A/]
 | |
|  *   Array[ 1, 'a', /^A/ ]    # => [1, "a", /^A/]
 | |
|  *   [ 1, 'a', /^A/ ]         # => [1, "a", /^A/]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE ary = ary_new(klass, argc);
 | |
|     if (argc > 0 && argv) {
 | |
|         ary_memcpy(ary, 0, argc, argv);
 | |
|         ARY_SET_LEN(ary, argc);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_store(VALUE ary, long idx, VALUE val)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (idx < 0) {
 | |
| 	idx += len;
 | |
| 	if (idx < 0) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
 | |
| 		     idx - len, -len);
 | |
| 	}
 | |
|     }
 | |
|     else if (idx >= ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eIndexError, "index %ld too big", idx);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (idx >= ARY_CAPA(ary)) {
 | |
| 	ary_double_capa(ary, idx);
 | |
|     }
 | |
|     if (idx > len) {
 | |
| 	ary_mem_clear(ary, len, idx - len + 1);
 | |
|     }
 | |
| 
 | |
|     if (idx >= len) {
 | |
| 	ARY_SET_LEN(ary, idx + 1);
 | |
|     }
 | |
|     ARY_SET(ary, idx, val);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
 | |
| {
 | |
|     assert(offset >= 0);
 | |
|     assert(len >= 0);
 | |
|     assert(offset+len <= RARRAY_LEN(ary));
 | |
| 
 | |
|     if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE result = ary_alloc(klass);
 | |
|         ary_memcpy(result, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary) + offset);
 | |
|         ARY_SET_EMBED_LEN(result, len);
 | |
|         return result;
 | |
|     }
 | |
|     else {
 | |
|         VALUE shared, result = ary_alloc(klass);
 | |
|         FL_UNSET_EMBED(result);
 | |
| 
 | |
|         shared = ary_make_shared(ary);
 | |
|         ARY_SET_PTR(result, RARRAY_CONST_PTR_TRANSIENT(ary));
 | |
|         ARY_SET_LEN(result, RARRAY_LEN(ary));
 | |
|         rb_ary_set_shared(result, shared);
 | |
| 
 | |
|         ARY_INCREASE_PTR(result, offset);
 | |
|         ARY_SET_LEN(result, len);
 | |
| 
 | |
|         ary_verify(shared);
 | |
|         ary_verify(result);
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_partial_step(VALUE ary, VALUE klass, long offset, long len, long step)
 | |
| {
 | |
|     assert(offset >= 0);
 | |
|     assert(len >= 0);
 | |
|     assert(offset+len <= RARRAY_LEN(ary));
 | |
|     assert(step != 0);
 | |
| 
 | |
|     const VALUE *values = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|     const long orig_len = len;
 | |
| 
 | |
|     if ((step > 0 && step >= len) || (step < 0 && (step < -len))) {
 | |
|         VALUE result = ary_new(klass, 1);
 | |
|         VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result);
 | |
|         RB_OBJ_WRITE(result, ptr, values[offset]);
 | |
|         ARY_SET_EMBED_LEN(result, 1);
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     long ustep = (step < 0) ? -step : step;
 | |
|     len = (len + ustep - 1) / ustep;
 | |
| 
 | |
|     long i;
 | |
|     long j = offset + ((step > 0) ? 0 : (orig_len - 1));
 | |
|     VALUE result = ary_new(klass, len);
 | |
|     if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result);
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             RB_OBJ_WRITE(result, ptr+i, values[j]);
 | |
|             j += step;
 | |
|         }
 | |
|         ARY_SET_EMBED_LEN(result, len);
 | |
|     }
 | |
|     else {
 | |
|         RARRAY_PTR_USE_TRANSIENT(result, ptr, {
 | |
|             for (i = 0; i < len; ++i) {
 | |
|                 RB_OBJ_WRITE(result, ptr+i, values[j]);
 | |
|                 j += step;
 | |
|             }
 | |
|         });
 | |
|         ARY_SET_LEN(result, len);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_shared_copy(VALUE ary)
 | |
| {
 | |
|     return ary_make_partial(ary, rb_cArray, 0, RARRAY_LEN(ary));
 | |
| }
 | |
| 
 | |
| enum ary_take_pos_flags
 | |
| {
 | |
|     ARY_TAKE_FIRST = 0,
 | |
|     ARY_TAKE_LAST = 1
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| ary_take_first_or_last(int argc, const VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
 | |
| {
 | |
|     long n;
 | |
|     long len;
 | |
|     long offset = 0;
 | |
| 
 | |
|     argc = rb_check_arity(argc, 0, 1);
 | |
|     /* the case optional argument is omitted should be handled in
 | |
|      * callers of this function.  if another arity case is added,
 | |
|      * this arity check needs to rewrite. */
 | |
|     RUBY_ASSERT_ALWAYS(argc == 1);
 | |
| 
 | |
|     n = NUM2LONG(argv[0]);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (n > len) {
 | |
| 	n = len;
 | |
|     }
 | |
|     else if (n < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size");
 | |
|     }
 | |
|     if (last) {
 | |
| 	offset = len - n;
 | |
|     }
 | |
|     return ary_make_partial(ary, rb_cArray, offset, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array << object -> self
 | |
|  *
 | |
|  *  Appends +object+ to +self+; returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a << :baz # => [:foo, "bar", 2, :baz]
 | |
|  *
 | |
|  *  Appends +object+ as one element, even if it is another \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a << [3, 4]
 | |
|  *    a1 # => [:foo, "bar", 2, [3, 4]]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_push(VALUE ary, VALUE item)
 | |
| {
 | |
|     long idx = RARRAY_LEN((ary_verify(ary), ary));
 | |
|     VALUE target_ary = ary_ensure_room_for_push(ary, 1);
 | |
|     RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 	RB_OBJ_WRITE(target_ary, &ptr[idx], item);
 | |
|     });
 | |
|     ARY_SET_LEN(ary, idx + 1);
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_cat(VALUE ary, const VALUE *argv, long len)
 | |
| {
 | |
|     long oldlen = RARRAY_LEN(ary);
 | |
|     VALUE target_ary = ary_ensure_room_for_push(ary, len);
 | |
|     ary_memcpy0(ary, oldlen, len, argv, target_ary);
 | |
|     ARY_SET_LEN(ary, oldlen + len);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.push(*objects) -> self
 | |
|  *
 | |
|  *  Appends trailing elements.
 | |
|  *
 | |
|  *  Appends each argument in +objects+ to +self+;  returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.push(:baz, :bat) # => [:foo, "bar", 2, :baz, :bat]
 | |
|  *
 | |
|  *  Appends each argument as one element, even if it is another \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.push([:baz, :bat], [:bam, :bad])
 | |
|  *    a1 # => [:foo, "bar", 2, [:baz, :bat], [:bam, :bad]]
 | |
|  *
 | |
|  *  Array#append is an alias for \Array#push.
 | |
|  *
 | |
|  *  Related: #pop, #shift, #unshift.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     return rb_ary_cat(ary, argv, argc);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_pop(VALUE ary)
 | |
| {
 | |
|     long n;
 | |
|     rb_ary_modify_check(ary);
 | |
|     n = RARRAY_LEN(ary);
 | |
|     if (n == 0) return Qnil;
 | |
|     if (ARY_OWNS_HEAP_P(ary) &&
 | |
| 	n * 3 < ARY_CAPA(ary) &&
 | |
| 	ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
 | |
|     {
 | |
| 	ary_resize_capa(ary, n * 2);
 | |
|     }
 | |
|     --n;
 | |
|     ARY_SET_LEN(ary, n);
 | |
|     ary_verify(ary);
 | |
|     return RARRAY_AREF(ary, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.pop -> object or nil
 | |
|  *    array.pop(n) -> new_array
 | |
|  *
 | |
|  *  Removes and returns trailing elements.
 | |
|  *
 | |
|  *  When no argument is given and +self+ is not empty,
 | |
|  *  removes and returns the last element:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.pop # => 2
 | |
|  *    a # => [:foo, "bar"]
 | |
|  *
 | |
|  *  Returns +nil+ if the array is empty.
 | |
|  *
 | |
|  *  When a non-negative \Integer argument +n+ is given and is in range,
 | |
|  *  removes and returns the last +n+ elements in a new \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.pop(2) # => ["bar", 2]
 | |
|  *
 | |
|  *  If +n+ is positive and out of range,
 | |
|  *  removes and returns all elements:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.pop(50) # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  Related: #push, #shift, #unshift.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	return rb_ary_pop(ary);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
 | |
|     ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
 | |
|     ary_verify(ary);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_shift(VALUE ary)
 | |
| {
 | |
|     VALUE top;
 | |
|     long len = RARRAY_LEN(ary);
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (len == 0) return Qnil;
 | |
|     top = RARRAY_AREF(ary, 0);
 | |
|     if (!ARY_SHARED_P(ary)) {
 | |
| 	if (len < ARY_DEFAULT_SIZE) {
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 		MEMMOVE(ptr, ptr+1, VALUE, len-1);
 | |
| 	    }); /* WB: no new reference */
 | |
|             ARY_INCREASE_LEN(ary, -1);
 | |
|             ary_verify(ary);
 | |
| 	    return top;
 | |
| 	}
 | |
|         assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
 | |
| 
 | |
| 	ARY_SET(ary, 0, Qnil);
 | |
| 	ary_make_shared(ary);
 | |
|     }
 | |
|     else if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) {
 | |
|         RARRAY_PTR_USE_TRANSIENT(ary, ptr, ptr[0] = Qnil);
 | |
|     }
 | |
|     ARY_INCREASE_PTR(ary, 1);		/* shift ptr */
 | |
|     ARY_INCREASE_LEN(ary, -1);
 | |
| 
 | |
|     ary_verify(ary);
 | |
| 
 | |
|     return top;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     array.shift -> object or nil
 | |
|  *     array.shift(n) -> new_array
 | |
|  *
 | |
|  *  Removes and returns leading elements.
 | |
|  *
 | |
|  *  When no argument is given, removes and returns the first element:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.shift # => :foo
 | |
|  *    a # => ['bar', 2]
 | |
|  *
 | |
|  *  Returns +nil+ if +self+ is empty.
 | |
|  *
 | |
|  *  When positive \Integer argument +n+ is given, removes the first +n+ elements;
 | |
|  *  returns those elements in a new \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.shift(2) # => [:foo, 'bar']
 | |
|  *    a # => [2]
 | |
|  *
 | |
|  *  If +n+ is as large as or larger than <tt>self.length</tt>,
 | |
|  *  removes all elements; returns those elements in a new \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.shift(3) # => [:foo, 'bar', 2]
 | |
|  *
 | |
|  *  If +n+ is zero, returns a new empty \Array; +self+ is unmodified.
 | |
|  *
 | |
|  *  Related: #push, #pop, #unshift.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
|     long n;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	return rb_ary_shift(ary);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
 | |
|     n = RARRAY_LEN(result);
 | |
|     rb_ary_behead(ary,n);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| behead_shared(VALUE ary, long n)
 | |
| {
 | |
|     assert(ARY_SHARED_P(ary));
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) {
 | |
|         ary_mem_clear(ary, 0, n);
 | |
|     }
 | |
|     ARY_INCREASE_PTR(ary, n);
 | |
|     ARY_INCREASE_LEN(ary, -n);
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| behead_transient(VALUE ary, long n)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
|     RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
|         MEMMOVE(ptr, ptr+n, VALUE, RARRAY_LEN(ary)-n);
 | |
|     }); /* WB: no new reference */
 | |
|     ARY_INCREASE_LEN(ary, -n);
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_ary_behead(VALUE ary, long n)
 | |
| {
 | |
|     if (n <= 0) {
 | |
|         return ary;
 | |
|     }
 | |
|     else if (ARY_SHARED_P(ary)) {
 | |
|         return behead_shared(ary, n);
 | |
|     }
 | |
|     else if (RARRAY_LEN(ary) >= ARY_DEFAULT_SIZE) {
 | |
|         ary_make_shared(ary);
 | |
|         return behead_shared(ary, n);
 | |
|     }
 | |
|     else {
 | |
|         return behead_transient(ary, n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| make_room_for_unshift(VALUE ary, const VALUE *head, VALUE *sharedp, int argc, long capa, long len)
 | |
| {
 | |
|     if (head - sharedp < argc) {
 | |
|         long room = capa - len - argc;
 | |
| 
 | |
|         room -= room >> 4;
 | |
|         MEMMOVE((VALUE *)sharedp + argc + room, head, VALUE, len);
 | |
|         head = sharedp + argc + room;
 | |
|     }
 | |
|     ARY_SET_PTR(ary, head - argc);
 | |
|     assert(ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary)));
 | |
| 
 | |
|     ary_verify(ary);
 | |
|     return ARY_SHARED_ROOT(ary);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_modify_for_unshift(VALUE ary, int argc)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     long new_len = len + argc;
 | |
|     long capa;
 | |
|     const VALUE *head, *sharedp;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     capa = ARY_CAPA(ary);
 | |
|     if (capa - (capa >> 6) <= new_len) {
 | |
| 	ary_double_capa(ary, new_len);
 | |
|     }
 | |
| 
 | |
|     /* use shared array for big "queues" */
 | |
|     if (new_len > ARY_DEFAULT_SIZE * 4) {
 | |
|         ary_verify(ary);
 | |
| 
 | |
|         /* make a room for unshifted items */
 | |
| 	capa = ARY_CAPA(ary);
 | |
| 	ary_make_shared(ary);
 | |
| 
 | |
|         head = sharedp = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|         return make_room_for_unshift(ary, head, (void *)sharedp, argc, capa, len);
 | |
|     }
 | |
|     else {
 | |
| 	/* sliding items */
 | |
|         RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 	    MEMMOVE(ptr + argc, ptr, VALUE, len);
 | |
| 	});
 | |
| 
 | |
|         ary_verify(ary);
 | |
| 	return ary;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_ensure_room_for_unshift(VALUE ary, int argc)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     long new_len = len + argc;
 | |
| 
 | |
|     if (len > ARY_MAX_SIZE - argc) {
 | |
|         rb_raise(rb_eIndexError, "index %ld too big", new_len);
 | |
|     }
 | |
|     else if (! ARY_SHARED_P(ary)) {
 | |
|         return ary_modify_for_unshift(ary, argc);
 | |
|     }
 | |
|     else {
 | |
|         VALUE shared_root = ARY_SHARED_ROOT(ary);
 | |
|         long capa = RARRAY_LEN(shared_root);
 | |
| 
 | |
|         if (! ARY_SHARED_ROOT_OCCUPIED(shared_root)) {
 | |
|             return ary_modify_for_unshift(ary, argc);
 | |
|         }
 | |
|         else if (new_len > capa) {
 | |
|             return ary_modify_for_unshift(ary, argc);
 | |
|         }
 | |
|         else {
 | |
|             const VALUE * head = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|             void *sharedp = (void *)RARRAY_CONST_PTR_TRANSIENT(shared_root);
 | |
| 
 | |
|             rb_ary_modify_check(ary);
 | |
|             return make_room_for_unshift(ary, head, sharedp, argc, capa, len);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.unshift(*objects) -> self
 | |
|  *
 | |
|  *  Prepends the given +objects+ to +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]
 | |
|  *
 | |
|  *  Array#prepend is an alias for Array#unshift.
 | |
|  *
 | |
|  *  Related: #push, #pop, #shift.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE target_ary;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	rb_ary_modify_check(ary);
 | |
| 	return ary;
 | |
|     }
 | |
| 
 | |
|     target_ary = ary_ensure_room_for_unshift(ary, argc);
 | |
|     ary_memcpy0(ary, 0, argc, argv, target_ary);
 | |
|     ARY_SET_LEN(ary, len + argc);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_unshift(VALUE ary, VALUE item)
 | |
| {
 | |
|     return rb_ary_unshift_m(1,&item,ary);
 | |
| }
 | |
| 
 | |
| /* faster version - use this if you don't need to treat negative offset */
 | |
| static inline VALUE
 | |
| rb_ary_elt(VALUE ary, long offset)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     if (len == 0) return Qnil;
 | |
|     if (offset < 0 || len <= offset) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     return RARRAY_AREF(ary, offset);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_entry(VALUE ary, long offset)
 | |
| {
 | |
|     return rb_ary_entry_internal(ary, offset);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_subseq_step(VALUE ary, long beg, long len, long step)
 | |
| {
 | |
|     VALUE klass;
 | |
|     long alen = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (beg > alen) return Qnil;
 | |
|     if (beg < 0 || len < 0) return Qnil;
 | |
| 
 | |
|     if (alen < len || alen < beg + len) {
 | |
| 	len = alen - beg;
 | |
|     }
 | |
|     klass = rb_cArray;
 | |
|     if (len == 0) return ary_new(klass, 0);
 | |
|     if (step == 0)
 | |
|         rb_raise(rb_eArgError, "slice step cannot be zero");
 | |
|     if (step == 1)
 | |
|         return ary_make_partial(ary, klass, beg, len);
 | |
|     else
 | |
|         return ary_make_partial_step(ary, klass, beg, len, step);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_subseq(VALUE ary, long beg, long len)
 | |
| {
 | |
|     return rb_ary_subseq_step(ary, beg, len, 1);
 | |
| }
 | |
| 
 | |
| static VALUE rb_ary_aref2(VALUE ary, VALUE b, VALUE e);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array[index] -> object or nil
 | |
|  *    array[start, length] -> object or nil
 | |
|  *    array[range] -> object or nil
 | |
|  *    array[aseq] -> object or nil
 | |
|  *    array.slice(index) -> object or nil
 | |
|  *    array.slice(start, length) -> object or nil
 | |
|  *    array.slice(range) -> object or nil
 | |
|  *    array.slice(aseq) -> object or nil
 | |
|  *
 | |
|  *  Returns elements from +self+; does not modify +self+.
 | |
|  *
 | |
|  *  When a single \Integer argument +index+ is given, returns the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0] # => :foo
 | |
|  *    a[2] # => 2
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If +index+ is negative, counts relative to the end of +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[-1] # => 2
 | |
|  *    a[-2] # => "bar"
 | |
|  *
 | |
|  *  If +index+ is out of range, returns +nil+.
 | |
|  *
 | |
|  *  When two \Integer arguments +start+ and +length+ are given,
 | |
|  *  returns a new \Array of size +length+ containing successive elements beginning at offset +start+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0, 2] # => [:foo, "bar"]
 | |
|  *    a[1, 2] # => ["bar", 2]
 | |
|  *
 | |
|  *  If <tt>start + length</tt> is greater than <tt>self.length</tt>,
 | |
|  *  returns all elements from offset +start+ to the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0, 4] # => [:foo, "bar", 2]
 | |
|  *    a[1, 3] # => ["bar", 2]
 | |
|  *    a[2, 2] # => [2]
 | |
|  *
 | |
|  *  If <tt>start == self.size</tt> and <tt>length >= 0</tt>,
 | |
|  *  returns a new empty \Array.
 | |
|  *
 | |
|  *  If +length+ is negative, returns +nil+.
 | |
|  *
 | |
|  *  When a single \Range argument +range+ is given,
 | |
|  *  treats <tt>range.min</tt> as +start+ above
 | |
|  *  and <tt>range.size</tt> as +length+ above:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0..1] # => [:foo, "bar"]
 | |
|  *    a[1..2] # => ["bar", 2]
 | |
|  *
 | |
|  *  Special case: If <tt>range.start == a.size</tt>, returns a new empty \Array.
 | |
|  *
 | |
|  *  If <tt>range.end</tt> is negative, calculates the end index from the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0..-1] # => [:foo, "bar", 2]
 | |
|  *    a[0..-2] # => [:foo, "bar"]
 | |
|  *    a[0..-3] # => [:foo]
 | |
|  *
 | |
|  *  If <tt>range.start</tt> is negative, calculates the start index from the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[-1..2] # => [2]
 | |
|  *    a[-2..2] # => ["bar", 2]
 | |
|  *    a[-3..2] # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If <tt>range.start</tt> is larger than the array size, returns +nil+.
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[4..1] # => nil
 | |
|  *    a[4..0] # => nil
 | |
|  *    a[4..-1] # => nil
 | |
|  *
 | |
|  *  When a single Enumerator::ArithmeticSequence argument +aseq+ is given,
 | |
|  *  returns an Array of elements corresponding to the indexes produced by
 | |
|  *  the sequence.
 | |
|  *    a = ['--', 'data1', '--', 'data2', '--', 'data3']
 | |
|  *    a[(1..).step(2)] # => ["data1", "data2", "data3"]
 | |
|  *
 | |
|  *  Unlike slicing with range, if the start or the end of the arithmetic sequence
 | |
|  *  is larger than array size, throws RangeError.
 | |
|  *    a = ['--', 'data1', '--', 'data2', '--', 'data3']
 | |
|  *    a[(1..11).step(2)]
 | |
|  *    # RangeError (((1..11).step(2)) out of range)
 | |
|  *    a[(7..).step(2)]
 | |
|  *    # RangeError (((7..).step(2)) out of range)
 | |
|  *
 | |
|  *  If given a single argument, and its type is not one of the listed, tries to
 | |
|  *  convert it to Integer, and raises if it is impossible:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    # Raises TypeError (no implicit conversion of Symbol into Integer):
 | |
|  *    a[:foo]
 | |
|  *
 | |
|  *  Array#slice is an alias for Array#[].
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
 | |
| {
 | |
|     rb_check_arity(argc, 1, 2);
 | |
|     if (argc == 2) {
 | |
| 	return rb_ary_aref2(ary, argv[0], argv[1]);
 | |
|     }
 | |
|     return rb_ary_aref1(ary, argv[0]);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_aref2(VALUE ary, VALUE b, VALUE e)
 | |
| {
 | |
|     long beg = NUM2LONG(b);
 | |
|     long len = NUM2LONG(e);
 | |
|     if (beg < 0) {
 | |
| 	beg += RARRAY_LEN(ary);
 | |
|     }
 | |
|     return rb_ary_subseq(ary, beg, len);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_ary_aref1(VALUE ary, VALUE arg)
 | |
| {
 | |
|     long beg, len, step;
 | |
| 
 | |
|     /* special case - speeding up */
 | |
|     if (FIXNUM_P(arg)) {
 | |
| 	return rb_ary_entry(ary, FIX2LONG(arg));
 | |
|     }
 | |
|     /* check if idx is Range or ArithmeticSequence */
 | |
|     switch (rb_arithmetic_sequence_beg_len_step(arg, &beg, &len, &step, RARRAY_LEN(ary), 0)) {
 | |
|       case Qfalse:
 | |
|         break;
 | |
|       case Qnil:
 | |
|         return Qnil;
 | |
|       default:
 | |
|         return rb_ary_subseq_step(ary, beg, len, step);
 | |
|     }
 | |
| 
 | |
|     return rb_ary_entry(ary, NUM2LONG(arg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.at(index) -> object
 | |
|  *
 | |
|  *  Returns the element at \Integer offset +index+; does not modify +self+.
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.at(0) # => :foo
 | |
|  *    a.at(2) # => 2
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_at(VALUE ary, VALUE pos)
 | |
| {
 | |
|     return rb_ary_entry(ary, NUM2LONG(pos));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.first -> object or nil
 | |
|  *    array.first(n) -> new_array
 | |
|  *
 | |
|  *  Returns elements from +self+; does not modify +self+.
 | |
|  *
 | |
|  *  When no argument is given, returns the first element:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.first # => :foo
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If +self+ is empty, returns +nil+.
 | |
|  *
 | |
|  *  When non-negative \Integer argument +n+ is given,
 | |
|  *  returns the first +n+ elements in a new \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.first(2) # => [:foo, "bar"]
 | |
|  *
 | |
|  *  If <tt>n >= array.size</tt>, returns all elements:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.first(50) # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If <tt>n == 0</tt> returns an new empty \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.first(0) # []
 | |
|  *
 | |
|  *  Related: #last.
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_first(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     if (argc == 0) {
 | |
| 	if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
| 	return RARRAY_AREF(ary, 0);
 | |
|     }
 | |
|     else {
 | |
| 	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.last  -> object or nil
 | |
|  *    array.last(n) -> new_array
 | |
|  *
 | |
|  *  Returns elements from +self+; +self+ is not modified.
 | |
|  *
 | |
|  *  When no argument is given, returns the last element:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.last # => 2
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If +self+ is empty, returns +nil+.
 | |
|  *
 | |
|  *  When non-negative \Innteger argument +n+ is given,
 | |
|  *  returns the last +n+ elements in a new \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.last(2) # => ["bar", 2]
 | |
|  *
 | |
|  *  If <tt>n >= array.size</tt>, returns all elements:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.last(50) # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  If <tt>n == 0</tt>, returns an new empty \Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.last(0) # []
 | |
|  *
 | |
|  *  Related: #first.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_last(int argc, const VALUE *argv, VALUE ary)
 | |
| {
 | |
|     if (argc == 0) {
 | |
| 	long len = RARRAY_LEN(ary);
 | |
| 	if (len == 0) return Qnil;
 | |
| 	return RARRAY_AREF(ary, len-1);
 | |
|     }
 | |
|     else {
 | |
| 	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.fetch(index) -> element
 | |
|  *    array.fetch(index, default_value) -> element
 | |
|  *    array.fetch(index) {|index| ... } -> element
 | |
|  *
 | |
|  *  Returns the element at offset  +index+.
 | |
|  *
 | |
|  *  With the single \Integer argument +index+,
 | |
|  *  returns the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.fetch(1) # => "bar"
 | |
|  *
 | |
|  *  If +index+ is negative, counts from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.fetch(-1) # => 2
 | |
|  *    a.fetch(-2) # => "bar"
 | |
|  *
 | |
|  *  With arguments +index+ and +default_value+,
 | |
|  *  returns the element at offset +index+ if index is in range,
 | |
|  *  otherwise returns +default_value+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.fetch(1, nil) # => "bar"
 | |
|  *
 | |
|  *  With argument +index+ and a block,
 | |
|  *  returns the element at offset +index+ if index is in range
 | |
|  *  (and the block is not called); otherwise calls the block with index and returns its return value:
 | |
|  *
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.fetch(1) {|index| raise 'Cannot happen' } # => "bar"
 | |
|  *    a.fetch(50) {|index| "Value for #{index}" } # => "Value for 50"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE pos, ifnone;
 | |
|     long block_given;
 | |
|     long idx;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &pos, &ifnone);
 | |
|     block_given = rb_block_given_p();
 | |
|     if (block_given && argc == 2) {
 | |
| 	rb_warn("block supersedes default value argument");
 | |
|     }
 | |
|     idx = NUM2LONG(pos);
 | |
| 
 | |
|     if (idx < 0) {
 | |
| 	idx +=  RARRAY_LEN(ary);
 | |
|     }
 | |
|     if (idx < 0 || RARRAY_LEN(ary) <= idx) {
 | |
| 	if (block_given) return rb_yield(pos);
 | |
| 	if (argc == 1) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
 | |
| 			idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
 | |
| 	}
 | |
| 	return ifnone;
 | |
|     }
 | |
|     return RARRAY_AREF(ary, idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.index(object) -> integer or nil
 | |
|  *    array.index {|element| ... } -> integer or nil
 | |
|  *    array.index -> new_enumerator
 | |
|  *
 | |
|  *  Returns the index of a specified element.
 | |
|  *
 | |
|  *  When argument +object+ is given but no block,
 | |
|  *  returns the index of the first element +element+
 | |
|  *  for which <tt>object == element</tt>:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a.index('bar') # => 1
 | |
|  *
 | |
|  *  Returns +nil+ if no such element found.
 | |
|  *
 | |
|  *  When both argument +object+ and a block are given,
 | |
|  *  calls the block with each successive element;
 | |
|  *  returns the index of the first element for which the block returns a truthy value:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a.index {|element| element == 'bar' } # => 1
 | |
|  *
 | |
|  *  Returns +nil+ if the block never returns a truthy value.
 | |
|  *
 | |
|  *  When neither an argument nor a block is given, returns a new Enumerator:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    e = a.index
 | |
|  *    e # => #<Enumerator: [:foo, "bar", 2]:index>
 | |
|  *    e.each {|element| element == 'bar' } # => 1
 | |
|  *
 | |
|  *  Array#find_index is an alias for Array#index.
 | |
|  *
 | |
|  *  Related: #rindex.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_index(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE val;
 | |
|     long i;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	RETURN_ENUMERATOR(ary, 0, 0);
 | |
| 	for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	    if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
 | |
| 		return LONG2NUM(i);
 | |
| 	    }
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     val = argv[0];
 | |
|     if (rb_block_given_p())
 | |
| 	rb_warn("given block not used");
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	VALUE e = RARRAY_AREF(ary, i);
 | |
| 	if (rb_equal(e, val)) {
 | |
| 	    return LONG2NUM(i);
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.rindex(object) -> integer or nil
 | |
|  *    array.rindex {|element| ... } -> integer or nil
 | |
|  *    array.rindex -> new_enumerator
 | |
|  *
 | |
|  *  Returns the index of the last element for which <tt>object == element</tt>.
 | |
|  *
 | |
|  *  When argument +object+ is given but no block, returns the index of the last such element found:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a.rindex('bar') # => 3
 | |
|  *
 | |
|  *  Returns +nil+ if no such object found.
 | |
|  *
 | |
|  *  When a block is given but no argument, calls the block with each successive element;
 | |
|  *  returns the index of the last element for which the block returns a truthy value:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a.rindex {|element| element == 'bar' } # => 3
 | |
|  *
 | |
|  *  Returns +nil+ if the block never returns a truthy value.
 | |
|  *
 | |
|  *  When neither an argument nor a block is given, returns a new \Enumerator:
 | |
|  *
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    e = a.rindex
 | |
|  *    e # => #<Enumerator: [:foo, "bar", 2, "bar"]:rindex>
 | |
|  *    e.each {|element| element == 'bar' } # => 3
 | |
|  *
 | |
|  *  Related: #index.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE val;
 | |
|     long i = RARRAY_LEN(ary), len;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	RETURN_ENUMERATOR(ary, 0, 0);
 | |
| 	while (i--) {
 | |
| 	    if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
 | |
| 		return LONG2NUM(i);
 | |
| 	    if (i > (len = RARRAY_LEN(ary))) {
 | |
| 		i = len;
 | |
| 	    }
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     val = argv[0];
 | |
|     if (rb_block_given_p())
 | |
| 	rb_warn("given block not used");
 | |
|     while (i--) {
 | |
| 	VALUE e = RARRAY_AREF(ary, i);
 | |
| 	if (rb_equal(e, val)) {
 | |
| 	    return LONG2NUM(i);
 | |
| 	}
 | |
|         if (i > RARRAY_LEN(ary)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_to_ary(VALUE obj)
 | |
| {
 | |
|     VALUE tmp = rb_check_array_type(obj);
 | |
| 
 | |
|     if (!NIL_P(tmp)) return tmp;
 | |
|     return rb_ary_new3(1, obj);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_splice(VALUE ary, long beg, long len, const VALUE *rptr, long rlen)
 | |
| {
 | |
|     long olen;
 | |
|     long rofs;
 | |
| 
 | |
|     if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
 | |
|     olen = RARRAY_LEN(ary);
 | |
|     if (beg < 0) {
 | |
| 	beg += olen;
 | |
| 	if (beg < 0) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
 | |
| 		     beg - olen, -olen);
 | |
| 	}
 | |
|     }
 | |
|     if (olen < len || olen < beg + len) {
 | |
| 	len = olen - beg;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         const VALUE *optr = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
| 	rofs = (rptr >= optr && rptr < optr + olen) ? rptr - optr : -1;
 | |
|     }
 | |
| 
 | |
|     if (beg >= olen) {
 | |
| 	VALUE target_ary;
 | |
| 	if (beg > ARY_MAX_SIZE - rlen) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too big", beg);
 | |
| 	}
 | |
| 	target_ary = ary_ensure_room_for_push(ary, rlen-len); /* len is 0 or negative */
 | |
| 	len = beg + rlen;
 | |
| 	ary_mem_clear(ary, olen, beg - olen);
 | |
| 	if (rlen > 0) {
 | |
|             if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs;
 | |
| 	    ary_memcpy0(ary, beg, rlen, rptr, target_ary);
 | |
| 	}
 | |
| 	ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     else {
 | |
| 	long alen;
 | |
| 
 | |
| 	if (olen - len > ARY_MAX_SIZE - rlen) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too big", olen + rlen - len);
 | |
| 	}
 | |
| 	rb_ary_modify(ary);
 | |
| 	alen = olen + rlen - len;
 | |
| 	if (alen >= ARY_CAPA(ary)) {
 | |
| 	    ary_double_capa(ary, alen);
 | |
| 	}
 | |
| 
 | |
| 	if (len != rlen) {
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr,
 | |
|                                      MEMMOVE(ptr + beg + rlen, ptr + beg + len,
 | |
|                                              VALUE, olen - (beg + len)));
 | |
| 	    ARY_SET_LEN(ary, alen);
 | |
| 	}
 | |
| 	if (rlen > 0) {
 | |
|             if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs;
 | |
|             /* give up wb-protected ary */
 | |
|             RB_OBJ_WB_UNPROTECT_FOR(ARRAY, ary);
 | |
| 
 | |
|             /* do not use RARRAY_PTR() because it can causes GC.
 | |
|              * ary can contain T_NONE object because it is not cleared.
 | |
|              */
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr,
 | |
|                                      MEMMOVE(ptr + beg, rptr, VALUE, rlen));
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_set_len(VALUE ary, long len)
 | |
| {
 | |
|     long capa;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	rb_raise(rb_eRuntimeError, "can't set length of shared ");
 | |
|     }
 | |
|     if (len > (capa = (long)ARY_CAPA(ary))) {
 | |
| 	rb_bug("probable buffer overflow: %ld for %ld", len, capa);
 | |
|     }
 | |
|     ARY_SET_LEN(ary, len);
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * expands or shrinks \a ary to \a len elements.
 | |
|  * expanded region will be filled with Qnil.
 | |
|  * \param ary  an array
 | |
|  * \param len  new size
 | |
|  * \return     \a ary
 | |
|  * \post       the size of \a ary is \a len.
 | |
|  */
 | |
| VALUE
 | |
| rb_ary_resize(VALUE ary, long len)
 | |
| {
 | |
|     long olen;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     olen = RARRAY_LEN(ary);
 | |
|     if (len == olen) return ary;
 | |
|     if (len > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eIndexError, "index %ld too big", len);
 | |
|     }
 | |
|     if (len > olen) {
 | |
| 	if (len >= ARY_CAPA(ary)) {
 | |
| 	    ary_double_capa(ary, len);
 | |
| 	}
 | |
| 	ary_mem_clear(ary, olen, len - olen);
 | |
| 	ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     else if (ARY_EMBED_P(ary)) {
 | |
|         ARY_SET_EMBED_LEN(ary, len);
 | |
|     }
 | |
|     else if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
| 	VALUE tmp[RARRAY_EMBED_LEN_MAX];
 | |
| 	MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len);
 | |
| 	ary_discard(ary);
 | |
| 	MEMCPY((VALUE *)ARY_EMBED_PTR(ary), tmp, VALUE, len); /* WB: no new reference */
 | |
|         ARY_SET_EMBED_LEN(ary, len);
 | |
|     }
 | |
|     else {
 | |
| 	if (olen > len + ARY_DEFAULT_SIZE) {
 | |
|             size_t new_capa = ary_heap_realloc(ary, len);
 | |
|             ARY_SET_CAPA(ary, new_capa);
 | |
| 	}
 | |
| 	ARY_SET_HEAP_LEN(ary, len);
 | |
|     }
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_aset_by_rb_ary_store(VALUE ary, long key, VALUE val)
 | |
| {
 | |
|     rb_ary_store(ary, key, val);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_aset_by_rb_ary_splice(VALUE ary, long beg, long len, VALUE val)
 | |
| {
 | |
|     VALUE rpl = rb_ary_to_ary(val);
 | |
|     rb_ary_splice(ary, beg, len, RARRAY_CONST_PTR_TRANSIENT(rpl), RARRAY_LEN(rpl));
 | |
|     RB_GC_GUARD(rpl);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array[index] = object -> object
 | |
|  *    array[start, length] = object -> object
 | |
|  *    array[range] = object -> object
 | |
|  *
 | |
|  *  Assigns elements in +self+; returns the given +object+.
 | |
|  *
 | |
|  *  When \Integer argument +index+ is given, assigns +object+ to an element in +self+.
 | |
|  *
 | |
|  *  If +index+ is non-negative, assigns +object+ the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0] = 'foo' # => "foo"
 | |
|  *    a # => ["foo", "bar", 2]
 | |
|  *
 | |
|  *  If +index+ is greater than <tt>self.length</tt>, extends the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[7] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"]
 | |
|  *
 | |
|  *  If +index+ is negative, counts backwards from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[-1] = 'two' # => "two"
 | |
|  *    a # => [:foo, "bar", "two"]
 | |
|  *
 | |
|  *  When \Integer arguments +start+ and +length+ are given and +object+ is not an \Array,
 | |
|  *  removes <tt>length - 1</tt> elements beginning at offset +start+,
 | |
|  *  and assigns +object+ at offset +start+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0, 2] = 'foo' # => "foo"
 | |
|  *    a # => ["foo", 2]
 | |
|  *
 | |
|  *  If +start+ is negative, counts backwards from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[-2, 2] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo"]
 | |
|  *
 | |
|  *  If +start+ is non-negative and outside the array (<tt> >= self.size</tt>),
 | |
|  *  extends the array with +nil+, assigns +object+ at offset +start+,
 | |
|  *  and ignores +length+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[6, 50] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "bar", 2, nil, nil, nil, "foo"]
 | |
|  *
 | |
|  *  If +length+ is zero, shifts elements at and following offset +start+
 | |
|  *  and assigns +object+ at offset +start+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1, 0] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo", "bar", 2]
 | |
|  *
 | |
|  *  If +length+ is too large for the existing array, does not extend the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1, 5] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo"]
 | |
|  *
 | |
|  *  When \Range argument +range+ is given and +object+ is an \Array,
 | |
|  *  removes <tt>length - 1</tt> elements beginning at offset +start+,
 | |
|  *  and assigns +object+ at offset +start+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[0..1] = 'foo' # => "foo"
 | |
|  *    a # => ["foo", 2]
 | |
|  *
 | |
|  *  if <tt>range.begin</tt> is negative, counts backwards from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[-2..2] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo"]
 | |
|  *
 | |
|  *  If the array length is less than <tt>range.begin</tt>,
 | |
|  *  assigns +object+ at offset <tt>range.begin</tt>, and ignores +length+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[6..50] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "bar", 2, nil, nil, nil, "foo"]
 | |
|  *
 | |
|  *  If <tt>range.end</tt> is zero, shifts elements at and following offset +start+
 | |
|  *  and assigns +object+ at offset +start+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1..0] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo", "bar", 2]
 | |
|  *
 | |
|  *  If <tt>range.end</tt> is negative, assigns +object+ at offset +start+,
 | |
|  *  retains <tt>range.end.abs -1</tt> elements past that, and removes those beyond:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1..-1] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo"]
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1..-2] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo", 2]
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1..-3] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo", "bar", 2]
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *
 | |
|  *  If <tt>range.end</tt> is too large for the existing array,
 | |
|  *  replaces array elements, but does not extend the array with +nil+ values:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a[1..5] = 'foo' # => "foo"
 | |
|  *    a # => [:foo, "foo"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_aset(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long offset, beg, len;
 | |
| 
 | |
|     rb_check_arity(argc, 2, 3);
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (argc == 3) {
 | |
| 	beg = NUM2LONG(argv[0]);
 | |
| 	len = NUM2LONG(argv[1]);
 | |
|         return ary_aset_by_rb_ary_splice(ary, beg, len, argv[2]);
 | |
|     }
 | |
|     if (FIXNUM_P(argv[0])) {
 | |
| 	offset = FIX2LONG(argv[0]);
 | |
|         return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
 | |
|     }
 | |
|     if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
 | |
| 	/* check if idx is Range */
 | |
|         return ary_aset_by_rb_ary_splice(ary, beg, len, argv[1]);
 | |
|     }
 | |
| 
 | |
|     offset = NUM2LONG(argv[0]);
 | |
|     return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.insert(index, *objects) -> self
 | |
|  *
 | |
|  *  Inserts given +objects+ before or after the element at \Integer index +offset+;
 | |
|  *  returns +self+.
 | |
|  *
 | |
|  *  When +index+ is non-negative, inserts all given +objects+
 | |
|  *  before the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.insert(1, :bat, :bam) # => [:foo, :bat, :bam, "bar", 2]
 | |
|  *
 | |
|  *  Extends the array if +index+ is beyond the array (<tt>index >= self.size</tt>):
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.insert(5, :bat, :bam)
 | |
|  *    a # => [:foo, "bar", 2, nil, nil, :bat, :bam]
 | |
|  *
 | |
|  *  Does nothing if no objects given:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.insert(1)
 | |
|  *    a.insert(50)
 | |
|  *    a.insert(-50)
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  When +index+ is negative, inserts all given +objects+
 | |
|  *  _after_ the element at offset <tt>index+self.size</tt>:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.insert(-2, :bat, :bam)
 | |
|  *    a # => [:foo, "bar", :bat, :bam, 2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_insert(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long pos;
 | |
| 
 | |
|     rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
 | |
|     rb_ary_modify_check(ary);
 | |
|     pos = NUM2LONG(argv[0]);
 | |
|     if (argc == 1) return ary;
 | |
|     if (pos == -1) {
 | |
| 	pos = RARRAY_LEN(ary);
 | |
|     }
 | |
|     else if (pos < 0) {
 | |
| 	long minpos = -RARRAY_LEN(ary) - 1;
 | |
| 	if (pos < minpos) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
 | |
| 		     pos, minpos);
 | |
| 	}
 | |
| 	pos++;
 | |
|     }
 | |
|     rb_ary_splice(ary, pos, 0, argv + 1, argc - 1);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_length(VALUE ary);
 | |
| 
 | |
| static VALUE
 | |
| ary_enum_length(VALUE ary, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return rb_ary_length(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.each {|element| ... } -> self
 | |
|  *    array.each -> Enumerator
 | |
|  *
 | |
|  *  Iterates over array elements.
 | |
|  *
 | |
|  *  When a block given, passes each successive array element to the block;
 | |
|  *  returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.each {|element|  puts "#{element.class} #{element}" }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    Symbol foo
 | |
|  *    String bar
 | |
|  *    Integer 2
 | |
|  *
 | |
|  *  Allows the array to be modified during iteration:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.each {|element| puts element; a.clear if element.to_s.start_with?('b') }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    foo
 | |
|  *    bar
 | |
|  *
 | |
|  *  When no block given, returns a new \Enumerator:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    e = a.each
 | |
|  *    e # => #<Enumerator: [:foo, "bar", 2]:each>
 | |
|  *    a1 = e.each {|element|  puts "#{element.class} #{element}" }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    Symbol foo
 | |
|  *    String bar
 | |
|  *    Integer 2
 | |
|  *
 | |
|  *  Related: #each_index, #reverse_each.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_each(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     ary_verify(ary);
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	rb_yield(RARRAY_AREF(ary, i));
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.each_index {|index| ... } -> self
 | |
|  *    array.each_index -> Enumerator
 | |
|  *
 | |
|  *  Iterates over array indexes.
 | |
|  *
 | |
|  *  When a block given, passes each successive array index to the block;
 | |
|  *  returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.each_index {|index|  puts "#{index} #{a[index]}" }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    0 foo
 | |
|  *    1 bar
 | |
|  *    2 2
 | |
|  *
 | |
|  *  Allows the array to be modified during iteration:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.each_index {|index| puts index; a.clear if index > 0 }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    0
 | |
|  *    1
 | |
|  *
 | |
|  *  When no block given, returns a new \Enumerator:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    e = a.each_index
 | |
|  *    e # => #<Enumerator: [:foo, "bar", 2]:each_index>
 | |
|  *    a1 = e.each {|index|  puts "#{index} #{a[index]}"}
 | |
|  *
 | |
|  *  Output:
 | |
|  *    0 foo
 | |
|  *    1 bar
 | |
|  *    2 2
 | |
|  *
 | |
|  *  Related: #each, #reverse_each.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_each_index(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	rb_yield(LONG2NUM(i));
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.reverse_each {|element| ... } -> self
 | |
|  *    array.reverse_each -> Enumerator
 | |
|  *
 | |
|  *  Iterates backwards over array elements.
 | |
|  *
 | |
|  *  When a block given, passes, in reverse order, each element to the block;
 | |
|  *  returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.reverse_each {|element|  puts "#{element.class} #{element}" }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    Integer 2
 | |
|  *    String bar
 | |
|  *    Symbol foo
 | |
|  *
 | |
|  *  Allows the array to be modified during iteration:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.reverse_each {|element| puts element; a.clear if element.to_s.start_with?('b') }
 | |
|  *
 | |
|  *  Output:
 | |
|  *    2
 | |
|  *    bar
 | |
|  *
 | |
|  *  When no block given, returns a new \Enumerator:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    e = a.reverse_each
 | |
|  *    e # => #<Enumerator: [:foo, "bar", 2]:reverse_each>
 | |
|  *    a1 = e.each {|element|  puts "#{element.class} #{element}" }
 | |
|  *  Output:
 | |
|  *    Integer 2
 | |
|  *    String bar
 | |
|  *    Symbol foo
 | |
|  *
 | |
|  *  Related: #each, #each_index.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_each(VALUE ary)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     while (len--) {
 | |
| 	long nlen;
 | |
| 	rb_yield(RARRAY_AREF(ary, len));
 | |
| 	nlen = RARRAY_LEN(ary);
 | |
| 	if (nlen < len) {
 | |
| 	    len = nlen;
 | |
| 	}
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.length -> an_integer
 | |
|  *
 | |
|  *  Returns the count of elements in +self+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_length(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     return LONG2NUM(len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.empty?  -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if the count of elements in +self+ is zero,
 | |
|  *  +false+ otherwise.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_empty_p(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) == 0)
 | |
| 	return Qtrue;
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_dup(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE dup = rb_ary_new2(len);
 | |
|     ary_memcpy(dup, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary));
 | |
|     ARY_SET_LEN(dup, len);
 | |
| 
 | |
|     ary_verify(ary);
 | |
|     ary_verify(dup);
 | |
|     return dup;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_resurrect(VALUE ary)
 | |
| {
 | |
|     return ary_make_partial(ary, rb_cArray, 0, RARRAY_LEN(ary));
 | |
| }
 | |
| 
 | |
| extern VALUE rb_output_fs;
 | |
| 
 | |
| static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first);
 | |
| 
 | |
| static VALUE
 | |
| recursive_join(VALUE obj, VALUE argp, int recur)
 | |
| {
 | |
|     VALUE *arg = (VALUE *)argp;
 | |
|     VALUE ary = arg[0];
 | |
|     VALUE sep = arg[1];
 | |
|     VALUE result = arg[2];
 | |
|     int *first = (int *)arg[3];
 | |
| 
 | |
|     if (recur) {
 | |
| 	rb_raise(rb_eArgError, "recursive array join");
 | |
|     }
 | |
|     else {
 | |
| 	ary_join_1(obj, ary, sep, 0, result, first);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static long
 | |
| ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
 | |
| {
 | |
|     long i;
 | |
|     VALUE val;
 | |
| 
 | |
|     if (max > 0) rb_enc_copy(result, RARRAY_AREF(ary, 0));
 | |
|     for (i=0; i<max; i++) {
 | |
| 	val = RARRAY_AREF(ary, i);
 | |
|         if (!RB_TYPE_P(val, T_STRING)) break;
 | |
| 	if (i > 0 && !NIL_P(sep))
 | |
| 	    rb_str_buf_append(result, sep);
 | |
| 	rb_str_buf_append(result, val);
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_join_1_str(VALUE dst, VALUE src, int *first)
 | |
| {
 | |
|     rb_str_buf_append(dst, src);
 | |
|     if (*first) {
 | |
|         rb_enc_copy(dst, src);
 | |
|         *first = FALSE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_join_1_ary(VALUE obj, VALUE ary, VALUE sep, VALUE result, VALUE val, int *first)
 | |
| {
 | |
|     if (val == ary) {
 | |
|         rb_raise(rb_eArgError, "recursive array join");
 | |
|     }
 | |
|     else {
 | |
|         VALUE args[4];
 | |
| 
 | |
|         *first = FALSE;
 | |
|         args[0] = val;
 | |
|         args[1] = sep;
 | |
|         args[2] = result;
 | |
|         args[3] = (VALUE)first;
 | |
|         rb_exec_recursive(recursive_join, obj, (VALUE)args);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first)
 | |
| {
 | |
|     VALUE val, tmp;
 | |
| 
 | |
|     for (; i<RARRAY_LEN(ary); i++) {
 | |
| 	if (i > 0 && !NIL_P(sep))
 | |
| 	    rb_str_buf_append(result, sep);
 | |
| 
 | |
| 	val = RARRAY_AREF(ary, i);
 | |
| 	if (RB_TYPE_P(val, T_STRING)) {
 | |
|             ary_join_1_str(result, val, first);
 | |
| 	}
 | |
| 	else if (RB_TYPE_P(val, T_ARRAY)) {
 | |
|             ary_join_1_ary(val, ary, sep, result, val, first);
 | |
| 	}
 | |
|         else if (!NIL_P(tmp = rb_check_string_type(val))) {
 | |
|             ary_join_1_str(result, tmp, first);
 | |
|         }
 | |
|         else if (!NIL_P(tmp = rb_check_array_type(val))) {
 | |
|             ary_join_1_ary(val, ary, sep, result, tmp, first);
 | |
|         }
 | |
|         else {
 | |
|             ary_join_1_str(result, rb_obj_as_string(val), first);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_join(VALUE ary, VALUE sep)
 | |
| {
 | |
|     long len = 1, i;
 | |
|     VALUE val, tmp, result;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0);
 | |
| 
 | |
|     if (!NIL_P(sep)) {
 | |
| 	StringValue(sep);
 | |
| 	len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
 | |
|     }
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	val = RARRAY_AREF(ary, i);
 | |
| 	tmp = rb_check_string_type(val);
 | |
| 
 | |
| 	if (NIL_P(tmp) || tmp != val) {
 | |
| 	    int first;
 | |
|             long n = RARRAY_LEN(ary);
 | |
|             if (i > n) i = n;
 | |
|             result = rb_str_buf_new(len + (n-i)*10);
 | |
| 	    rb_enc_associate(result, rb_usascii_encoding());
 | |
|             i = ary_join_0(ary, sep, i, result);
 | |
| 	    first = i == 0;
 | |
| 	    ary_join_1(ary, ary, sep, i, result, &first);
 | |
| 	    return result;
 | |
| 	}
 | |
| 
 | |
| 	len += RSTRING_LEN(tmp);
 | |
|     }
 | |
| 
 | |
|     result = rb_str_new(0, len);
 | |
|     rb_str_set_len(result, 0);
 | |
| 
 | |
|     ary_join_0(ary, sep, RARRAY_LEN(ary), result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.join ->new_string
 | |
|  *    array.join(separator = $,) -> new_string
 | |
|  *
 | |
|  *  Returns the new \String formed by joining the array elements after conversion.
 | |
|  *  For each element +element+
 | |
|  *  - Uses <tt>element.to_s</tt> if +element+ is not a <tt>kind_of?(Array)</tt>.
 | |
|  *  - Uses recursive <tt>element.join(separator)</tt> if +element+ is a <tt>kind_of?(Array)</tt>.
 | |
|  *
 | |
|  *  With no argument, joins using the output field separator, <tt>$,</tt>:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    $, # => nil
 | |
|  *    a.join # => "foobar2"
 | |
|  *
 | |
|  *  With \string argument +separator+, joins using that separator:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.join("\n") # => "foo\nbar\n2"
 | |
|  *
 | |
|  *  Joins recursively for nested Arrays:
 | |
|  *   a = [:foo, [:bar, [:baz, :bat]]]
 | |
|  *   a.join # => "foobarbazbat"
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE sep;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(sep = argv[0])) {
 | |
|         sep = rb_output_fs;
 | |
|         if (!NIL_P(sep)) {
 | |
|             rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return rb_ary_join(ary, sep);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| inspect_ary(VALUE ary, VALUE dummy, int recur)
 | |
| {
 | |
|     long i;
 | |
|     VALUE s, str;
 | |
| 
 | |
|     if (recur) return rb_usascii_str_new_cstr("[...]");
 | |
|     str = rb_str_buf_new2("[");
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	s = rb_inspect(RARRAY_AREF(ary, i));
 | |
| 	if (i > 0) rb_str_buf_cat2(str, ", ");
 | |
| 	else rb_enc_copy(str, s);
 | |
| 	rb_str_buf_append(str, s);
 | |
|     }
 | |
|     rb_str_buf_cat2(str, "]");
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.inspect -> new_string
 | |
|  *
 | |
|  *  Returns the new \String formed by calling method <tt>#inspect</tt>
 | |
|  *  on each array element:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.inspect # => "[:foo, \"bar\", 2]"
 | |
|  *
 | |
|  *  Array#to_s is an alias for Array#inspect.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_inspect(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
 | |
|     return rb_exec_recursive(inspect_ary, ary, 0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_to_s(VALUE ary)
 | |
| {
 | |
|     return rb_ary_inspect(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    to_a -> self or new_array
 | |
|  *
 | |
|  *  When +self+ is an instance of \Array, returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.to_a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  Otherwise, returns a new \Array containing the elements of +self+:
 | |
|  *    class MyArray < Array; end
 | |
|  *    a = MyArray.new(['foo', 'bar', 'two'])
 | |
|  *    a.instance_of?(Array) # => false
 | |
|  *    a.kind_of?(Array) # => true
 | |
|  *    a1 = a.to_a
 | |
|  *    a1 # => ["foo", "bar", "two"]
 | |
|  *    a1.class # => Array # Not MyArray
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_to_a(VALUE ary)
 | |
| {
 | |
|     if (rb_obj_class(ary) != rb_cArray) {
 | |
| 	VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
 | |
| 	rb_ary_replace(dup, ary);
 | |
| 	return dup;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.to_h -> new_hash
 | |
|  *    array.to_h {|item| ... } -> new_hash
 | |
|  *
 | |
|  *  Returns a new \Hash formed from +self+.
 | |
|  *
 | |
|  *  When a block is given, calls the block with each array element;
 | |
|  *  the block must return a 2-element \Array whose two elements
 | |
|  *  form a key-value pair in the returned \Hash:
 | |
|  *    a = ['foo', :bar, 1, [2, 3], {baz: 4}]
 | |
|  *    h = a.to_h {|item| [item, item] }
 | |
|  *    h # => {"foo"=>"foo", :bar=>:bar, 1=>1, [2, 3]=>[2, 3], {:baz=>4}=>{:baz=>4}}
 | |
|  *
 | |
|  *  When no block is given, +self+ must be an \Array of 2-element sub-arrays,
 | |
|  *  each sub-array is formed into a key-value pair in the new \Hash:
 | |
|  *    [].to_h # => {}
 | |
|  *    a = [['foo', 'zero'], ['bar', 'one'], ['baz', 'two']]
 | |
|  *    h = a.to_h
 | |
|  *    h # => {"foo"=>"zero", "bar"=>"one", "baz"=>"two"}
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_to_h(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary));
 | |
|     int block_given = rb_block_given_p();
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	const VALUE e = rb_ary_elt(ary, i);
 | |
| 	const VALUE elt = block_given ? rb_yield_force_blockarg(e) : e;
 | |
| 	const VALUE key_value_pair = rb_check_array_type(elt);
 | |
| 	if (NIL_P(key_value_pair)) {
 | |
| 	    rb_raise(rb_eTypeError, "wrong element type %"PRIsVALUE" at %ld (expected array)",
 | |
| 		     rb_obj_class(elt), i);
 | |
| 	}
 | |
| 	if (RARRAY_LEN(key_value_pair) != 2) {
 | |
| 	    rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)",
 | |
| 		i, RARRAY_LEN(key_value_pair));
 | |
| 	}
 | |
| 	rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.to_ary -> self
 | |
|  *
 | |
|  *  Returns +self+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_to_ary_m(VALUE ary)
 | |
| {
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_reverse(VALUE *p1, VALUE *p2)
 | |
| {
 | |
|     while (p1 < p2) {
 | |
| 	VALUE tmp = *p1;
 | |
| 	*p1++ = *p2;
 | |
| 	*p2-- = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_reverse(VALUE ary)
 | |
| {
 | |
|     VALUE *p2;
 | |
|     long len = RARRAY_LEN(ary);
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (len > 1) {
 | |
|         RARRAY_PTR_USE_TRANSIENT(ary, p1, {
 | |
|             p2 = p1 + len - 1;	/* points last item */
 | |
|             ary_reverse(p1, p2);
 | |
| 	}); /* WB: no new reference */
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.reverse! -> self
 | |
|  *
 | |
|  *  Reverses +self+ in place:
 | |
|  *    a = ['foo', 'bar', 'two']
 | |
|  *    a.reverse! # => ["two", "bar", "foo"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_bang(VALUE ary)
 | |
| {
 | |
|     return rb_ary_reverse(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.reverse -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array with the elements of +self+ in reverse order.
 | |
|  *    a = ['foo', 'bar', 'two']
 | |
|  *    a1 = a.reverse
 | |
|  *    a1 # => ["two", "bar", "foo"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_m(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE dup = rb_ary_new2(len);
 | |
| 
 | |
|     if (len > 0) {
 | |
|         const VALUE *p1 = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|         VALUE *p2 = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(dup) + len - 1;
 | |
| 	do *p2-- = *p1++; while (--len > 0);
 | |
|     }
 | |
|     ARY_SET_LEN(dup, RARRAY_LEN(ary));
 | |
|     return dup;
 | |
| }
 | |
| 
 | |
| static inline long
 | |
| rotate_count(long cnt, long len)
 | |
| {
 | |
|     return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_rotate_ptr(VALUE *ptr, long len, long cnt)
 | |
| {
 | |
|     if (cnt == 1) {
 | |
|         VALUE tmp = *ptr;
 | |
|         memmove(ptr, ptr + 1, sizeof(VALUE)*(len - 1));
 | |
|         *(ptr + len - 1) = tmp;
 | |
|     }
 | |
|     else if (cnt == len - 1) {
 | |
|         VALUE tmp = *(ptr + len - 1);
 | |
|         memmove(ptr + 1, ptr, sizeof(VALUE)*(len - 1));
 | |
|         *ptr = tmp;
 | |
|     }
 | |
|     else {
 | |
|         --len;
 | |
|         if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
 | |
|         if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
 | |
|         if (len > 0) ary_reverse(ptr, ptr + len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_rotate(VALUE ary, long cnt)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
| 
 | |
|     if (cnt != 0) {
 | |
|         long len = RARRAY_LEN(ary);
 | |
|         if (len > 1 && (cnt = rotate_count(cnt, len)) > 0) {
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr, ary_rotate_ptr(ptr, len, cnt));
 | |
|             return ary;
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.rotate! -> self
 | |
|  *    array.rotate!(count) -> self
 | |
|  *
 | |
|  *  Rotates +self+ in place by moving elements from one end to the other; returns +self+.
 | |
|  *
 | |
|  *  When no argument given, rotates the first element to the last position:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a.rotate! # => ["bar", 2, "bar", :foo]
 | |
|  *
 | |
|  *  When given a non-negative \Integer +count+,
 | |
|  *  rotates +count+ elements from the beginning to the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.rotate!(2)
 | |
|  *    a # => [2, :foo, "bar"]
 | |
|  *
 | |
|  *  If +count+ is large, uses <tt>count % array.size</tt> as the count:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.rotate!(20)
 | |
|  *    a # => [2, :foo, "bar"]
 | |
|  *
 | |
|  *  If +count+ is zero, returns +self+ unmodified:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.rotate!(0)
 | |
|  *    a # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  When given a negative Integer +count+, rotates in the opposite direction,
 | |
|  *  from end to beginning:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.rotate!(-2)
 | |
|  *    a # => ["bar", 2, :foo]
 | |
|  *
 | |
|  *  If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.rotate!(-5)
 | |
|  *    a # => ["bar", 2, :foo]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long n = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
 | |
|     rb_ary_rotate(ary, n);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.rotate -> new_array
 | |
|  *    array.rotate(count) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array formed from +self+ with elements
 | |
|  *  rotated from one end to the other.
 | |
|  *
 | |
|  *  When no argument given, returns a new \Array that is like +self+,
 | |
|  *  except that the first element has been rotated to the last position:
 | |
|  *    a = [:foo, 'bar', 2, 'bar']
 | |
|  *    a1 = a.rotate
 | |
|  *    a1 # => ["bar", 2, "bar", :foo]
 | |
|  *
 | |
|  *  When given a non-negative \Integer +count+,
 | |
|  *  returns a new \Array with +count+ elements rotated from the beginning to the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.rotate(2)
 | |
|  *    a1 # => [2, :foo, "bar"]
 | |
|  *
 | |
|  *  If +count+ is large, uses <tt>count % array.size</tt> as the count:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.rotate(20)
 | |
|  *    a1 # => [2, :foo, "bar"]
 | |
|  *
 | |
|  *  If +count+ is zero, returns a copy of +self+, unmodified:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.rotate(0)
 | |
|  *    a1 # => [:foo, "bar", 2]
 | |
|  *
 | |
|  *  When given a negative \Integer +count+, rotates in the opposite direction,
 | |
|  *  from end to beginning:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.rotate(-2)
 | |
|  *    a1 # => ["bar", 2, :foo]
 | |
|  *
 | |
|  *  If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.rotate(-5)
 | |
|  *    a1 # => ["bar", 2, :foo]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE rotated;
 | |
|     const VALUE *ptr;
 | |
|     long len;
 | |
|     long cnt = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
 | |
| 
 | |
|     len = RARRAY_LEN(ary);
 | |
|     rotated = rb_ary_new2(len);
 | |
|     if (len > 0) {
 | |
| 	cnt = rotate_count(cnt, len);
 | |
|         ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
| 	len -= cnt;
 | |
| 	ary_memcpy(rotated, 0, len, ptr + cnt);
 | |
| 	ary_memcpy(rotated, len, cnt, ptr);
 | |
|     }
 | |
|     ARY_SET_LEN(rotated, RARRAY_LEN(ary));
 | |
|     return rotated;
 | |
| }
 | |
| 
 | |
| struct ary_sort_data {
 | |
|     VALUE ary;
 | |
|     VALUE receiver;
 | |
|     struct cmp_opt_data cmp_opt;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| sort_reentered(VALUE ary)
 | |
| {
 | |
|     if (RBASIC(ary)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort reentered");
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| sort_returned(struct ary_sort_data *data)
 | |
| {
 | |
|     if (rb_obj_frozen_p(data->receiver)) {
 | |
|         rb_raise(rb_eFrozenError, "array frozen during sort");
 | |
|     }
 | |
|     sort_reentered(data->ary);
 | |
| }
 | |
| 
 | |
| static int
 | |
| sort_1(const void *ap, const void *bp, void *dummy)
 | |
| {
 | |
|     struct ary_sort_data *data = dummy;
 | |
|     VALUE retval = sort_reentered(data->ary);
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
|     VALUE args[2];
 | |
|     int n;
 | |
| 
 | |
|     args[0] = a;
 | |
|     args[1] = b;
 | |
|     retval = rb_yield_values2(2, args);
 | |
|     n = rb_cmpint(retval, a, b);
 | |
|     sort_returned(data);
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sort_2(const void *ap, const void *bp, void *dummy)
 | |
| {
 | |
|     struct ary_sort_data *data = dummy;
 | |
|     VALUE retval = sort_reentered(data->ary);
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
|     int n;
 | |
| 
 | |
|     if (FIXNUM_P(a) && FIXNUM_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, Integer)) {
 | |
| 	if ((long)a > (long)b) return 1;
 | |
| 	if ((long)a < (long)b) return -1;
 | |
| 	return 0;
 | |
|     }
 | |
|     if (STRING_P(a) && STRING_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, String)) {
 | |
| 	return rb_str_cmp(a, b);
 | |
|     }
 | |
|     if (RB_FLOAT_TYPE_P(a) && CMP_OPTIMIZABLE(data->cmp_opt, Float)) {
 | |
| 	return rb_float_cmp(a, b);
 | |
|     }
 | |
| 
 | |
|     retval = rb_funcallv(a, id_cmp, 1, &b);
 | |
|     n = rb_cmpint(retval, a, b);
 | |
|     sort_returned(data);
 | |
| 
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.sort! -> self
 | |
|  *    array.sort! {|a, b| ... } -> self
 | |
|  *
 | |
|  *  Returns +self+ with its elements sorted in place.
 | |
|  *
 | |
|  *  With no block, compares elements using operator <tt><=></tt>
 | |
|  *  (see Comparable):
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a.sort!
 | |
|  *    a # => ["a", "b", "c", "d", "e"]
 | |
|  *
 | |
|  *  With a block, calls the block with each element pair;
 | |
|  *  for each element pair +a+ and +b+, the block should return an integer:
 | |
|  *  - Negative when +b+ is to follow +a+.
 | |
|  *  - Zero when +a+ and +b+ are equivalent.
 | |
|  *  - Positive when +a+ is to follow +b+.
 | |
|  *
 | |
|  *  Example:
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a.sort! {|a, b| a <=> b }
 | |
|  *    a # => ["a", "b", "c", "d", "e"]
 | |
|  *    a.sort! {|a, b| b <=> a }
 | |
|  *    a # => ["e", "d", "c", "b", "a"]
 | |
|  *
 | |
|  *  When the block returns zero, the order for +a+ and +b+ is indeterminate,
 | |
|  *  and may be unstable:
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a.sort! {|a, b| 0 }
 | |
|  *    a # => ["d", "e", "c", "a", "b"]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_sort_bang(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
|     assert(!ARY_SHARED_P(ary));
 | |
|     if (RARRAY_LEN(ary) > 1) {
 | |
| 	VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
 | |
| 	struct ary_sort_data data;
 | |
| 	long len = RARRAY_LEN(ary);
 | |
| 	RBASIC_CLEAR_CLASS(tmp);
 | |
| 	data.ary = tmp;
 | |
|         data.receiver = ary;
 | |
| 	data.cmp_opt.opt_methods = 0;
 | |
| 	data.cmp_opt.opt_inited = 0;
 | |
| 	RARRAY_PTR_USE(tmp, ptr, {
 | |
|             ruby_qsort(ptr, len, sizeof(VALUE),
 | |
|                        rb_block_given_p()?sort_1:sort_2, &data);
 | |
| 	}); /* WB: no new reference */
 | |
| 	rb_ary_modify(ary);
 | |
|         if (ARY_EMBED_P(tmp)) {
 | |
|             if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
 | |
|                 rb_ary_unshare(ary);
 | |
| 		FL_SET_EMBED(ary);
 | |
|             }
 | |
| 	    ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
 | |
|             ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
 | |
|         }
 | |
|         else {
 | |
|             if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
 | |
|                 FL_UNSET_SHARED(ary);
 | |
|                 ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
 | |
|             }
 | |
|             else {
 | |
|                 assert(!ARY_SHARED_P(tmp));
 | |
|                 if (ARY_EMBED_P(ary)) {
 | |
|                     FL_UNSET_EMBED(ary);
 | |
|                 }
 | |
|                 else if (ARY_SHARED_P(ary)) {
 | |
|                     /* ary might be destructively operated in the given block */
 | |
|                     rb_ary_unshare(ary);
 | |
|                 }
 | |
|                 else {
 | |
|                     ary_heap_free(ary);
 | |
|                 }
 | |
|                 ARY_SET_PTR(ary, ARY_HEAP_PTR(tmp));
 | |
|                 ARY_SET_HEAP_LEN(ary, len);
 | |
|                 ARY_SET_CAPA(ary, ARY_HEAP_LEN(tmp));
 | |
|             }
 | |
|             /* tmp was lost ownership for the ptr */
 | |
|             FL_UNSET(tmp, FL_FREEZE);
 | |
|             FL_SET_EMBED(tmp);
 | |
|             ARY_SET_EMBED_LEN(tmp, 0);
 | |
|             FL_SET(tmp, FL_FREEZE);
 | |
|         }
 | |
|         /* tmp will be GC'ed. */
 | |
|         RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
 | |
|     }
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.sort -> new_array
 | |
|  *    array.sort {|a, b| ... } -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array whose elements are those from +self+, sorted.
 | |
|  *
 | |
|  *  With no block, compares elements using operator <tt><=></tt>
 | |
|  *  (see Comparable):
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a1 = a.sort
 | |
|  *    a1 # => ["a", "b", "c", "d", "e"]
 | |
|  *
 | |
|  *  With a block, calls the block with each element pair;
 | |
|  *  for each element pair +a+ and +b+, the block should return an integer:
 | |
|  *  - Negative when +b+ is to follow +a+.
 | |
|  *  - Zero when +a+ and +b+ are equivalent.
 | |
|  *  - Positive when +a+ is to follow +b+.
 | |
|  *
 | |
|  *  Example:
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a1 = a.sort {|a, b| a <=> b }
 | |
|  *    a1 # => ["a", "b", "c", "d", "e"]
 | |
|  *    a2 = a.sort {|a, b| b <=> a }
 | |
|  *    a2 # => ["e", "d", "c", "b", "a"]
 | |
|  *
 | |
|  *  When the block returns zero, the order for +a+ and +b+ is indeterminate,
 | |
|  *  and may be unstable:
 | |
|  *    a = 'abcde'.split('').shuffle
 | |
|  *    a # => ["e", "b", "d", "a", "c"]
 | |
|  *    a1 = a.sort {|a, b| 0 }
 | |
|  *    a1 # =>  ["c", "e", "b", "d", "a"]
 | |
|  *
 | |
|  *  Related: Enumerable#sort_by.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_sort(VALUE ary)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_sort_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE rb_ary_bsearch_index(VALUE ary);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.bsearch {|element| ... } -> object
 | |
|  *    array.bsearch -> new_enumerator
 | |
|  *
 | |
|  *  Returns an element from +self+ selected by a binary search.
 | |
|  *  +self+ should be sorted, but this is not checked.
 | |
|  *
 | |
|  *  By using binary search, finds a value from this array which meets
 | |
|  *  the given condition in <tt>O(log n)</tt> where +n+ is the size of the array.
 | |
|  *
 | |
|  *  There are two search modes:
 | |
|  *  - <b>Find-minimum mode</b>: the block should return +true+ or +false+.
 | |
|  *  - <b>Find-any mode</b>: the block should return a numeric value.
 | |
|  *
 | |
|  *  The block should not mix the modes by and sometimes returning +true+ or +false+
 | |
|  *  and sometimes returning a numeric value, but this is not checked.
 | |
|  *
 | |
|  *  <b>Find-Minimum Mode</b>
 | |
|  *
 | |
|  *  In find-minimum mode, the block always returns +true+ or +false+.
 | |
|  *  The further requirement (though not checked) is that
 | |
|  *  there are no indexes +i+ and +j+ such that:
 | |
|  *  - <tt>0 <= i < j <= self.size</tt>.
 | |
|  *  - The block returns +true+ for <tt>self[i]</tt> and +false+ for <tt>self[j]</tt>.
 | |
|  *
 | |
|  *  In find-minimum mode, method bsearch returns the first element for which the block returns true.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.bsearch {|x| x >= 4 } # => 4
 | |
|  *    a.bsearch {|x| x >= 6 } # => 7
 | |
|  *    a.bsearch {|x| x >= -1 } # => 0
 | |
|  *    a.bsearch {|x| x >= 100 } # => nil
 | |
|  *
 | |
|  *  Less formally: the block is such that all +false+-evaluating elements
 | |
|  *  precede all +true+-evaluating elements.
 | |
|  *
 | |
|  *  These make sense as blocks in find-minimum mode:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.map {|x| x >= 4 } # => [false, true, true, true, true]
 | |
|  *    a.map {|x| x >= 6 } # => [false, false, true, true, true]
 | |
|  *    a.map {|x| x >= -1 } # => [true, true, true, true, true]
 | |
|  *    a.map {|x| x >= 100 } # => [false, false, false, false, false]
 | |
|  *
 | |
|  *  This would not make sense:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.map {|x| x == 7 } # => [false, false, true, false, false]
 | |
|  *
 | |
|  *  <b>Find-Any Mode</b>
 | |
|  *
 | |
|  *  In find-any mode, the block always returns a numeric value.
 | |
|  *  The further requirement (though not checked) is that
 | |
|  *  there are no indexes +i+ and +j+ such that:
 | |
|  *  - <tt>0 <= i < j <= self.size</tt>.
 | |
|  *  - The block returns a negative value for <tt>self[i]</tt>
 | |
|  *    and a positive value for <tt>self[j]</tt>.
 | |
|  *  - The block returns a negative value for <tt>self[i]</tt> and zero <tt>self[j]</tt>.
 | |
|  *  - The block returns zero for <tt>self[i]</tt> and a positive value for <tt>self[j]</tt>.
 | |
|  *
 | |
|  *  In find-any mode, method bsearch returns some element
 | |
|  *  for which the block returns zero, or +nil+ if no such element is found.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.bsearch {|element| 7 <=> element } # => 7
 | |
|  *    a.bsearch {|element| -1 <=> element } # => nil
 | |
|  *    a.bsearch {|element| 5 <=> element } # => nil
 | |
|  *    a.bsearch {|element| 15 <=> element } # => nil
 | |
|  *
 | |
|  *  Less formally: the block is such that:
 | |
|  *  - All positive-evaluating elements precede all zero-evaluating elements.
 | |
|  *  - All positive-evaluating elements precede all negative-evaluating elements.
 | |
|  *  - All zero-evaluating elements precede all negative-evaluating elements.
 | |
|  *
 | |
|  *  These make sense as blocks in find-any mode:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.map {|element| 7 <=> element } # => [1, 1, 0, -1, -1]
 | |
|  *    a.map {|element| -1 <=> element } # => [-1, -1, -1, -1, -1]
 | |
|  *    a.map {|element| 5 <=> element } # => [1, 1, -1, -1, -1]
 | |
|  *    a.map {|element| 15 <=> element } # => [1, 1, 1, 1, 1]
 | |
|  *
 | |
|  *  This would not make sense:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.map {|element| element <=> 7 } # => [-1, -1, 0, 1, 1]
 | |
|  *
 | |
|  *  Returns an enumerator if no block given:
 | |
|  *    a = [0, 4, 7, 10, 12]
 | |
|  *    a.bsearch # => #<Enumerator: [0, 4, 7, 10, 12]:bsearch>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_bsearch(VALUE ary)
 | |
| {
 | |
|     VALUE index_result = rb_ary_bsearch_index(ary);
 | |
| 
 | |
|     if (FIXNUM_P(index_result)) {
 | |
| 	return rb_ary_entry(ary, FIX2LONG(index_result));
 | |
|     }
 | |
|     return index_result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.bsearch_index {|element| ... } -> integer or nil
 | |
|  *    array.bsearch_index -> new_enumerator
 | |
|  *
 | |
|  *  Searches +self+ as described at method #bsearch,
 | |
|  *  but returns the _index_ of the found element instead of the element itself.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_bsearch_index(VALUE ary)
 | |
| {
 | |
|     long low = 0, high = RARRAY_LEN(ary), mid;
 | |
|     int smaller = 0, satisfied = 0;
 | |
|     VALUE v, val;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     while (low < high) {
 | |
| 	mid = low + ((high - low) / 2);
 | |
| 	val = rb_ary_entry(ary, mid);
 | |
| 	v = rb_yield(val);
 | |
| 	if (FIXNUM_P(v)) {
 | |
| 	    if (v == INT2FIX(0)) return INT2FIX(mid);
 | |
| 	    smaller = (SIGNED_VALUE)v < 0; /* Fixnum preserves its sign-bit */
 | |
| 	}
 | |
| 	else if (v == Qtrue) {
 | |
| 	    satisfied = 1;
 | |
| 	    smaller = 1;
 | |
| 	}
 | |
| 	else if (v == Qfalse || v == Qnil) {
 | |
| 	    smaller = 0;
 | |
| 	}
 | |
| 	else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
 | |
| 	    const VALUE zero = INT2FIX(0);
 | |
| 	    switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, zero)) {
 | |
| 	      case 0: return INT2FIX(mid);
 | |
| 	      case 1: smaller = 1; break;
 | |
| 	      case -1: smaller = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE
 | |
| 		     " (must be numeric, true, false or nil)",
 | |
| 		     rb_obj_class(v));
 | |
| 	}
 | |
| 	if (smaller) {
 | |
| 	    high = mid;
 | |
| 	}
 | |
| 	else {
 | |
| 	    low = mid + 1;
 | |
| 	}
 | |
|     }
 | |
|     if (!satisfied) return Qnil;
 | |
|     return INT2FIX(low);
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, dummy))
 | |
| {
 | |
|     return rb_yield(i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.sort_by! {|element| ... } -> self
 | |
|  *    array.sort_by! -> new_enumerator
 | |
|  *
 | |
|  *  Sorts the elements of +self+ in place,
 | |
|  *  using an ordering determined by the block; returns self.
 | |
|  *
 | |
|  *  Calls the block with each successive element;
 | |
|  *  sorts elements based on the values returned from the block.
 | |
|  *
 | |
|  *  For duplicates returned by the block, the ordering is indeterminate, and may be unstable.
 | |
|  *
 | |
|  *  This example sorts strings based on their sizes:
 | |
|  *    a = ['aaaa', 'bbb', 'cc', 'd']
 | |
|  *    a.sort_by! {|element| element.size }
 | |
|  *    a # => ["d", "cc", "bbb", "aaaa"]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *
 | |
|  *    a = ['aaaa', 'bbb', 'cc', 'd']
 | |
|  *    a.sort_by! # => #<Enumerator: ["aaaa", "bbb", "cc", "d"]:sort_by!>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_sort_by_bang(VALUE ary)
 | |
| {
 | |
|     VALUE sorted;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rb_ary_modify(ary);
 | |
|     sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
 | |
|     rb_ary_replace(ary, sorted);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.map {|element| ... } -> new_array
 | |
|  *    array.map -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block, if given, with each element of +self+;
 | |
|  *  returns a new \Array whose elements are the return values from the block:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.map {|element| element.class }
 | |
|  *    a1 # => [Symbol, String, Integer]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.map
 | |
|  *    a1 # => #<Enumerator: [:foo, "bar", 2]:map>
 | |
|  *
 | |
|  *  Array#collect is an alias for Array#map.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_collect(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     VALUE collect;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     collect = rb_ary_new2(RARRAY_LEN(ary));
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
|         rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
 | |
|     }
 | |
|     return collect;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.map! {|element| ... } -> self
 | |
|  *    array.map! -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block, if given, with each element;
 | |
|  *  replaces the element with the block's return value:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.map! { |element| element.class } # => [Symbol, String, Integer]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a1 = a.map!
 | |
|  *    a1 # => #<Enumerator: [:foo, "bar", 2]:map!>
 | |
|  *
 | |
|  *  Array#collect! is an alias for Array#map!.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_collect_bang(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rb_ary_modify(ary);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_get_values_at(VALUE obj, long olen, int argc, const VALUE *argv, VALUE (*func) (VALUE, long))
 | |
| {
 | |
|     VALUE result = rb_ary_new2(argc);
 | |
|     long beg, len, i, j;
 | |
| 
 | |
|     for (i=0; i<argc; i++) {
 | |
| 	if (FIXNUM_P(argv[i])) {
 | |
| 	    rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
 | |
| 	    continue;
 | |
| 	}
 | |
| 	/* check if idx is Range */
 | |
| 	if (rb_range_beg_len(argv[i], &beg, &len, olen, 1)) {
 | |
| 	    long end = olen < beg+len ? olen : beg+len;
 | |
| 	    for (j = beg; j < end; j++) {
 | |
| 		rb_ary_push(result, (*func)(obj, j));
 | |
| 	    }
 | |
| 	    if (beg + len > j)
 | |
| 		rb_ary_resize(result, RARRAY_LEN(result) + (beg + len) - j);
 | |
| 	    continue;
 | |
| 	}
 | |
| 	rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| append_values_at_single(VALUE result, VALUE ary, long olen, VALUE idx)
 | |
| {
 | |
|     long beg, len;
 | |
|     if (FIXNUM_P(idx)) {
 | |
| 	beg = FIX2LONG(idx);
 | |
|     }
 | |
|     /* check if idx is Range */
 | |
|     else if (rb_range_beg_len(idx, &beg, &len, olen, 1)) {
 | |
| 	if (len > 0) {
 | |
|             const VALUE *const src = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
| 	    const long end = beg + len;
 | |
| 	    const long prevlen = RARRAY_LEN(result);
 | |
| 	    if (beg < olen) {
 | |
| 		rb_ary_cat(result, src + beg, end > olen ? olen-beg : len);
 | |
| 	    }
 | |
| 	    if (end > olen) {
 | |
| 		rb_ary_store(result, prevlen + len - 1, Qnil);
 | |
| 	    }
 | |
| 	}
 | |
| 	return result;
 | |
|     }
 | |
|     else {
 | |
| 	beg = NUM2LONG(idx);
 | |
|     }
 | |
|     return rb_ary_push(result, rb_ary_entry(ary, beg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.values_at(*indexes) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array whose elements are the elements
 | |
|  *  of +self+ at the given \Integer or \Range +indexes+.
 | |
|  *
 | |
|  *  For each positive +index+, returns the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(0, 2) # => [:foo, 2]
 | |
|  *    a.values_at(0..1) # => [:foo, "bar"]
 | |
|  *
 | |
|  *  The given +indexes+ may be in any order, and may repeat:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2]
 | |
|  *    a.values_at(1, 0..2) # => ["bar", :foo, "bar", 2]
 | |
|  *
 | |
|  *  Assigns +nil+ for an +index+ that is too large:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil]
 | |
|  *
 | |
|  *  Returns a new empty \Array if no arguments given.
 | |
|  *
 | |
|  *  For each negative +index+, counts backward from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(-1, -3) # => [2, :foo]
 | |
|  *
 | |
|  *  Assigns +nil+ for an +index+ that is too small:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2]
 | |
|  *
 | |
|  *  The given +indexes+ may have a mixture of signs:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, olen = RARRAY_LEN(ary);
 | |
|     VALUE result = rb_ary_new_capa(argc);
 | |
|     for (i = 0; i < argc; ++i) {
 | |
| 	append_values_at_single(result, ary, olen, argv[i]);
 | |
|     }
 | |
|     RB_GC_GUARD(ary);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.select {|element| ... } -> new_array
 | |
|  *    array.select -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block, if given, with each element of +self+;
 | |
|  *  returns a new \Array containing those elements of +self+
 | |
|  *  for which the block returns a truthy value:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a1 = a.select {|element| element.to_s.start_with?('b') }
 | |
|  *    a1 # => ["bar", :bam]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a.select # => #<Enumerator: [:foo, "bar", 2, :bam]:select>
 | |
|  *
 | |
|  *  Array#filter is an alias for Array#select.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_select(VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
|     long i;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     result = rb_ary_new2(RARRAY_LEN(ary));
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
 | |
| 	    rb_ary_push(result, rb_ary_elt(ary, i));
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct select_bang_arg {
 | |
|     VALUE ary;
 | |
|     long len[2];
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| select_bang_i(VALUE a)
 | |
| {
 | |
|     volatile struct select_bang_arg *arg = (void *)a;
 | |
|     VALUE ary = arg->ary;
 | |
|     long i1, i2;
 | |
| 
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) {
 | |
| 	VALUE v = RARRAY_AREF(ary, i1);
 | |
| 	if (!RTEST(rb_yield(v))) continue;
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, v);
 | |
| 	}
 | |
| 	arg->len[1] = ++i2;
 | |
|     }
 | |
|     return (i1 == i2) ? Qnil : ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| select_bang_ensure(VALUE a)
 | |
| {
 | |
|     volatile struct select_bang_arg *arg = (void *)a;
 | |
|     VALUE ary = arg->ary;
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     long i1 = arg->len[0], i2 = arg->len[1];
 | |
| 
 | |
|     if (i2 < len && i2 < i1) {
 | |
| 	long tail = 0;
 | |
|         rb_ary_modify(ary);
 | |
| 	if (i1 < len) {
 | |
| 	    tail = len - i1;
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
| 		    MEMMOVE(ptr + i2, ptr + i1, VALUE, tail);
 | |
| 		});
 | |
| 	}
 | |
| 	ARY_SET_LEN(ary, i2 + tail);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.select! {|element| ... } -> self or nil
 | |
|  *    array.select! -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block, if given  with each element of +self+;
 | |
|  *  removes from +self+ those elements for which the block returns +false+ or +nil+.
 | |
|  *
 | |
|  *  Returns +self+ if any elements were removed:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam]
 | |
|  *
 | |
|  *  Returns +nil+ if no elements were removed.
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a.select! # => #<Enumerator: [:foo, "bar", 2, :bam]:select!>
 | |
|  *
 | |
|  *  Array#filter! is an alias for Array#select!.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_select_bang(VALUE ary)
 | |
| {
 | |
|     struct select_bang_arg args;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rb_ary_modify(ary);
 | |
| 
 | |
|     args.ary = ary;
 | |
|     args.len[0] = args.len[1] = 0;
 | |
|     return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.keep_if {|element| ... } -> self
 | |
|  *    array.keep_if -> new_enumeration
 | |
|  *
 | |
|  *  Retains those elements for which the block returns a truthy value;
 | |
|  *  deletes all other elements; returns +self+:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a.keep_if {|element| element.to_s.start_with?('b') } # => ["bar", :bam]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2, :bam]
 | |
|  *    a.keep_if # => #<Enumerator: [:foo, "bar", 2, :bam]:keep_if>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_keep_if(VALUE ary)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rb_ary_select_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_resize_smaller(VALUE ary, long len)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
|     if (RARRAY_LEN(ary) > len) {
 | |
| 	ARY_SET_LEN(ary, len);
 | |
| 	if (len * 2 < ARY_CAPA(ary) &&
 | |
| 	    ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
 | |
| 	    ary_resize_capa(ary, len * 2);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.delete(obj) -> deleted_object
 | |
|  *    array.delete(obj) {|nosuch| ... } -> deleted_object or block_return
 | |
|  *
 | |
|  *  Removes zero or more elements from +self+; returns +self+.
 | |
|  *
 | |
|  *  When no block is given,
 | |
|  *  removes from +self+ each element +ele+ such that <tt>ele == obj</tt>;
 | |
|  *  returns the last deleted element:
 | |
|  *    s1 = 'bar'; s2 = 'bar'
 | |
|  *    a = [:foo, s1, 2, s2]
 | |
|  *    a.delete('bar') # => "bar"
 | |
|  *    a # => [:foo, 2]
 | |
|  *
 | |
|  *  Returns +nil+ if no elements removed.
 | |
|  *
 | |
|  *  When a block is given,
 | |
|  *  removes from +self+ each element +ele+ such that <tt>ele == obj</tt>.
 | |
|  *
 | |
|  *  If any such elements are found, ignores the block
 | |
|  *  and returns the last deleted element:
 | |
|  *    s1 = 'bar'; s2 = 'bar'
 | |
|  *    a = [:foo, s1, 2, s2]
 | |
|  *    deleted_obj = a.delete('bar') {|obj| fail 'Cannot happen' }
 | |
|  *    a # => [:foo, 2]
 | |
|  *
 | |
|  *  If no such elements are found, returns the block's return value:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.delete(:nosuch) {|obj| "#{obj} not found" } # => "nosuch not found"
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_delete(VALUE ary, VALUE item)
 | |
| {
 | |
|     VALUE v = item;
 | |
|     long i1, i2;
 | |
| 
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
 | |
| 	VALUE e = RARRAY_AREF(ary, i1);
 | |
| 
 | |
| 	if (rb_equal(e, item)) {
 | |
| 	    v = e;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, e);
 | |
| 	}
 | |
| 	i2++;
 | |
|     }
 | |
|     if (RARRAY_LEN(ary) == i2) {
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    return rb_yield(item);
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
| 
 | |
|     ary_resize_smaller(ary, i2);
 | |
| 
 | |
|     ary_verify(ary);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_delete_same(VALUE ary, VALUE item)
 | |
| {
 | |
|     long i1, i2;
 | |
| 
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
 | |
| 	VALUE e = RARRAY_AREF(ary, i1);
 | |
| 
 | |
| 	if (e == item) {
 | |
| 	    continue;
 | |
| 	}
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, e);
 | |
| 	}
 | |
| 	i2++;
 | |
|     }
 | |
|     if (RARRAY_LEN(ary) == i2) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     ary_resize_smaller(ary, i2);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_delete_at(VALUE ary, long pos)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE del;
 | |
| 
 | |
|     if (pos >= len) return Qnil;
 | |
|     if (pos < 0) {
 | |
| 	pos += len;
 | |
| 	if (pos < 0) return Qnil;
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     del = RARRAY_AREF(ary, pos);
 | |
|     RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
 | |
|         MEMMOVE(ptr+pos, ptr+pos+1, VALUE, len-pos-1);
 | |
|     });
 | |
|     ARY_INCREASE_LEN(ary, -1);
 | |
|     ary_verify(ary);
 | |
|     return del;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.delete_at(index) -> deleted_object or nil
 | |
|  *
 | |
|  *  Deletes an element from +self+, per the given \Integer +index+.
 | |
|  *
 | |
|  *  When +index+ is non-negative, deletes the element at offset +index+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.delete_at(1) # => "bar"
 | |
|  *    a # => [:foo, 2]
 | |
|  *
 | |
|  *  If index is too large, returns +nil+.
 | |
|  *
 | |
|  *  When +index+ is negative, counts backward from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.delete_at(-2) # => "bar"
 | |
|  *    a # => [:foo, 2]
 | |
|  *
 | |
|  *  If +index+ is too small (far from zero), returns nil.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_delete_at_m(VALUE ary, VALUE pos)
 | |
| {
 | |
|     return rb_ary_delete_at(ary, NUM2LONG(pos));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_slice_bang_by_rb_ary_splice(VALUE ary, long pos, long len)
 | |
| {
 | |
|     const long orig_len = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (len < 0) {
 | |
|         return Qnil;
 | |
|     }
 | |
|     else if (pos < -orig_len) {
 | |
|         return Qnil;
 | |
|     }
 | |
|     else if (pos < 0) {
 | |
|         pos += orig_len;
 | |
|     }
 | |
|     else if (orig_len < pos) {
 | |
|         return Qnil;
 | |
|     }
 | |
|     else if (orig_len < pos + len) {
 | |
|         len = orig_len - pos;
 | |
|     }
 | |
|     if (len == 0) {
 | |
|         return rb_ary_new2(0);
 | |
|     }
 | |
|     else {
 | |
|         VALUE arg2 = rb_ary_new4(len, RARRAY_CONST_PTR_TRANSIENT(ary)+pos);
 | |
|         rb_ary_splice(ary, pos, len, 0, 0);
 | |
|         return arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.slice!(n) -> object or nil
 | |
|  *    array.slice!(start, length) -> new_array or nil
 | |
|  *    array.slice!(range) -> new_array or nil
 | |
|  *
 | |
|  *  Removes and returns elements from +self+.
 | |
|  *
 | |
|  *  When the only argument is an \Integer +n+,
 | |
|  *  removes and returns the _nth_ element in +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(1) # => "bar"
 | |
|  *    a # => [:foo, 2]
 | |
|  *
 | |
|  *  If +n+ is negative, counts backwards from the end of +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(-1) # => 2
 | |
|  *    a # => [:foo, "bar"]
 | |
|  *
 | |
|  *  If +n+ is out of range, returns +nil+.
 | |
|  *
 | |
|  *  When the only arguments are Integers +start+ and +length+,
 | |
|  *  removes +length+ elements from +self+ beginning at offset  +start+;
 | |
|  *  returns the deleted objects in a new Array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(0, 2) # => [:foo, "bar"]
 | |
|  *    a # => [2]
 | |
|  *
 | |
|  *  If <tt>start + length</tt> exceeds the array size,
 | |
|  *  removes and returns all elements from offset +start+ to the end:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(1, 50) # => ["bar", 2]
 | |
|  *    a # => [:foo]
 | |
|  *
 | |
|  *  If <tt>start == a.size</tt> and +length+ is non-negative,
 | |
|  *  returns a new empty \Array.
 | |
|  *
 | |
|  *  If +length+ is negative, returns +nil+.
 | |
|  *
 | |
|  *  When the only argument is a \Range object +range+,
 | |
|  *  treats <tt>range.min</tt> as +start+ above and <tt>range.size</tt> as +length+ above:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *     a.slice!(1..2) # => ["bar", 2]
 | |
|  *    a # => [:foo]
 | |
|  *
 | |
|  *  If <tt>range.start == a.size</tt>, returns a new empty \Array.
 | |
|  *
 | |
|  *  If <tt>range.start</tt> is larger than the array size, returns +nil+.
 | |
|  *
 | |
|  *  If <tt>range.end</tt> is negative, counts backwards from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(0..-2) # => [:foo, "bar"]
 | |
|  *    a # => [2]
 | |
|  *
 | |
|  *  If <tt>range.start</tt> is negative,
 | |
|  *  calculates the start index backwards from the end of the array:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.slice!(-2..2) # => ["bar", 2]
 | |
|  *    a # => [:foo]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE arg1;
 | |
|     long pos, len;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     rb_check_arity(argc, 1, 2);
 | |
|     arg1 = argv[0];
 | |
| 
 | |
|     if (argc == 2) {
 | |
| 	pos = NUM2LONG(argv[0]);
 | |
| 	len = NUM2LONG(argv[1]);
 | |
|         return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
 | |
|     }
 | |
| 
 | |
|     if (!FIXNUM_P(arg1)) {
 | |
| 	switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
 | |
| 	  case Qtrue:
 | |
| 	    /* valid range */
 | |
|             return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
 | |
| 	  case Qnil:
 | |
| 	    /* invalid range */
 | |
| 	    return Qnil;
 | |
| 	  default:
 | |
| 	    /* not a range */
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return rb_ary_delete_at(ary, NUM2LONG(arg1));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_reject(VALUE orig, VALUE result)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(orig); i++) {
 | |
| 	VALUE v = RARRAY_AREF(orig, i);
 | |
| 
 | |
|         if (!RTEST(rb_yield(v))) {
 | |
| 	    rb_ary_push(result, v);
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| reject_bang_i(VALUE a)
 | |
| {
 | |
|     volatile struct select_bang_arg *arg = (void *)a;
 | |
|     VALUE ary = arg->ary;
 | |
|     long i1, i2;
 | |
| 
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) {
 | |
| 	VALUE v = RARRAY_AREF(ary, i1);
 | |
| 	if (RTEST(rb_yield(v))) continue;
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, v);
 | |
| 	}
 | |
| 	arg->len[1] = ++i2;
 | |
|     }
 | |
|     return (i1 == i2) ? Qnil : ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_reject_bang(VALUE ary)
 | |
| {
 | |
|     struct select_bang_arg args;
 | |
|     rb_ary_modify_check(ary);
 | |
|     args.ary = ary;
 | |
|     args.len[0] = args.len[1] = 0;
 | |
|     return rb_ensure(reject_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.reject! {|element| ... } -> self or nil
 | |
|  *    array.reject! -> new_enumerator
 | |
|  *
 | |
|  *  Removes each element for which the block returns a truthy value.
 | |
|  *
 | |
|  *  Returns +self+ if any elements removed:
 | |
|  *    a = [:foo, 'bar', 2, 'bat']
 | |
|  *    a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]
 | |
|  *
 | |
|  *  Returns +nil+ if no elements removed.
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.reject! # => #<Enumerator: [:foo, "bar", 2]:reject!>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reject_bang(VALUE ary)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rb_ary_modify(ary);
 | |
|     return ary_reject_bang(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.reject {|element| ... } -> new_array
 | |
|  *    array.reject -> new_enumerator
 | |
|  *
 | |
|  *  Returns a new \Array whose elements are all those from +self+
 | |
|  *  for which the block returns +false+ or +nil+:
 | |
|  *    a = [:foo, 'bar', 2, 'bat']
 | |
|  *    a1 = a.reject {|element| element.to_s.start_with?('b') }
 | |
|  *    a1 # => [:foo, 2]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *     a = [:foo, 'bar', 2]
 | |
|  *     a.reject # => #<Enumerator: [:foo, "bar", 2]:reject>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reject(VALUE ary)
 | |
| {
 | |
|     VALUE rejected_ary;
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     rejected_ary = rb_ary_new();
 | |
|     ary_reject(ary, rejected_ary);
 | |
|     return rejected_ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.delete_if {|element| ... } -> self
 | |
|  *    array.delete_if -> Enumerator
 | |
|  *
 | |
|  *  Removes each element in +self+ for which the block returns a truthy value;
 | |
|  *  returns +self+:
 | |
|  *    a = [:foo, 'bar', 2, 'bat']
 | |
|  *    a.delete_if {|element| element.to_s.start_with?('b') } # => [:foo, 2]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.delete_if # => #<Enumerator: [:foo, "bar", 2]:delete_if>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_delete_if(VALUE ary)
 | |
| {
 | |
|     ary_verify(ary);
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
 | |
|     ary_reject_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| take_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, cbarg))
 | |
| {
 | |
|     VALUE *args = (VALUE *)cbarg;
 | |
|     if (argc > 1) val = rb_ary_new4(argc, argv);
 | |
|     rb_ary_push(args[0], val);
 | |
|     if (--args[1] == 0) rb_iter_break();
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| take_items(VALUE obj, long n)
 | |
| {
 | |
|     VALUE result = rb_check_array_type(obj);
 | |
|     VALUE args[2];
 | |
| 
 | |
|     if (n == 0) return result;
 | |
|     if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
 | |
|     result = rb_ary_new2(n);
 | |
|     args[0] = result; args[1] = (VALUE)n;
 | |
|     if (rb_check_block_call(obj, idEach, 0, 0, take_i, (VALUE)args) == Qundef)
 | |
| 	rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
 | |
| 		 rb_obj_class(obj));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.zip(*other_arrays) -> new_array
 | |
|  *    array.zip(*other_arrays) {|other_array| ... } -> nil
 | |
|  *
 | |
|  *  When no block given, returns a new \Array +new_array+ of size <tt>self.size</tt>
 | |
|  *  whose elements are Arrays.
 | |
|  *
 | |
|  *  Each nested array <tt>new_array[n]</tt> is of size <tt>other_arrays.size+1</tt>,
 | |
|  *  and contains:
 | |
|  *  - The _nth_ element of +self+.
 | |
|  *  - The _nth_ element of each of the +other_arrays+.
 | |
|  *
 | |
|  *  If all +other_arrays+ and +self+ are the same size:
 | |
|  *    a = [:a0, :a1, :a2, :a3]
 | |
|  *    b = [:b0, :b1, :b2, :b3]
 | |
|  *    c = [:c0, :c1, :c2, :c3]
 | |
|  *    d = a.zip(b, c)
 | |
|  *    d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
 | |
|  *
 | |
|  *  If any array in +other_arrays+ is smaller than +self+,
 | |
|  *  fills to <tt>self.size</tt> with +nil+:
 | |
|  *    a = [:a0, :a1, :a2, :a3]
 | |
|  *    b = [:b0, :b1, :b2]
 | |
|  *    c = [:c0, :c1]
 | |
|  *    d = a.zip(b, c)
 | |
|  *    d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
 | |
|  *
 | |
|  *  If any array in +other_arrays+ is larger than +self+,
 | |
|  *  its trailing elements are ignored:
 | |
|  *    a = [:a0, :a1, :a2, :a3]
 | |
|  *    b = [:b0, :b1, :b2, :b3, :b4]
 | |
|  *    c = [:c0, :c1, :c2, :c3, :c4, :c5]
 | |
|  *    d = a.zip(b, c)
 | |
|  *    d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
 | |
|  *
 | |
|  *  When a block is given, calls the block with each of the sub-arrays (formed as above); returns nil
 | |
|  *    a = [:a0, :a1, :a2, :a3]
 | |
|  *    b = [:b0, :b1, :b2, :b3]
 | |
|  *    c = [:c0, :c1, :c2, :c3]
 | |
|  *    a.zip(b, c) {|sub_array| p sub_array} # => nil
 | |
|  *
 | |
|  *  Output:
 | |
|  *    [:a0, :b0, :c0]
 | |
|  *    [:a1, :b1, :c1]
 | |
|  *    [:a2, :b2, :c2]
 | |
|  *    [:a3, :b3, :c3]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_zip(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int i, j;
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE result = Qnil;
 | |
| 
 | |
|     for (i=0; i<argc; i++) {
 | |
| 	argv[i] = take_items(argv[i], len);
 | |
|     }
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
| 	int arity = rb_block_arity();
 | |
| 
 | |
| 	if (arity > 1) {
 | |
| 	    VALUE work, *tmp;
 | |
| 
 | |
| 	    tmp = ALLOCV_N(VALUE, work, argc+1);
 | |
| 
 | |
| 	    for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 		tmp[0] = RARRAY_AREF(ary, i);
 | |
| 		for (j=0; j<argc; j++) {
 | |
| 		    tmp[j+1] = rb_ary_elt(argv[j], i);
 | |
| 		}
 | |
| 		rb_yield_values2(argc+1, tmp);
 | |
| 	    }
 | |
| 
 | |
| 	    if (work) ALLOCV_END(work);
 | |
| 	}
 | |
| 	else {
 | |
| 	    for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 		VALUE tmp = rb_ary_new2(argc+1);
 | |
| 
 | |
| 		rb_ary_push(tmp, RARRAY_AREF(ary, i));
 | |
| 		for (j=0; j<argc; j++) {
 | |
| 		    rb_ary_push(tmp, rb_ary_elt(argv[j], i));
 | |
| 		}
 | |
| 		rb_yield(tmp);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	result = rb_ary_new_capa(len);
 | |
| 
 | |
| 	for (i=0; i<len; i++) {
 | |
| 	    VALUE tmp = rb_ary_new_capa(argc+1);
 | |
| 
 | |
| 	    rb_ary_push(tmp, RARRAY_AREF(ary, i));
 | |
| 	    for (j=0; j<argc; j++) {
 | |
| 		rb_ary_push(tmp, rb_ary_elt(argv[j], i));
 | |
| 	    }
 | |
| 	    rb_ary_push(result, tmp);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.transpose -> new_array
 | |
|  *
 | |
|  *  Transposes the rows and columns in an \Array of Arrays;
 | |
|  *  the nested Arrays must all be the same size:
 | |
|  *    a = [[:a0, :a1], [:b0, :b1], [:c0, :c1]]
 | |
|  *    a.transpose # => [[:a0, :b0, :c0], [:a1, :b1, :c1]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_transpose(VALUE ary)
 | |
| {
 | |
|     long elen = -1, alen, i, j;
 | |
|     VALUE tmp, result = 0;
 | |
| 
 | |
|     alen = RARRAY_LEN(ary);
 | |
|     if (alen == 0) return rb_ary_dup(ary);
 | |
|     for (i=0; i<alen; i++) {
 | |
| 	tmp = to_ary(rb_ary_elt(ary, i));
 | |
| 	if (elen < 0) {		/* first element */
 | |
| 	    elen = RARRAY_LEN(tmp);
 | |
| 	    result = rb_ary_new2(elen);
 | |
| 	    for (j=0; j<elen; j++) {
 | |
| 		rb_ary_store(result, j, rb_ary_new2(alen));
 | |
| 	    }
 | |
| 	}
 | |
| 	else if (elen != RARRAY_LEN(tmp)) {
 | |
| 	    rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
 | |
| 		     RARRAY_LEN(tmp), elen);
 | |
| 	}
 | |
| 	for (j=0; j<elen; j++) {
 | |
| 	    rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.replace(other_array) -> self
 | |
|  *
 | |
|  *  Replaces the content of +self+ with the content of +other_array+; returns +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_replace(VALUE copy, VALUE orig)
 | |
| {
 | |
|     rb_ary_modify_check(copy);
 | |
|     orig = to_ary(orig);
 | |
|     if (copy == orig) return copy;
 | |
| 
 | |
|     if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE shared_root = 0;
 | |
| 
 | |
|         if (ARY_OWNS_HEAP_P(copy)) {
 | |
|             ary_heap_free(copy);
 | |
| 	}
 | |
|         else if (ARY_SHARED_P(copy)) {
 | |
|             shared_root = ARY_SHARED_ROOT(copy);
 | |
|             FL_UNSET_SHARED(copy);
 | |
|         }
 | |
|         FL_SET_EMBED(copy);
 | |
|         ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR_TRANSIENT(orig));
 | |
|         if (shared_root) {
 | |
|             rb_ary_decrement_share(shared_root);
 | |
|         }
 | |
|         ARY_SET_LEN(copy, RARRAY_LEN(orig));
 | |
|     }
 | |
|     else {
 | |
|         VALUE shared_root = ary_make_shared(orig);
 | |
|         if (ARY_OWNS_HEAP_P(copy)) {
 | |
|             ary_heap_free(copy);
 | |
|         }
 | |
|         else {
 | |
|             rb_ary_unshare_safe(copy);
 | |
|         }
 | |
|         FL_UNSET_EMBED(copy);
 | |
|         ARY_SET_PTR(copy, ARY_HEAP_PTR(orig));
 | |
|         ARY_SET_LEN(copy, ARY_HEAP_LEN(orig));
 | |
|         rb_ary_set_shared(copy, shared_root);
 | |
|     }
 | |
|     ary_verify(copy);
 | |
|     return copy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     array.clear -> self
 | |
|  *
 | |
|  *  Removes all elements from +self+:
 | |
|  *    a = [:foo, 'bar', 2]
 | |
|  *    a.clear # => []
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_clear(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	if (!ARY_EMBED_P(ary)) {
 | |
| 	    rb_ary_unshare(ary);
 | |
| 	    FL_SET_EMBED(ary);
 | |
|             ARY_SET_EMBED_LEN(ary, 0);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
|         ARY_SET_LEN(ary, 0);
 | |
|         if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
 | |
|             ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
 | |
|         }
 | |
|     }
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.fill(obj) -> self
 | |
|  *    array.fill(obj, start) -> self
 | |
|  *    array.fill(obj, start, length) -> self
 | |
|  *    array.fill(obj, range) -> self
 | |
|  *    array.fill {|index| ... } -> self
 | |
|  *    array.fill(start) {|index| ... } -> self
 | |
|  *    array.fill(start, length) {|index| ... } -> self
 | |
|  *    array.fill(range) {|index| ... } -> self
 | |
|  *
 | |
|  *  Replaces specified elements in +self+ with specified objects; returns +self+.
 | |
|  *
 | |
|  *  With argument +obj+ and no block given, replaces all elements with that one object:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a # => ["a", "b", "c", "d"]
 | |
|  *    a.fill(:X) # => [:X, :X, :X, :X]
 | |
|  *
 | |
|  *  With arguments +obj+ and \Integer +start+, and no block given,
 | |
|  *  replaces elements based on the given start.
 | |
|  *
 | |
|  *  If +start+ is in range (<tt>0 <= start < array.size</tt>),
 | |
|  *  replaces all elements from offset +start+ through the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 2) # => ["a", "b", :X, :X]
 | |
|  *
 | |
|  *  If +start+ is too large (<tt>start >= array.size</tt>), does nothing:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 4) # => ["a", "b", "c", "d"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 5) # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  If +start+ is negative, counts from the end (starting index is <tt>start + array.size</tt>):
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, -2) # => ["a", "b", :X, :X]
 | |
|  *
 | |
|  *  If +start+ is too small (less than and far from zero), replaces all elements:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, -6) # => [:X, :X, :X, :X]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, -50) # => [:X, :X, :X, :X]
 | |
|  *
 | |
|  *  With arguments +obj+, \Integer +start+, and \Integer +length+, and no block given,
 | |
|  *  replaces elements based on the given +start+ and +length+.
 | |
|  *
 | |
|  *  If +start+ is in range, replaces +length+ elements beginning at offset +start+:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 1, 1) # => ["a", :X, "c", "d"]
 | |
|  *
 | |
|  *  If +start+ is negative, counts from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, -2, 1) # => ["a", "b", :X, "d"]
 | |
|  *
 | |
|  *  If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 5, 0) # => ["a", "b", "c", "d", nil]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 5, 2) # => ["a", "b", "c", "d", nil, :X, :X]
 | |
|  *
 | |
|  *  If +length+ is zero or negative, replaces no elements:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, 1, 0) # => ["a", "b", "c", "d"]
 | |
|  *    a.fill(:X, 1, -1) # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  With arguments +obj+ and \Range +range+, and no block given,
 | |
|  *  replaces elements based on the given range.
 | |
|  *
 | |
|  *  If the range is positive and ascending (<tt>0 < range.begin <= range.end</tt>),
 | |
|  *  replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (1..1)) # => ["a", :X, "c", "d"]
 | |
|  *
 | |
|  *  If <tt>range.first</tt> is negative, replaces no elements:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (-1..1)) # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  If <tt>range.last</tt> is negative, counts from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (0..-2)) # => [:X, :X, :X, "d"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (1..-2)) # => ["a", :X, :X, "d"]
 | |
|  *
 | |
|  *  If <tt>range.last</tt> and <tt>range.last</tt> are both negative,
 | |
|  *  both count from the end of the array:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (-1..-1)) # => ["a", "b", "c", :X]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(:X, (-2..-2)) # => ["a", "b", :X, "d"]
 | |
|  *
 | |
|  *  With no arguments and a block given, calls the block with each index;
 | |
|  *  replaces the corresponding element with the block's return value:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
 | |
|  *
 | |
|  *  With argument +start+ and a block given, calls the block with each index
 | |
|  *  from offset +start+ to the end; replaces the corresponding element
 | |
|  *  with the block's return value:
 | |
|  *
 | |
|  *  If start is in range (<tt>0 <= start < array.size</tt>),
 | |
|  *  replaces from offset +start+ to the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(1) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "new_3"]
 | |
|  *
 | |
|  *  If +start+ is too large(<tt>start >= array.size</tt>), does nothing:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  If +start+ is negative, counts from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "new_3"]
 | |
|  *
 | |
|  *  If start is too small (<tt>start <= -array.size</tt>, replaces all elements:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-6) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-50) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
 | |
|  *
 | |
|  *  With arguments +start+ and +length+, and a block given,
 | |
|  *  calls the block for each index specified by start length;
 | |
|  *  replaces the corresponding element with the block's return value.
 | |
|  *
 | |
|  *  If +start+ is in range, replaces +length+ elements beginning at offset +start+:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(1, 1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]
 | |
|  *
 | |
|  *  If start is negative, counts from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-2, 1) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]
 | |
|  *
 | |
|  *  If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(5, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(5, 2) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil, "new_5", "new_6"]
 | |
|  *
 | |
|  *  If +length+ is zero or less, replaces no elements:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(1, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]
 | |
|  *    a.fill(1, -1) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  With arguments +obj+ and +range+, and a block given,
 | |
|  *  calls the block with each index in the given range;
 | |
|  *  replaces the corresponding element with the block's return value.
 | |
|  *
 | |
|  *  If the range is positive and ascending (<tt>range 0 < range.begin <= range.end</tt>,
 | |
|  *  replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(1..1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]
 | |
|  *
 | |
|  *  If +range.first+ is negative, does nothing:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-1..1) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
 | |
|  *
 | |
|  *  If <tt>range.last</tt> is negative, counts from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(0..-2) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "d"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(1..-2) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "d"]
 | |
|  *
 | |
|  *  If <tt>range.first</tt> and <tt>range.last</tt> are both negative,
 | |
|  *  both count from the end:
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-1..-1) { |index| "new_#{index}" } # => ["a", "b", "c", "new_3"]
 | |
|  *    a = ['a', 'b', 'c', 'd']
 | |
|  *    a.fill(-2..-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_fill(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE item = Qundef, arg1, arg2;
 | |
|     long beg = 0, end = 0, len = 0;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
| 	rb_scan_args(argc, argv, "02", &arg1, &arg2);
 | |
| 	argc += 1;		/* hackish */
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
 | |
|     }
 | |
|     switch (argc) {
 | |
|       case 1:
 | |
| 	beg = 0;
 | |
| 	len = RARRAY_LEN(ary);
 | |
| 	break;
 | |
|       case 2:
 | |
| 	if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	/* fall through */
 | |
|       case 3:
 | |
| 	beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
 | |
| 	if (beg < 0) {
 | |
| 	    beg = RARRAY_LEN(ary) + beg;
 | |
| 	    if (beg < 0) beg = 0;
 | |
| 	}
 | |
| 	len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
 | |
| 	break;
 | |
|     }
 | |
|     rb_ary_modify(ary);
 | |
|     if (len < 0) {
 | |
|         return ary;
 | |
|     }
 | |
|     if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
 | |
| 	rb_raise(rb_eArgError, "argument too big");
 | |
|     }
 | |
|     end = beg + len;
 | |
|     if (RARRAY_LEN(ary) < end) {
 | |
| 	if (end >= ARY_CAPA(ary)) {
 | |
| 	    ary_resize_capa(ary, end);
 | |
| 	}
 | |
| 	ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
 | |
| 	ARY_SET_LEN(ary, end);
 | |
|     }
 | |
| 
 | |
|     if (item == Qundef) {
 | |
| 	VALUE v;
 | |
| 	long i;
 | |
| 
 | |
| 	for (i=beg; i<end; i++) {
 | |
| 	    v = rb_yield(LONG2NUM(i));
 | |
| 	    if (i>=RARRAY_LEN(ary)) break;
 | |
| 	    ARY_SET(ary, i, v);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	ary_memfill(ary, beg, len, item);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array + other_array -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing all elements of +array+
 | |
|  *  followed by all elements of +other_array+:
 | |
|  *    a = [0, 1] + [2, 3]
 | |
|  *    a # => [0, 1, 2, 3]
 | |
|  *
 | |
|  *  Related: #concat.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     long len, xlen, ylen;
 | |
| 
 | |
|     y = to_ary(y);
 | |
|     xlen = RARRAY_LEN(x);
 | |
|     ylen = RARRAY_LEN(y);
 | |
|     len = xlen + ylen;
 | |
|     z = rb_ary_new2(len);
 | |
| 
 | |
|     ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR_TRANSIENT(x));
 | |
|     ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR_TRANSIENT(y));
 | |
|     ARY_SET_LEN(z, len);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_append(VALUE x, VALUE y)
 | |
| {
 | |
|     long n = RARRAY_LEN(y);
 | |
|     if (n > 0) {
 | |
|         rb_ary_splice(x, RARRAY_LEN(x), 0, RARRAY_CONST_PTR_TRANSIENT(y), n);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.concat(*other_arrays) -> self
 | |
|  *
 | |
|  *  Adds to +array+ all elements from each \Array in +other_arrays+; returns +self+:
 | |
|  *    a = [0, 1]
 | |
|  *    a.concat([2, 3], [4, 5]) # => [0, 1, 2, 3, 4, 5]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_concat_multi(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
| 
 | |
|     if (argc == 1) {
 | |
| 	rb_ary_concat(ary, argv[0]);
 | |
|     }
 | |
|     else if (argc > 1) {
 | |
| 	int i;
 | |
| 	VALUE args = rb_ary_tmp_new(argc);
 | |
| 	for (i = 0; i < argc; i++) {
 | |
| 	    rb_ary_concat(args, argv[i]);
 | |
| 	}
 | |
| 	ary_append(ary, args);
 | |
|     }
 | |
| 
 | |
|     ary_verify(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_concat(VALUE x, VALUE y)
 | |
| {
 | |
|     return ary_append(x, to_ary(y));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array * n -> new_array
 | |
|  *    array * string_separator -> new_string
 | |
|  *
 | |
|  *  When non-negative argument \Integer +n+ is given,
 | |
|  *  returns a new \Array built by concatenating the +n+ copies of +self+:
 | |
|  *    a = ['x', 'y']
 | |
|  *    a * 3 # => ["x", "y", "x", "y", "x", "y"]
 | |
|  *
 | |
|  *  When \String argument +string_separator+ is given,
 | |
|  *  equivalent to <tt>array.join(string_separator)</tt>:
 | |
|  *    [0, [0, 1], {foo: 0}] * ', ' # => "0, 0, 1, {:foo=>0}"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_times(VALUE ary, VALUE times)
 | |
| {
 | |
|     VALUE ary2, tmp;
 | |
|     const VALUE *ptr;
 | |
|     long t, len;
 | |
| 
 | |
|     tmp = rb_check_string_type(times);
 | |
|     if (!NIL_P(tmp)) {
 | |
| 	return rb_ary_join(ary, tmp);
 | |
|     }
 | |
| 
 | |
|     len = NUM2LONG(times);
 | |
|     if (len == 0) {
 | |
|         ary2 = ary_new(rb_cArray, 0);
 | |
| 	goto out;
 | |
|     }
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative argument");
 | |
|     }
 | |
|     if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
 | |
| 	rb_raise(rb_eArgError, "argument too big");
 | |
|     }
 | |
|     len *= RARRAY_LEN(ary);
 | |
| 
 | |
|     ary2 = ary_new(rb_cArray, len);
 | |
|     ARY_SET_LEN(ary2, len);
 | |
| 
 | |
|     ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|     t = RARRAY_LEN(ary);
 | |
|     if (0 < t) {
 | |
| 	ary_memcpy(ary2, 0, t, ptr);
 | |
| 	while (t <= len/2) {
 | |
|             ary_memcpy(ary2, t, t, RARRAY_CONST_PTR_TRANSIENT(ary2));
 | |
|             t *= 2;
 | |
|         }
 | |
|         if (t < len) {
 | |
|             ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR_TRANSIENT(ary2));
 | |
|         }
 | |
|     }
 | |
|   out:
 | |
|     return ary2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.assoc(obj) -> found_array or nil
 | |
|  *
 | |
|  *  Returns the first element in +self+ that is an \Array
 | |
|  *  whose first element <tt>==</tt> +obj+:
 | |
|  *    a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
 | |
|  *    a.assoc(4) # => [4, 5, 6]
 | |
|  *
 | |
|  *  Returns +nil+ if no such element is found.
 | |
|  *
 | |
|  *  Related: #rassoc.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_assoc(VALUE ary, VALUE key)
 | |
| {
 | |
|     long i;
 | |
|     VALUE v;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	v = rb_check_array_type(RARRAY_AREF(ary, i));
 | |
| 	if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
 | |
| 	    rb_equal(RARRAY_AREF(v, 0), key))
 | |
| 	    return v;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.rassoc(obj) -> found_array or nil
 | |
|  *
 | |
|  *  Returns the first element in +self+ that is an \Array
 | |
|  *  whose second element <tt>==</tt> +obj+:
 | |
|  *    a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
 | |
|  *    a.rassoc(4) # => [2, 4]
 | |
|  *
 | |
|  *  Returns +nil+ if no such element is found.
 | |
|  *
 | |
|  *  Related: #assoc.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_rassoc(VALUE ary, VALUE value)
 | |
| {
 | |
|     long i;
 | |
|     VALUE v;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	v = RARRAY_AREF(ary, i);
 | |
| 	if (RB_TYPE_P(v, T_ARRAY) &&
 | |
| 	    RARRAY_LEN(v) > 1 &&
 | |
| 	    rb_equal(RARRAY_AREF(v, 1), value))
 | |
| 	    return v;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_equal(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i, len1;
 | |
|     const VALUE *p1, *p2;
 | |
| 
 | |
|     if (recur) return Qtrue; /* Subtle! */
 | |
| 
 | |
|     /* rb_equal() can evacuate ptrs */
 | |
|     p1 = RARRAY_CONST_PTR(ary1);
 | |
|     p2 = RARRAY_CONST_PTR(ary2);
 | |
|     len1 = RARRAY_LEN(ary1);
 | |
| 
 | |
|     for (i = 0; i < len1; i++) {
 | |
| 	if (*p1 != *p2) {
 | |
| 	    if (rb_equal(*p1, *p2)) {
 | |
| 		len1 = RARRAY_LEN(ary1);
 | |
| 		if (len1 != RARRAY_LEN(ary2))
 | |
| 		    return Qfalse;
 | |
| 		if (len1 < i)
 | |
| 		    return Qtrue;
 | |
|                 p1 = RARRAY_CONST_PTR(ary1) + i;
 | |
|                 p2 = RARRAY_CONST_PTR(ary2) + i;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		return Qfalse;
 | |
| 	    }
 | |
| 	}
 | |
| 	p1++;
 | |
| 	p2++;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array == other_array -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if both <tt>array.size == other_array.size</tt>
 | |
|  *  and for each index +i+ in +array+, <tt>array[i] == other_array[i]</tt>:
 | |
|  *    a0 = [:foo, 'bar', 2]
 | |
|  *    a1 = [:foo, 'bar', 2.0]
 | |
|  *    a1 == a0 # => true
 | |
|  *    [] == [] # => true
 | |
|  *
 | |
|  *  Otherwise, returns +false+.
 | |
|  *
 | |
|  *  This method is different from method Array#eql?,
 | |
|  *  which compares elements using <tt>Object#eql?</tt>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_equal(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     if (ary1 == ary2) return Qtrue;
 | |
|     if (!RB_TYPE_P(ary2, T_ARRAY)) {
 | |
| 	if (!rb_respond_to(ary2, idTo_ary)) {
 | |
| 	    return Qfalse;
 | |
| 	}
 | |
| 	return rb_equal(ary2, ary1);
 | |
|     }
 | |
|     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
 | |
|     if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue;
 | |
|     return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_eql(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     if (recur) return Qtrue; /* Subtle! */
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
 | |
| 	    return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.eql? other_array -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if +self+ and +other_array+ are the same size,
 | |
|  *  and if, for each index +i+ in +self+, <tt>self[i].eql? other_array[i]</tt>:
 | |
|  *    a0 = [:foo, 'bar', 2]
 | |
|  *    a1 = [:foo, 'bar', 2]
 | |
|  *    a1.eql?(a0) # => true
 | |
|  *
 | |
|  *  Otherwise, returns +false+.
 | |
|  *
 | |
|  *  This method is different from method {Array#==}[#method-i-3D-3D],
 | |
|  *  which compares using method <tt>Object#==</tt>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_eql(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     if (ary1 == ary2) return Qtrue;
 | |
|     if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
 | |
|     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
 | |
|     if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue;
 | |
|     return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.hash -> integer
 | |
|  *
 | |
|  *  Returns the integer hash value for +self+.
 | |
|  *
 | |
|  *  Two arrays with the same content will have the same hash code (and will compare using eql?):
 | |
|  *    [0, 1, 2].hash == [0, 1, 2].hash # => true
 | |
|  *    [0, 1, 2].hash == [0, 1, 3].hash # => false
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_hash(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     st_index_t h;
 | |
|     VALUE n;
 | |
| 
 | |
|     h = rb_hash_start(RARRAY_LEN(ary));
 | |
|     h = rb_hash_uint(h, (st_index_t)rb_ary_hash);
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	n = rb_hash(RARRAY_AREF(ary, i));
 | |
| 	h = rb_hash_uint(h, NUM2LONG(n));
 | |
|     }
 | |
|     h = rb_hash_end(h);
 | |
|     return ST2FIX(h);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.include?(obj) -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if for some index +i+ in +self+, <tt>obj == self[i]</tt>;
 | |
|  *  otherwise +false+:
 | |
|  *    [0, 1, 2].include?(2) # => true
 | |
|  *    [0, 1, 2].include?(3) # => false
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_includes(VALUE ary, VALUE item)
 | |
| {
 | |
|     long i;
 | |
|     VALUE e;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	e = RARRAY_AREF(ary, i);
 | |
| 	if (rb_equal(e, item)) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_includes_by_eql(VALUE ary, VALUE item)
 | |
| {
 | |
|     long i;
 | |
|     VALUE e;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	e = RARRAY_AREF(ary, i);
 | |
| 	if (rb_eql(item, e)) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_cmp(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i, len;
 | |
| 
 | |
|     if (recur) return Qundef;	/* Subtle! */
 | |
|     len = RARRAY_LEN(ary1);
 | |
|     if (len > RARRAY_LEN(ary2)) {
 | |
| 	len = RARRAY_LEN(ary2);
 | |
|     }
 | |
|     for (i=0; i<len; i++) {
 | |
| 	VALUE e1 = rb_ary_elt(ary1, i), e2 = rb_ary_elt(ary2, i);
 | |
| 	VALUE v = rb_funcallv(e1, id_cmp, 1, &e2);
 | |
| 	if (v != INT2FIX(0)) {
 | |
| 	    return v;
 | |
| 	}
 | |
|     }
 | |
|     return Qundef;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array <=> other_array -> -1, 0, or 1
 | |
|  *
 | |
|  *  Returns -1, 0, or 1 as +self+ is less than, equal to, or greater than +other_array+.
 | |
|  *  For each index +i+ in +self+, evaluates <tt>result = self[i] <=> other_array[i]</tt>.
 | |
|  *
 | |
|  *  Returns -1 if any result is -1:
 | |
|  *    [0, 1, 2] <=> [0, 1, 3] # => -1
 | |
|  *
 | |
|  *  Returns 1 if any result is 1:
 | |
|  *    [0, 1, 2] <=> [0, 1, 1] # => 1
 | |
|  *
 | |
|  *  When all results are zero:
 | |
|  *  - Returns -1 if +array+ is smaller than +other_array+:
 | |
|  *      [0, 1, 2] <=> [0, 1, 2, 3] # => -1
 | |
|  *  - Returns 1 if +array+ is larger than +other_array+:
 | |
|  *      [0, 1, 2] <=> [0, 1] # => 1
 | |
|  *  - Returns 0 if +array+ and +other_array+ are the same size:
 | |
|  *      [0, 1, 2] <=> [0, 1, 2] # => 0
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_cmp(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     long len;
 | |
|     VALUE v;
 | |
| 
 | |
|     ary2 = rb_check_array_type(ary2);
 | |
|     if (NIL_P(ary2)) return Qnil;
 | |
|     if (ary1 == ary2) return INT2FIX(0);
 | |
|     v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
 | |
|     if (v != Qundef) return v;
 | |
|     len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
 | |
|     if (len == 0) return INT2FIX(0);
 | |
|     if (len > 0) return INT2FIX(1);
 | |
|     return INT2FIX(-1);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_add_hash(VALUE hash, VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	VALUE elt = RARRAY_AREF(ary, i);
 | |
| 	rb_hash_add_new_element(hash, elt, elt);
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| ary_tmp_hash_new(VALUE ary)
 | |
| {
 | |
|     long size = RARRAY_LEN(ary);
 | |
|     VALUE hash = rb_hash_new_with_size(size);
 | |
| 
 | |
|     RBASIC_CLEAR_CLASS(hash);
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_hash(VALUE ary)
 | |
| {
 | |
|     VALUE hash = ary_tmp_hash_new(ary);
 | |
|     return ary_add_hash(hash, ary);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_add_hash_by(VALUE hash, VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
 | |
| 	rb_hash_add_new_element(hash, k, v);
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_hash_by(VALUE ary)
 | |
| {
 | |
|     VALUE hash = ary_tmp_hash_new(ary);
 | |
|     return ary_add_hash_by(hash, ary);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ary_recycle_hash(VALUE hash)
 | |
| {
 | |
|     assert(RBASIC_CLASS(hash) == 0);
 | |
|     if (RHASH_ST_TABLE_P(hash)) {
 | |
|         st_table *tbl = RHASH_ST_TABLE(hash);
 | |
| 	st_free_table(tbl);
 | |
|         RHASH_ST_CLEAR(hash);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array - other_array -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing only those elements from +array+
 | |
|  *  that are not found in \Array +other_array+;
 | |
|  *  items are compared using <tt>eql?</tt>;
 | |
|  *  the order from +array+ is preserved:
 | |
|  *    [0, 1, 1, 2, 1, 1, 3, 1, 1] - [1] # => [0, 2, 3]
 | |
|  *    [0, 1, 2, 3] - [3, 0] # => [1, 2]
 | |
|  *    [0, 1, 2] - [4] # => [0, 1, 2]
 | |
|  *
 | |
|  *  Related: Array#difference.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_diff(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE ary3;
 | |
|     VALUE hash;
 | |
|     long i;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     if (RARRAY_LEN(ary2) == 0) { return ary_make_shared_copy(ary1); }
 | |
|     ary3 = rb_ary_new();
 | |
| 
 | |
|     if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN || RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
 | |
| 	for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	    VALUE elt = rb_ary_elt(ary1, i);
 | |
| 	    if (rb_ary_includes_by_eql(ary2, elt)) continue;
 | |
| 	    rb_ary_push(ary3, elt);
 | |
| 	}
 | |
| 	return ary3;
 | |
|     }
 | |
| 
 | |
|     hash = ary_make_hash(ary2);
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
|         if (rb_hash_stlike_lookup(hash, RARRAY_AREF(ary1, i), NULL)) continue;
 | |
| 	rb_ary_push(ary3, rb_ary_elt(ary1, i));
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.difference(*other_arrays) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing only those elements from +self+
 | |
|  *  that are not found in any of the Arrays +other_arrays+;
 | |
|  *  items are compared using <tt>eql?</tt>;  order from +self+ is preserved:
 | |
|  *    [0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3]
 | |
|  *    [0, 1, 2, 3].difference([3, 0], [1, 3]) # => [2]
 | |
|  *    [0, 1, 2].difference([4]) # => [0, 1, 2]
 | |
|  *
 | |
|  *  Returns a copy of +self+ if no arguments given.
 | |
|  *
 | |
|  *  Related: Array#-.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_difference_multi(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE ary_diff;
 | |
|     long i, length;
 | |
|     volatile VALUE t0;
 | |
|     bool *is_hash = ALLOCV_N(bool, t0, argc);
 | |
|     ary_diff = rb_ary_new();
 | |
|     length = RARRAY_LEN(ary);
 | |
| 
 | |
|     for (i = 0; i < argc; i++) {
 | |
|         argv[i] = to_ary(argv[i]);
 | |
|         is_hash[i] = (length > SMALL_ARRAY_LEN && RARRAY_LEN(argv[i]) > SMALL_ARRAY_LEN);
 | |
|         if (is_hash[i]) argv[i] = ary_make_hash(argv[i]);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
|         int j;
 | |
|         VALUE elt = rb_ary_elt(ary, i);
 | |
|         for (j = 0; j < argc; j++) {
 | |
|             if (is_hash[j]) {
 | |
|                 if (rb_hash_stlike_lookup(argv[j], RARRAY_AREF(ary, i), NULL))
 | |
|                     break;
 | |
|             }
 | |
|             else {
 | |
|                 if (rb_ary_includes_by_eql(argv[j], elt)) break;
 | |
|             }
 | |
|         }
 | |
|         if (j == argc) rb_ary_push(ary_diff, elt);
 | |
|     }
 | |
| 
 | |
|     ALLOCV_END(t0);
 | |
| 
 | |
|     return ary_diff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array & other_array -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing each element found in both +array+ and \Array +other_array+;
 | |
|  *  duplicates are omitted; items are compared using <tt>eql?</tt>:
 | |
|  *    [0, 1, 2, 3] & [1, 2] # => [1, 2]
 | |
|  *    [0, 1, 0, 1] & [0, 1] # => [0, 1]
 | |
|  *
 | |
|  *  Preserves order from +array+:
 | |
|  *    [0, 1, 2] & [3, 2, 1, 0] # => [0, 1, 2]
 | |
|  *
 | |
|  *  Related: Array#intersection.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_and(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE hash, ary3, v;
 | |
|     st_data_t vv;
 | |
|     long i;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     ary3 = rb_ary_new();
 | |
|     if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return ary3;
 | |
| 
 | |
|     if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
 | |
| 	for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	    v = RARRAY_AREF(ary1, i);
 | |
| 	    if (!rb_ary_includes_by_eql(ary2, v)) continue;
 | |
| 	    if (rb_ary_includes_by_eql(ary3, v)) continue;
 | |
| 	    rb_ary_push(ary3, v);
 | |
| 	}
 | |
| 	return ary3;
 | |
|     }
 | |
| 
 | |
|     hash = ary_make_hash(ary2);
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	v = RARRAY_AREF(ary1, i);
 | |
| 	vv = (st_data_t)v;
 | |
|         if (rb_hash_stlike_delete(hash, &vv, 0)) {
 | |
| 	    rb_ary_push(ary3, v);
 | |
| 	}
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.intersection(*other_arrays) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing each element found both in +self+
 | |
|  *  and in all of the given Arrays +other_arrays+;
 | |
|  *  duplicates are omitted; items are compared using <tt>eql?</tt>:
 | |
|  *    [0, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
 | |
|  *    [0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
 | |
|  *
 | |
|  *  Preserves order from +self+:
 | |
|  *    [0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]
 | |
|  *
 | |
|  *  Returns a copy of +self+ if no arguments given.
 | |
|  *
 | |
|  *  Related: Array#&.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_intersection_multi(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE result = rb_ary_dup(ary);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < argc; i++) {
 | |
|         result = rb_ary_and(result, argv[i]);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ary_hash_orset(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
 | |
| {
 | |
|     if (existing) return ST_STOP;
 | |
|     *key = *value = (VALUE)arg;
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_union(VALUE ary_union, VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
|         VALUE elt = rb_ary_elt(ary, i);
 | |
|         if (rb_ary_includes_by_eql(ary_union, elt)) continue;
 | |
|         rb_ary_push(ary_union, elt);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_union_hash(VALUE hash, VALUE ary2)
 | |
| {
 | |
|     long i;
 | |
|     for (i = 0; i < RARRAY_LEN(ary2); i++) {
 | |
|         VALUE elt = RARRAY_AREF(ary2, i);
 | |
|         if (!rb_hash_stlike_update(hash, (st_data_t)elt, ary_hash_orset, (st_data_t)elt)) {
 | |
|             RB_OBJ_WRITTEN(hash, Qundef, elt);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array | other_array -> new_array
 | |
|  *
 | |
|  *  Returns the union of +array+ and \Array +other_array+;
 | |
|  *  duplicates are removed; order is preserved;
 | |
|  *  items are compared using <tt>eql?</tt>:
 | |
|  *    [0, 1] | [2, 3] # => [0, 1, 2, 3]
 | |
|  *    [0, 1, 1] | [2, 2, 3] # => [0, 1, 2, 3]
 | |
|  *    [0, 1, 2] | [3, 2, 1, 0] # => [0, 1, 2, 3]
 | |
|  *
 | |
|  *  Related: Array#union.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_or(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE hash, ary3;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     if (RARRAY_LEN(ary1) + RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
 | |
| 	ary3 = rb_ary_new();
 | |
|         rb_ary_union(ary3, ary1);
 | |
|         rb_ary_union(ary3, ary2);
 | |
| 	return ary3;
 | |
|     }
 | |
| 
 | |
|     hash = ary_make_hash(ary1);
 | |
|     rb_ary_union_hash(hash, ary2);
 | |
| 
 | |
|     ary3 = rb_hash_values(hash);
 | |
|     ary_recycle_hash(hash);
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.union(*other_arrays) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array that is the union of +self+ and all given Arrays +other_arrays+;
 | |
|  *  duplicates are removed;  order is preserved;  items are compared using <tt>eql?</tt>:
 | |
|  *    [0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7]
 | |
|  *    [0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3]
 | |
|  *    [0, 1, 2, 3].union([3, 2], [1, 0]) # => [0, 1, 2, 3]
 | |
|  *
 | |
|  *  Returns a copy of +self+ if no arguments given.
 | |
|  *
 | |
|  *  Related: Array#|.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_union_multi(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int i;
 | |
|     long sum;
 | |
|     VALUE hash, ary_union;
 | |
| 
 | |
|     sum = RARRAY_LEN(ary);
 | |
|     for (i = 0; i < argc; i++) {
 | |
|         argv[i] = to_ary(argv[i]);
 | |
|         sum += RARRAY_LEN(argv[i]);
 | |
|     }
 | |
| 
 | |
|     if (sum <= SMALL_ARRAY_LEN) {
 | |
|         ary_union = rb_ary_new();
 | |
| 
 | |
|         rb_ary_union(ary_union, ary);
 | |
|         for (i = 0; i < argc; i++) rb_ary_union(ary_union, argv[i]);
 | |
| 
 | |
|         return ary_union;
 | |
|     }
 | |
| 
 | |
|     hash = ary_make_hash(ary);
 | |
|     for (i = 0; i < argc; i++) rb_ary_union_hash(hash, argv[i]);
 | |
| 
 | |
|     ary_union = rb_hash_values(hash);
 | |
|     ary_recycle_hash(hash);
 | |
|     return ary_union;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.intersect?(other_ary)   -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if the array and +other_ary+ have at least one element in
 | |
|  *  common, otherwise returns +false+.
 | |
|  *
 | |
|  *     a = [ 1, 2, 3 ]
 | |
|  *     b = [ 3, 4, 5 ]
 | |
|  *     c = [ 5, 6, 7 ]
 | |
|  *     a.intersect?(b)   #=> true
 | |
|  *     a.intersect?(c)   #=> false
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_intersect_p(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE hash, v, result, shorter, longer;
 | |
|     st_data_t vv;
 | |
|     long i;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return Qfalse;
 | |
| 
 | |
|     if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
 | |
|         for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
|             v = RARRAY_AREF(ary1, i);
 | |
|             if (rb_ary_includes_by_eql(ary2, v)) return Qtrue;
 | |
|         }
 | |
|         return Qfalse;
 | |
|     }
 | |
| 
 | |
|     shorter = ary1;
 | |
|     longer = ary2;
 | |
|     if (RARRAY_LEN(ary1) > RARRAY_LEN(ary2)) {
 | |
|         longer = ary1;
 | |
|         shorter = ary2;
 | |
|     }
 | |
| 
 | |
|     hash = ary_make_hash(shorter);
 | |
|     result = Qfalse;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(longer); i++) {
 | |
|         v = RARRAY_AREF(longer, i);
 | |
|         vv = (st_data_t)v;
 | |
|         if (rb_hash_stlike_lookup(hash, vv, 0)) {
 | |
|             result = Qtrue;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_max_generic(VALUE ary, long i, VALUE vmax)
 | |
| {
 | |
|     RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary));
 | |
| 
 | |
|     VALUE v;
 | |
|     for (; i < RARRAY_LEN(ary); ++i) {
 | |
|         v = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (rb_cmpint(rb_funcallv(vmax, id_cmp, 1, &v), vmax, v) < 0) {
 | |
|             vmax = v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmax;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_max_opt_fixnum(VALUE ary, long i, VALUE vmax)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(FIXNUM_P(vmax));
 | |
| 
 | |
|     VALUE v;
 | |
|     for (; i < n; ++i) {
 | |
|         v = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (FIXNUM_P(v)) {
 | |
|             if ((long)vmax < (long)v) {
 | |
|                 vmax = v;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_max_generic(ary, i, vmax);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmax;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_max_opt_float(VALUE ary, long i, VALUE vmax)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(RB_FLOAT_TYPE_P(vmax));
 | |
| 
 | |
|     VALUE v;
 | |
|     for (; i < n; ++i) {
 | |
|         v = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (RB_FLOAT_TYPE_P(v)) {
 | |
|             if (rb_float_cmp(vmax, v) < 0) {
 | |
|                 vmax = v;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_max_generic(ary, i, vmax);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmax;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_max_opt_string(VALUE ary, long i, VALUE vmax)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(STRING_P(vmax));
 | |
| 
 | |
|     VALUE v;
 | |
|     for (; i < n; ++i) {
 | |
|         v = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (STRING_P(v)) {
 | |
|             if (rb_str_cmp(vmax, v) < 0) {
 | |
|                 vmax = v;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_max_generic(ary, i, vmax);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmax;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.max -> element
 | |
|  *    array.max {|a, b| ... } -> element
 | |
|  *    array.max(n) -> new_array
 | |
|  *    array.max(n) {|a, b| ... } -> new_array
 | |
|  *
 | |
|  *  Returns one of the following:
 | |
|  *  - The maximum-valued element from +self+.
 | |
|  *  - A new \Array of maximum-valued elements selected from +self+.
 | |
|  *
 | |
|  *  When no block is given, each element in +self+ must respond to method <tt><=></tt>
 | |
|  *  with an \Integer.
 | |
|  *
 | |
|  *  With no argument and no block, returns the element in +self+
 | |
|  *  having the maximum value per method <tt><=></tt>:
 | |
|  *    [0, 1, 2].max # => 2
 | |
|  *
 | |
|  *  With an argument \Integer +n+ and no block, returns a new \Array with at most +n+ elements,
 | |
|  *  in descending order per method <tt><=></tt>:
 | |
|  *    [0, 1, 2, 3].max(3) # => [3, 2, 1]
 | |
|  *    [0, 1, 2, 3].max(6) # => [3, 2, 1, 0]
 | |
|  *
 | |
|  *  When a block is given, the block must return an \Integer.
 | |
|  *
 | |
|  *  With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements;
 | |
|  *  returns the element having the maximum value per the block:
 | |
|  *    ['0', '00', '000'].max {|a, b| a.size <=> b.size } # => "000"
 | |
|  *
 | |
|  *  With an argument +n+ and a block, returns a new \Array with at most +n+ elements,
 | |
|  *  in descending order per the block:
 | |
|  *    ['0', '00', '000'].max(2) {|a, b| a.size <=> b.size } # => ["000", "00"]
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_max(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     VALUE result = Qundef, v;
 | |
|     VALUE num;
 | |
|     long i;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
 | |
|        return rb_nmin_run(ary, num, 0, 1, 1);
 | |
| 
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     if (rb_block_given_p()) {
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	   v = RARRAY_AREF(ary, i);
 | |
| 	   if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) > 0) {
 | |
| 	       result = v;
 | |
| 	   }
 | |
| 	}
 | |
|     }
 | |
|     else if (n > 0) {
 | |
|         result = RARRAY_AREF(ary, 0);
 | |
|         if (n > 1) {
 | |
|             if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) {
 | |
|                 return ary_max_opt_fixnum(ary, 1, result);
 | |
|             }
 | |
|             else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) {
 | |
|                 return ary_max_opt_string(ary, 1, result);
 | |
|             }
 | |
|             else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) {
 | |
|                 return ary_max_opt_float(ary, 1, result);
 | |
|             }
 | |
|             else {
 | |
|                 return ary_max_generic(ary, 1, result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (result == Qundef) return Qnil;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_min_generic(VALUE ary, long i, VALUE vmin)
 | |
| {
 | |
|     RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary));
 | |
| 
 | |
|     VALUE v;
 | |
|     for (; i < RARRAY_LEN(ary); ++i) {
 | |
|         v = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (rb_cmpint(rb_funcallv(vmin, id_cmp, 1, &v), vmin, v) > 0) {
 | |
|             vmin = v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmin;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_min_opt_fixnum(VALUE ary, long i, VALUE vmin)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(FIXNUM_P(vmin));
 | |
| 
 | |
|     VALUE a;
 | |
|     for (; i < n; ++i) {
 | |
|         a = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (FIXNUM_P(a)) {
 | |
|             if ((long)vmin > (long)a) {
 | |
|                 vmin = a;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_min_generic(ary, i, vmin);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmin;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_min_opt_float(VALUE ary, long i, VALUE vmin)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(RB_FLOAT_TYPE_P(vmin));
 | |
| 
 | |
|     VALUE a;
 | |
|     for (; i < n; ++i) {
 | |
|         a = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (RB_FLOAT_TYPE_P(a)) {
 | |
|             if (rb_float_cmp(vmin, a) > 0) {
 | |
|                 vmin = a;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_min_generic(ary, i, vmin);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmin;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_min_opt_string(VALUE ary, long i, VALUE vmin)
 | |
| {
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     RUBY_ASSERT(i > 0 && i < n);
 | |
|     RUBY_ASSERT(STRING_P(vmin));
 | |
| 
 | |
|     VALUE a;
 | |
|     for (; i < n; ++i) {
 | |
|         a = RARRAY_AREF(ary, i);
 | |
| 
 | |
|         if (STRING_P(a)) {
 | |
|             if (rb_str_cmp(vmin, a) > 0) {
 | |
|                 vmin = a;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             return ary_min_generic(ary, i, vmin);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return vmin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.min -> element
 | |
|  *    array.min { |a, b| ... } -> element
 | |
|  *    array.min(n) -> new_array
 | |
|  *    array.min(n) { |a, b| ... } -> new_array
 | |
|  *
 | |
|  *  Returns one of the following:
 | |
|  *  - The minimum-valued element from +self+.
 | |
|  *  - A new \Array of minimum-valued elements selected from +self+.
 | |
|  *
 | |
|  *  When no block is given, each element in +self+ must respond to method <tt><=></tt>
 | |
|  *  with an \Integer.
 | |
|  *
 | |
|  *  With no argument and no block, returns the element in +self+
 | |
|  *  having the minimum value per method <tt><=></tt>:
 | |
|  *    [0, 1, 2].min # => 0
 | |
|  *
 | |
|  *  With \Integer argument +n+ and no block, returns a new \Array with at most +n+ elements,
 | |
|  *  in ascending order per method <tt><=></tt>:
 | |
|  *    [0, 1, 2, 3].min(3) # => [0, 1, 2]
 | |
|  *    [0, 1, 2, 3].min(6) # => [0, 1, 2, 3]
 | |
|  *
 | |
|  *  When a block is given, the block must return an Integer.
 | |
|  *
 | |
|  *  With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements;
 | |
|  *  returns the element having the minimum value per the block:
 | |
|  *    ['0', '00', '000'].min { |a, b| a.size <=> b.size } # => "0"
 | |
|  *
 | |
|  *  With an argument +n+ and a block, returns a new \Array with at most +n+ elements,
 | |
|  *  in ascending order per the block:
 | |
|  *    [0, 1, 2, 3].min(3) # => [0, 1, 2]
 | |
|  *    [0, 1, 2, 3].min(6) # => [0, 1, 2, 3]
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_min(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     struct cmp_opt_data cmp_opt = { 0, 0 };
 | |
|     VALUE result = Qundef, v;
 | |
|     VALUE num;
 | |
|     long i;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
 | |
|        return rb_nmin_run(ary, num, 0, 0, 1);
 | |
| 
 | |
|     const long n = RARRAY_LEN(ary);
 | |
|     if (rb_block_given_p()) {
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	   v = RARRAY_AREF(ary, i);
 | |
| 	   if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) < 0) {
 | |
| 	       result = v;
 | |
| 	   }
 | |
| 	}
 | |
|     }
 | |
|     else if (n > 0) {
 | |
|         result = RARRAY_AREF(ary, 0);
 | |
|         if (n > 1) {
 | |
|             if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) {
 | |
|                 return ary_min_opt_fixnum(ary, 1, result);
 | |
|             }
 | |
|             else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) {
 | |
|                 return ary_min_opt_string(ary, 1, result);
 | |
|             }
 | |
|             else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) {
 | |
|                 return ary_min_opt_float(ary, 1, result);
 | |
|             }
 | |
|             else {
 | |
|                 return ary_min_generic(ary, 1, result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (result == Qundef) return Qnil;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.minmax -> [min_val, max_val]
 | |
|  *    array.minmax {|a, b| ... } -> [min_val, max_val]
 | |
|  *
 | |
|  *  Returns a new 2-element \Array containing the minimum and maximum values
 | |
|  *  from +self+, either per method <tt><=></tt> or per a given block:.
 | |
|  *
 | |
|  *  When no block is given, each element in +self+ must respond to method <tt><=></tt>
 | |
|  *  with an \Integer;
 | |
|  *  returns a new 2-element \Array containing the minimum and maximum values
 | |
|  *  from +self+, per method <tt><=></tt>:
 | |
|  *    [0, 1, 2].minmax # => [0, 2]
 | |
|  *
 | |
|  *  When a block is given, the block must return an \Integer;
 | |
|  *  the block is called <tt>self.size-1</tt> times to compare elements;
 | |
|  *  returns a new 2-element \Array containing the minimum and maximum values
 | |
|  *  from +self+, per the block:
 | |
|  *    ['0', '00', '000'].minmax {|a, b| a.size <=> b.size } # => ["0", "000"]
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_minmax(VALUE ary)
 | |
| {
 | |
|     if (rb_block_given_p()) {
 | |
|         return rb_call_super(0, NULL);
 | |
|     }
 | |
|     return rb_assoc_new(rb_ary_min(0, 0, ary), rb_ary_max(0, 0, ary));
 | |
| }
 | |
| 
 | |
| static int
 | |
| push_value(st_data_t key, st_data_t val, st_data_t ary)
 | |
| {
 | |
|     rb_ary_push((VALUE)ary, (VALUE)val);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.uniq! -> self or nil
 | |
|  *    array.uniq! {|element| ... } -> self or nil
 | |
|  *
 | |
|  *  Removes duplicate elements from +self+, the first occurrence always being retained;
 | |
|  *  returns +self+ if any elements removed, +nil+ otherwise.
 | |
|  *
 | |
|  *  With no block given, identifies and removes elements using method <tt>eql?</tt>
 | |
|  *  to compare.
 | |
|  *
 | |
|  *  Returns +self+ if any elements removed:
 | |
|  *    a = [0, 0, 1, 1, 2, 2]
 | |
|  *    a.uniq! # => [0, 1, 2]
 | |
|  *
 | |
|  *  Returns +nil+ if no elements removed.
 | |
|  *
 | |
|  *  With a block given, calls the block for each element;
 | |
|  *  identifies (using method <tt>eql?</tt>) and removes
 | |
|  *  elements for which the block returns duplicate values.
 | |
|  *
 | |
|  *  Returns +self+ if any elements removed:
 | |
|  *    a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
 | |
|  *    a.uniq! {|element| element.size } # => ['a', 'aa', 'aaa']
 | |
|  *
 | |
|  *  Returns +nil+ if no elements removed.
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_uniq_bang(VALUE ary)
 | |
| {
 | |
|     VALUE hash;
 | |
|     long hash_size;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (RARRAY_LEN(ary) <= 1)
 | |
|         return Qnil;
 | |
|     if (rb_block_given_p())
 | |
| 	hash = ary_make_hash_by(ary);
 | |
|     else
 | |
| 	hash = ary_make_hash(ary);
 | |
| 
 | |
|     hash_size = RHASH_SIZE(hash);
 | |
|     if (RARRAY_LEN(ary) == hash_size) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     rb_ary_modify_check(ary);
 | |
|     ARY_SET_LEN(ary, 0);
 | |
|     if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
 | |
| 	rb_ary_unshare(ary);
 | |
| 	FL_SET_EMBED(ary);
 | |
|     }
 | |
|     ary_resize_capa(ary, hash_size);
 | |
|     rb_hash_foreach(hash, push_value, ary);
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.uniq -> new_array
 | |
|  *    array.uniq {|element| ... } -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing those elements from +self+ that are not duplicates,
 | |
|  *  the first occurrence always being retained.
 | |
|  *
 | |
|  *  With no block given, identifies and omits duplicates using method <tt>eql?</tt>
 | |
|  *  to compare.
 | |
|  *    a = [0, 0, 1, 1, 2, 2]
 | |
|  *    a.uniq # => [0, 1, 2]
 | |
|  *
 | |
|  *  With a block given, calls the block for each element;
 | |
|  *  identifies (using method <tt>eql?</tt>) and omits duplicate values,
 | |
|  *  that is, those elements for which the block returns the same value:
 | |
|  *    a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
 | |
|  *    a.uniq {|element| element.size } # => ["a", "aa", "aaa"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_uniq(VALUE ary)
 | |
| {
 | |
|     VALUE hash, uniq;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) <= 1) {
 | |
|         hash = 0;
 | |
|         uniq = rb_ary_dup(ary);
 | |
|     }
 | |
|     else if (rb_block_given_p()) {
 | |
| 	hash = ary_make_hash_by(ary);
 | |
| 	uniq = rb_hash_values(hash);
 | |
|     }
 | |
|     else {
 | |
| 	hash = ary_make_hash(ary);
 | |
| 	uniq = rb_hash_values(hash);
 | |
|     }
 | |
|     if (hash) {
 | |
|         ary_recycle_hash(hash);
 | |
|     }
 | |
| 
 | |
|     return uniq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.compact! -> self or nil
 | |
|  *
 | |
|  *  Removes all +nil+ elements from +self+.
 | |
|  *
 | |
|  *  Returns +self+ if any elements removed, otherwise +nil+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_compact_bang(VALUE ary)
 | |
| {
 | |
|     VALUE *p, *t, *end;
 | |
|     long n;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     p = t = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary); /* WB: no new reference */
 | |
|     end = p + RARRAY_LEN(ary);
 | |
| 
 | |
|     while (t < end) {
 | |
| 	if (NIL_P(*t)) t++;
 | |
| 	else *p++ = *t++;
 | |
|     }
 | |
|     n = p - RARRAY_CONST_PTR_TRANSIENT(ary);
 | |
|     if (RARRAY_LEN(ary) == n) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     ary_resize_smaller(ary, n);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.compact -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing all non-+nil+ elements from +self+:
 | |
|  *    a = [nil, 0, nil, 1, nil, 2, nil]
 | |
|  *    a.compact # => [0, 1, 2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_compact(VALUE ary)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_compact_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.count -> an_integer
 | |
|  *    array.count(obj) -> an_integer
 | |
|  *    array.count {|element| ... } -> an_integer
 | |
|  *
 | |
|  *  Returns a count of specified elements.
 | |
|  *
 | |
|  *  With no argument and no block, returns the count of all elements:
 | |
|  *    [0, 1, 2].count # => 3
 | |
|  *    [].count # => 0
 | |
|  *
 | |
|  *  With argument +obj+, returns the count of elements <tt>==</tt> to +obj+:
 | |
|  *    [0, 1, 2, 0.0].count(0) # => 2
 | |
|  *    [0, 1, 2].count(3) # => 0
 | |
|  *
 | |
|  *  With no argument and a block given, calls the block with each element;
 | |
|  *  returns the count of elements for which the block returns a truthy value:
 | |
|  *    [0, 1, 2, 3].count {|element| element > 1} # => 2
 | |
|  *
 | |
|  *  With argument +obj+ and a block given, issues a warning, ignores the block,
 | |
|  *  and returns the count of elements <tt>==</tt> to +obj+:
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_count(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, n = 0;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) == 0) {
 | |
| 	VALUE v;
 | |
| 
 | |
| 	if (!rb_block_given_p())
 | |
| 	    return LONG2NUM(RARRAY_LEN(ary));
 | |
| 
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    v = RARRAY_AREF(ary, i);
 | |
| 	    if (RTEST(rb_yield(v))) n++;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
|         VALUE obj = argv[0];
 | |
| 
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return LONG2NUM(n);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flatten(VALUE ary, int level)
 | |
| {
 | |
|     long i;
 | |
|     VALUE stack, result, tmp = 0, elt, vmemo;
 | |
|     st_table *memo = 0;
 | |
|     st_data_t id;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
|         elt = RARRAY_AREF(ary, i);
 | |
|         tmp = rb_check_array_type(elt);
 | |
|         if (!NIL_P(tmp)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (i == RARRAY_LEN(ary)) {
 | |
|         return ary;
 | |
|     }
 | |
| 
 | |
|     result = ary_new(0, RARRAY_LEN(ary));
 | |
|     ary_memcpy(result, 0, i, RARRAY_CONST_PTR_TRANSIENT(ary));
 | |
|     ARY_SET_LEN(result, i);
 | |
| 
 | |
|     stack = ary_new(0, ARY_DEFAULT_SIZE);
 | |
|     rb_ary_push(stack, ary);
 | |
|     rb_ary_push(stack, LONG2NUM(i + 1));
 | |
| 
 | |
|     if (level < 0) {
 | |
| 	vmemo = rb_hash_new();
 | |
| 	RBASIC_CLEAR_CLASS(vmemo);
 | |
| 	memo = st_init_numtable();
 | |
| 	rb_hash_st_table_set(vmemo, memo);
 | |
| 	st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
 | |
| 	st_insert(memo, (st_data_t)tmp, (st_data_t)Qtrue);
 | |
|     }
 | |
| 
 | |
|     ary = tmp;
 | |
|     i = 0;
 | |
| 
 | |
|     while (1) {
 | |
| 	while (i < RARRAY_LEN(ary)) {
 | |
| 	    elt = RARRAY_AREF(ary, i++);
 | |
| 	    if (level >= 0 && RARRAY_LEN(stack) / 2 >= level) {
 | |
| 		rb_ary_push(result, elt);
 | |
| 		continue;
 | |
| 	    }
 | |
| 	    tmp = rb_check_array_type(elt);
 | |
| 	    if (RBASIC(result)->klass) {
 | |
| 		if (memo) {
 | |
| 		    RB_GC_GUARD(vmemo);
 | |
| 		    st_clear(memo);
 | |
| 		}
 | |
| 		rb_raise(rb_eRuntimeError, "flatten reentered");
 | |
| 	    }
 | |
| 	    if (NIL_P(tmp)) {
 | |
| 		rb_ary_push(result, elt);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		if (memo) {
 | |
| 		    id = (st_data_t)tmp;
 | |
| 		    if (st_is_member(memo, id)) {
 | |
| 			st_clear(memo);
 | |
| 			rb_raise(rb_eArgError, "tried to flatten recursive array");
 | |
| 		    }
 | |
| 		    st_insert(memo, id, (st_data_t)Qtrue);
 | |
| 		}
 | |
| 		rb_ary_push(stack, ary);
 | |
| 		rb_ary_push(stack, LONG2NUM(i));
 | |
| 		ary = tmp;
 | |
| 		i = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (RARRAY_LEN(stack) == 0) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	if (memo) {
 | |
| 	    id = (st_data_t)ary;
 | |
| 	    st_delete(memo, &id, 0);
 | |
| 	}
 | |
| 	tmp = rb_ary_pop(stack);
 | |
| 	i = NUM2LONG(tmp);
 | |
| 	ary = rb_ary_pop(stack);
 | |
|     }
 | |
| 
 | |
|     if (memo) {
 | |
| 	st_clear(memo);
 | |
|     }
 | |
| 
 | |
|     RBASIC_SET_CLASS(result, rb_cArray);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.flatten! -> self or nil
 | |
|  *    array.flatten!(level) -> self or nil
 | |
|  *
 | |
|  *  Replaces each nested \Array in +self+ with the elements from that \Array;
 | |
|  *  returns +self+ if any changes, +nil+ otherwise.
 | |
|  *
 | |
|  *  With non-negative \Integer argument +level+, flattens recursively through +level+ levels:
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten!(1) # => [0, 1, [2, 3], 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten!(2) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten!(3) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    [0, 1, 2].flatten!(1) # => nil
 | |
|  *
 | |
|  *  With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels:
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten! # => [0, 1, 2, 3, 4, 5]
 | |
|  *    [0, 1, 2].flatten! # => nil
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten!(-1) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten!(-2) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    [0, 1, 2].flatten!(-1) # => nil
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int mod = 0, level = -1;
 | |
|     VALUE result, lv;
 | |
| 
 | |
|     lv = (rb_check_arity(argc, 0, 1) ? argv[0] : Qnil);
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (!NIL_P(lv)) level = NUM2INT(lv);
 | |
|     if (level == 0) return Qnil;
 | |
| 
 | |
|     result = flatten(ary, level);
 | |
|     if (result == ary) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
 | |
|     rb_ary_replace(ary, result);
 | |
|     if (mod) ARY_SET_EMBED_LEN(result, 0);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.flatten -> new_array
 | |
|  *    array.flatten(level) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array that is a recursive flattening of +self+:
 | |
|  *  - Each non-Array element is unchanged.
 | |
|  *  - Each \Array is replaced by its individual elements.
 | |
|  *
 | |
|  *  With non-negative \Integer argument +level+, flattens recursively through +level+ levels:
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(0) # => [0, [1, [2, 3], 4], 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(1) # => [0, 1, [2, 3], 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(2) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(3) # => [0, 1, 2, 3, 4, 5]
 | |
|  *
 | |
|  *  With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels:
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten # => [0, 1, 2, 3, 4, 5]
 | |
|  *    [0, 1, 2].flatten # => [0, 1, 2]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(-1) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a = [ 0, [ 1, [2, 3], 4 ], 5 ]
 | |
|  *    a.flatten(-2) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    [0, 1, 2].flatten(-1) # => [0, 1, 2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int level = -1;
 | |
|     VALUE result;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) {
 | |
|         level = NUM2INT(argv[0]);
 | |
|         if (level == 0) return ary_make_shared_copy(ary);
 | |
|     }
 | |
| 
 | |
|     result = flatten(ary, level);
 | |
|     if (result == ary) {
 | |
|         result = ary_make_shared_copy(ary);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #define RAND_UPTO(max) (long)rb_random_ulong_limited((randgen), (max)-1)
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shuffle_bang(rb_execution_context_t *ec, VALUE ary, VALUE randgen)
 | |
| {
 | |
|     long i, len;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     i = len = RARRAY_LEN(ary);
 | |
|     RARRAY_PTR_USE(ary, ptr, {
 | |
| 	while (i) {
 | |
| 	    long j = RAND_UPTO(i);
 | |
| 	    VALUE tmp;
 | |
|             if (len != RARRAY_LEN(ary) || ptr != RARRAY_CONST_PTR_TRANSIENT(ary)) {
 | |
|                 rb_raise(rb_eRuntimeError, "modified during shuffle");
 | |
| 	    }
 | |
| 	    tmp = ptr[--i];
 | |
| 	    ptr[i] = ptr[j];
 | |
| 	    ptr[j] = tmp;
 | |
| 	}
 | |
|     }); /* WB: no new reference */
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shuffle(rb_execution_context_t *ec, VALUE ary, VALUE randgen)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_shuffle_bang(ec, ary, randgen);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_sample(rb_execution_context_t *ec, VALUE ary, VALUE randgen, VALUE nv, VALUE to_array)
 | |
| {
 | |
|     VALUE result;
 | |
|     long n, len, i, j, k, idx[10];
 | |
|     long rnds[numberof(idx)];
 | |
|     long memo_threshold;
 | |
| 
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (!to_array) {
 | |
| 	if (len < 2)
 | |
| 	    i = 0;
 | |
| 	else
 | |
| 	    i = RAND_UPTO(len);
 | |
| 
 | |
| 	return rb_ary_elt(ary, i);
 | |
|     }
 | |
|     n = NUM2LONG(nv);
 | |
|     if (n < 0) rb_raise(rb_eArgError, "negative sample number");
 | |
|     if (n > len) n = len;
 | |
|     if (n <= numberof(idx)) {
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 	    rnds[i] = RAND_UPTO(len - i);
 | |
| 	}
 | |
|     }
 | |
|     k = len;
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (len < k && n <= numberof(idx)) {
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 	    if (rnds[i] >= len) return rb_ary_new_capa(0);
 | |
| 	}
 | |
|     }
 | |
|     if (n > len) n = len;
 | |
|     switch (n) {
 | |
|       case 0:
 | |
| 	return rb_ary_new_capa(0);
 | |
|       case 1:
 | |
| 	i = rnds[0];
 | |
| 	return rb_ary_new_from_args(1, RARRAY_AREF(ary, i));
 | |
|       case 2:
 | |
| 	i = rnds[0];
 | |
| 	j = rnds[1];
 | |
| 	if (j >= i) j++;
 | |
| 	return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j));
 | |
|       case 3:
 | |
| 	i = rnds[0];
 | |
| 	j = rnds[1];
 | |
| 	k = rnds[2];
 | |
| 	{
 | |
| 	    long l = j, g = i;
 | |
| 	    if (j >= i) l = i, g = ++j;
 | |
| 	    if (k >= l && (++k >= g)) ++k;
 | |
| 	}
 | |
| 	return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k));
 | |
|     }
 | |
|     memo_threshold =
 | |
| 	len < 2560 ? len / 128 :
 | |
| 	len < 5120 ? len / 64 :
 | |
| 	len < 10240 ? len / 32 :
 | |
| 	len / 16;
 | |
|     if (n <= numberof(idx)) {
 | |
| 	long sorted[numberof(idx)];
 | |
| 	sorted[0] = idx[0] = rnds[0];
 | |
| 	for (i=1; i<n; i++) {
 | |
| 	    k = rnds[i];
 | |
| 	    for (j = 0; j < i; ++j) {
 | |
| 		if (k < sorted[j]) break;
 | |
| 		++k;
 | |
| 	    }
 | |
| 	    memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
 | |
| 	    sorted[j] = idx[i] = k;
 | |
| 	}
 | |
| 	result = rb_ary_new_capa(n);
 | |
|         RARRAY_PTR_USE_TRANSIENT(result, ptr_result, {
 | |
| 	    for (i=0; i<n; i++) {
 | |
| 		ptr_result[i] = RARRAY_AREF(ary, idx[i]);
 | |
| 	    }
 | |
| 	});
 | |
|     }
 | |
|     else if (n <= memo_threshold / 2) {
 | |
| 	long max_idx = 0;
 | |
| #undef RUBY_UNTYPED_DATA_WARNING
 | |
| #define RUBY_UNTYPED_DATA_WARNING 0
 | |
| 	VALUE vmemo = Data_Wrap_Struct(0, 0, st_free_table, 0);
 | |
| 	st_table *memo = st_init_numtable_with_size(n);
 | |
| 	DATA_PTR(vmemo) = memo;
 | |
| 	result = rb_ary_new_capa(n);
 | |
| 	RARRAY_PTR_USE(result, ptr_result, {
 | |
| 	    for (i=0; i<n; i++) {
 | |
| 		long r = RAND_UPTO(len-i) + i;
 | |
| 		ptr_result[i] = r;
 | |
| 		if (r > max_idx) max_idx = r;
 | |
| 	    }
 | |
| 	    len = RARRAY_LEN(ary);
 | |
| 	    if (len <= max_idx) n = 0;
 | |
| 	    else if (n > len) n = len;
 | |
|             RARRAY_PTR_USE_TRANSIENT(ary, ptr_ary, {
 | |
| 		for (i=0; i<n; i++) {
 | |
| 		    long j2 = j = ptr_result[i];
 | |
| 		    long i2 = i;
 | |
| 		    st_data_t value;
 | |
| 		    if (st_lookup(memo, (st_data_t)i, &value)) i2 = (long)value;
 | |
| 		    if (st_lookup(memo, (st_data_t)j, &value)) j2 = (long)value;
 | |
| 		    st_insert(memo, (st_data_t)j, (st_data_t)i2);
 | |
| 		    ptr_result[i] = ptr_ary[j2];
 | |
| 		}
 | |
| 	    });
 | |
| 	});
 | |
| 	DATA_PTR(vmemo) = 0;
 | |
| 	st_free_table(memo);
 | |
|     }
 | |
|     else {
 | |
| 	result = rb_ary_dup(ary);
 | |
| 	RBASIC_CLEAR_CLASS(result);
 | |
| 	RB_GC_GUARD(ary);
 | |
| 	RARRAY_PTR_USE(result, ptr_result, {
 | |
| 	    for (i=0; i<n; i++) {
 | |
| 		j = RAND_UPTO(len-i) + i;
 | |
| 		nv = ptr_result[j];
 | |
| 		ptr_result[j] = ptr_result[i];
 | |
| 		ptr_result[i] = nv;
 | |
| 	    }
 | |
| 	});
 | |
| 	RBASIC_SET_CLASS_RAW(result, rb_cArray);
 | |
|     }
 | |
|     ARY_SET_LEN(result, n);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_cycle_size(VALUE self, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long mul;
 | |
|     VALUE n = Qnil;
 | |
|     if (args && (RARRAY_LEN(args) > 0)) {
 | |
| 	n = RARRAY_AREF(args, 0);
 | |
|     }
 | |
|     if (RARRAY_LEN(self) == 0) return INT2FIX(0);
 | |
|     if (n == Qnil) return DBL2NUM(HUGE_VAL);
 | |
|     mul = NUM2LONG(n);
 | |
|     if (mul <= 0) return INT2FIX(0);
 | |
|     n = LONG2FIX(mul);
 | |
|     return rb_fix_mul_fix(rb_ary_length(self), n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.cycle {|element| ... } -> nil
 | |
|  *    array.cycle(count) {|element| ... } -> nil
 | |
|  *    array.cycle -> new_enumerator
 | |
|  *    array.cycle(count) -> new_enumerator
 | |
|  *
 | |
|  *  When called with positive \Integer argument +count+ and a block,
 | |
|  *  calls the block with each element, then does so again,
 | |
|  *  until it has done so +count+ times; returns +nil+:
 | |
|  *    output = []
 | |
|  *    [0, 1].cycle(2) {|element| output.push(element) } # => nil
 | |
|  *    output # => [0, 1, 0, 1]
 | |
|  *
 | |
|  *  If +count+ is zero or negative, does not call the block:
 | |
|  *    [0, 1].cycle(0) {|element| fail 'Cannot happen' } # => nil
 | |
|  *    [0, 1].cycle(-1) {|element| fail 'Cannot happen' } # => nil
 | |
|  *
 | |
|  *  When a block is given, and argument is omitted or +nil+, cycles forever:
 | |
|  *    # Prints 0 and 1 forever.
 | |
|  *    [0, 1].cycle {|element| puts element }
 | |
|  *    [0, 1].cycle(nil) {|element| puts element }
 | |
|  *
 | |
|  *  When no block is given, returns a new \Enumerator:
 | |
|  *
 | |
|  *    [0, 1].cycle(2) # => #<Enumerator: [0, 1]:cycle(2)>
 | |
|  *    [0, 1].cycle # => # => #<Enumerator: [0, 1]:cycle>
 | |
|  *    [0, 1].cycle.first(5) # => [0, 1, 0, 1, 0]
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long n, i;
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
| 
 | |
|     RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
 | |
|     if (argc == 0 || NIL_P(argv[0])) {
 | |
|         n = -1;
 | |
|     }
 | |
|     else {
 | |
|         n = NUM2LONG(argv[0]);
 | |
|         if (n <= 0) return Qnil;
 | |
|     }
 | |
| 
 | |
|     while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
 | |
|         for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
|             rb_yield(RARRAY_AREF(ary, i));
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| #define tmpary(n) rb_ary_tmp_new(n)
 | |
| #define tmpary_discard(a) (ary_discard(a), RBASIC_SET_CLASS_RAW(a, rb_cArray))
 | |
| 
 | |
| /*
 | |
|  * Build a ruby array of the corresponding values and yield it to the
 | |
|  * associated block.
 | |
|  * Return the class of +values+ for reentry check.
 | |
|  */
 | |
| static int
 | |
| yield_indexed_values(const VALUE values, const long r, const long *const p)
 | |
| {
 | |
|     const VALUE result = rb_ary_new2(r);
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < r; i++) ARY_SET(result, i, RARRAY_AREF(values, p[i]));
 | |
|     ARY_SET_LEN(result, r);
 | |
|     rb_yield(result);
 | |
|     return !RBASIC(values)->klass;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute permutations of +r+ elements of the set <code>[0..n-1]</code>.
 | |
|  *
 | |
|  * When we have a complete permutation of array indices, copy the values
 | |
|  * at those indices into a new array and yield that array.
 | |
|  *
 | |
|  * n: the size of the set
 | |
|  * r: the number of elements in each permutation
 | |
|  * p: the array (of size r) that we're filling in
 | |
|  * used: an array of booleans: whether a given index is already used
 | |
|  * values: the Ruby array that holds the actual values to permute
 | |
|  */
 | |
| static void
 | |
| permute0(const long n, const long r, long *const p, char *const used, const VALUE values)
 | |
| {
 | |
|     long i = 0, index = 0;
 | |
| 
 | |
|     for (;;) {
 | |
| 	const char *const unused = memchr(&used[i], 0, n-i);
 | |
| 	if (!unused) {
 | |
| 	    if (!index) break;
 | |
| 	    i = p[--index];                /* pop index */
 | |
| 	    used[i++] = 0;                 /* index unused */
 | |
| 	}
 | |
| 	else {
 | |
| 	    i = unused - used;
 | |
| 	    p[index] = i;
 | |
| 	    used[i] = 1;                   /* mark index used */
 | |
| 	    ++index;
 | |
| 	    if (index < r-1) {             /* if not done yet */
 | |
| 		p[index] = i = 0;
 | |
| 		continue;
 | |
| 	    }
 | |
| 	    for (i = 0; i < n; ++i) {
 | |
| 		if (used[i]) continue;
 | |
| 		p[index] = i;
 | |
| 		if (!yield_indexed_values(values, r, p)) {
 | |
| 		    rb_raise(rb_eRuntimeError, "permute reentered");
 | |
| 		}
 | |
| 	    }
 | |
| 	    i = p[--index];                /* pop index */
 | |
| 	    used[i] = 0;                   /* index unused */
 | |
| 	    p[index] = ++i;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the product of from, from-1, ..., from - how_many + 1.
 | |
|  * https://en.wikipedia.org/wiki/Pochhammer_symbol
 | |
|  */
 | |
| static VALUE
 | |
| descending_factorial(long from, long how_many)
 | |
| {
 | |
|     VALUE cnt;
 | |
|     if (how_many > 0) {
 | |
| 	cnt = LONG2FIX(from);
 | |
| 	while (--how_many > 0) {
 | |
| 	    long v = --from;
 | |
| 	    cnt = rb_int_mul(cnt, LONG2FIX(v));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	cnt = LONG2FIX(how_many == 0);
 | |
|     }
 | |
|     return cnt;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| binomial_coefficient(long comb, long size)
 | |
| {
 | |
|     VALUE r;
 | |
|     long i;
 | |
|     if (comb > size-comb) {
 | |
| 	comb = size-comb;
 | |
|     }
 | |
|     if (comb < 0) {
 | |
| 	return LONG2FIX(0);
 | |
|     }
 | |
|     else if (comb == 0) {
 | |
| 	return LONG2FIX(1);
 | |
|     }
 | |
|     r = LONG2FIX(size);
 | |
|     for (i = 1; i < comb; ++i) {
 | |
| 	r = rb_int_mul(r, LONG2FIX(size - i));
 | |
| 	r = rb_int_idiv(r, LONG2FIX(i + 1));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_permutation_size(VALUE ary, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long n = RARRAY_LEN(ary);
 | |
|     long k = (args && (RARRAY_LEN(args) > 0)) ? NUM2LONG(RARRAY_AREF(args, 0)) : n;
 | |
| 
 | |
|     return descending_factorial(n, k);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.permutation {|element| ... } -> self
 | |
|  *    array.permutation(n) {|element| ... } -> self
 | |
|  *    array.permutation -> new_enumerator
 | |
|  *    array.permutation(n) -> new_enumerator
 | |
|  *
 | |
|  *  When invoked with a block, yield all permutations of elements of +self+; returns +self+.
 | |
|  *  The order of permutations is indeterminate.
 | |
|  *
 | |
|  *  When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>)
 | |
|  *  are given, calls the block with all +n+-tuple permutations of +self+.
 | |
|  *
 | |
|  *  Example:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation(2) {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    [0, 1]
 | |
|  *    [0, 2]
 | |
|  *    [1, 0]
 | |
|  *    [1, 2]
 | |
|  *    [2, 0]
 | |
|  *    [2, 1]
 | |
|  *  Another example:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation(3) {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    [0, 1, 2]
 | |
|  *    [0, 2, 1]
 | |
|  *    [1, 0, 2]
 | |
|  *    [1, 2, 0]
 | |
|  *    [2, 0, 1]
 | |
|  *    [2, 1, 0]
 | |
|  *
 | |
|  *  When +n+ is zero, calls the block once with a new empty \Array:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation(0) {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    []
 | |
|  *
 | |
|  *  When +n+ is out of range (negative or larger than <tt>self.size</tt>),
 | |
|  *  does not call the block:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation(-1) {|permutation| fail 'Cannot happen' }
 | |
|  *    a.permutation(4) {|permutation| fail 'Cannot happen' }
 | |
|  *
 | |
|  *  When a block given but no argument,
 | |
|  *  behaves the same as <tt>a.permutation(a.size)</tt>:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    [0, 1, 2]
 | |
|  *    [0, 2, 1]
 | |
|  *    [1, 0, 2]
 | |
|  *    [1, 2, 0]
 | |
|  *    [2, 0, 1]
 | |
|  *    [2, 1, 0]
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.permutation # => #<Enumerator: [0, 1, 2]:permutation>
 | |
|  *    a.permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long r, n, i;
 | |
| 
 | |
|     n = RARRAY_LEN(ary);                  /* Array length */
 | |
|     RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size);   /* Return enumerator if no block */
 | |
|     r = n;
 | |
|     if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0]))
 | |
|         r = NUM2LONG(argv[0]);            /* Permutation size from argument */
 | |
| 
 | |
|     if (r < 0 || n < r) {
 | |
| 	/* no permutations: yield nothing */
 | |
|     }
 | |
|     else if (r == 0) { /* exactly one permutation: the zero-length array */
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (r == 1) { /* this is a special, easy case */
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
 | |
| 	}
 | |
|     }
 | |
|     else {             /* this is the general case */
 | |
| 	volatile VALUE t0;
 | |
| 	long *p = ALLOCV_N(long, t0, r+roomof(n, sizeof(long)));
 | |
| 	char *used = (char*)(p + r);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC_CLEAR_CLASS(ary0);
 | |
| 
 | |
| 	MEMZERO(used, char, n); /* initialize array */
 | |
| 
 | |
| 	permute0(n, r, p, used, ary0); /* compute and yield permutations */
 | |
| 	ALLOCV_END(t0);
 | |
| 	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| combinate0(const long len, const long n, long *const stack, const VALUE values)
 | |
| {
 | |
|     long lev = 0;
 | |
| 
 | |
|     MEMZERO(stack+1, long, n);
 | |
|     stack[0] = -1;
 | |
|     for (;;) {
 | |
| 	for (lev++; lev < n; lev++) {
 | |
| 	    stack[lev+1] = stack[lev]+1;
 | |
| 	}
 | |
| 	if (!yield_indexed_values(values, n, stack+1)) {
 | |
| 	    rb_raise(rb_eRuntimeError, "combination reentered");
 | |
| 	}
 | |
| 	do {
 | |
| 	    if (lev == 0) return;
 | |
| 	    stack[lev--]++;
 | |
| 	} while (stack[lev+1]+n == len+lev+1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_combination_size(VALUE ary, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long n = RARRAY_LEN(ary);
 | |
|     long k = NUM2LONG(RARRAY_AREF(args, 0));
 | |
| 
 | |
|     return binomial_coefficient(k, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.combination(n) {|element| ... } -> self
 | |
|  *    array.combination(n) -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block, if given, with combinations of elements of +self+;
 | |
|  *  returns +self+. The order of combinations is indeterminate.
 | |
|  *
 | |
|  *  When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>)
 | |
|  *  are given, calls the block with all +n+-tuple combinations of +self+.
 | |
|  *
 | |
|  *  Example:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.combination(2) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0, 1]
 | |
|  *    [0, 2]
 | |
|  *    [1, 2]
 | |
|  *
 | |
|  *  Another example:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.combination(3) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0, 1, 2]
 | |
|  *
 | |
|  *  When +n+ is zero, calls the block once with a new empty \Array:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a1 = a.combination(0) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    []
 | |
|  *
 | |
|  *  When +n+ is out of range (negative or larger than <tt>self.size</tt>),
 | |
|  *  does not call the block:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.combination(-1) {|combination| fail 'Cannot happen' }
 | |
|  *    a.combination(4) {|combination| fail 'Cannot happen' }
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_combination(VALUE ary, VALUE num)
 | |
| {
 | |
|     long i, n, len;
 | |
| 
 | |
|     n = NUM2LONG(num);
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (n < 0 || len < n) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else if (n == 0) {
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (n == 1) {
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	volatile VALUE t0;
 | |
| 	long *stack = ALLOCV_N(long, t0, n+1);
 | |
| 
 | |
| 	RBASIC_CLEAR_CLASS(ary0);
 | |
| 	combinate0(len, n, stack, ary0);
 | |
| 	ALLOCV_END(t0);
 | |
| 	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute repeated permutations of +r+ elements of the set
 | |
|  * <code>[0..n-1]</code>.
 | |
|  *
 | |
|  * When we have a complete repeated permutation of array indices, copy the
 | |
|  * values at those indices into a new array and yield that array.
 | |
|  *
 | |
|  * n: the size of the set
 | |
|  * r: the number of elements in each permutation
 | |
|  * p: the array (of size r) that we're filling in
 | |
|  * values: the Ruby array that holds the actual values to permute
 | |
|  */
 | |
| static void
 | |
| rpermute0(const long n, const long r, long *const p, const VALUE values)
 | |
| {
 | |
|     long i = 0, index = 0;
 | |
| 
 | |
|     p[index] = i;
 | |
|     for (;;) {
 | |
| 	if (++index < r-1) {
 | |
| 	    p[index] = i = 0;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 	    p[index] = i;
 | |
| 	    if (!yield_indexed_values(values, r, p)) {
 | |
| 		rb_raise(rb_eRuntimeError, "repeated permute reentered");
 | |
| 	    }
 | |
| 	}
 | |
| 	do {
 | |
| 	    if (index <= 0) return;
 | |
| 	} while ((i = ++p[--index]) >= n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long n = RARRAY_LEN(ary);
 | |
|     long k = NUM2LONG(RARRAY_AREF(args, 0));
 | |
| 
 | |
|     if (k < 0) {
 | |
| 	return LONG2FIX(0);
 | |
|     }
 | |
|     if (n <= 0) {
 | |
| 	return LONG2FIX(!k);
 | |
|     }
 | |
|     return rb_int_positive_pow(n, (unsigned long)k);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.repeated_permutation(n) {|permutation| ... } -> self
 | |
|  *    array.repeated_permutation(n) -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block with each repeated permutation of length +n+ of the elements of +self+;
 | |
|  *  each permutation is an \Array;
 | |
|  *  returns +self+. The order of the permutations is indeterminate.
 | |
|  *
 | |
|  *  When a block and a positive \Integer argument +n+ are given, calls the block with each
 | |
|  *  +n+-tuple repeated permutation of the elements of +self+.
 | |
|  *  The number of permutations is <tt>self.size**n</tt>.
 | |
|  *
 | |
|  *  +n+ = 1:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.repeated_permutation(1) {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    [0]
 | |
|  *    [1]
 | |
|  *    [2]
 | |
|  *
 | |
|  *  +n+ = 2:
 | |
|  *    a.repeated_permutation(2) {|permutation| p permutation }
 | |
|  *  Output:
 | |
|  *    [0, 0]
 | |
|  *    [0, 1]
 | |
|  *    [0, 2]
 | |
|  *    [1, 0]
 | |
|  *    [1, 1]
 | |
|  *    [1, 2]
 | |
|  *    [2, 0]
 | |
|  *    [2, 1]
 | |
|  *    [2, 2]
 | |
|  *
 | |
|  *  If +n+ is zero, calls the block once with an empty \Array.
 | |
|  *
 | |
|  *  If +n+ is negative, does not call the block:
 | |
|  *    a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
 | |
|  *
 | |
|  *  Using Enumerators, it's convenient to show the permutations and counts
 | |
|  *  for some values of +n+:
 | |
|  *    e = a.repeated_permutation(0)
 | |
|  *    e.size # => 1
 | |
|  *    e.to_a # => [[]]
 | |
|  *    e = a.repeated_permutation(1)
 | |
|  *    e.size # => 3
 | |
|  *    e.to_a # => [[0], [1], [2]]
 | |
|  *    e = a.repeated_permutation(2)
 | |
|  *    e.size # => 9
 | |
|  *    e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
 | |
|  */
 | |
| static VALUE
 | |
| rb_ary_repeated_permutation(VALUE ary, VALUE num)
 | |
| {
 | |
|     long r, n, i;
 | |
| 
 | |
|     n = RARRAY_LEN(ary);                  /* Array length */
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size);      /* Return Enumerator if no block */
 | |
|     r = NUM2LONG(num);                    /* Permutation size from argument */
 | |
| 
 | |
|     if (r < 0) {
 | |
| 	/* no permutations: yield nothing */
 | |
|     }
 | |
|     else if (r == 0) { /* exactly one permutation: the zero-length array */
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (r == 1) { /* this is a special, easy case */
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
 | |
| 	}
 | |
|     }
 | |
|     else {             /* this is the general case */
 | |
| 	volatile VALUE t0;
 | |
| 	long *p = ALLOCV_N(long, t0, r);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC_CLEAR_CLASS(ary0);
 | |
| 
 | |
| 	rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */
 | |
| 	ALLOCV_END(t0);
 | |
| 	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rcombinate0(const long n, const long r, long *const p, const long rest, const VALUE values)
 | |
| {
 | |
|     long i = 0, index = 0;
 | |
| 
 | |
|     p[index] = i;
 | |
|     for (;;) {
 | |
| 	if (++index < r-1) {
 | |
| 	    p[index] = i;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	for (; i < n; ++i) {
 | |
| 	    p[index] = i;
 | |
| 	    if (!yield_indexed_values(values, r, p)) {
 | |
| 		rb_raise(rb_eRuntimeError, "repeated combination reentered");
 | |
| 	    }
 | |
| 	}
 | |
| 	do {
 | |
| 	    if (index <= 0) return;
 | |
| 	} while ((i = ++p[--index]) >= n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_repeated_combination_size(VALUE ary, VALUE args, VALUE eobj)
 | |
| {
 | |
|     long n = RARRAY_LEN(ary);
 | |
|     long k = NUM2LONG(RARRAY_AREF(args, 0));
 | |
|     if (k == 0) {
 | |
| 	return LONG2FIX(1);
 | |
|     }
 | |
|     return binomial_coefficient(k, n + k - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.repeated_combination(n) {|combination| ... } -> self
 | |
|  *    array.repeated_combination(n) -> new_enumerator
 | |
|  *
 | |
|  *  Calls the block with each repeated combination of length +n+ of the elements of +self+;
 | |
|  *  each combination is an \Array;
 | |
|  *  returns +self+. The order of the combinations is indeterminate.
 | |
|  *
 | |
|  *  When a block and a positive \Integer argument +n+ are given, calls the block with each
 | |
|  *  +n+-tuple repeated combination of the elements of +self+.
 | |
|  *  The number of combinations is <tt>(n+1)(n+2)/2</tt>.
 | |
|  *
 | |
|  *  +n+ = 1:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.repeated_combination(1) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0]
 | |
|  *    [1]
 | |
|  *    [2]
 | |
|  *
 | |
|  *  +n+ = 2:
 | |
|  *    a.repeated_combination(2) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0, 0]
 | |
|  *    [0, 1]
 | |
|  *    [0, 2]
 | |
|  *    [1, 1]
 | |
|  *    [1, 2]
 | |
|  *    [2, 2]
 | |
|  *
 | |
|  *  If +n+ is zero, calls the block once with an empty \Array.
 | |
|  *
 | |
|  *  If +n+ is negative, does not call the block:
 | |
|  *    a.repeated_combination(-1) {|combination| fail 'Cannot happen' }
 | |
|  *
 | |
|  *  Returns a new \Enumerator if no block given:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
 | |
|  *
 | |
|  *  Using Enumerators, it's convenient to show the combinations and counts
 | |
|  *  for some values of +n+:
 | |
|  *    e = a.repeated_combination(0)
 | |
|  *    e.size # => 1
 | |
|  *    e.to_a # => [[]]
 | |
|  *    e = a.repeated_combination(1)
 | |
|  *    e.size # => 3
 | |
|  *    e.to_a # => [[0], [1], [2]]
 | |
|  *    e = a.repeated_combination(2)
 | |
|  *    e.size # => 6
 | |
|  *    e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_repeated_combination(VALUE ary, VALUE num)
 | |
| {
 | |
|     long n, i, len;
 | |
| 
 | |
|     n = NUM2LONG(num);                 /* Combination size from argument */
 | |
|     RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size);   /* Return enumerator if no block */
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (n < 0) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else if (n == 0) {
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (n == 1) {
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
 | |
| 	}
 | |
|     }
 | |
|     else if (len == 0) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else {
 | |
| 	volatile VALUE t0;
 | |
| 	long *p = ALLOCV_N(long, t0, n);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC_CLEAR_CLASS(ary0);
 | |
| 
 | |
| 	rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */
 | |
| 	ALLOCV_END(t0);
 | |
| 	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.product(*other_arrays) -> new_array
 | |
|  *    array.product(*other_arrays) {|combination| ... } -> self
 | |
|  *
 | |
|  *  Computes and returns or yields all combinations of elements from all the Arrays,
 | |
|  *  including both +self+ and +other_arrays+.
 | |
|  *  - The number of combinations is the product of the sizes of all the arrays,
 | |
|  *    including both +self+ and +other_arrays+.
 | |
|  *  - The order of the returned combinations is indeterminate.
 | |
|  *
 | |
|  *  When no block is given, returns the combinations as an \Array of Arrays:
 | |
|  *    a = [0, 1, 2]
 | |
|  *    a1 = [3, 4]
 | |
|  *    a2 = [5, 6]
 | |
|  *    p = a.product(a1)
 | |
|  *    p.size # => 6 # a.size * a1.size
 | |
|  *    p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]]
 | |
|  *    p = a.product(a1, a2)
 | |
|  *    p.size # => 12 # a.size * a1.size * a2.size
 | |
|  *    p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]]
 | |
|  *
 | |
|  *  If any argument is an empty \Array, returns an empty \Array.
 | |
|  *
 | |
|  *  If no argument is given, returns an \Array of 1-element Arrays,
 | |
|  *  each containing an element of +self+:
 | |
|  *    a.product # => [[0], [1], [2]]
 | |
|  *
 | |
|  *  When a block is given, yields each combination as an \Array; returns +self+:
 | |
|  *    a.product(a1) {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0, 3]
 | |
|  *    [0, 4]
 | |
|  *    [1, 3]
 | |
|  *    [1, 4]
 | |
|  *    [2, 3]
 | |
|  *    [2, 4]
 | |
|  *
 | |
|  *  If any argument is an empty \Array, does not call the block:
 | |
|  *    a.product(a1, a2, []) {|combination| fail 'Cannot happen' }
 | |
|  *
 | |
|  *  If no argument is given, yields each element of +self+ as a 1-element \Array:
 | |
|  *    a.product {|combination| p combination }
 | |
|  *  Output:
 | |
|  *    [0]
 | |
|  *    [1]
 | |
|  *    [2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_product(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int n = argc+1;    /* How many arrays we're operating on */
 | |
|     volatile VALUE t0 = tmpary(n);
 | |
|     volatile VALUE t1 = Qundef;
 | |
|     VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
 | |
|     int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
 | |
|     VALUE result = Qnil;      /* The array we'll be returning, when no block given */
 | |
|     long i,j;
 | |
|     long resultlen = 1;
 | |
| 
 | |
|     RBASIC_CLEAR_CLASS(t0);
 | |
| 
 | |
|     /* initialize the arrays of arrays */
 | |
|     ARY_SET_LEN(t0, n);
 | |
|     arrays[0] = ary;
 | |
|     for (i = 1; i < n; i++) arrays[i] = Qnil;
 | |
|     for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
 | |
| 
 | |
|     /* initialize the counters for the arrays */
 | |
|     for (i = 0; i < n; i++) counters[i] = 0;
 | |
| 
 | |
|     /* Otherwise, allocate and fill in an array of results */
 | |
|     if (rb_block_given_p()) {
 | |
| 	/* Make defensive copies of arrays; exit if any is empty */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 	    if (RARRAY_LEN(arrays[i]) == 0) goto done;
 | |
| 	    arrays[i] = ary_make_shared_copy(arrays[i]);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	/* Compute the length of the result array; return [] if any is empty */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 	    long k = RARRAY_LEN(arrays[i]);
 | |
| 	    if (k == 0) {
 | |
| 		result = rb_ary_new2(0);
 | |
| 		goto done;
 | |
| 	    }
 | |
|             if (MUL_OVERFLOW_LONG_P(resultlen, k))
 | |
| 		rb_raise(rb_eRangeError, "too big to product");
 | |
| 	    resultlen *= k;
 | |
| 	}
 | |
| 	result = rb_ary_new2(resultlen);
 | |
|     }
 | |
|     for (;;) {
 | |
| 	int m;
 | |
| 	/* fill in one subarray */
 | |
| 	VALUE subarray = rb_ary_new2(n);
 | |
| 	for (j = 0; j < n; j++) {
 | |
| 	    rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
 | |
| 	}
 | |
| 
 | |
| 	/* put it on the result array */
 | |
| 	if (NIL_P(result)) {
 | |
| 	    FL_SET(t0, FL_USER5);
 | |
| 	    rb_yield(subarray);
 | |
| 	    if (! FL_TEST(t0, FL_USER5)) {
 | |
| 		rb_raise(rb_eRuntimeError, "product reentered");
 | |
| 	    }
 | |
| 	    else {
 | |
| 		FL_UNSET(t0, FL_USER5);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_ary_push(result, subarray);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Increment the last counter.  If it overflows, reset to 0
 | |
| 	 * and increment the one before it.
 | |
| 	 */
 | |
| 	m = n-1;
 | |
| 	counters[m]++;
 | |
| 	while (counters[m] == RARRAY_LEN(arrays[m])) {
 | |
| 	    counters[m] = 0;
 | |
| 	    /* If the first counter overflows, we are done */
 | |
| 	    if (--m < 0) goto done;
 | |
| 	    counters[m]++;
 | |
| 	}
 | |
|     }
 | |
| done:
 | |
|     tmpary_discard(t0);
 | |
|     ALLOCV_END(t1);
 | |
| 
 | |
|     return NIL_P(result) ? ary : result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.take(n) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing the first +n+ element of +self+,
 | |
|  *  where +n+ is a non-negative \Integer;
 | |
|  *  does not modify +self+.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [0, 1, 2, 3, 4, 5]
 | |
|  *    a.take(1) # => [0]
 | |
|  *    a.take(2) # => [0, 1]
 | |
|  *    a.take(50) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a # => [0, 1, 2, 3, 4, 5]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_take(VALUE obj, VALUE n)
 | |
| {
 | |
|     long len = NUM2LONG(n);
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to take negative size");
 | |
|     }
 | |
|     return rb_ary_subseq(obj, 0, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.take_while {|element| ... } -> new_array
 | |
|  *    array.take_while -> new_enumerator
 | |
|  *
 | |
|  *  Returns a new \Array containing zero or more leading elements of +self+;
 | |
|  *  does not modify +self+.
 | |
|  *
 | |
|  *  With a block given, calls the block with each successive element of +self+;
 | |
|  *  stops if the block returns +false+ or +nil+;
 | |
|  *  returns a new Array containing those elements for which the block returned a truthy value:
 | |
|  *    a = [0, 1, 2, 3, 4, 5]
 | |
|  *    a.take_while {|element| element < 3 } # => [0, 1, 2]
 | |
|  *    a.take_while {|element| true } # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a # => [0, 1, 2, 3, 4, 5]
 | |
|  *
 | |
|  *  With no block given, returns a new \Enumerator:
 | |
|  *    [0, 1].take_while # => #<Enumerator: [0, 1]:take_while>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_take_while(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
 | |
|     }
 | |
|     return rb_ary_take(ary, LONG2FIX(i));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.drop(n) -> new_array
 | |
|  *
 | |
|  *  Returns a new \Array containing all but the first +n+ element of +self+,
 | |
|  *  where +n+ is a non-negative \Integer;
 | |
|  *  does not modify +self+.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [0, 1, 2, 3, 4, 5]
 | |
|  *    a.drop(0) # => [0, 1, 2, 3, 4, 5]
 | |
|  *    a.drop(1) # => [1, 2, 3, 4, 5]
 | |
|  *    a.drop(2) # => [2, 3, 4, 5]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_drop(VALUE ary, VALUE n)
 | |
| {
 | |
|     VALUE result;
 | |
|     long pos = NUM2LONG(n);
 | |
|     if (pos < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to drop negative size");
 | |
|     }
 | |
| 
 | |
|     result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
 | |
|     if (result == Qnil) result = rb_ary_new();
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.drop_while {|element| ... } -> new_array
 | |
|  *    array.drop_while -> new_enumerator
 | |
| 
 | |
|  *  Returns a new \Array containing zero or more trailing elements of +self+;
 | |
|  *  does not modify +self+.
 | |
|  *
 | |
|  *  With a block given, calls the block with each successive element of +self+;
 | |
|  *  stops if the block returns +false+ or +nil+;
 | |
|  *  returns a new Array _omitting_ those elements for which the block returned a truthy value:
 | |
|  *    a = [0, 1, 2, 3, 4, 5]
 | |
|  *    a.drop_while {|element| element < 3 } # => [3, 4, 5]
 | |
|  *
 | |
|  *  With no block given, returns a new \Enumerator:
 | |
|  *    [0, 1].drop_while # => # => #<Enumerator: [0, 1]:drop_while>
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_drop_while(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
 | |
|     }
 | |
|     return rb_ary_drop(ary, LONG2FIX(i));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.any? -> true or false
 | |
|  *    array.any? {|element| ... } -> true or false
 | |
|  *    array.any?(obj) -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if any element of +self+ meets a given criterion.
 | |
|  *
 | |
|  *  With no block given and no argument, returns +true+ if +self+ has any truthy element,
 | |
|  *  +false+ otherwise:
 | |
|  *    [nil, 0, false].any? # => true
 | |
|  *    [nil, false].any? # => false
 | |
|  *    [].any? # => false
 | |
|  *
 | |
|  *  With a block given and no argument, calls the block with each element in +self+;
 | |
|  *  returns +true+ if the block returns any truthy value, +false+ otherwise:
 | |
|  *    [0, 1, 2].any? {|element| element > 1 } # => true
 | |
|  *    [0, 1, 2].any? {|element| element > 2 } # => false
 | |
|  *
 | |
|  *  If argument +obj+ is given, returns +true+ if +obj+.<tt>===</tt> any element,
 | |
|  *  +false+ otherwise:
 | |
|  *    ['food', 'drink'].any?(/foo/) # => true
 | |
|  *    ['food', 'drink'].any?(/bar/) # => false
 | |
|  *    [].any?(/foo/) # => false
 | |
|  *    [0, 1, 2].any?(1) # => true
 | |
|  *    [0, 1, 2].any?(3) # => false
 | |
|  *
 | |
|  *  Related: Enumerable#any?
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_any_p(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, len = RARRAY_LEN(ary);
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (!len) return Qfalse;
 | |
|     if (argc) {
 | |
|         if (rb_block_given_p()) {
 | |
|             rb_warn("given block not used");
 | |
|         }
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	    if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     else if (!rb_block_given_p()) {
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (RTEST(RARRAY_AREF(ary, i))) return Qtrue;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	    if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.all? -> true or false
 | |
|  *    array.all? {|element| ... } -> true or false
 | |
|  *    array.all?(obj) -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if all elements of +self+ meet a given criterion.
 | |
|  *
 | |
|  *  With no block given and no argument, returns +true+ if +self+ contains only truthy elements,
 | |
|  *  +false+ otherwise:
 | |
|  *    [0, 1, :foo].all? # => true
 | |
|  *    [0, nil, 2].all? # => false
 | |
|  *    [].all? # => true
 | |
|  *
 | |
|  *  With a block given and no argument, calls the block with each element in +self+;
 | |
|  *  returns +true+ if the block returns only truthy values, +false+ otherwise:
 | |
|  *    [0, 1, 2].all? { |element| element < 3 } # => true
 | |
|  *    [0, 1, 2].all? { |element| element < 2 } # => false
 | |
|  *
 | |
|  *  If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> every element, +false+ otherwise:
 | |
|  *    ['food', 'fool', 'foot'].all?(/foo/) # => true
 | |
|  *    ['food', 'drink'].all?(/bar/) # => false
 | |
|  *    [].all?(/foo/) # => true
 | |
|  *    [0, 0, 0].all?(0) # => true
 | |
|  *    [0, 1, 2].all?(1) # => false
 | |
|  *
 | |
|  *  Related: Enumerable#all?
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_all_p(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, len = RARRAY_LEN(ary);
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (!len) return Qtrue;
 | |
|     if (argc) {
 | |
|         if (rb_block_given_p()) {
 | |
|             rb_warn("given block not used");
 | |
|         }
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (!RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     else if (!rb_block_given_p()) {
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (!RTEST(RARRAY_AREF(ary, i))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.none? -> true or false
 | |
|  *    array.none? {|element| ... } -> true or false
 | |
|  *    array.none?(obj) -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if no element of +self+ meet a given criterion.
 | |
|  *
 | |
|  *  With no block given and no argument, returns +true+ if +self+ has no truthy elements,
 | |
|  *  +false+ otherwise:
 | |
|  *    [nil, false].none? # => true
 | |
|  *    [nil, 0, false].none? # => false
 | |
|  *    [].none? # => true
 | |
|  *
 | |
|  *  With a block given and no argument, calls the block with each element in +self+;
 | |
|  *  returns +true+ if the block returns no truthy value, +false+ otherwise:
 | |
|  *    [0, 1, 2].none? {|element| element > 3 } # => true
 | |
|  *    [0, 1, 2].none? {|element| element > 1 } # => false
 | |
|  *
 | |
|  *  If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> no element, +false+ otherwise:
 | |
|  *    ['food', 'drink'].none?(/bar/) # => true
 | |
|  *    ['food', 'drink'].none?(/foo/) # => false
 | |
|  *    [].none?(/foo/) # => true
 | |
|  *    [0, 1, 2].none?(3) # => true
 | |
|  *    [0, 1, 2].none?(1) # => false
 | |
|  *
 | |
|  *  Related: Enumerable#none?
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_none_p(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, len = RARRAY_LEN(ary);
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (!len) return Qtrue;
 | |
|     if (argc) {
 | |
|         if (rb_block_given_p()) {
 | |
|             rb_warn("given block not used");
 | |
|         }
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     else if (!rb_block_given_p()) {
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (RTEST(RARRAY_AREF(ary, i))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
 | |
|         }
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.one? -> true or false
 | |
|  *    array.one? {|element| ... } -> true or false
 | |
|  *    array.one?(obj) -> true or false
 | |
|  *
 | |
|  *  Returns +true+ if exactly one element of +self+ meets a given criterion.
 | |
|  *
 | |
|  *  With no block given and no argument, returns +true+ if +self+ has exactly one truthy element,
 | |
|  *  +false+ otherwise:
 | |
|  *    [nil, 0].one? # => true
 | |
|  *    [0, 0].one? # => false
 | |
|  *    [nil, nil].one? # => false
 | |
|  *    [].one? # => false
 | |
|  *
 | |
|  *  With a block given and no argument, calls the block with each element in +self+;
 | |
|  *  returns +true+ if the block a truthy value for exactly one element, +false+ otherwise:
 | |
|  *    [0, 1, 2].one? {|element| element > 0 } # => false
 | |
|  *    [0, 1, 2].one? {|element| element > 1 } # => true
 | |
|  *    [0, 1, 2].one? {|element| element > 2 } # => false
 | |
|  *
 | |
|  *  If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> exactly one element,
 | |
|  *  +false+ otherwise:
 | |
|  *    [0, 1, 2].one?(0) # => true
 | |
|  *    [0, 0, 1].one?(0) # => false
 | |
|  *    [1, 1, 2].one?(0) # => false
 | |
|  *    ['food', 'drink'].one?(/bar/) # => false
 | |
|  *    ['food', 'drink'].one?(/foo/) # => true
 | |
|  *    [].one?(/foo/) # => false
 | |
|  *
 | |
|  *  Related: Enumerable#one?
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_one_p(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long i, len = RARRAY_LEN(ary);
 | |
|     VALUE result = Qfalse;
 | |
| 
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (!len) return Qfalse;
 | |
|     if (argc) {
 | |
|         if (rb_block_given_p()) {
 | |
|             rb_warn("given block not used");
 | |
|         }
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) {
 | |
|                 if (result) return Qfalse;
 | |
|                 result = Qtrue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else if (!rb_block_given_p()) {
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (RTEST(RARRAY_AREF(ary, i))) {
 | |
|                 if (result) return Qfalse;
 | |
|                 result = Qtrue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
|             if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
 | |
|                 if (result) return Qfalse;
 | |
|                 result = Qtrue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    array.dig(index, *identifiers) -> object
 | |
|  *
 | |
|  *  Finds and returns the object in nested objects
 | |
|  *  that is specified by +index+ and +identifiers+.
 | |
|  *  The nested objects may be instances of various classes.
 | |
|  *  See {Dig Methods}[rdoc-ref:doc/dig_methods.rdoc].
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [:foo, [:bar, :baz, [:bat, :bam]]]
 | |
|  *    a.dig(1) # => [:bar, :baz, [:bat, :bam]]
 | |
|  *    a.dig(1, 2) # => [:bat, :bam]
 | |
|  *    a.dig(1, 2, 0) # => :bat
 | |
|  *    a.dig(1, 2, 3) # => nil
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_dig(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
 | |
|     self = rb_ary_at(self, *argv);
 | |
|     if (!--argc) return self;
 | |
|     ++argv;
 | |
|     return rb_obj_dig(argc, argv, self, Qnil);
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| finish_exact_sum(long n, VALUE r, VALUE v, int z)
 | |
| {
 | |
|     if (n != 0)
 | |
|         v = rb_fix_plus(LONG2FIX(n), v);
 | |
|     if (r != Qundef) {
 | |
|         v = rb_rational_plus(r, v);
 | |
|     }
 | |
|     else if (!n && z) {
 | |
|         v = rb_fix_plus(LONG2FIX(0), v);
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   array.sum(init = 0) -> object
 | |
|  *   array.sum(init = 0) {|element| ... } -> object
 | |
|  *
 | |
|  *  When no block is given, returns the object equivalent to:
 | |
|  *    sum = init
 | |
|  *    array.each {|element| sum += element }
 | |
|  *    sum
 | |
|  *  For example, <tt>[e1, e2, e3].sum</tt> returns <tt>init + e1 + e2 + e3</tt>.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *    a = [0, 1, 2, 3]
 | |
|  *    a.sum # => 6
 | |
|  *    a.sum(100) # => 106
 | |
|  *
 | |
|  *  The elements need not be numeric, but must be <tt>+</tt>-compatible
 | |
|  *  with each other and with +init+:
 | |
|  *    a = ['abc', 'def', 'ghi']
 | |
|  *    a.sum('jkl') # => "jklabcdefghi"
 | |
|  *
 | |
|  *  When a block is given, it is called with each element
 | |
|  *  and the block's return value (instead of the element itself) is used as the addend:
 | |
|  *    a = ['zero', 1, :two]
 | |
|  *    s = a.sum('Coerced and concatenated: ') {|element| element.to_s }
 | |
|  *    s # => "Coerced and concatenated: zero1two"
 | |
|  *
 | |
|  *  Notes:
 | |
|  *  - Array#join and Array#flatten may be faster than Array#sum
 | |
|  *    for an \Array of Strings or an \Array of Arrays.
 | |
|  *  - Array#sum method may not respect method redefinition of "+" methods such as Integer#+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_sum(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE e, v, r;
 | |
|     long i, n;
 | |
|     int block_given;
 | |
| 
 | |
|     v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));
 | |
| 
 | |
|     block_given = rb_block_given_p();
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == 0)
 | |
|         return v;
 | |
| 
 | |
|     n = 0;
 | |
|     r = Qundef;
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
|         e = RARRAY_AREF(ary, i);
 | |
|         if (block_given)
 | |
|             e = rb_yield(e);
 | |
|         if (FIXNUM_P(e)) {
 | |
|             n += FIX2LONG(e); /* should not overflow long type */
 | |
|             if (!FIXABLE(n)) {
 | |
|                 v = rb_big_plus(LONG2NUM(n), v);
 | |
|                 n = 0;
 | |
|             }
 | |
|         }
 | |
|         else if (RB_TYPE_P(e, T_BIGNUM))
 | |
|             v = rb_big_plus(e, v);
 | |
|         else if (RB_TYPE_P(e, T_RATIONAL)) {
 | |
|             if (r == Qundef)
 | |
|                 r = e;
 | |
|             else
 | |
|                 r = rb_rational_plus(r, e);
 | |
|         }
 | |
|         else
 | |
|             goto not_exact;
 | |
|     }
 | |
|     v = finish_exact_sum(n, r, v, argc!=0);
 | |
|     return v;
 | |
| 
 | |
|   not_exact:
 | |
|     v = finish_exact_sum(n, r, v, i!=0);
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(e)) {
 | |
|         /*
 | |
|          * Kahan-Babuska balancing compensated summation algorithm
 | |
|          * See https://link.springer.com/article/10.1007/s00607-005-0139-x
 | |
|          */
 | |
|         double f, c;
 | |
|         double x, t;
 | |
| 
 | |
|         f = NUM2DBL(v);
 | |
|         c = 0.0;
 | |
|         goto has_float_value;
 | |
|         for (; i < RARRAY_LEN(ary); i++) {
 | |
|             e = RARRAY_AREF(ary, i);
 | |
|             if (block_given)
 | |
|                 e = rb_yield(e);
 | |
|             if (RB_FLOAT_TYPE_P(e))
 | |
|               has_float_value:
 | |
|                 x = RFLOAT_VALUE(e);
 | |
|             else if (FIXNUM_P(e))
 | |
|                 x = FIX2LONG(e);
 | |
|             else if (RB_TYPE_P(e, T_BIGNUM))
 | |
|                 x = rb_big2dbl(e);
 | |
|             else if (RB_TYPE_P(e, T_RATIONAL))
 | |
|                 x = rb_num2dbl(e);
 | |
|             else
 | |
|                 goto not_float;
 | |
| 
 | |
|             if (isnan(f)) continue;
 | |
|             if (isnan(x)) {
 | |
|                 f = x;
 | |
|                 continue;
 | |
|             }
 | |
|             if (isinf(x)) {
 | |
|                 if (isinf(f) && signbit(x) != signbit(f))
 | |
|                     f = NAN;
 | |
|                 else
 | |
|                     f = x;
 | |
|                 continue;
 | |
|             }
 | |
|             if (isinf(f)) continue;
 | |
| 
 | |
|             t = f + x;
 | |
|             if (fabs(f) >= fabs(x))
 | |
|                 c += ((f - t) + x);
 | |
|             else
 | |
|                 c += ((x - t) + f);
 | |
|             f = t;
 | |
|         }
 | |
|         f += c;
 | |
|         return DBL2NUM(f);
 | |
| 
 | |
|       not_float:
 | |
|         v = DBL2NUM(f);
 | |
|     }
 | |
| 
 | |
|     goto has_some_value;
 | |
|     for (; i < RARRAY_LEN(ary); i++) {
 | |
|         e = RARRAY_AREF(ary, i);
 | |
|         if (block_given)
 | |
|             e = rb_yield(e);
 | |
|       has_some_value:
 | |
|         v = rb_funcall(v, idPLUS, 1, e);
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_deconstruct(VALUE ary)
 | |
| {
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  An \Array is an ordered, integer-indexed collection of objects,
 | |
|  *  called _elements_.  Any object may be an \Array element.
 | |
|  *
 | |
|  *  == \Array Indexes
 | |
|  *
 | |
|  *  \Array indexing starts at 0, as in C or Java.
 | |
|  *
 | |
|  *  A positive index is an offset from the first element:
 | |
|  *  - Index 0 indicates the first element.
 | |
|  *  - Index 1 indicates the second element.
 | |
|  *  - ...
 | |
|  *
 | |
|  *  A negative index is an offset, backwards, from the end of the array:
 | |
|  *  - Index -1 indicates the last element.
 | |
|  *  - Index -2 indicates the next-to-last element.
 | |
|  *  - ...
 | |
|  *
 | |
|  *  A non-negative index is <i>in range</i> if it is smaller than
 | |
|  *  the size of the array.  For a 3-element array:
 | |
|  *  - Indexes 0 through 2 are in range.
 | |
|  *  - Index 3 is out of range.
 | |
|  *
 | |
|  *  A negative index is <i>in range</i> if its absolute value is
 | |
|  *  not larger than the size of the array.  For a 3-element array:
 | |
|  *  - Indexes -1 through -3 are in range.
 | |
|  *  - Index -4 is out of range.
 | |
|  *
 | |
|  *  == Creating Arrays
 | |
|  *
 | |
|  *  A new array can be created by using the literal constructor
 | |
|  *  <code>[]</code>.  Arrays can contain different types of objects.  For
 | |
|  *  example, the array below contains an Integer, a String and a Float:
 | |
|  *
 | |
|  *     ary = [1, "two", 3.0] #=> [1, "two", 3.0]
 | |
|  *
 | |
|  *  An array can also be created by explicitly calling Array.new with zero, one
 | |
|  *  (the initial size of the Array) or two arguments (the initial size and a
 | |
|  *  default object).
 | |
|  *
 | |
|  *     ary = Array.new    #=> []
 | |
|  *     Array.new(3)       #=> [nil, nil, nil]
 | |
|  *     Array.new(3, true) #=> [true, true, true]
 | |
|  *
 | |
|  *  Note that the second argument populates the array with references to the
 | |
|  *  same object.  Therefore, it is only recommended in cases when you need to
 | |
|  *  instantiate arrays with natively immutable objects such as Symbols,
 | |
|  *  numbers, true or false.
 | |
|  *
 | |
|  *  To create an array with separate objects a block can be passed instead.
 | |
|  *  This method is safe to use with mutable objects such as hashes, strings or
 | |
|  *  other arrays:
 | |
|  *
 | |
|  *     Array.new(4) {Hash.new}    #=> [{}, {}, {}, {}]
 | |
|  *     Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]
 | |
|  *
 | |
|  *  This is also a quick way to build up multi-dimensional arrays:
 | |
|  *
 | |
|  *     empty_table = Array.new(3) {Array.new(3)}
 | |
|  *     #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]
 | |
|  *
 | |
|  *  An array can also be created by using the Array() method, provided by
 | |
|  *  Kernel, which tries to call #to_ary, then #to_a on its argument.
 | |
|  *
 | |
|  *	Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]
 | |
|  *
 | |
|  *  == Example Usage
 | |
|  *
 | |
|  *  In addition to the methods it mixes in through the Enumerable module, the
 | |
|  *  Array class has proprietary methods for accessing, searching and otherwise
 | |
|  *  manipulating arrays.
 | |
|  *
 | |
|  *  Some of the more common ones are illustrated below.
 | |
|  *
 | |
|  *  == Accessing Elements
 | |
|  *
 | |
|  *  Elements in an array can be retrieved using the Array#[] method.  It can
 | |
|  *  take a single integer argument (a numeric index), a pair of arguments
 | |
|  *  (start and length) or a range. Negative indices start counting from the end,
 | |
|  *  with -1 being the last element.
 | |
|  *
 | |
|  *     arr = [1, 2, 3, 4, 5, 6]
 | |
|  *     arr[2]    #=> 3
 | |
|  *     arr[100]  #=> nil
 | |
|  *     arr[-3]   #=> 4
 | |
|  *     arr[2, 3] #=> [3, 4, 5]
 | |
|  *     arr[1..4] #=> [2, 3, 4, 5]
 | |
|  *     arr[1..-3] #=> [2, 3, 4]
 | |
|  *
 | |
|  *  Another way to access a particular array element is by using the #at method
 | |
|  *
 | |
|  *     arr.at(0) #=> 1
 | |
|  *
 | |
|  *  The #slice method works in an identical manner to Array#[].
 | |
|  *
 | |
|  *  To raise an error for indices outside of the array bounds or else to
 | |
|  *  provide a default value when that happens, you can use #fetch.
 | |
|  *
 | |
|  *     arr = ['a', 'b', 'c', 'd', 'e', 'f']
 | |
|  *     arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
 | |
|  *     arr.fetch(100, "oops") #=> "oops"
 | |
|  *
 | |
|  *  The special methods #first and #last will return the first and last
 | |
|  *  elements of an array, respectively.
 | |
|  *
 | |
|  *     arr.first #=> 1
 | |
|  *     arr.last  #=> 6
 | |
|  *
 | |
|  *  To return the first +n+ elements of an array, use #take
 | |
|  *
 | |
|  *     arr.take(3) #=> [1, 2, 3]
 | |
|  *
 | |
|  *  #drop does the opposite of #take, by returning the elements after +n+
 | |
|  *  elements have been dropped:
 | |
|  *
 | |
|  *     arr.drop(3) #=> [4, 5, 6]
 | |
|  *
 | |
|  *  == Obtaining Information about an Array
 | |
|  *
 | |
|  *  Arrays keep track of their own length at all times.  To query an array
 | |
|  *  about the number of elements it contains, use #length, #count or #size.
 | |
|  *
 | |
|  *    browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
 | |
|  *    browsers.length #=> 5
 | |
|  *    browsers.count #=> 5
 | |
|  *
 | |
|  *  To check whether an array contains any elements at all
 | |
|  *
 | |
|  *    browsers.empty? #=> false
 | |
|  *
 | |
|  *  To check whether a particular item is included in the array
 | |
|  *
 | |
|  *    browsers.include?('Konqueror') #=> false
 | |
|  *
 | |
|  *  == Adding Items to Arrays
 | |
|  *
 | |
|  *  Items can be added to the end of an array by using either #push or #<<
 | |
|  *
 | |
|  *    arr = [1, 2, 3, 4]
 | |
|  *    arr.push(5) #=> [1, 2, 3, 4, 5]
 | |
|  *    arr << 6    #=> [1, 2, 3, 4, 5, 6]
 | |
|  *
 | |
|  *  #unshift will add a new item to the beginning of an array.
 | |
|  *
 | |
|  *     arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]
 | |
|  *
 | |
|  *  With #insert you can add a new element to an array at any position.
 | |
|  *
 | |
|  *     arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]
 | |
|  *
 | |
|  *  Using the #insert method, you can also insert multiple values at once:
 | |
|  *
 | |
|  *     arr.insert(3, 'orange', 'pear', 'grapefruit')
 | |
|  *     #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]
 | |
|  *
 | |
|  *  == Removing Items from an Array
 | |
|  *
 | |
|  *  The method #pop removes the last element in an array and returns it:
 | |
|  *
 | |
|  *     arr =  [1, 2, 3, 4, 5, 6]
 | |
|  *     arr.pop #=> 6
 | |
|  *     arr #=> [1, 2, 3, 4, 5]
 | |
|  *
 | |
|  *  To retrieve and at the same time remove the first item, use #shift:
 | |
|  *
 | |
|  *     arr.shift #=> 1
 | |
|  *     arr #=> [2, 3, 4, 5]
 | |
|  *
 | |
|  *  To delete an element at a particular index:
 | |
|  *
 | |
|  *     arr.delete_at(2) #=> 4
 | |
|  *     arr #=> [2, 3, 5]
 | |
|  *
 | |
|  *  To delete a particular element anywhere in an array, use #delete:
 | |
|  *
 | |
|  *     arr = [1, 2, 2, 3]
 | |
|  *     arr.delete(2) #=> 2
 | |
|  *     arr #=> [1,3]
 | |
|  *
 | |
|  *  A useful method if you need to remove +nil+ values from an array is
 | |
|  *  #compact:
 | |
|  *
 | |
|  *     arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
 | |
|  *     arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
 | |
|  *     arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
 | |
|  *     arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
 | |
|  *     arr          #=> ['foo', 0, 'bar', 7, 'baz']
 | |
|  *
 | |
|  *  Another common need is to remove duplicate elements from an array.
 | |
|  *
 | |
|  *  It has the non-destructive #uniq, and destructive method #uniq!
 | |
|  *
 | |
|  *     arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
 | |
|  *     arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]
 | |
|  *
 | |
|  *  == Iterating over Arrays
 | |
|  *
 | |
|  *  Like all classes that include the Enumerable module, Array has an each
 | |
|  *  method, which defines what elements should be iterated over and how.  In
 | |
|  *  case of Array's #each, all elements in the Array instance are yielded to
 | |
|  *  the supplied block in sequence.
 | |
|  *
 | |
|  *  Note that this operation leaves the array unchanged.
 | |
|  *
 | |
|  *     arr = [1, 2, 3, 4, 5]
 | |
|  *     arr.each {|a| print a -= 10, " "}
 | |
|  *     # prints: -9 -8 -7 -6 -5
 | |
|  *     #=> [1, 2, 3, 4, 5]
 | |
|  *
 | |
|  *  Another sometimes useful iterator is #reverse_each which will iterate over
 | |
|  *  the elements in the array in reverse order.
 | |
|  *
 | |
|  *     words = %w[first second third fourth fifth sixth]
 | |
|  *     str = ""
 | |
|  *     words.reverse_each {|word| str += "#{word} "}
 | |
|  *     p str #=> "sixth fifth fourth third second first "
 | |
|  *
 | |
|  *  The #map method can be used to create a new array based on the original
 | |
|  *  array, but with the values modified by the supplied block:
 | |
|  *
 | |
|  *     arr.map {|a| 2*a}     #=> [2, 4, 6, 8, 10]
 | |
|  *     arr                   #=> [1, 2, 3, 4, 5]
 | |
|  *     arr.map! {|a| a**2}   #=> [1, 4, 9, 16, 25]
 | |
|  *     arr                   #=> [1, 4, 9, 16, 25]
 | |
|  *
 | |
|  *  == Selecting Items from an Array
 | |
|  *
 | |
|  *  Elements can be selected from an array according to criteria defined in a
 | |
|  *  block.  The selection can happen in a destructive or a non-destructive
 | |
|  *  manner.  While the destructive operations will modify the array they were
 | |
|  *  called on, the non-destructive methods usually return a new array with the
 | |
|  *  selected elements, but leave the original array unchanged.
 | |
|  *
 | |
|  *  === Non-destructive Selection
 | |
|  *
 | |
|  *     arr = [1, 2, 3, 4, 5, 6]
 | |
|  *     arr.select {|a| a > 3}       #=> [4, 5, 6]
 | |
|  *     arr.reject {|a| a < 3}       #=> [3, 4, 5, 6]
 | |
|  *     arr.drop_while {|a| a < 4}   #=> [4, 5, 6]
 | |
|  *     arr                          #=> [1, 2, 3, 4, 5, 6]
 | |
|  *
 | |
|  *  === Destructive Selection
 | |
|  *
 | |
|  *  #select! and #reject! are the corresponding destructive methods to #select
 | |
|  *  and #reject
 | |
|  *
 | |
|  *  Similar to #select vs. #reject, #delete_if and #keep_if have the exact
 | |
|  *  opposite result when supplied with the same block:
 | |
|  *
 | |
|  *     arr.delete_if {|a| a < 4}   #=> [4, 5, 6]
 | |
|  *     arr                         #=> [4, 5, 6]
 | |
|  *
 | |
|  *     arr = [1, 2, 3, 4, 5, 6]
 | |
|  *     arr.keep_if {|a| a < 4}   #=> [1, 2, 3]
 | |
|  *     arr                       #=> [1, 2, 3]
 | |
|  *
 | |
|  *  == What's Here
 | |
|  *
 | |
|  *  First, what's elsewhere. \Class \Array:
 | |
|  *
 | |
|  *  - Inherits from {class Object}[Object.html#class-Object-label-What-27s+Here].
 | |
|  *  - Includes {module Enumerable}[Enumerable.html#module-Enumerable-label-What-27s+Here],
 | |
|  *    which provides dozens of additional methods.
 | |
|  *
 | |
|  *  Here, class \Array provides methods that are useful for:
 | |
|  *
 | |
|  *  - {Creating an Array}[#class-Array-label-Methods+for+Creating+an+Array]
 | |
|  *  - {Querying}[#class-Array-label-Methods+for+Querying]
 | |
|  *  - {Comparing}[#class-Array-label-Methods+for+Comparing]
 | |
|  *  - {Fetching}[#class-Array-label-Methods+for+Fetching]
 | |
|  *  - {Assigning}[#class-Array-label-Methods+for+Assigning]
 | |
|  *  - {Deleting}[#class-Array-label-Methods+for+Deleting]
 | |
|  *  - {Combining}[#class-Array-label-Methods+for+Combining]
 | |
|  *  - {Iterating}[#class-Array-label-Methods+for+Iterating]
 | |
|  *  - {Converting}[#class-Array-label-Methods+for+Converting]
 | |
|  *  - {And more....}[#class-Array-label-Other+Methods]
 | |
|  *
 | |
|  *  === Methods for Creating an Array
 | |
|  *
 | |
|  *  ::[]:: Returns a new array populated with given objects.
 | |
|  *  ::new:: Returns a new array.
 | |
|  *  ::try_convert:: Returns a new array created from a given object.
 | |
|  *
 | |
|  *  === Methods for Querying
 | |
|  *
 | |
|  *  #length, #size:: Returns the count of elements.
 | |
|  *  #include?:: Returns whether any element <tt>==</tt> a given object.
 | |
|  *  #empty?:: Returns whether there are no elements.
 | |
|  *  #all?:: Returns whether all elements meet a given criterion.
 | |
|  *  #any?:: Returns whether any element meets a given criterion.
 | |
|  *  #none?:: Returns whether no element <tt>==</tt> a given object.
 | |
|  *  #one?:: Returns whether exactly one element <tt>==</tt> a given object.
 | |
|  *  #count:: Returns the count of elements that meet a given criterion.
 | |
|  *  #find_index, #index:: Returns the index of the first element that meets a given criterion.
 | |
|  *  #rindex:: Returns the index of the last element that meets a given criterion.
 | |
|  *  #hash:: Returns the integer hash code.
 | |
|  *
 | |
|  *  === Methods for Comparing
 | |
|  *  {#<=>}[#method-i-3C-3D-3E]:: Returns -1, 0, or 1
 | |
|  *                               as +self+ is less than, equal to, or greater than a given object.
 | |
|  *  {#==}[#method-i-3D-3D]:: Returns whether each element in +self+ is <tt>==</tt> to the
 | |
|  *                           corresponding element in a given object.
 | |
|  *  #eql?:: Returns whether each element in +self+ is <tt>eql?</tt> to the corresponding
 | |
|  *          element in a given object.
 | |
| 
 | |
|  *  === Methods for Fetching
 | |
|  *
 | |
|  *  These methods do not modify +self+.
 | |
|  *
 | |
|  *  #[]:: Returns one or more elements.
 | |
|  *  #fetch:: Returns the element at a given offset.
 | |
|  *  #first:: Returns one or more leading elements.
 | |
|  *  #last:: Returns one or more trailing elements.
 | |
|  *  #max:: Returns one or more maximum-valued elements,
 | |
|  *         as determined by <tt><=></tt> or a given block.
 | |
|  *  #max:: Returns one or more minimum-valued elements,
 | |
|  *         as determined by <tt><=></tt> or a given block.
 | |
|  *  #minmax:: Returns the minimum-valued and maximum-valued elements,
 | |
|  *            as determined by <tt><=></tt> or a given block.
 | |
|  *  #assoc:: Returns the first element that is an array
 | |
|  *           whose first element <tt>==</tt> a given object.
 | |
|  *  #rassoc:: Returns the first element that is an array
 | |
|  *            whose second element <tt>==</tt> a given object.
 | |
|  *  #at:: Returns the element at a given offset.
 | |
|  *  #values_at:: Returns the elements at given offsets.
 | |
|  *  #dig:: Returns the object in nested objects
 | |
|  *         that is specified by a given index and additional arguments.
 | |
|  *  #drop:: Returns trailing elements as determined by a given index.
 | |
|  *  #take:: Returns leading elements as determined by a given index.
 | |
|  *  #drop_while:: Returns trailing elements as determined by a given block.
 | |
|  *  #take_while:: Returns leading elements as determined by a given block.
 | |
|  *  #slice:: Returns consecutive elements as determined by a given argument.
 | |
|  *  #sort:: Returns all elements in an order determined by <tt><=></tt> or a given block.
 | |
|  *  #reverse:: Returns all elements in reverse order.
 | |
|  *  #compact:: Returns an array containing all non-+nil+ elements.
 | |
|  *  #select, #filter:: Returns an array containing elements selected by a given block.
 | |
|  *  #uniq:: Returns an array containing non-duplicate elements.
 | |
|  *  #rotate:: Returns all elements with some rotated from one end to the other.
 | |
|  *  #bsearch:: Returns an element selected via a binary search
 | |
|  *             as determined by a given block.
 | |
|  *  #bsearch_index:: Returns the index of an element selected via a binary search
 | |
|  *                   as determined by a given block.
 | |
|  *  #sample:: Returns one or more random elements.
 | |
|  *  #shuffle:: Returns elements in a random order.
 | |
|  *
 | |
|  *  === Methods for Assigning
 | |
|  *
 | |
|  *  These methods add, replace, or reorder elements in +self+.
 | |
|  *
 | |
|  *  #[]=:: Assigns specified elements with a given object.
 | |
|  *  #push, #append, #<<:: Appends trailing elements.
 | |
|  *  #unshift, #prepend:: Prepends leading elements.
 | |
|  *  #insert:: Inserts given objects at a given offset; does not replace elements.
 | |
|  *  #concat:: Appends all elements from given arrays.
 | |
|  *  #fill:: Replaces specified elements with specified objects.
 | |
|  *  #replace:: Replaces the content of +self+ with the content of a given array.
 | |
|  *  #reverse!:: Replaces +self+ with its elements reversed.
 | |
|  *  #rotate!:: Replaces +self+ with its elements rotated.
 | |
|  *  #shuffle!:: Replaces +self+ with its elements in random order.
 | |
|  *  #sort!:: Replaces +self+ with its elements sorted,
 | |
|  *           as determined by <tt><=></tt> or a given block.
 | |
|  *  #sort_by!:: Replaces +self+ with its elements sorted, as determined by a given block.
 | |
|  *
 | |
|  *  === Methods for Deleting
 | |
|  *
 | |
|  *  Each of these methods removes elements from +self+:
 | |
|  *
 | |
|  *  #pop:: Removes and returns the last element.
 | |
|  *  #shift::  Removes and returns the first element.
 | |
|  *  #compact!:: Removes all non-+nil+ elements.
 | |
|  *  #delete:: Removes elements equal to a given object.
 | |
|  *  #delete_at:: Removes the element at a given offset.
 | |
|  *  #delete_if:: Removes elements specified by a given block.
 | |
|  *  #keep_if:: Removes elements not specified by a given block.
 | |
|  *  #reject!:: Removes elements specified by a given block.
 | |
|  *  #select!, #filter!:: Removes elements not specified by a given block.
 | |
|  *  #slice!:: Removes and returns a sequence of elements.
 | |
|  *  #uniq!:: Removes duplicates.
 | |
|  *
 | |
|  *  === Methods for Combining
 | |
|  *
 | |
|  *  {#&}[#method-i-26]:: Returns an array containing elements found both in +self+ and a given array.
 | |
|  *  #intersection:: Returns an array containing elements found both in +self+
 | |
|  *                  and in each given array.
 | |
|  *  #+:: Returns an array containing all elements of +self+ followed by all elements of a given array.
 | |
|  *  #-:: Returns an array containiing all elements of +self+ that are not found in a given array.
 | |
|  *  {#|}[#method-i-7C]:: Returns an array containing all elements of +self+ and all elements of a given array,
 | |
|  *                       duplicates removed.
 | |
|  *  #union:: Returns an array containing all elements of +self+ and all elements of given arrays,
 | |
|  *           duplicates removed.
 | |
|  *  #difference:: Returns an array containing all elements of +self+ that are not found
 | |
|  *                in any of the given arrays..
 | |
|  *  #product:: Returns or yields all combinations of elements from +self+ and given arrays.
 | |
|  *
 | |
|  *  === Methods for Iterating
 | |
|  *
 | |
|  *  #each:: Passes each element to a given block.
 | |
|  *  #reverse_each::  Passes each element, in reverse order, to a given block.
 | |
|  *  #each_index:: Passes each element index to a given block.
 | |
|  *  #cycle:: Calls a given block with each element, then does so again,
 | |
|  *           for a specified number of times, or forever.
 | |
|  *  #combination:: Calls a given block with combinations of elements of +self+;
 | |
|  *                 a combination does not use the same element more than once.
 | |
|  *  #permutation:: Calls a given block with permutations of elements of +self+;
 | |
|  *                 a permutation does not use the same element more than once.
 | |
|  *  #repeated_combination:: Calls a given block with combinations of elements of +self+;
 | |
|  *                          a combination may use the same element more than once.
 | |
|  *  #repeated_permutation:: Calls a given block with permutations of elements of +self+;
 | |
|  *                          a permutation may use the same element more than once.
 | |
|  *
 | |
|  *  === Methods for Converting
 | |
|  *
 | |
|  *  #map, #collect:: Returns an array containing the block return-value for each element.
 | |
|  *  #map!, #collect!:: Replaces each element with a block return-value.
 | |
|  *  #flatten:: Returns an array that is a recursive flattening of +self+.
 | |
|  *  #flatten!:: Replaces each nested array in +self+ with the elements from that array.
 | |
|  *  #inspect, #to_s:: Returns a new String containing the elements.
 | |
|  *  #join:: Returns a newsString containing the elements joined by the field separator.
 | |
|  *  #to_a:: Returns +self+ or a new array containing all elements.
 | |
|  *  #to_ary:: Returns +self+.
 | |
|  *  #to_h:: Returns a new hash formed from the elements.
 | |
|  *  #transpose:: Transposes +self+, which must be an array of arrays.
 | |
|  *  #zip:: Returns a new array of arrays containing +self+ and given arrays;
 | |
|  *         follow the link for details.
 | |
|  *
 | |
|  *  === Other Methods
 | |
|  *
 | |
|  *  #*:: Returns one of the following:
 | |
|  *       - With integer argument +n+, a new array that is the concatenation
 | |
|  *         of +n+ copies of +self+.
 | |
|  *       - With string argument +field_separator+, a new string that is equivalent to
 | |
|  *         <tt>join(field_separator)</tt>.
 | |
|  *  #abbrev:: Returns a hash of unambiguous abbreviations for elements.
 | |
|  *  #pack:: Packs the the elements into a binary sequence.
 | |
|  *  #sum:: Returns a sum of elements according to either <tt>+</tt> or a given block.
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Array(void)
 | |
| {
 | |
|     rb_cArray  = rb_define_class("Array", rb_cObject);
 | |
|     rb_include_module(rb_cArray, rb_mEnumerable);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cArray, empty_ary_alloc);
 | |
|     rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
 | |
|     rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
 | |
|     rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
 | |
|     rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
 | |
|     rb_define_alias(rb_cArray,  "to_s", "inspect");
 | |
|     rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
 | |
|     rb_define_method(rb_cArray, "to_h", rb_ary_to_h, 0);
 | |
|     rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
 | |
|     rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
 | |
|     rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
 | |
|     rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
 | |
|     rb_define_method(rb_cArray, "at", rb_ary_at, 1);
 | |
|     rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
 | |
|     rb_define_method(rb_cArray, "first", rb_ary_first, -1);
 | |
|     rb_define_method(rb_cArray, "last", rb_ary_last, -1);
 | |
|     rb_define_method(rb_cArray, "concat", rb_ary_concat_multi, -1);
 | |
|     rb_define_method(rb_cArray, "union", rb_ary_union_multi, -1);
 | |
|     rb_define_method(rb_cArray, "difference", rb_ary_difference_multi, -1);
 | |
|     rb_define_method(rb_cArray, "intersection", rb_ary_intersection_multi, -1);
 | |
|     rb_define_method(rb_cArray, "intersect?", rb_ary_intersect_p, 1);
 | |
|     rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
 | |
|     rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
 | |
|     rb_define_alias(rb_cArray,  "append", "push");
 | |
|     rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
 | |
|     rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
 | |
|     rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
 | |
|     rb_define_alias(rb_cArray,  "prepend", "unshift");
 | |
|     rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
 | |
|     rb_define_method(rb_cArray, "each", rb_ary_each, 0);
 | |
|     rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
 | |
|     rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
 | |
|     rb_define_method(rb_cArray, "length", rb_ary_length, 0);
 | |
|     rb_define_alias(rb_cArray,  "size", "length");
 | |
|     rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
 | |
|     rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
 | |
|     rb_define_method(rb_cArray, "index", rb_ary_index, -1);
 | |
|     rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
 | |
|     rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
 | |
|     rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
 | |
|     rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
 | |
|     rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
 | |
|     rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
 | |
|     rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
 | |
|     rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
 | |
|     rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
 | |
|     rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
 | |
|     rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
 | |
|     rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
 | |
|     rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
 | |
|     rb_define_method(rb_cArray, "select", rb_ary_select, 0);
 | |
|     rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
 | |
|     rb_define_method(rb_cArray, "filter", rb_ary_select, 0);
 | |
|     rb_define_method(rb_cArray, "filter!", rb_ary_select_bang, 0);
 | |
|     rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
 | |
|     rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
 | |
|     rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
 | |
|     rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
 | |
|     rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
 | |
|     rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
 | |
|     rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
 | |
|     rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
 | |
|     rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
 | |
|     rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
 | |
|     rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
 | |
|     rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
 | |
|     rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
 | |
|     rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
 | |
|     rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
 | |
|     rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
 | |
|     rb_define_method(rb_cArray, "*", rb_ary_times, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
 | |
|     rb_define_method(rb_cArray, "&", rb_ary_and, 1);
 | |
|     rb_define_method(rb_cArray, "|", rb_ary_or, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "max", rb_ary_max, -1);
 | |
|     rb_define_method(rb_cArray, "min", rb_ary_min, -1);
 | |
|     rb_define_method(rb_cArray, "minmax", rb_ary_minmax, 0);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
 | |
|     rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
 | |
|     rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
 | |
|     rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
 | |
|     rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
 | |
|     rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
 | |
|     rb_define_method(rb_cArray, "count", rb_ary_count, -1);
 | |
|     rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
 | |
|     rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
 | |
|     rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
 | |
|     rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
 | |
|     rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
 | |
|     rb_define_method(rb_cArray, "product", rb_ary_product, -1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "take", rb_ary_take, 1);
 | |
|     rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
 | |
|     rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
 | |
|     rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
 | |
|     rb_define_method(rb_cArray, "bsearch", rb_ary_bsearch, 0);
 | |
|     rb_define_method(rb_cArray, "bsearch_index", rb_ary_bsearch_index, 0);
 | |
|     rb_define_method(rb_cArray, "any?", rb_ary_any_p, -1);
 | |
|     rb_define_method(rb_cArray, "all?", rb_ary_all_p, -1);
 | |
|     rb_define_method(rb_cArray, "none?", rb_ary_none_p, -1);
 | |
|     rb_define_method(rb_cArray, "one?", rb_ary_one_p, -1);
 | |
|     rb_define_method(rb_cArray, "dig", rb_ary_dig, -1);
 | |
|     rb_define_method(rb_cArray, "sum", rb_ary_sum, -1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "deconstruct", rb_ary_deconstruct, 0);
 | |
| }
 | |
| 
 | |
| #include "array.rbinc"
 | 
