1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/class.c
Kevin Newton 6068da8937 Finer-grained constant cache invalidation (take 2)
This commit reintroduces finer-grained constant cache invalidation.
After 8008fb7 got merged, it was causing issues on token-threaded
builds (such as on Windows).

The issue was that when you're iterating through instruction sequences
and using the translator functions to get back the instruction structs,
you're either using `rb_vm_insn_null_translator` or
`rb_vm_insn_addr2insn2` depending if it's a direct-threading build.
`rb_vm_insn_addr2insn2` does some normalization to always return to
you the non-trace version of whatever instruction you're looking at.
`rb_vm_insn_null_translator` does not do that normalization.

This means that when you're looping through the instructions if you're
trying to do an opcode comparison, it can change depending on the type
of threading that you're using. This can be very confusing. So, this
commit creates a new translator function
`rb_vm_insn_normalizing_translator` to always return the non-trace
version so that opcode comparisons don't have to worry about different
configurations.

[Feature #18589]
2022-04-01 14:48:22 -04:00

2497 lines
66 KiB
C

/**********************************************************************
class.c -
$Author$
created at: Tue Aug 10 15:05:44 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
/*!
* \addtogroup class
* \{
*/
#include "ruby/internal/config.h"
#include <ctype.h>
#include "constant.h"
#include "debug_counter.h"
#include "id_table.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/eval.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/string.h"
#include "internal/variable.h"
#include "ruby/st.h"
#include "vm_core.h"
#define id_attached id__attached__
#define METACLASS_OF(k) RBASIC(k)->klass
#define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls)
RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state;
static rb_subclass_entry_t *
push_subclass_entry_to_list(VALUE super, VALUE klass)
{
rb_subclass_entry_t *entry, *head;
entry = ZALLOC(rb_subclass_entry_t);
entry->klass = klass;
head = RCLASS_SUBCLASSES(super);
if (!head) {
head = ZALLOC(rb_subclass_entry_t);
RCLASS_SUBCLASSES(super) = head;
}
entry->next = head->next;
entry->prev = head;
if (head->next) {
head->next->prev = entry;
}
head->next = entry;
return entry;
}
void
rb_class_subclass_add(VALUE super, VALUE klass)
{
if (super && super != Qundef) {
rb_subclass_entry_t *entry = push_subclass_entry_to_list(super, klass);
RCLASS_SUBCLASS_ENTRY(klass) = entry;
}
}
static void
rb_module_add_to_subclasses_list(VALUE module, VALUE iclass)
{
rb_subclass_entry_t *entry = push_subclass_entry_to_list(module, iclass);
RCLASS_MODULE_SUBCLASS_ENTRY(iclass) = entry;
}
void
rb_class_remove_subclass_head(VALUE klass)
{
rb_subclass_entry_t *head = RCLASS_SUBCLASSES(klass);
if (head) {
if (head->next) {
head->next->prev = NULL;
}
RCLASS_SUBCLASSES(klass) = NULL;
xfree(head);
}
}
void
rb_class_remove_from_super_subclasses(VALUE klass)
{
rb_subclass_entry_t *entry = RCLASS_SUBCLASS_ENTRY(klass);
if (entry) {
rb_subclass_entry_t *prev = entry->prev, *next = entry->next;
if (prev) {
prev->next = next;
}
if (next) {
next->prev = prev;
}
xfree(entry);
}
RCLASS_SUBCLASS_ENTRY(klass) = NULL;
}
void
rb_class_remove_from_module_subclasses(VALUE klass)
{
rb_subclass_entry_t *entry = RCLASS_MODULE_SUBCLASS_ENTRY(klass);
if (entry) {
rb_subclass_entry_t *prev = entry->prev, *next = entry->next;
if (prev) {
prev->next = next;
}
if (next) {
next->prev = prev;
}
xfree(entry);
}
RCLASS_MODULE_SUBCLASS_ENTRY(klass) = NULL;
}
void
rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg)
{
// RCLASS_SUBCLASSES should always point to our head element which has NULL klass
rb_subclass_entry_t *cur = RCLASS_SUBCLASSES(klass);
// if we have a subclasses list, then the head is a placeholder with no valid
// class. So ignore it and use the next element in the list (if one exists)
if (cur) {
RUBY_ASSERT(!cur->klass);
cur = cur->next;
}
/* do not be tempted to simplify this loop into a for loop, the order of
operations is important here if `f` modifies the linked list */
while (cur) {
VALUE curklass = cur->klass;
cur = cur->next;
// do not trigger GC during f, otherwise the cur will become
// a dangling pointer if the subclass is collected
f(curklass, arg);
}
}
static void
class_detach_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_super_subclasses(klass);
}
void
rb_class_detach_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil);
}
static void
class_detach_module_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_module_subclasses(klass);
}
void
rb_class_detach_module_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil);
}
/**
* Allocates a struct RClass for a new class.
*
* \param flags initial value for basic.flags of the returned class.
* \param klass the class of the returned class.
* \return an uninitialized Class object.
* \pre \p klass must refer \c Class class or an ancestor of Class.
* \pre \code (flags | T_CLASS) != 0 \endcode
* \post the returned class can safely be \c #initialize 'd.
*
* \note this function is not Class#allocate.
*/
static VALUE
class_alloc(VALUE flags, VALUE klass)
{
size_t alloc_size = sizeof(struct RClass);
#if USE_RVARGC
alloc_size += sizeof(rb_classext_t);
#endif
flags &= T_MASK;
flags |= FL_PROMOTED1 /* start from age == 2 */;
if (RGENGC_WB_PROTECTED_CLASS) flags |= FL_WB_PROTECTED;
RVARGC_NEWOBJ_OF(obj, struct RClass, klass, flags, alloc_size);
#if USE_RVARGC
memset(RCLASS_EXT(obj), 0, sizeof(rb_classext_t));
# if SIZEOF_SERIAL_T != SIZEOF_VALUE
RCLASS(obj)->class_serial_ptr = ZALLOC(rb_serial_t);
# endif
#else
obj->ptr = ZALLOC(rb_classext_t);
#endif
/* ZALLOC
RCLASS_IV_TBL(obj) = 0;
RCLASS_CONST_TBL(obj) = 0;
RCLASS_M_TBL(obj) = 0;
RCLASS_IV_INDEX_TBL(obj) = 0;
RCLASS_SET_SUPER((VALUE)obj, 0);
RCLASS_SUBCLASSES(obj) = NULL;
RCLASS_PARENT_SUBCLASSES(obj) = NULL;
RCLASS_MODULE_SUBCLASSES(obj) = NULL;
*/
RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj);
RCLASS_SERIAL(obj) = rb_next_class_serial();
RB_OBJ_WRITE(obj, &RCLASS_REFINED_CLASS(obj), Qnil);
RCLASS_ALLOCATOR(obj) = 0;
return (VALUE)obj;
}
static void
RCLASS_M_TBL_INIT(VALUE c)
{
RCLASS_M_TBL(c) = rb_id_table_create(0);
}
/*!
* A utility function that wraps class_alloc.
*
* allocates a class and initializes safely.
* \param super a class from which the new class derives.
* \return a class object.
* \pre \a super must be a class.
* \post the metaclass of the new class is Class.
*/
VALUE
rb_class_boot(VALUE super)
{
VALUE klass = class_alloc(T_CLASS, rb_cClass);
RCLASS_SET_SUPER(klass, super);
RCLASS_M_TBL_INIT(klass);
return (VALUE)klass;
}
static VALUE *
class_superclasses_including_self(VALUE klass)
{
if (FL_TEST_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF))
return RCLASS_SUPERCLASSES(klass);
size_t depth = RCLASS_SUPERCLASS_DEPTH(klass);
VALUE *superclasses = xmalloc(sizeof(VALUE) * (depth + 1));
if (depth > 0)
memcpy(superclasses, RCLASS_SUPERCLASSES(klass), sizeof(VALUE) * depth);
superclasses[depth] = klass;
RCLASS_SUPERCLASSES(klass) = superclasses;
FL_SET_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF);
return superclasses;
}
void
rb_class_update_superclasses(VALUE klass)
{
VALUE super = RCLASS_SUPER(klass);
if (!RB_TYPE_P(klass, T_CLASS)) return;
if (super == Qundef) return;
// If the superclass array is already built
if (RCLASS_SUPERCLASSES(klass))
return;
// find the proper superclass
while (super != Qfalse && !RB_TYPE_P(super, T_CLASS)) {
super = RCLASS_SUPER(super);
}
// For BasicObject and uninitialized classes, depth=0 and ary=NULL
if (super == Qfalse)
return;
// Sometimes superclasses are set before the full ancestry tree is built
// This happens during metaclass construction
if (super != rb_cBasicObject && !RCLASS_SUPERCLASS_DEPTH(super)) {
rb_class_update_superclasses(super);
// If it is still unset we need to try later
if (!RCLASS_SUPERCLASS_DEPTH(super))
return;
}
RCLASS_SUPERCLASSES(klass) = class_superclasses_including_self(super);
RCLASS_SUPERCLASS_DEPTH(klass) = RCLASS_SUPERCLASS_DEPTH(super) + 1;
}
void
rb_check_inheritable(VALUE super)
{
if (!RB_TYPE_P(super, T_CLASS)) {
rb_raise(rb_eTypeError, "superclass must be an instance of Class (given an instance of %"PRIsVALUE")",
rb_obj_class(super));
}
if (RBASIC(super)->flags & FL_SINGLETON) {
rb_raise(rb_eTypeError, "can't make subclass of singleton class");
}
if (super == rb_cClass) {
rb_raise(rb_eTypeError, "can't make subclass of Class");
}
}
VALUE
rb_class_new(VALUE super)
{
Check_Type(super, T_CLASS);
rb_check_inheritable(super);
return rb_class_boot(super);
}
VALUE
rb_class_s_alloc(VALUE klass)
{
return rb_class_boot(0);
}
static void
clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me)
{
if (me->def->type == VM_METHOD_TYPE_ISEQ) {
rb_cref_t *new_cref;
rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref);
rb_add_method_iseq(new_klass, mid, me->def->body.iseq.iseqptr, new_cref, METHOD_ENTRY_VISI(me));
}
else {
rb_method_entry_set(new_klass, mid, me, METHOD_ENTRY_VISI(me));
}
}
struct clone_method_arg {
VALUE new_klass;
VALUE old_klass;
};
static enum rb_id_table_iterator_result
clone_method_i(ID key, VALUE value, void *data)
{
const struct clone_method_arg *arg = (struct clone_method_arg *)data;
clone_method(arg->old_klass, arg->new_klass, key, (const rb_method_entry_t *)value);
return ID_TABLE_CONTINUE;
}
struct clone_const_arg {
VALUE klass;
struct rb_id_table *tbl;
};
static int
clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg)
{
rb_const_entry_t *nce = ALLOC(rb_const_entry_t);
MEMCPY(nce, ce, rb_const_entry_t, 1);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file);
rb_id_table_insert(arg->tbl, key, (VALUE)nce);
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
clone_const_i(ID key, VALUE value, void *data)
{
return clone_const(key, (const rb_const_entry_t *)value, data);
}
static void
class_init_copy_check(VALUE clone, VALUE orig)
{
if (orig == rb_cBasicObject) {
rb_raise(rb_eTypeError, "can't copy the root class");
}
if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (FL_TEST(orig, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't copy singleton class");
}
}
static void
copy_tables(VALUE clone, VALUE orig)
{
if (RCLASS_IV_TBL(clone)) {
st_free_table(RCLASS_IV_TBL(clone));
RCLASS_IV_TBL(clone) = 0;
}
if (RCLASS_CONST_TBL(clone)) {
rb_free_const_table(RCLASS_CONST_TBL(clone));
RCLASS_CONST_TBL(clone) = 0;
}
RCLASS_M_TBL(clone) = 0;
if (RCLASS_IV_TBL(orig)) {
st_data_t id;
rb_iv_tbl_copy(clone, orig);
CONST_ID(id, "__tmp_classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classid__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
}
if (RCLASS_CONST_TBL(orig)) {
struct clone_const_arg arg;
arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
arg.klass = clone;
rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg);
}
}
static bool ensure_origin(VALUE klass);
/**
* If this flag is set, that module is allocated but not initialized yet.
*/
enum {RMODULE_ALLOCATED_BUT_NOT_INITIALIZED = RUBY_FL_USER5};
static inline bool
RMODULE_UNINITIALIZED(VALUE module)
{
return FL_TEST_RAW(module, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
}
void
rb_module_set_initialized(VALUE mod)
{
FL_UNSET_RAW(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
/* no more re-initialization */
}
void
rb_module_check_initializable(VALUE mod)
{
if (!RMODULE_UNINITIALIZED(mod)) {
rb_raise(rb_eTypeError, "already initialized module");
}
}
/* :nodoc: */
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
switch (BUILTIN_TYPE(clone)) {
case T_CLASS:
case T_ICLASS:
class_init_copy_check(clone, orig);
break;
case T_MODULE:
rb_module_check_initializable(clone);
break;
default:
break;
}
if (!OBJ_INIT_COPY(clone, orig)) return clone;
/* cloned flag is refer at constant inline cache
* see vm_get_const_key_cref() in vm_insnhelper.c
*/
FL_SET(clone, RCLASS_CLONED);
FL_SET(orig , RCLASS_CLONED);
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone);
}
RCLASS_ALLOCATOR(clone) = RCLASS_ALLOCATOR(orig);
copy_tables(clone, orig);
if (RCLASS_M_TBL(orig)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
RCLASS_M_TBL_INIT(clone);
rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
}
if (RCLASS_ORIGIN(orig) == orig) {
RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
}
else {
VALUE p = RCLASS_SUPER(orig);
VALUE orig_origin = RCLASS_ORIGIN(orig);
VALUE prev_clone_p = clone;
VALUE origin_stack = rb_ary_tmp_new(2);
VALUE origin[2];
VALUE clone_p = 0;
long origin_len;
int add_subclass;
VALUE clone_origin;
ensure_origin(clone);
clone_origin = RCLASS_ORIGIN(clone);
while (p && p != orig_origin) {
if (BUILTIN_TYPE(p) != T_ICLASS) {
rb_bug("non iclass between module/class and origin");
}
clone_p = class_alloc(RBASIC(p)->flags, METACLASS_OF(p));
RCLASS_SET_SUPER(prev_clone_p, clone_p);
prev_clone_p = clone_p;
RCLASS_M_TBL(clone_p) = RCLASS_M_TBL(p);
RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p);
RCLASS_IV_TBL(clone_p) = RCLASS_IV_TBL(p);
RCLASS_ALLOCATOR(clone_p) = RCLASS_ALLOCATOR(p);
if (RB_TYPE_P(clone, T_CLASS)) {
RCLASS_SET_INCLUDER(clone_p, clone);
}
add_subclass = TRUE;
if (p != RCLASS_ORIGIN(p)) {
origin[0] = clone_p;
origin[1] = RCLASS_ORIGIN(p);
rb_ary_cat(origin_stack, origin, 2);
}
else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
RARRAY_AREF(origin_stack, origin_len - 1) == p) {
RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p);
rb_ary_resize(origin_stack, origin_len);
add_subclass = FALSE;
}
if (add_subclass) {
rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p);
}
p = RCLASS_SUPER(p);
}
if (p == orig_origin) {
if (clone_p) {
RCLASS_SET_SUPER(clone_p, clone_origin);
RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin));
}
copy_tables(clone_origin, orig_origin);
if (RCLASS_M_TBL(orig_origin)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
RCLASS_M_TBL_INIT(clone_origin);
rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
}
}
else {
rb_bug("no origin for class that has origin");
}
}
return clone;
}
VALUE
rb_singleton_class_clone(VALUE obj)
{
return rb_singleton_class_clone_and_attach(obj, Qundef);
}
// Clone and return the singleton class of `obj` if it has been created and is attached to `obj`.
VALUE
rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach)
{
const VALUE klass = METACLASS_OF(obj);
// Note that `rb_singleton_class()` can create situations where `klass` is
// attached to an object other than `obj`. In which case `obj` does not have
// a material singleton class attached yet and there is no singleton class
// to clone.
if (!(FL_TEST(klass, FL_SINGLETON) && rb_attr_get(klass, id_attached) == obj)) {
// nothing to clone
return klass;
}
else {
/* copy singleton(unnamed) class */
bool klass_of_clone_is_new;
VALUE clone = class_alloc(RBASIC(klass)->flags, 0);
if (BUILTIN_TYPE(obj) == T_CLASS) {
klass_of_clone_is_new = true;
RBASIC_SET_CLASS(clone, clone);
}
else {
VALUE klass_metaclass_clone = rb_singleton_class_clone(klass);
// When `METACLASS_OF(klass) == klass_metaclass_clone`, it means the
// recursive call did not clone `METACLASS_OF(klass)`.
klass_of_clone_is_new = (METACLASS_OF(klass) != klass_metaclass_clone);
RBASIC_SET_CLASS(clone, klass_metaclass_clone);
}
RCLASS_SET_SUPER(clone, RCLASS_SUPER(klass));
RCLASS_ALLOCATOR(clone) = RCLASS_ALLOCATOR(klass);
if (RCLASS_IV_TBL(klass)) {
rb_iv_tbl_copy(clone, klass);
}
if (RCLASS_CONST_TBL(klass)) {
struct clone_const_arg arg;
arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
arg.klass = clone;
rb_id_table_foreach(RCLASS_CONST_TBL(klass), clone_const_i, &arg);
}
if (attach != Qundef) {
rb_singleton_class_attached(clone, attach);
}
RCLASS_M_TBL_INIT(clone);
{
struct clone_method_arg arg;
arg.old_klass = klass;
arg.new_klass = clone;
rb_id_table_foreach(RCLASS_M_TBL(klass), clone_method_i, &arg);
}
if (klass_of_clone_is_new) {
rb_singleton_class_attached(METACLASS_OF(clone), clone);
}
FL_SET(clone, FL_SINGLETON);
return clone;
}
}
void
rb_singleton_class_attached(VALUE klass, VALUE obj)
{
if (FL_TEST(klass, FL_SINGLETON)) {
rb_class_ivar_set(klass, id_attached, obj);
}
}
/*!
* whether k is a meta^(n)-class of Class class
* @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0)
* @retval 0 otherwise
*/
#define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k))
static int
rb_singleton_class_has_metaclass_p(VALUE sklass)
{
return rb_attr_get(METACLASS_OF(sklass), id_attached) == sklass;
}
int
rb_singleton_class_internal_p(VALUE sklass)
{
return (RB_TYPE_P(rb_attr_get(sklass, id_attached), T_CLASS) &&
!rb_singleton_class_has_metaclass_p(sklass));
}
/*!
* whether k has a metaclass
* @retval 1 if \a k has a metaclass
* @retval 0 otherwise
*/
#define HAVE_METACLASS_P(k) \
(FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \
rb_singleton_class_has_metaclass_p(k))
/*!
* ensures \a klass belongs to its own eigenclass.
* @return the eigenclass of \a klass
* @post \a klass belongs to the returned eigenclass.
* i.e. the attached object of the eigenclass is \a klass.
* @note this macro creates a new eigenclass if necessary.
*/
#define ENSURE_EIGENCLASS(klass) \
(HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass))
/*!
* Creates a metaclass of \a klass
* \param klass a class
* \return created metaclass for the class
* \pre \a klass is a Class object
* \pre \a klass has no singleton class.
* \post the class of \a klass is the returned class.
* \post the returned class is meta^(n+1)-class when \a klass is a meta^(n)-klass for n >= 0
*/
static inline VALUE
make_metaclass(VALUE klass)
{
VALUE super;
VALUE metaclass = rb_class_boot(Qundef);
FL_SET(metaclass, FL_SINGLETON);
rb_singleton_class_attached(metaclass, klass);
if (META_CLASS_OF_CLASS_CLASS_P(klass)) {
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, metaclass);
}
else {
VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp));
}
super = RCLASS_SUPER(klass);
while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super);
RCLASS_SET_SUPER(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass);
// Full class ancestry may not have been filled until we reach here.
rb_class_update_superclasses(METACLASS_OF(metaclass));
return metaclass;
}
/*!
* Creates a singleton class for \a obj.
* \pre \a obj must not a immediate nor a special const.
* \pre \a obj must not a Class object.
* \pre \a obj has no singleton class.
*/
static inline VALUE
make_singleton_class(VALUE obj)
{
VALUE orig_class = METACLASS_OF(obj);
VALUE klass = rb_class_boot(orig_class);
FL_SET(klass, FL_SINGLETON);
RBASIC_SET_CLASS(obj, klass);
rb_singleton_class_attached(klass, obj);
SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class)));
return klass;
}
static VALUE
boot_defclass(const char *name, VALUE super)
{
VALUE obj = rb_class_boot(super);
ID id = rb_intern(name);
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
rb_vm_add_root_module(obj);
return obj;
}
/***********************************************************************
*
* Document-class: Refinement
*
* Refinement is a class of the +self+ (current context) inside +refine+
* statement. It allows to import methods from other modules, see #import_methods.
*/
#if 0 /* for RDoc */
/*
* Document-method: Refinement#import_methods
*
* call-seq:
* import_methods(module, ...) -> self
*
* Imports methods from modules. Unlike Module#include,
* Refinement#import_methods copies methods and adds them into the refinement,
* so the refinement is activated in the imported methods.
*
* Note that due to method copying, only methods defined in Ruby code can be imported.
*
* module StrUtils
* def indent(level)
* ' ' * level + self
* end
* end
*
* module M
* refine String do
* import_methods StrUtils
* end
* end
*
* using M
* "foo".indent(3)
* #=> " foo"
*
* module M
* refine String do
* import_methods Enumerable
* # Can't import method which is not defined with Ruby code: Enumerable#drop
* end
* end
*
*/
static VALUE
refinement_import_methods(int argc, VALUE *argv, VALUE refinement)
{
}
# endif
void
Init_class_hierarchy(void)
{
rb_cBasicObject = boot_defclass("BasicObject", 0);
rb_cObject = boot_defclass("Object", rb_cBasicObject);
rb_gc_register_mark_object(rb_cObject);
/* resolve class name ASAP for order-independence */
rb_set_class_path_string(rb_cObject, rb_cObject, rb_fstring_lit("Object"));
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);
rb_cRefinement = boot_defclass("Refinement", rb_cModule);
#if 0 /* for RDoc */
// we pretend it to be public, otherwise RDoc will ignore it
rb_define_method(rb_cRefinement, "import_methods", refinement_import_methods, -1);
#endif
rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject);
RBASIC_SET_CLASS(rb_cClass, rb_cClass);
RBASIC_SET_CLASS(rb_cModule, rb_cClass);
RBASIC_SET_CLASS(rb_cObject, rb_cClass);
RBASIC_SET_CLASS(rb_cRefinement, rb_cClass);
RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);
ENSURE_EIGENCLASS(rb_cRefinement);
}
/*!
* \internal
* Creates a new *singleton class* for an object.
*
* \pre \a obj has no singleton class.
* \note DO NOT USE the function in an extension libraries. Use \ref rb_singleton_class.
* \param obj An object.
* \param unused ignored.
* \return The singleton class of the object.
*/
VALUE
rb_make_metaclass(VALUE obj, VALUE unused)
{
if (BUILTIN_TYPE(obj) == T_CLASS) {
return make_metaclass(obj);
}
else {
return make_singleton_class(obj);
}
}
VALUE
rb_define_class_id(ID id, VALUE super)
{
VALUE klass;
if (!super) super = rb_cObject;
klass = rb_class_new(super);
rb_make_metaclass(klass, METACLASS_OF(super));
return klass;
}
/*!
* Calls Class#inherited.
* \param super A class which will be called #inherited.
* NULL means Object class.
* \param klass A Class object which derived from \a super
* \return the value \c Class#inherited's returns
* \pre Each of \a super and \a klass must be a \c Class object.
*/
MJIT_FUNC_EXPORTED VALUE
rb_class_inherited(VALUE super, VALUE klass)
{
ID inherited;
if (!super) super = rb_cObject;
CONST_ID(inherited, "inherited");
return rb_funcall(super, inherited, 1, klass);
}
VALUE
rb_define_class(const char *name, VALUE super)
{
VALUE klass;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
klass = rb_const_get(rb_cObject, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%s is not a class (%"PRIsVALUE")",
name, rb_obj_class(klass));
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class %s", name);
}
/* Class may have been defined in Ruby and not pin-rooted */
rb_vm_add_root_module(klass);
return klass;
}
if (!super) {
rb_raise(rb_eArgError, "no super class for `%s'", name);
}
klass = rb_define_class_id(id, super);
rb_vm_add_root_module(klass);
rb_const_set(rb_cObject, id, klass);
rb_class_inherited(super, klass);
return klass;
}
VALUE
rb_define_class_under(VALUE outer, const char *name, VALUE super)
{
return rb_define_class_id_under(outer, rb_intern(name), super);
}
VALUE
rb_define_class_id_under(VALUE outer, ID id, VALUE super)
{
VALUE klass;
if (rb_const_defined_at(outer, id)) {
klass = rb_const_get_at(outer, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a class"
" (%"PRIsVALUE")",
outer, rb_id2str(id), rb_obj_class(klass));
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class "
"%"PRIsVALUE"::%"PRIsVALUE""
" (%"PRIsVALUE" is given but was %"PRIsVALUE")",
outer, rb_id2str(id), RCLASS_SUPER(klass), super);
}
/* Class may have been defined in Ruby and not pin-rooted */
rb_vm_add_root_module(klass);
return klass;
}
if (!super) {
rb_raise(rb_eArgError, "no super class for `%"PRIsVALUE"::%"PRIsVALUE"'",
rb_class_path(outer), rb_id2str(id));
}
klass = rb_define_class_id(id, super);
rb_set_class_path_string(klass, outer, rb_id2str(id));
rb_const_set(outer, id, klass);
rb_class_inherited(super, klass);
rb_vm_add_root_module(klass);
return klass;
}
VALUE
rb_module_s_alloc(VALUE klass)
{
VALUE mod = class_alloc(T_MODULE, klass);
RCLASS_M_TBL_INIT(mod);
FL_SET(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED);
return mod;
}
static inline VALUE
module_new(VALUE klass)
{
VALUE mdl = class_alloc(T_MODULE, klass);
RCLASS_M_TBL_INIT(mdl);
return (VALUE)mdl;
}
VALUE
rb_module_new(void)
{
return module_new(rb_cModule);
}
VALUE
rb_refinement_new(void)
{
return module_new(rb_cRefinement);
}
// Kept for compatibility. Use rb_module_new() instead.
VALUE
rb_define_module_id(ID id)
{
return rb_module_new();
}
VALUE
rb_define_module(const char *name)
{
VALUE module;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
module = rb_const_get(rb_cObject, id);
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "%s is not a module (%"PRIsVALUE")",
name, rb_obj_class(module));
}
/* Module may have been defined in Ruby and not pin-rooted */
rb_vm_add_root_module(module);
return module;
}
module = rb_module_new();
rb_vm_add_root_module(module);
rb_const_set(rb_cObject, id, module);
return module;
}
VALUE
rb_define_module_under(VALUE outer, const char *name)
{
return rb_define_module_id_under(outer, rb_intern(name));
}
VALUE
rb_define_module_id_under(VALUE outer, ID id)
{
VALUE module;
if (rb_const_defined_at(outer, id)) {
module = rb_const_get_at(outer, id);
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a module"
" (%"PRIsVALUE")",
outer, rb_id2str(id), rb_obj_class(module));
}
/* Module may have been defined in Ruby and not pin-rooted */
rb_gc_register_mark_object(module);
return module;
}
module = rb_module_new();
rb_const_set(outer, id, module);
rb_set_class_path_string(module, outer, rb_id2str(id));
rb_gc_register_mark_object(module);
return module;
}
VALUE
rb_include_class_new(VALUE module, VALUE super)
{
VALUE klass = class_alloc(T_ICLASS, rb_cClass);
RCLASS_M_TBL(klass) = RCLASS_M_TBL(module);
RCLASS_SET_ORIGIN(klass, klass);
if (BUILTIN_TYPE(module) == T_ICLASS) {
module = METACLASS_OF(module);
}
RUBY_ASSERT(!RB_TYPE_P(module, T_ICLASS));
if (!RCLASS_IV_TBL(module)) {
RCLASS_IV_TBL(module) = st_init_numtable();
}
if (!RCLASS_CONST_TBL(module)) {
RCLASS_CONST_TBL(module) = rb_id_table_create(0);
}
RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);
RCLASS_CVC_TBL(klass) = RCLASS_CVC_TBL(module);
RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
RCLASS_SET_SUPER(klass, super);
RBASIC_SET_CLASS(klass, module);
return (VALUE)klass;
}
static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super);
static void
ensure_includable(VALUE klass, VALUE module)
{
rb_class_modify_check(klass);
Check_Type(module, T_MODULE);
rb_module_set_initialized(module);
if (!NIL_P(rb_refinement_module_get_refined_class(module))) {
rb_raise(rb_eArgError, "refinement module is not allowed");
}
}
void
rb_include_module(VALUE klass, VALUE module)
{
int changed = 0;
ensure_includable(klass, module);
changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE);
if (changed < 0)
rb_raise(rb_eArgError, "cyclic include detected");
if (RB_TYPE_P(klass, T_MODULE)) {
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass);
// skip the placeholder subclass entry at the head of the list
if (iclass) {
RUBY_ASSERT(!iclass->klass);
iclass = iclass->next;
}
int do_include = 1;
while (iclass) {
VALUE check_class = iclass->klass;
/* During lazy sweeping, iclass->klass could be a dead object that
* has not yet been swept. */
if (!rb_objspace_garbage_object_p(check_class)) {
while (check_class) {
RUBY_ASSERT(!rb_objspace_garbage_object_p(check_class));
if (RB_TYPE_P(check_class, T_ICLASS) &&
(METACLASS_OF(check_class) == module)) {
do_include = 0;
}
check_class = RCLASS_SUPER(check_class);
}
if (do_include) {
include_modules_at(iclass->klass, RCLASS_ORIGIN(iclass->klass), module, TRUE);
}
}
iclass = iclass->next;
}
}
}
static enum rb_id_table_iterator_result
add_refined_method_entry_i(ID key, VALUE value, void *data)
{
rb_add_refined_method_entry((VALUE)data, key);
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
clear_module_cache_i(ID id, VALUE val, void *data)
{
VALUE klass = (VALUE)data;
rb_clear_method_cache(klass, id);
return ID_TABLE_CONTINUE;
}
static bool
module_in_super_chain(const VALUE klass, VALUE module)
{
struct rb_id_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass));
if (klass_m_tbl) {
while (module) {
if (klass_m_tbl == RCLASS_M_TBL(module))
return true;
module = RCLASS_SUPER(module);
}
}
return false;
}
// For each ID key in the class constant table, we're going to clear the VM's
// inline constant caches associated with it.
static enum rb_id_table_iterator_result
clear_constant_cache_i(ID id, VALUE value, void *data)
{
rb_clear_constant_cache_for_id(id);
return ID_TABLE_CONTINUE;
}
static int
do_include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super, bool check_cyclic)
{
VALUE p, iclass, origin_stack = 0;
int method_changed = 0, add_subclass;
long origin_len;
VALUE klass_origin = RCLASS_ORIGIN(klass);
VALUE original_klass = klass;
if (check_cyclic && module_in_super_chain(klass, module))
return -1;
while (module) {
int c_seen = FALSE;
int superclass_seen = FALSE;
struct rb_id_table *tbl;
if (klass == c) {
c_seen = TRUE;
}
if (klass_origin != c || search_super) {
/* ignore if the module included already in superclasses for include,
* ignore if the module included before origin class for prepend
*/
for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
int type = BUILTIN_TYPE(p);
if (klass_origin == p && !search_super)
break;
if (c == p)
c_seen = TRUE;
if (type == T_ICLASS) {
if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
if (!superclass_seen && c_seen) {
c = p; /* move insertion point */
}
goto skip;
}
}
else if (type == T_CLASS) {
superclass_seen = TRUE;
}
}
}
VALUE super_class = RCLASS_SUPER(c);
// invalidate inline method cache
RB_DEBUG_COUNTER_INC(cvar_include_invalidate);
ruby_vm_global_cvar_state++;
tbl = RCLASS_M_TBL(module);
if (tbl && rb_id_table_size(tbl)) {
if (search_super) { // include
if (super_class && !RB_TYPE_P(super_class, T_MODULE)) {
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)super_class);
}
}
else { // prepend
if (!RB_TYPE_P(original_klass, T_MODULE)) {
rb_id_table_foreach(tbl, clear_module_cache_i, (void *)original_klass);
}
}
method_changed = 1;
}
// setup T_ICLASS for the include/prepend module
iclass = rb_include_class_new(module, super_class);
c = RCLASS_SET_SUPER(c, iclass);
RCLASS_SET_INCLUDER(iclass, klass);
add_subclass = TRUE;
if (module != RCLASS_ORIGIN(module)) {
if (!origin_stack) origin_stack = rb_ary_tmp_new(2);
VALUE origin[2] = {iclass, RCLASS_ORIGIN(module)};
rb_ary_cat(origin_stack, origin, 2);
}
else if (origin_stack && (origin_len = RARRAY_LEN(origin_stack)) > 1 &&
RARRAY_AREF(origin_stack, origin_len - 1) == module) {
RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), iclass);
RICLASS_SET_ORIGIN_SHARED_MTBL(iclass);
rb_ary_resize(origin_stack, origin_len);
add_subclass = FALSE;
}
if (add_subclass) {
VALUE m = module;
if (BUILTIN_TYPE(m) == T_ICLASS) m = METACLASS_OF(m);
rb_module_add_to_subclasses_list(m, iclass);
}
if (FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
VALUE refined_class =
rb_refinement_module_get_refined_class(klass);
rb_id_table_foreach(RCLASS_M_TBL(module), add_refined_method_entry_i, (void *)refined_class);
FL_SET(c, RMODULE_INCLUDED_INTO_REFINEMENT);
}
tbl = RCLASS_CONST_TBL(module);
if (tbl && rb_id_table_size(tbl))
rb_id_table_foreach(tbl, clear_constant_cache_i, NULL);
skip:
module = RCLASS_SUPER(module);
}
return method_changed;
}
static int
include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super)
{
return do_include_modules_at(klass, c, module, search_super, true);
}
static enum rb_id_table_iterator_result
move_refined_method(ID key, VALUE value, void *data)
{
rb_method_entry_t *me = (rb_method_entry_t *)value;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
VALUE klass = (VALUE)data;
struct rb_id_table *tbl = RCLASS_M_TBL(klass);
if (me->def->body.refined.orig_me) {
const rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me;
RB_OBJ_WRITE(me, &me->def->body.refined.orig_me, NULL);
new_me = rb_method_entry_clone(me);
rb_method_table_insert(klass, tbl, key, new_me);
rb_method_entry_copy(me, orig_me);
return ID_TABLE_CONTINUE;
}
else {
rb_method_table_insert(klass, tbl, key, me);
return ID_TABLE_DELETE;
}
}
else {
return ID_TABLE_CONTINUE;
}
}
static enum rb_id_table_iterator_result
cache_clear_refined_method(ID key, VALUE value, void *data)
{
rb_method_entry_t *me = (rb_method_entry_t *) value;
if (me->def->type == VM_METHOD_TYPE_REFINED && me->def->body.refined.orig_me) {
VALUE klass = (VALUE)data;
rb_clear_method_cache(klass, me->called_id);
}
// Refined method entries without an orig_me is going to stay in the method
// table of klass, like before the move, so no need to clear the cache.
return ID_TABLE_CONTINUE;
}
static bool
ensure_origin(VALUE klass)
{
VALUE origin = RCLASS_ORIGIN(klass);
if (origin == klass) {
origin = class_alloc(T_ICLASS, klass);
RCLASS_SET_SUPER(origin, RCLASS_SUPER(klass));
RCLASS_SET_SUPER(klass, origin);
RCLASS_SET_ORIGIN(klass, origin);
RCLASS_M_TBL(origin) = RCLASS_M_TBL(klass);
RCLASS_M_TBL_INIT(klass);
rb_id_table_foreach(RCLASS_M_TBL(origin), cache_clear_refined_method, (void *)klass);
rb_id_table_foreach(RCLASS_M_TBL(origin), move_refined_method, (void *)klass);
return true;
}
return false;
}
void
rb_prepend_module(VALUE klass, VALUE module)
{
int changed;
bool klass_had_no_origin;
ensure_includable(klass, module);
if (module_in_super_chain(klass, module))
rb_raise(rb_eArgError, "cyclic prepend detected");
klass_had_no_origin = ensure_origin(klass);
changed = do_include_modules_at(klass, klass, module, FALSE, false);
RUBY_ASSERT(changed >= 0); // already checked for cyclic prepend above
if (changed) {
rb_vm_check_redefinition_by_prepend(klass);
}
if (RB_TYPE_P(klass, T_MODULE)) {
rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass);
// skip the placeholder subclass entry at the head of the list if it exists
if (iclass) {
RUBY_ASSERT(!iclass->klass);
iclass = iclass->next;
}
VALUE klass_origin = RCLASS_ORIGIN(klass);
struct rb_id_table *klass_m_tbl = RCLASS_M_TBL(klass);
struct rb_id_table *klass_origin_m_tbl = RCLASS_M_TBL(klass_origin);
while (iclass) {
/* During lazy sweeping, iclass->klass could be a dead object that
* has not yet been swept. */
if (!rb_objspace_garbage_object_p(iclass->klass)) {
if (klass_had_no_origin && klass_origin_m_tbl == RCLASS_M_TBL(iclass->klass)) {
// backfill an origin iclass to handle refinements and future prepends
rb_id_table_foreach(RCLASS_M_TBL(iclass->klass), clear_module_cache_i, (void *)iclass->klass);
RCLASS_M_TBL(iclass->klass) = klass_m_tbl;
VALUE origin = rb_include_class_new(klass_origin, RCLASS_SUPER(iclass->klass));
RCLASS_SET_SUPER(iclass->klass, origin);
RCLASS_SET_INCLUDER(origin, RCLASS_INCLUDER(iclass->klass));
RCLASS_SET_ORIGIN(iclass->klass, origin);
RICLASS_SET_ORIGIN_SHARED_MTBL(origin);
}
include_modules_at(iclass->klass, iclass->klass, module, FALSE);
}
iclass = iclass->next;
}
}
}
/*
* call-seq:
* mod.included_modules -> array
*
* Returns the list of modules included or prepended in <i>mod</i>
* or one of <i>mod</i>'s ancestors.
*
* module Sub
* end
*
* module Mixin
* prepend Sub
* end
*
* module Outer
* include Mixin
* end
*
* Mixin.included_modules #=> [Sub]
* Outer.included_modules #=> [Sub, Mixin]
*/
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
VALUE origin = RCLASS_ORIGIN(mod);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
VALUE m = METACLASS_OF(p);
if (RB_TYPE_P(m, T_MODULE))
rb_ary_push(ary, m);
}
}
return ary;
}
/*
* call-seq:
* mod.include?(module) -> true or false
*
* Returns <code>true</code> if <i>module</i> is included
* or prepended in <i>mod</i> or one of <i>mod</i>'s ancestors.
*
* module A
* end
* class B
* include A
* end
* class C < B
* end
* B.include?(A) #=> true
* C.include?(A) #=> true
* A.include?(A) #=> false
*/
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) {
if (METACLASS_OF(p) == mod2) return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* mod.ancestors -> array
*
* Returns a list of modules included/prepended in <i>mod</i>
* (including <i>mod</i> itself).
*
* module Mod
* include Math
* include Comparable
* prepend Enumerable
* end
*
* Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
* Math.ancestors #=> [Math]
* Enumerable.ancestors #=> [Enumerable]
*/
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
VALUE refined_class = Qnil;
if (FL_TEST(mod, RMODULE_IS_REFINEMENT)) {
refined_class = rb_refinement_module_get_refined_class(mod);
}
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (p == refined_class) break;
if (p != RCLASS_ORIGIN(p)) continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, METACLASS_OF(p));
}
else {
rb_ary_push(ary, p);
}
}
return ary;
}
struct subclass_traverse_data
{
VALUE buffer;
long count;
long maxcount;
bool immediate_only;
};
static void
class_descendants_recursive(VALUE klass, VALUE v)
{
struct subclass_traverse_data *data = (struct subclass_traverse_data *) v;
if (BUILTIN_TYPE(klass) == T_CLASS && !FL_TEST(klass, FL_SINGLETON)) {
if (data->buffer && data->count < data->maxcount && !rb_objspace_garbage_object_p(klass)) {
// assumes that this does not cause GC as long as the length does not exceed the capacity
rb_ary_push(data->buffer, klass);
}
data->count++;
if (!data->immediate_only) {
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
}
}
else {
rb_class_foreach_subclass(klass, class_descendants_recursive, v);
}
}
static VALUE
class_descendants(VALUE klass, bool immediate_only)
{
struct subclass_traverse_data data = { Qfalse, 0, -1, immediate_only };
// estimate the count of subclasses
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
// the following allocation may cause GC which may change the number of subclasses
data.buffer = rb_ary_new_capa(data.count);
data.maxcount = data.count;
data.count = 0;
size_t gc_count = rb_gc_count();
// enumerate subclasses
rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data);
if (gc_count != rb_gc_count()) {
rb_bug("GC must not occur during the subclass iteration of Class#descendants");
}
return data.buffer;
}
/*
* call-seq:
* subclasses -> array
*
* Returns an array of classes where the receiver is the
* direct superclass of the class, excluding singleton classes.
* The order of the returned array is not defined.
*
* class A; end
* class B < A; end
* class C < B; end
* class D < A; end
*
* A.subclasses #=> [D, B]
* B.subclasses #=> [C]
* C.subclasses #=> []
*/
VALUE
rb_class_subclasses(VALUE klass)
{
return class_descendants(klass, true);
}
static void
ins_methods_push(st_data_t name, st_data_t ary)
{
rb_ary_push((VALUE)ary, ID2SYM((ID)name));
}
static int
ins_methods_i(st_data_t name, st_data_t type, st_data_t ary)
{
switch ((rb_method_visibility_t)type) {
case METHOD_VISI_UNDEF:
case METHOD_VISI_PRIVATE:
break;
default: /* everything but private */
ins_methods_push(name, ary);
break;
}
return ST_CONTINUE;
}
static int
ins_methods_type_i(st_data_t name, st_data_t type, st_data_t ary, rb_method_visibility_t visi)
{
if ((rb_method_visibility_t)type == visi) {
ins_methods_push(name, ary);
}
return ST_CONTINUE;
}
static int
ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PROTECTED);
}
static int
ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PRIVATE);
}
static int
ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_type_i(name, type, ary, METHOD_VISI_PUBLIC);
}
struct method_entry_arg {
st_table *list;
int recur;
};
static enum rb_id_table_iterator_result
method_entry_i(ID key, VALUE value, void *data)
{
const rb_method_entry_t *me = (const rb_method_entry_t *)value;
struct method_entry_arg *arg = (struct method_entry_arg *)data;
rb_method_visibility_t type;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
VALUE owner = me->owner;
me = rb_resolve_refined_method(Qnil, me);
if (!me) return ID_TABLE_CONTINUE;
if (!arg->recur && me->owner != owner) return ID_TABLE_CONTINUE;
}
if (!st_is_member(arg->list, key)) {
if (UNDEFINED_METHOD_ENTRY_P(me)) {
type = METHOD_VISI_UNDEF; /* none */
}
else {
type = METHOD_ENTRY_VISI(me);
RUBY_ASSERT(type != METHOD_VISI_UNDEF);
}
st_add_direct(arg->list, key, (st_data_t)type);
}
return ID_TABLE_CONTINUE;
}
static void
add_instance_method_list(VALUE mod, struct method_entry_arg *me_arg)
{
struct rb_id_table *m_tbl = RCLASS_M_TBL(mod);
if (!m_tbl) return;
rb_id_table_foreach(m_tbl, method_entry_i, me_arg);
}
static bool
particular_class_p(VALUE mod)
{
if (!mod) return false;
if (FL_TEST(mod, FL_SINGLETON)) return true;
if (BUILTIN_TYPE(mod) == T_ICLASS) return true;
return false;
}
static VALUE
class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t))
{
VALUE ary;
int recur = TRUE, prepended = 0;
struct method_entry_arg me_arg;
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
me_arg.list = st_init_numtable();
me_arg.recur = recur;
if (obj) {
for (; particular_class_p(mod); mod = RCLASS_SUPER(mod)) {
add_instance_method_list(mod, &me_arg);
}
}
if (!recur && RCLASS_ORIGIN(mod) != mod) {
mod = RCLASS_ORIGIN(mod);
prepended = 1;
}
for (; mod; mod = RCLASS_SUPER(mod)) {
add_instance_method_list(mod, &me_arg);
if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue;
if (!recur) break;
}
ary = rb_ary_new2(me_arg.list->num_entries);
st_foreach(me_arg.list, func, ary);
st_free_table(me_arg.list);
return ary;
}
/*
* call-seq:
* mod.instance_methods(include_super=true) -> array
*
* Returns an array containing the names of the public and protected instance
* methods in the receiver. For a module, these are the public and protected methods;
* for a class, they are the instance (not singleton) methods. If the optional
* parameter is <code>false</code>, the methods of any ancestors are not included.
*
* module A
* def method1() end
* end
* class B
* include A
* def method2() end
* end
* class C < B
* def method3() end
* end
*
* A.instance_methods(false) #=> [:method1]
* B.instance_methods(false) #=> [:method2]
* B.instance_methods(true).include?(:method1) #=> true
* C.instance_methods(false) #=> [:method3]
* C.instance_methods.include?(:method2) #=> true
*/
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
/*
* call-seq:
* mod.protected_instance_methods(include_super=true) -> array
*
* Returns a list of the protected instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*/
VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
/*
* call-seq:
* mod.private_instance_methods(include_super=true) -> array
*
* Returns a list of the private instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*
* module Mod
* def method1() end
* private :method1
* def method2() end
* end
* Mod.instance_methods #=> [:method2]
* Mod.private_instance_methods #=> [:method1]
*/
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
/*
* call-seq:
* mod.public_instance_methods(include_super=true) -> array
*
* Returns a list of the public instance methods defined in <i>mod</i>.
* If the optional parameter is <code>false</code>, the methods of
* any ancestors are not included.
*/
VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
/*
* call-seq:
* obj.methods(regular=true) -> array
*
* Returns a list of the names of public and protected methods of
* <i>obj</i>. This will include all the methods accessible in
* <i>obj</i>'s ancestors.
* If the optional parameter is <code>false</code>, it
* returns an array of <i>obj</i>'s public and protected singleton methods,
* the array will not include methods in modules included in <i>obj</i>.
*
* class Klass
* def klass_method()
* end
* end
* k = Klass.new
* k.methods[0..9] #=> [:klass_method, :nil?, :===,
* # :==~, :!, :eql?
* # :hash, :<=>, :class, :singleton_class]
* k.methods.length #=> 56
*
* k.methods(false) #=> []
* def k.singleton_method; end
* k.methods(false) #=> [:singleton_method]
*
* module M123; def m123; end end
* k.extend M123
* k.methods(false) #=> [:singleton_method]
*/
VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
rb_check_arity(argc, 0, 1);
if (argc > 0 && !RTEST(argv[0])) {
return rb_obj_singleton_methods(argc, argv, obj);
}
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}
/*
* call-seq:
* obj.protected_methods(all=true) -> array
*
* Returns the list of protected methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}
/*
* call-seq:
* obj.private_methods(all=true) -> array
*
* Returns the list of private methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}
/*
* call-seq:
* obj.public_methods(all=true) -> array
*
* Returns the list of public methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}
/*
* call-seq:
* obj.singleton_methods(all=true) -> array
*
* Returns an array of the names of singleton methods for <i>obj</i>.
* If the optional <i>all</i> parameter is true, the list will include
* methods in modules included in <i>obj</i>.
* Only public and protected singleton methods are returned.
*
* module Other
* def three() end
* end
*
* class Single
* def Single.four() end
* end
*
* a = Single.new
*
* def a.one()
* end
*
* class << a
* include Other
* def two()
* end
* end
*
* Single.singleton_methods #=> [:four]
* a.singleton_methods(false) #=> [:two, :one]
* a.singleton_methods #=> [:two, :one, :three]
*/
VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
VALUE ary, klass, origin;
struct method_entry_arg me_arg;
struct rb_id_table *mtbl;
int recur = TRUE;
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
if (RB_TYPE_P(obj, T_CLASS) && FL_TEST(obj, FL_SINGLETON)) {
rb_singleton_class(obj);
}
klass = CLASS_OF(obj);
origin = RCLASS_ORIGIN(klass);
me_arg.list = st_init_numtable();
me_arg.recur = recur;
if (klass && FL_TEST(klass, FL_SINGLETON)) {
if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
if (recur) {
while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new2(me_arg.list->num_entries);
st_foreach(me_arg.list, ins_methods_i, ary);
st_free_table(me_arg.list);
return ary;
}
/*!
* \}
*/
/*!
* \addtogroup defmethod
* \{
*/
#ifdef rb_define_method_id
#undef rb_define_method_id
#endif
void
rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC);
}
#ifdef rb_define_method
#undef rb_define_method
#endif
void
rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC);
}
#ifdef rb_define_protected_method
#undef rb_define_protected_method
#endif
void
rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED);
}
#ifdef rb_define_private_method
#undef rb_define_private_method
#endif
void
rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE);
}
void
rb_undef_method(VALUE klass, const char *name)
{
rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
}
static enum rb_id_table_iterator_result
undef_method_i(ID name, VALUE value, void *data)
{
VALUE klass = (VALUE)data;
rb_add_method(klass, name, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
return ID_TABLE_CONTINUE;
}
void
rb_undef_methods_from(VALUE klass, VALUE super)
{
struct rb_id_table *mtbl = RCLASS_M_TBL(super);
if (mtbl) {
rb_id_table_foreach(mtbl, undef_method_i, (void *)klass);
}
}
/*!
* \}
*/
/*!
* \addtogroup class
* \{
*/
static inline VALUE
special_singleton_class_of(VALUE obj)
{
switch (obj) {
case Qnil: return rb_cNilClass;
case Qfalse: return rb_cFalseClass;
case Qtrue: return rb_cTrueClass;
default: return Qnil;
}
}
VALUE
rb_special_singleton_class(VALUE obj)
{
return special_singleton_class_of(obj);
}
/*!
* \internal
* Returns the singleton class of \a obj. Creates it if necessary.
*
* \note DO NOT expose the returned singleton class to
* outside of class.c.
* Use \ref rb_singleton_class instead for
* consistency of the metaclass hierarchy.
*/
static VALUE
singleton_class_of(VALUE obj)
{
VALUE klass;
switch (TYPE(obj)) {
case T_FIXNUM:
case T_BIGNUM:
case T_FLOAT:
case T_SYMBOL:
rb_raise(rb_eTypeError, "can't define singleton");
case T_FALSE:
case T_TRUE:
case T_NIL:
klass = special_singleton_class_of(obj);
if (NIL_P(klass))
rb_bug("unknown immediate %p", (void *)obj);
return klass;
case T_STRING:
if (FL_TEST_RAW(obj, RSTRING_FSTR)) {
rb_raise(rb_eTypeError, "can't define singleton");
}
}
klass = METACLASS_OF(obj);
if (!(FL_TEST(klass, FL_SINGLETON) &&
rb_attr_get(klass, id_attached) == obj)) {
rb_serial_t serial = RCLASS_SERIAL(klass);
klass = rb_make_metaclass(obj, klass);
RCLASS_SERIAL(klass) = serial;
}
RB_FL_SET_RAW(klass, RB_OBJ_FROZEN_RAW(obj));
return klass;
}
void
rb_freeze_singleton_class(VALUE x)
{
/* should not propagate to meta-meta-class, and so on */
if (!(RBASIC(x)->flags & FL_SINGLETON)) {
VALUE klass = RBASIC_CLASS(x);
if (klass && (klass = RCLASS_ORIGIN(klass)) != 0 &&
FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) {
OBJ_FREEZE_RAW(klass);
}
}
}
/*!
* Returns the singleton class of \a obj, or nil if obj is not a
* singleton object.
*
* \param obj an arbitrary object.
* \return the singleton class or nil.
*/
VALUE
rb_singleton_class_get(VALUE obj)
{
VALUE klass;
if (SPECIAL_CONST_P(obj)) {
return rb_special_singleton_class(obj);
}
klass = METACLASS_OF(obj);
if (!FL_TEST(klass, FL_SINGLETON)) return Qnil;
if (rb_attr_get(klass, id_attached) != obj) return Qnil;
return klass;
}
VALUE
rb_singleton_class(VALUE obj)
{
VALUE klass = singleton_class_of(obj);
/* ensures an exposed class belongs to its own eigenclass */
if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass);
return klass;
}
/*!
* \}
*/
/*!
* \addtogroup defmethod
* \{
*/
#ifdef rb_define_singleton_method
#undef rb_define_singleton_method
#endif
void
rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_method(singleton_class_of(obj), name, func, argc);
}
#ifdef rb_define_module_function
#undef rb_define_module_function
#endif
void
rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_private_method(module, name, func, argc);
rb_define_singleton_method(module, name, func, argc);
}
#ifdef rb_define_global_function
#undef rb_define_global_function
#endif
void
rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_module_function(rb_mKernel, name, func, argc);
}
void
rb_define_alias(VALUE klass, const char *name1, const char *name2)
{
rb_alias(klass, rb_intern(name1), rb_intern(name2));
}
void
rb_define_attr(VALUE klass, const char *name, int read, int write)
{
rb_attr(klass, rb_intern(name), read, write, FALSE);
}
MJIT_FUNC_EXPORTED VALUE
rb_keyword_error_new(const char *error, VALUE keys)
{
long i = 0, len = RARRAY_LEN(keys);
VALUE error_message = rb_sprintf("%s keyword%.*s", error, len > 1, "s");
if (len > 0) {
rb_str_cat_cstr(error_message, ": ");
while (1) {
const VALUE k = RARRAY_AREF(keys, i);
rb_str_append(error_message, rb_inspect(k));
if (++i >= len) break;
rb_str_cat_cstr(error_message, ", ");
}
}
return rb_exc_new_str(rb_eArgError, error_message);
}
NORETURN(static void rb_keyword_error(const char *error, VALUE keys));
static void
rb_keyword_error(const char *error, VALUE keys)
{
rb_exc_raise(rb_keyword_error_new(error, keys));
}
NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords));
static void
unknown_keyword_error(VALUE hash, const ID *table, int keywords)
{
int i;
for (i = 0; i < keywords; i++) {
st_data_t key = ID2SYM(table[i]);
rb_hash_stlike_delete(hash, &key, NULL);
}
rb_keyword_error("unknown", rb_hash_keys(hash));
}
static int
separate_symbol(st_data_t key, st_data_t value, st_data_t arg)
{
VALUE *kwdhash = (VALUE *)arg;
if (!SYMBOL_P(key)) kwdhash++;
if (!*kwdhash) *kwdhash = rb_hash_new();
rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value);
return ST_CONTINUE;
}
VALUE
rb_extract_keywords(VALUE *orighash)
{
VALUE parthash[2] = {0, 0};
VALUE hash = *orighash;
if (RHASH_EMPTY_P(hash)) {
*orighash = 0;
return hash;
}
rb_hash_foreach(hash, separate_symbol, (st_data_t)&parthash);
*orighash = parthash[1];
if (parthash[1] && RBASIC_CLASS(hash) != rb_cHash) {
RBASIC_SET_CLASS(parthash[1], RBASIC_CLASS(hash));
}
return parthash[0];
}
int
rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
{
int i = 0, j;
int rest = 0;
VALUE missing = Qnil;
st_data_t key;
#define extract_kwarg(keyword, val) \
(key = (st_data_t)(keyword), values ? \
(rb_hash_stlike_delete(keyword_hash, &key, &(val)) || ((val) = Qundef, 0)) : \
rb_hash_stlike_lookup(keyword_hash, key, NULL))
if (NIL_P(keyword_hash)) keyword_hash = 0;
if (optional < 0) {
rest = 1;
optional = -1-optional;
}
if (required) {
for (; i < required; i++) {
VALUE keyword = ID2SYM(table[i]);
if (keyword_hash) {
if (extract_kwarg(keyword, values[i])) {
continue;
}
}
if (NIL_P(missing)) missing = rb_ary_tmp_new(1);
rb_ary_push(missing, keyword);
}
if (!NIL_P(missing)) {
rb_keyword_error("missing", missing);
}
}
j = i;
if (optional && keyword_hash) {
for (i = 0; i < optional; i++) {
if (extract_kwarg(ID2SYM(table[required+i]), values[required+i])) {
j++;
}
}
}
if (!rest && keyword_hash) {
if (RHASH_SIZE(keyword_hash) > (unsigned int)(values ? 0 : j)) {
unknown_keyword_error(keyword_hash, table, required+optional);
}
}
if (values && !keyword_hash) {
for (i = 0; i < required + optional; i++) {
values[i] = Qundef;
}
}
return j;
#undef extract_kwarg
}
struct rb_scan_args_t {
int kw_flag;
int n_lead;
int n_opt;
int n_trail;
bool f_var;
bool f_hash;
bool f_block;
};
static void
rb_scan_args_parse(int kw_flag, const char *fmt, struct rb_scan_args_t *arg)
{
const char *p = fmt;
memset(arg, 0, sizeof(*arg));
arg->kw_flag = kw_flag;
if (ISDIGIT(*p)) {
arg->n_lead = *p - '0';
p++;
if (ISDIGIT(*p)) {
arg->n_opt = *p - '0';
p++;
}
}
if (*p == '*') {
arg->f_var = 1;
p++;
}
if (ISDIGIT(*p)) {
arg->n_trail = *p - '0';
p++;
}
if (*p == ':') {
arg->f_hash = 1;
p++;
}
if (*p == '&') {
arg->f_block = 1;
p++;
}
if (*p != '\0') {
rb_fatal("bad scan arg format: %s", fmt);
}
}
static int
rb_scan_args_assign(const struct rb_scan_args_t *arg, int argc, const VALUE *const argv, va_list vargs)
{
int i, argi = 0;
VALUE *var, hash = Qnil;
#define rb_scan_args_next_param() va_arg(vargs, VALUE *)
const int kw_flag = arg->kw_flag;
const int n_lead = arg->n_lead;
const int n_opt = arg->n_opt;
const int n_trail = arg->n_trail;
const int n_mand = n_lead + n_trail;
const bool f_var = arg->f_var;
const bool f_hash = arg->f_hash;
const bool f_block = arg->f_block;
/* capture an option hash - phase 1: pop from the argv */
if (f_hash && argc > 0) {
VALUE last = argv[argc - 1];
if (rb_scan_args_keyword_p(kw_flag, last)) {
hash = rb_hash_dup(last);
argc--;
}
}
if (argc < n_mand) {
goto argc_error;
}
/* capture leading mandatory arguments */
for (i = 0; i < n_lead; i++) {
var = rb_scan_args_next_param();
if (var) *var = argv[argi];
argi++;
}
/* capture optional arguments */
for (i = 0; i < n_opt; i++) {
var = rb_scan_args_next_param();
if (argi < argc - n_trail) {
if (var) *var = argv[argi];
argi++;
}
else {
if (var) *var = Qnil;
}
}
/* capture variable length arguments */
if (f_var) {
int n_var = argc - argi - n_trail;
var = rb_scan_args_next_param();
if (0 < n_var) {
if (var) *var = rb_ary_new_from_values(n_var, &argv[argi]);
argi += n_var;
}
else {
if (var) *var = rb_ary_new();
}
}
/* capture trailing mandatory arguments */
for (i = 0; i < n_trail; i++) {
var = rb_scan_args_next_param();
if (var) *var = argv[argi];
argi++;
}
/* capture an option hash - phase 2: assignment */
if (f_hash) {
var = rb_scan_args_next_param();
if (var) *var = hash;
}
/* capture iterator block */
if (f_block) {
var = rb_scan_args_next_param();
if (rb_block_given_p()) {
*var = rb_block_proc();
}
else {
*var = Qnil;
}
}
if (argi == argc) {
return argc;
}
argc_error:
return -(argc + 1);
#undef rb_scan_args_next_param
}
static int
rb_scan_args_result(const struct rb_scan_args_t *const arg, int argc)
{
const int n_lead = arg->n_lead;
const int n_opt = arg->n_opt;
const int n_trail = arg->n_trail;
const int n_mand = n_lead + n_trail;
const bool f_var = arg->f_var;
if (argc >= 0) {
return argc;
}
argc = -argc - 1;
rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt);
UNREACHABLE_RETURN(-1);
}
#undef rb_scan_args
int
rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
{
va_list vargs;
struct rb_scan_args_t arg;
rb_scan_args_parse(RB_SCAN_ARGS_PASS_CALLED_KEYWORDS, fmt, &arg);
va_start(vargs,fmt);
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
va_end(vargs);
return rb_scan_args_result(&arg, argc);
}
#undef rb_scan_args_kw
int
rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt, ...)
{
va_list vargs;
struct rb_scan_args_t arg;
rb_scan_args_parse(kw_flag, fmt, &arg);
va_start(vargs,fmt);
argc = rb_scan_args_assign(&arg, argc, argv, vargs);
va_end(vargs);
return rb_scan_args_result(&arg, argc);
}
/*!
* \}
*/