mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
1f44640677
Add ossl_pkey_export_traditional() and ossl_pkey_export_spki() helper functions, and use them. This reduces code duplication. https://github.com/ruby/openssl/commit/56f0d34d63
885 lines
24 KiB
C
885 lines
24 KiB
C
/*
|
|
* 'OpenSSL for Ruby' project
|
|
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
|
|
* All rights reserved.
|
|
*/
|
|
/*
|
|
* This program is licensed under the same licence as Ruby.
|
|
* (See the file 'LICENCE'.)
|
|
*/
|
|
#include "ossl.h"
|
|
|
|
#if !defined(OPENSSL_NO_RSA)
|
|
|
|
#define GetPKeyRSA(obj, pkey) do { \
|
|
GetPKey((obj), (pkey)); \
|
|
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA) { /* PARANOIA? */ \
|
|
ossl_raise(rb_eRuntimeError, "THIS IS NOT A RSA!") ; \
|
|
} \
|
|
} while (0)
|
|
#define GetRSA(obj, rsa) do { \
|
|
EVP_PKEY *_pkey; \
|
|
GetPKeyRSA((obj), _pkey); \
|
|
(rsa) = EVP_PKEY_get0_RSA(_pkey); \
|
|
} while (0)
|
|
|
|
static inline int
|
|
RSA_HAS_PRIVATE(RSA *rsa)
|
|
{
|
|
const BIGNUM *e, *d;
|
|
|
|
RSA_get0_key(rsa, NULL, &e, &d);
|
|
return e && d;
|
|
}
|
|
|
|
static inline int
|
|
RSA_PRIVATE(VALUE obj, RSA *rsa)
|
|
{
|
|
return RSA_HAS_PRIVATE(rsa) || OSSL_PKEY_IS_PRIVATE(obj);
|
|
}
|
|
|
|
/*
|
|
* Classes
|
|
*/
|
|
VALUE cRSA;
|
|
VALUE eRSAError;
|
|
|
|
/*
|
|
* Private
|
|
*/
|
|
struct rsa_blocking_gen_arg {
|
|
RSA *rsa;
|
|
BIGNUM *e;
|
|
int size;
|
|
BN_GENCB *cb;
|
|
int result;
|
|
};
|
|
|
|
static void *
|
|
rsa_blocking_gen(void *arg)
|
|
{
|
|
struct rsa_blocking_gen_arg *gen = (struct rsa_blocking_gen_arg *)arg;
|
|
gen->result = RSA_generate_key_ex(gen->rsa, gen->size, gen->e, gen->cb);
|
|
return 0;
|
|
}
|
|
|
|
static RSA *
|
|
rsa_generate(int size, unsigned long exp)
|
|
{
|
|
int i;
|
|
struct ossl_generate_cb_arg cb_arg = { 0 };
|
|
struct rsa_blocking_gen_arg gen_arg;
|
|
RSA *rsa = RSA_new();
|
|
BIGNUM *e = BN_new();
|
|
BN_GENCB *cb = BN_GENCB_new();
|
|
|
|
if (!rsa || !e || !cb) {
|
|
RSA_free(rsa);
|
|
BN_free(e);
|
|
BN_GENCB_free(cb);
|
|
ossl_raise(eRSAError, "malloc failure");
|
|
}
|
|
for (i = 0; i < (int)sizeof(exp) * 8; ++i) {
|
|
if (exp & (1UL << i)) {
|
|
if (BN_set_bit(e, i) == 0) {
|
|
BN_free(e);
|
|
RSA_free(rsa);
|
|
BN_GENCB_free(cb);
|
|
ossl_raise(eRSAError, "BN_set_bit");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rb_block_given_p())
|
|
cb_arg.yield = 1;
|
|
BN_GENCB_set(cb, ossl_generate_cb_2, &cb_arg);
|
|
gen_arg.rsa = rsa;
|
|
gen_arg.e = e;
|
|
gen_arg.size = size;
|
|
gen_arg.cb = cb;
|
|
if (cb_arg.yield == 1) {
|
|
/* we cannot release GVL when callback proc is supplied */
|
|
rsa_blocking_gen(&gen_arg);
|
|
} else {
|
|
/* there's a chance to unblock */
|
|
rb_thread_call_without_gvl(rsa_blocking_gen, &gen_arg, ossl_generate_cb_stop, &cb_arg);
|
|
}
|
|
|
|
BN_GENCB_free(cb);
|
|
BN_free(e);
|
|
if (!gen_arg.result) {
|
|
RSA_free(rsa);
|
|
if (cb_arg.state) {
|
|
/* must clear OpenSSL error stack */
|
|
ossl_clear_error();
|
|
rb_jump_tag(cb_arg.state);
|
|
}
|
|
ossl_raise(eRSAError, "RSA_generate_key_ex");
|
|
}
|
|
|
|
return rsa;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* RSA.generate(size) => RSA instance
|
|
* RSA.generate(size, exponent) => RSA instance
|
|
*
|
|
* Generates an RSA keypair. _size_ is an integer representing the desired key
|
|
* size. Keys smaller than 1024 should be considered insecure. _exponent_ is
|
|
* an odd number normally 3, 17, or 65537.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_s_generate(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
/* why does this method exist? why can't initialize take an optional exponent? */
|
|
EVP_PKEY *pkey;
|
|
RSA *rsa;
|
|
VALUE size, exp;
|
|
VALUE obj;
|
|
|
|
rb_scan_args(argc, argv, "11", &size, &exp);
|
|
obj = rb_obj_alloc(klass);
|
|
GetPKey(obj, pkey);
|
|
|
|
rsa = rsa_generate(NUM2INT(size), NIL_P(exp) ? RSA_F4 : NUM2ULONG(exp));
|
|
if (!EVP_PKEY_assign_RSA(pkey, rsa)) {
|
|
RSA_free(rsa);
|
|
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* RSA.new(size [, exponent]) => RSA instance
|
|
* RSA.new(encoded_key) => RSA instance
|
|
* RSA.new(encoded_key, pass_phrase) => RSA instance
|
|
*
|
|
* Generates or loads an RSA keypair. If an integer _key_size_ is given it
|
|
* represents the desired key size. Keys less than 1024 bits should be
|
|
* considered insecure.
|
|
*
|
|
* A key can instead be loaded from an _encoded_key_ which must be PEM or DER
|
|
* encoded. A _pass_phrase_ can be used to decrypt the key. If none is given
|
|
* OpenSSL will prompt for the pass phrase.
|
|
*
|
|
* = Examples
|
|
*
|
|
* OpenSSL::PKey::RSA.new 2048
|
|
* OpenSSL::PKey::RSA.new File.read 'rsa.pem'
|
|
* OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
EVP_PKEY *pkey, *tmp;
|
|
RSA *rsa = NULL;
|
|
BIO *in;
|
|
VALUE arg, pass;
|
|
|
|
GetPKey(self, pkey);
|
|
rb_scan_args(argc, argv, "02", &arg, &pass);
|
|
if (argc == 0) {
|
|
rsa = RSA_new();
|
|
if (!rsa)
|
|
ossl_raise(eRSAError, "RSA_new");
|
|
}
|
|
else if (RB_INTEGER_TYPE_P(arg)) {
|
|
rsa = rsa_generate(NUM2INT(arg), NIL_P(pass) ? RSA_F4 : NUM2ULONG(pass));
|
|
}
|
|
else {
|
|
pass = ossl_pem_passwd_value(pass);
|
|
arg = ossl_to_der_if_possible(arg);
|
|
in = ossl_obj2bio(&arg);
|
|
|
|
tmp = ossl_pkey_read_generic(in, pass);
|
|
if (tmp) {
|
|
if (EVP_PKEY_base_id(tmp) != EVP_PKEY_RSA)
|
|
rb_raise(eRSAError, "incorrect pkey type: %s",
|
|
OBJ_nid2sn(EVP_PKEY_base_id(tmp)));
|
|
rsa = EVP_PKEY_get1_RSA(tmp);
|
|
EVP_PKEY_free(tmp);
|
|
}
|
|
if (!rsa) {
|
|
OSSL_BIO_reset(in);
|
|
rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
|
|
}
|
|
if (!rsa) {
|
|
OSSL_BIO_reset(in);
|
|
rsa = d2i_RSAPublicKey_bio(in, NULL);
|
|
}
|
|
BIO_free(in);
|
|
if (!rsa) {
|
|
ossl_clear_error();
|
|
ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
|
|
}
|
|
}
|
|
if (!EVP_PKEY_assign_RSA(pkey, rsa)) {
|
|
RSA_free(rsa);
|
|
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
ossl_rsa_initialize_copy(VALUE self, VALUE other)
|
|
{
|
|
EVP_PKEY *pkey;
|
|
RSA *rsa, *rsa_new;
|
|
|
|
GetPKey(self, pkey);
|
|
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE)
|
|
ossl_raise(eRSAError, "RSA already initialized");
|
|
GetRSA(other, rsa);
|
|
|
|
rsa_new = ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey, (d2i_of_void *)d2i_RSAPrivateKey, (char *)rsa);
|
|
if (!rsa_new)
|
|
ossl_raise(eRSAError, "ASN1_dup");
|
|
|
|
EVP_PKEY_assign_RSA(pkey, rsa_new);
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.public? => true
|
|
*
|
|
* The return value is always +true+ since every private key is also a public
|
|
* key.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_is_public(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
|
|
GetRSA(self, rsa);
|
|
/*
|
|
* This method should check for n and e. BUG.
|
|
*/
|
|
(void)rsa;
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.private? => true | false
|
|
*
|
|
* Does this keypair contain a private key?
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_is_private(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
|
|
GetRSA(self, rsa);
|
|
|
|
return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
static int
|
|
can_export_rsaprivatekey(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
|
|
|
|
GetRSA(self, rsa);
|
|
|
|
RSA_get0_key(rsa, &n, &e, &d);
|
|
RSA_get0_factors(rsa, &p, &q);
|
|
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
|
|
|
|
return n && e && d && p && q && dmp1 && dmq1 && iqmp;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.export([cipher, pass_phrase]) => PEM-format String
|
|
* rsa.to_pem([cipher, pass_phrase]) => PEM-format String
|
|
* rsa.to_s([cipher, pass_phrase]) => PEM-format String
|
|
*
|
|
* Outputs this keypair in PEM encoding. If _cipher_ and _pass_phrase_ are
|
|
* given they will be used to encrypt the key. _cipher_ must be an
|
|
* OpenSSL::Cipher instance.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
if (can_export_rsaprivatekey(self))
|
|
return ossl_pkey_export_traditional(argc, argv, self, 0);
|
|
else
|
|
return ossl_pkey_export_spki(self, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.to_der => DER-format String
|
|
*
|
|
* Outputs this keypair in DER encoding.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_to_der(VALUE self)
|
|
{
|
|
if (can_export_rsaprivatekey(self))
|
|
return ossl_pkey_export_traditional(0, NULL, self, 1);
|
|
else
|
|
return ossl_pkey_export_spki(self, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.public_encrypt(string) => String
|
|
* rsa.public_encrypt(string, padding) => String
|
|
*
|
|
* Encrypt _string_ with the public key. _padding_ defaults to PKCS1_PADDING.
|
|
* The encrypted string output can be decrypted using #private_decrypt.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_public_encrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
const BIGNUM *rsa_n;
|
|
int buf_len, pad;
|
|
VALUE str, buffer, padding;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
|
|
if (!rsa_n)
|
|
ossl_raise(eRSAError, "incomplete RSA");
|
|
rb_scan_args(argc, argv, "11", &buffer, &padding);
|
|
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
|
|
StringValue(buffer);
|
|
str = rb_str_new(0, RSA_size(rsa));
|
|
buf_len = RSA_public_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
|
|
(unsigned char *)RSTRING_PTR(str), rsa, pad);
|
|
if (buf_len < 0) ossl_raise(eRSAError, NULL);
|
|
rb_str_set_len(str, buf_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.public_decrypt(string) => String
|
|
* rsa.public_decrypt(string, padding) => String
|
|
*
|
|
* Decrypt _string_, which has been encrypted with the private key, with the
|
|
* public key. _padding_ defaults to PKCS1_PADDING.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_public_decrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
const BIGNUM *rsa_n;
|
|
int buf_len, pad;
|
|
VALUE str, buffer, padding;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
|
|
if (!rsa_n)
|
|
ossl_raise(eRSAError, "incomplete RSA");
|
|
rb_scan_args(argc, argv, "11", &buffer, &padding);
|
|
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
|
|
StringValue(buffer);
|
|
str = rb_str_new(0, RSA_size(rsa));
|
|
buf_len = RSA_public_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
|
|
(unsigned char *)RSTRING_PTR(str), rsa, pad);
|
|
if (buf_len < 0) ossl_raise(eRSAError, NULL);
|
|
rb_str_set_len(str, buf_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.private_encrypt(string) => String
|
|
* rsa.private_encrypt(string, padding) => String
|
|
*
|
|
* Encrypt _string_ with the private key. _padding_ defaults to PKCS1_PADDING.
|
|
* The encrypted string output can be decrypted using #public_decrypt.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_private_encrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
const BIGNUM *rsa_n;
|
|
int buf_len, pad;
|
|
VALUE str, buffer, padding;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
|
|
if (!rsa_n)
|
|
ossl_raise(eRSAError, "incomplete RSA");
|
|
if (!RSA_PRIVATE(self, rsa))
|
|
ossl_raise(eRSAError, "private key needed.");
|
|
rb_scan_args(argc, argv, "11", &buffer, &padding);
|
|
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
|
|
StringValue(buffer);
|
|
str = rb_str_new(0, RSA_size(rsa));
|
|
buf_len = RSA_private_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
|
|
(unsigned char *)RSTRING_PTR(str), rsa, pad);
|
|
if (buf_len < 0) ossl_raise(eRSAError, NULL);
|
|
rb_str_set_len(str, buf_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.private_decrypt(string) => String
|
|
* rsa.private_decrypt(string, padding) => String
|
|
*
|
|
* Decrypt _string_, which has been encrypted with the public key, with the
|
|
* private key. _padding_ defaults to PKCS1_PADDING.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_private_decrypt(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
const BIGNUM *rsa_n;
|
|
int buf_len, pad;
|
|
VALUE str, buffer, padding;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
|
|
if (!rsa_n)
|
|
ossl_raise(eRSAError, "incomplete RSA");
|
|
if (!RSA_PRIVATE(self, rsa))
|
|
ossl_raise(eRSAError, "private key needed.");
|
|
rb_scan_args(argc, argv, "11", &buffer, &padding);
|
|
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
|
|
StringValue(buffer);
|
|
str = rb_str_new(0, RSA_size(rsa));
|
|
buf_len = RSA_private_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
|
|
(unsigned char *)RSTRING_PTR(str), rsa, pad);
|
|
if (buf_len < 0) ossl_raise(eRSAError, NULL);
|
|
rb_str_set_len(str, buf_len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.sign_pss(digest, data, salt_length:, mgf1_hash:) -> String
|
|
*
|
|
* Signs _data_ using the Probabilistic Signature Scheme (RSA-PSS) and returns
|
|
* the calculated signature.
|
|
*
|
|
* RSAError will be raised if an error occurs.
|
|
*
|
|
* See #verify_pss for the verification operation.
|
|
*
|
|
* === Parameters
|
|
* _digest_::
|
|
* A String containing the message digest algorithm name.
|
|
* _data_::
|
|
* A String. The data to be signed.
|
|
* _salt_length_::
|
|
* The length in octets of the salt. Two special values are reserved:
|
|
* +:digest+ means the digest length, and +:max+ means the maximum possible
|
|
* length for the combination of the private key and the selected message
|
|
* digest algorithm.
|
|
* _mgf1_hash_::
|
|
* The hash algorithm used in MGF1 (the currently supported mask generation
|
|
* function (MGF)).
|
|
*
|
|
* === Example
|
|
* data = "Sign me!"
|
|
* pkey = OpenSSL::PKey::RSA.new(2048)
|
|
* signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256")
|
|
* pub_key = pkey.public_key
|
|
* puts pub_key.verify_pss("SHA256", signature, data,
|
|
* salt_length: :auto, mgf1_hash: "SHA256") # => true
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE digest, data, options, kwargs[2], signature;
|
|
static ID kwargs_ids[2];
|
|
EVP_PKEY *pkey;
|
|
EVP_PKEY_CTX *pkey_ctx;
|
|
const EVP_MD *md, *mgf1md;
|
|
EVP_MD_CTX *md_ctx;
|
|
size_t buf_len;
|
|
int salt_len;
|
|
|
|
if (!kwargs_ids[0]) {
|
|
kwargs_ids[0] = rb_intern_const("salt_length");
|
|
kwargs_ids[1] = rb_intern_const("mgf1_hash");
|
|
}
|
|
rb_scan_args(argc, argv, "2:", &digest, &data, &options);
|
|
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
|
|
if (kwargs[0] == ID2SYM(rb_intern("max")))
|
|
salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
|
|
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
|
|
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
|
|
else
|
|
salt_len = NUM2INT(kwargs[0]);
|
|
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
|
|
|
|
pkey = GetPrivPKeyPtr(self);
|
|
buf_len = EVP_PKEY_size(pkey);
|
|
md = ossl_evp_get_digestbyname(digest);
|
|
StringValue(data);
|
|
signature = rb_str_new(NULL, (long)buf_len);
|
|
|
|
md_ctx = EVP_MD_CTX_new();
|
|
if (!md_ctx)
|
|
goto err;
|
|
|
|
if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
|
|
goto err;
|
|
|
|
if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
|
|
goto err;
|
|
|
|
if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
|
|
goto err;
|
|
|
|
rb_str_set_len(signature, (long)buf_len);
|
|
|
|
EVP_MD_CTX_free(md_ctx);
|
|
return signature;
|
|
|
|
err:
|
|
EVP_MD_CTX_free(md_ctx);
|
|
ossl_raise(eRSAError, NULL);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.verify_pss(digest, signature, data, salt_length:, mgf1_hash:) -> true | false
|
|
*
|
|
* Verifies _data_ using the Probabilistic Signature Scheme (RSA-PSS).
|
|
*
|
|
* The return value is +true+ if the signature is valid, +false+ otherwise.
|
|
* RSAError will be raised if an error occurs.
|
|
*
|
|
* See #sign_pss for the signing operation and an example code.
|
|
*
|
|
* === Parameters
|
|
* _digest_::
|
|
* A String containing the message digest algorithm name.
|
|
* _data_::
|
|
* A String. The data to be signed.
|
|
* _salt_length_::
|
|
* The length in octets of the salt. Two special values are reserved:
|
|
* +:digest+ means the digest length, and +:auto+ means automatically
|
|
* determining the length based on the signature.
|
|
* _mgf1_hash_::
|
|
* The hash algorithm used in MGF1.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE digest, signature, data, options, kwargs[2];
|
|
static ID kwargs_ids[2];
|
|
EVP_PKEY *pkey;
|
|
EVP_PKEY_CTX *pkey_ctx;
|
|
const EVP_MD *md, *mgf1md;
|
|
EVP_MD_CTX *md_ctx;
|
|
int result, salt_len;
|
|
|
|
if (!kwargs_ids[0]) {
|
|
kwargs_ids[0] = rb_intern_const("salt_length");
|
|
kwargs_ids[1] = rb_intern_const("mgf1_hash");
|
|
}
|
|
rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
|
|
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
|
|
if (kwargs[0] == ID2SYM(rb_intern("auto")))
|
|
salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
|
|
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
|
|
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
|
|
else
|
|
salt_len = NUM2INT(kwargs[0]);
|
|
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
|
|
|
|
GetPKey(self, pkey);
|
|
md = ossl_evp_get_digestbyname(digest);
|
|
StringValue(signature);
|
|
StringValue(data);
|
|
|
|
md_ctx = EVP_MD_CTX_new();
|
|
if (!md_ctx)
|
|
goto err;
|
|
|
|
if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
|
|
goto err;
|
|
|
|
if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
|
|
goto err;
|
|
|
|
result = EVP_DigestVerifyFinal(md_ctx,
|
|
(unsigned char *)RSTRING_PTR(signature),
|
|
RSTRING_LEN(signature));
|
|
|
|
switch (result) {
|
|
case 0:
|
|
ossl_clear_error();
|
|
EVP_MD_CTX_free(md_ctx);
|
|
return Qfalse;
|
|
case 1:
|
|
EVP_MD_CTX_free(md_ctx);
|
|
return Qtrue;
|
|
default:
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
EVP_MD_CTX_free(md_ctx);
|
|
ossl_raise(eRSAError, NULL);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.params => hash
|
|
*
|
|
* THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
|
|
*
|
|
* Stores all parameters of key to the hash. The hash has keys 'n', 'e', 'd',
|
|
* 'p', 'q', 'dmp1', 'dmq1', 'iqmp'.
|
|
*
|
|
* Don't use :-)) (It's up to you)
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_get_params(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
VALUE hash;
|
|
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_get0_key(rsa, &n, &e, &d);
|
|
RSA_get0_factors(rsa, &p, &q);
|
|
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
|
|
|
|
hash = rb_hash_new();
|
|
rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
|
|
rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
|
|
rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
|
|
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
|
|
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
|
|
rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
|
|
rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
|
|
rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.to_text => String
|
|
*
|
|
* THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
|
|
*
|
|
* Dumps all parameters of a keypair to a String
|
|
*
|
|
* Don't use :-)) (It's up to you)
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_to_text(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
BIO *out;
|
|
VALUE str;
|
|
|
|
GetRSA(self, rsa);
|
|
if (!(out = BIO_new(BIO_s_mem()))) {
|
|
ossl_raise(eRSAError, NULL);
|
|
}
|
|
if (!RSA_print(out, rsa, 0)) { /* offset = 0 */
|
|
BIO_free(out);
|
|
ossl_raise(eRSAError, NULL);
|
|
}
|
|
str = ossl_membio2str(out);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rsa.public_key -> RSA
|
|
*
|
|
* Makes new RSA instance containing the public key from the private key.
|
|
*/
|
|
static VALUE
|
|
ossl_rsa_to_public_key(VALUE self)
|
|
{
|
|
EVP_PKEY *pkey, *pkey_new;
|
|
RSA *rsa;
|
|
VALUE obj;
|
|
|
|
GetPKeyRSA(self, pkey);
|
|
obj = rb_obj_alloc(rb_obj_class(self));
|
|
GetPKey(obj, pkey_new);
|
|
|
|
rsa = RSAPublicKey_dup(EVP_PKEY_get0_RSA(pkey));
|
|
if (!rsa)
|
|
ossl_raise(eRSAError, "RSAPublicKey_dup");
|
|
if (!EVP_PKEY_assign_RSA(pkey_new, rsa)) {
|
|
RSA_free(rsa);
|
|
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* TODO: Test me
|
|
|
|
static VALUE
|
|
ossl_rsa_blinding_on(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
|
|
GetRSA(self, rsa);
|
|
|
|
if (RSA_blinding_on(rsa, ossl_bn_ctx) != 1) {
|
|
ossl_raise(eRSAError, NULL);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
ossl_rsa_blinding_off(VALUE self)
|
|
{
|
|
RSA *rsa;
|
|
|
|
GetRSA(self, rsa);
|
|
RSA_blinding_off(rsa);
|
|
|
|
return self;
|
|
}
|
|
*/
|
|
|
|
/*
|
|
* Document-method: OpenSSL::PKey::RSA#set_key
|
|
* call-seq:
|
|
* rsa.set_key(n, e, d) -> self
|
|
*
|
|
* Sets _n_, _e_, _d_ for the RSA instance.
|
|
*/
|
|
OSSL_PKEY_BN_DEF3(rsa, RSA, key, n, e, d)
|
|
/*
|
|
* Document-method: OpenSSL::PKey::RSA#set_factors
|
|
* call-seq:
|
|
* rsa.set_factors(p, q) -> self
|
|
*
|
|
* Sets _p_, _q_ for the RSA instance.
|
|
*/
|
|
OSSL_PKEY_BN_DEF2(rsa, RSA, factors, p, q)
|
|
/*
|
|
* Document-method: OpenSSL::PKey::RSA#set_crt_params
|
|
* call-seq:
|
|
* rsa.set_crt_params(dmp1, dmq1, iqmp) -> self
|
|
*
|
|
* Sets _dmp1_, _dmq1_, _iqmp_ for the RSA instance. They are calculated by
|
|
* <tt>d mod (p - 1)</tt>, <tt>d mod (q - 1)</tt> and <tt>q^(-1) mod p</tt>
|
|
* respectively.
|
|
*/
|
|
OSSL_PKEY_BN_DEF3(rsa, RSA, crt_params, dmp1, dmq1, iqmp)
|
|
|
|
/*
|
|
* INIT
|
|
*/
|
|
#define DefRSAConst(x) rb_define_const(cRSA, #x, INT2NUM(RSA_##x))
|
|
|
|
void
|
|
Init_ossl_rsa(void)
|
|
{
|
|
#if 0
|
|
mPKey = rb_define_module_under(mOSSL, "PKey");
|
|
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
|
|
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
|
|
#endif
|
|
|
|
/* Document-class: OpenSSL::PKey::RSAError
|
|
*
|
|
* Generic exception that is raised if an operation on an RSA PKey
|
|
* fails unexpectedly or in case an instantiation of an instance of RSA
|
|
* fails due to non-conformant input data.
|
|
*/
|
|
eRSAError = rb_define_class_under(mPKey, "RSAError", ePKeyError);
|
|
|
|
/* Document-class: OpenSSL::PKey::RSA
|
|
*
|
|
* RSA is an asymmetric public key algorithm that has been formalized in
|
|
* RFC 3447. It is in widespread use in public key infrastructures (PKI)
|
|
* where certificates (cf. OpenSSL::X509::Certificate) often are issued
|
|
* on the basis of a public/private RSA key pair. RSA is used in a wide
|
|
* field of applications such as secure (symmetric) key exchange, e.g.
|
|
* when establishing a secure TLS/SSL connection. It is also used in
|
|
* various digital signature schemes.
|
|
*/
|
|
cRSA = rb_define_class_under(mPKey, "RSA", cPKey);
|
|
|
|
rb_define_singleton_method(cRSA, "generate", ossl_rsa_s_generate, -1);
|
|
rb_define_method(cRSA, "initialize", ossl_rsa_initialize, -1);
|
|
rb_define_method(cRSA, "initialize_copy", ossl_rsa_initialize_copy, 1);
|
|
|
|
rb_define_method(cRSA, "public?", ossl_rsa_is_public, 0);
|
|
rb_define_method(cRSA, "private?", ossl_rsa_is_private, 0);
|
|
rb_define_method(cRSA, "to_text", ossl_rsa_to_text, 0);
|
|
rb_define_method(cRSA, "export", ossl_rsa_export, -1);
|
|
rb_define_alias(cRSA, "to_pem", "export");
|
|
rb_define_alias(cRSA, "to_s", "export");
|
|
rb_define_method(cRSA, "to_der", ossl_rsa_to_der, 0);
|
|
rb_define_method(cRSA, "public_key", ossl_rsa_to_public_key, 0);
|
|
rb_define_method(cRSA, "public_encrypt", ossl_rsa_public_encrypt, -1);
|
|
rb_define_method(cRSA, "public_decrypt", ossl_rsa_public_decrypt, -1);
|
|
rb_define_method(cRSA, "private_encrypt", ossl_rsa_private_encrypt, -1);
|
|
rb_define_method(cRSA, "private_decrypt", ossl_rsa_private_decrypt, -1);
|
|
rb_define_method(cRSA, "sign_pss", ossl_rsa_sign_pss, -1);
|
|
rb_define_method(cRSA, "verify_pss", ossl_rsa_verify_pss, -1);
|
|
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, n);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, e);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, d);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, p);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, q);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, dmp1);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, dmq1);
|
|
DEF_OSSL_PKEY_BN(cRSA, rsa, iqmp);
|
|
rb_define_method(cRSA, "set_key", ossl_rsa_set_key, 3);
|
|
rb_define_method(cRSA, "set_factors", ossl_rsa_set_factors, 2);
|
|
rb_define_method(cRSA, "set_crt_params", ossl_rsa_set_crt_params, 3);
|
|
|
|
rb_define_method(cRSA, "params", ossl_rsa_get_params, 0);
|
|
|
|
DefRSAConst(PKCS1_PADDING);
|
|
DefRSAConst(SSLV23_PADDING);
|
|
DefRSAConst(NO_PADDING);
|
|
DefRSAConst(PKCS1_OAEP_PADDING);
|
|
|
|
/*
|
|
* TODO: Test it
|
|
rb_define_method(cRSA, "blinding_on!", ossl_rsa_blinding_on, 0);
|
|
rb_define_method(cRSA, "blinding_off!", ossl_rsa_blinding_off, 0);
|
|
*/
|
|
}
|
|
|
|
#else /* defined NO_RSA */
|
|
void
|
|
Init_ossl_rsa(void)
|
|
{
|
|
}
|
|
#endif /* NO_RSA */
|