mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
1609 lines
48 KiB
C
1609 lines
48 KiB
C
#include <assert.h>
|
|
#include "insns.inc"
|
|
#include "internal.h"
|
|
#include "vm_core.h"
|
|
#include "vm_sync.h"
|
|
#include "vm_callinfo.h"
|
|
#include "builtin.h"
|
|
#include "internal/compile.h"
|
|
#include "internal/class.h"
|
|
#include "insns_info.inc"
|
|
#include "ujit.h"
|
|
#include "ujit_iface.h"
|
|
#include "ujit_core.h"
|
|
#include "ujit_codegen.h"
|
|
#include "ujit_asm.h"
|
|
#include "ujit_utils.h"
|
|
|
|
// Map from YARV opcodes to code generation functions
|
|
static st_table *gen_fns;
|
|
|
|
// Code block into which we write machine code
|
|
static codeblock_t block;
|
|
codeblock_t* cb = NULL;
|
|
|
|
// Code block into which we write out-of-line machine code
|
|
static codeblock_t outline_block;
|
|
codeblock_t* ocb = NULL;
|
|
|
|
// Print the current source location for debugging purposes
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static void
|
|
jit_print_loc(jitstate_t* jit, const char* msg)
|
|
{
|
|
char *ptr;
|
|
long len;
|
|
VALUE path = rb_iseq_path(jit->iseq);
|
|
RSTRING_GETMEM(path, ptr, len);
|
|
fprintf(stderr, "%s %s:%u\n", msg, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
|
|
}
|
|
|
|
// Get the current instruction's opcode
|
|
static int
|
|
jit_get_opcode(jitstate_t* jit)
|
|
{
|
|
return opcode_at_pc(jit->iseq, jit->pc);
|
|
}
|
|
|
|
// Get the index of the next instruction
|
|
static uint32_t
|
|
jit_next_idx(jitstate_t* jit)
|
|
{
|
|
return jit->insn_idx + insn_len(jit_get_opcode(jit));
|
|
}
|
|
|
|
// Get an instruction argument by index
|
|
static VALUE
|
|
jit_get_arg(jitstate_t* jit, size_t arg_idx)
|
|
{
|
|
RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
|
|
return *(jit->pc + arg_idx + 1);
|
|
}
|
|
|
|
// Load a pointer to a GC'd object into a register and keep track of the reference
|
|
static void
|
|
jit_mov_gc_ptr(jitstate_t* jit, codeblock_t* cb, x86opnd_t reg, VALUE ptr)
|
|
{
|
|
RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);
|
|
RUBY_ASSERT(!SPECIAL_CONST_P(ptr));
|
|
|
|
mov(cb, reg, const_ptr_opnd((void*)ptr));
|
|
// The pointer immediate is encoded as the last part of the mov written out.
|
|
uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);
|
|
|
|
if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
|
|
rb_bug("allocation failed");
|
|
}
|
|
}
|
|
|
|
// Save uJIT registers prior to a C call
|
|
static void
|
|
ujit_save_regs(codeblock_t* cb)
|
|
{
|
|
push(cb, REG_CFP);
|
|
push(cb, REG_EC);
|
|
push(cb, REG_SP);
|
|
push(cb, REG_SP); // Maintain 16-byte RSP alignment
|
|
}
|
|
|
|
// Restore uJIT registers after a C call
|
|
static void
|
|
ujit_load_regs(codeblock_t* cb)
|
|
{
|
|
pop(cb, REG_SP); // Maintain 16-byte RSP alignment
|
|
pop(cb, REG_SP);
|
|
pop(cb, REG_EC);
|
|
pop(cb, REG_CFP);
|
|
}
|
|
|
|
/**
|
|
Generate an inline exit to return to the interpreter
|
|
*/
|
|
static void
|
|
ujit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
|
|
{
|
|
// Write the adjusted SP back into the CFP
|
|
if (ctx->sp_offset != 0)
|
|
{
|
|
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
|
|
lea(cb, REG_SP, stack_pointer);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
|
|
}
|
|
|
|
// Update the CFP on the EC
|
|
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
|
|
|
|
// Directly return the next PC, which is a constant
|
|
mov(cb, RAX, const_ptr_opnd(exit_pc));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
|
|
|
|
// Accumulate stats about interpreter exits
|
|
#if RUBY_DEBUG
|
|
if (rb_ujit_opts.gen_stats) {
|
|
mov(cb, RDI, const_ptr_opnd(exit_pc));
|
|
call_ptr(cb, RSI, (void *)&rb_ujit_count_side_exit_op);
|
|
}
|
|
#endif
|
|
|
|
// Write the post call bytes
|
|
cb_write_post_call_bytes(cb);
|
|
}
|
|
|
|
/**
|
|
Generate an out-of-line exit to return to the interpreter
|
|
*/
|
|
static uint8_t *
|
|
ujit_side_exit(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
uint8_t* code_ptr = cb_get_ptr(ocb, ocb->write_pos);
|
|
|
|
// Table mapping opcodes to interpreter handlers
|
|
const void * const *handler_table = rb_vm_get_insns_address_table();
|
|
|
|
// FIXME: rewriting the old instruction is only necessary if we're
|
|
// exiting right at an interpreter entry point
|
|
|
|
// Write back the old instruction at the exit PC
|
|
// Otherwise the interpreter may jump right back to the
|
|
// JITted code we're trying to exit
|
|
VALUE* exit_pc = &jit->iseq->body->iseq_encoded[jit->insn_idx];
|
|
int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
|
|
void* handler_addr = (void*)handler_table[exit_opcode];
|
|
mov(ocb, RAX, const_ptr_opnd(exit_pc));
|
|
mov(ocb, RCX, const_ptr_opnd(handler_addr));
|
|
mov(ocb, mem_opnd(64, RAX, 0), RCX);
|
|
|
|
// Generate the code to exit to the interpreters
|
|
ujit_gen_exit(jit, ctx, ocb, exit_pc);
|
|
|
|
return code_ptr;
|
|
}
|
|
|
|
/*
|
|
Compile an interpreter entry block to be inserted into an iseq
|
|
Returns `NULL` if compilation fails.
|
|
*/
|
|
uint8_t*
|
|
ujit_entry_prologue(void)
|
|
{
|
|
RUBY_ASSERT(cb != NULL);
|
|
|
|
if (cb->write_pos + 1024 >= cb->mem_size) {
|
|
rb_bug("out of executable memory");
|
|
}
|
|
|
|
// Align the current write positon to cache line boundaries
|
|
cb_align_pos(cb, 64);
|
|
|
|
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
|
|
|
|
// Write the interpreter entry prologue
|
|
cb_write_pre_call_bytes(cb);
|
|
|
|
// Load the current SP from the CFP into REG_SP
|
|
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
|
|
|
|
return code_ptr;
|
|
}
|
|
|
|
/*
|
|
Generate code to check for interrupts and take a side-exit
|
|
*/
|
|
static void
|
|
ujit_check_ints(codeblock_t* cb, uint8_t* side_exit)
|
|
{
|
|
// Check for interrupts
|
|
// see RUBY_VM_CHECK_INTS(ec) macro
|
|
mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
|
|
not(cb, REG0_32);
|
|
test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
|
|
jnz_ptr(cb, side_exit);
|
|
}
|
|
|
|
/*
|
|
Compile a sequence of bytecode instructions for a given basic block version
|
|
*/
|
|
void
|
|
ujit_gen_block(ctx_t* ctx, block_t* block)
|
|
{
|
|
RUBY_ASSERT(cb != NULL);
|
|
RUBY_ASSERT(block != NULL);
|
|
|
|
const rb_iseq_t *iseq = block->blockid.iseq;
|
|
uint32_t insn_idx = block->blockid.idx;
|
|
VALUE *encoded = iseq->body->iseq_encoded;
|
|
|
|
// NOTE: if we are ever deployed in production, we
|
|
// should probably just log an error and return NULL here,
|
|
// so we can fail more gracefully
|
|
if (cb->write_pos + 1024 >= cb->mem_size) {
|
|
rb_bug("out of executable memory");
|
|
}
|
|
if (ocb->write_pos + 1024 >= ocb->mem_size) {
|
|
rb_bug("out of executable memory (outlined block)");
|
|
}
|
|
|
|
// Initialize a JIT state object
|
|
jitstate_t jit = {
|
|
block,
|
|
block->blockid.iseq,
|
|
0,
|
|
0
|
|
};
|
|
|
|
// Last operation that was successfully compiled
|
|
opdesc_t* p_last_op = NULL;
|
|
|
|
// Mark the start position of the block
|
|
block->start_pos = cb->write_pos;
|
|
|
|
// For each instruction to compile
|
|
for (;;) {
|
|
// Set the current instruction
|
|
jit.insn_idx = insn_idx;
|
|
jit.pc = &encoded[insn_idx];
|
|
|
|
// Get the current opcode
|
|
int opcode = jit_get_opcode(&jit);
|
|
|
|
// Lookup the codegen function for this instruction
|
|
st_data_t st_op_desc;
|
|
if (!rb_st_lookup(gen_fns, opcode, &st_op_desc)) {
|
|
break;
|
|
}
|
|
|
|
// Accumulate stats about instructions executed
|
|
if (rb_ujit_opts.gen_stats) {
|
|
// Count instructions executed by the JIT
|
|
mov(cb, REG0, const_ptr_opnd((void *)&rb_ujit_exec_insns_count));
|
|
add(cb, mem_opnd(64, REG0, 0), imm_opnd(1));
|
|
}
|
|
|
|
//fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
|
|
//print_str(cb, insn_name(opcode));
|
|
|
|
// Call the code generation function
|
|
opdesc_t* p_desc = (opdesc_t*)st_op_desc;
|
|
bool success = p_desc->gen_fn(&jit, ctx);
|
|
|
|
// If we can't compile this instruction, stop
|
|
if (!success) {
|
|
break;
|
|
}
|
|
|
|
// Move to the next instruction
|
|
p_last_op = p_desc;
|
|
insn_idx += insn_len(opcode);
|
|
|
|
// If this instruction terminates this block
|
|
if (p_desc->is_branch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the last instruction compiled did not terminate the block
|
|
// Generate code to exit to the interpreter
|
|
if (!p_last_op || !p_last_op->is_branch) {
|
|
ujit_gen_exit(&jit, ctx, cb, &encoded[insn_idx]);
|
|
}
|
|
|
|
// Mark the end position of the block
|
|
block->end_pos = cb->write_pos;
|
|
|
|
// Store the index of the last instruction in the block
|
|
block->end_idx = insn_idx;
|
|
|
|
if (UJIT_DUMP_MODE >= 2) {
|
|
// Dump list of compiled instrutions
|
|
fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
|
|
VALUE *pc = &encoded[block->blockid.idx];
|
|
VALUE *end_pc = &encoded[insn_idx];
|
|
while (pc < end_pc) {
|
|
int opcode = opcode_at_pc(iseq, pc);
|
|
fprintf(stderr, " %04td %s\n", pc - encoded, insn_name(opcode));
|
|
pc += insn_len(opcode);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gen_dup(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Get the top value and its type
|
|
x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
|
|
int dup_type = ctx_get_top_type(ctx);
|
|
|
|
// Push the same value on top
|
|
x86opnd_t loc0 = ctx_stack_push(ctx, dup_type);
|
|
mov(cb, REG0, dup_val);
|
|
mov(cb, loc0, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_nop(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Do nothing
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_pop(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Decrement SP
|
|
ctx_stack_pop(ctx, 1);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_putnil(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Write constant at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NIL);
|
|
mov(cb, stack_top, imm_opnd(Qnil));
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_putobject(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
VALUE arg = jit_get_arg(jit, 0);
|
|
|
|
if (FIXNUM_P(arg))
|
|
{
|
|
// Keep track of the fixnum type tag
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
|
|
|
|
x86opnd_t imm = imm_opnd((int64_t)arg);
|
|
|
|
// 64-bit immediates can't be directly written to memory
|
|
if (imm.num_bits <= 32)
|
|
{
|
|
mov(cb, stack_top, imm);
|
|
}
|
|
else
|
|
{
|
|
mov(cb, REG0, imm);
|
|
mov(cb, stack_top, REG0);
|
|
}
|
|
}
|
|
else if (arg == Qtrue || arg == Qfalse)
|
|
{
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_top, imm_opnd((int64_t)arg));
|
|
}
|
|
else
|
|
{
|
|
// Load the argument from the bytecode sequence.
|
|
// We need to do this as the argument can change due to GC compaction.
|
|
x86opnd_t pc_plus_one = const_ptr_opnd((void*)(jit->pc + 1));
|
|
mov(cb, RAX, pc_plus_one);
|
|
mov(cb, RAX, mem_opnd(64, RAX, 0));
|
|
|
|
// Write argument at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_top, RAX);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_putobject_int2fix(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
int opcode = jit_get_opcode(jit);
|
|
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
|
|
|
|
// Write constant at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
|
|
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_putself(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Load self from CFP
|
|
mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
// Write it on the stack
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_top, RAX);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_getlocal_wc0(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
// Compute the offset from BP to the local
|
|
int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
|
|
const int32_t offs = -(SIZEOF_VALUE * local_idx);
|
|
|
|
// Load the local from the block
|
|
mov(cb, REG0, mem_opnd(64, REG0, offs));
|
|
|
|
// Write the local at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_top, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_getlocal_wc1(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
//fprintf(stderr, "gen_getlocal_wc1\n");
|
|
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
// Get the previous EP from the current EP
|
|
// See GET_PREV_EP(ep) macro
|
|
// VALUE* prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
|
|
mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
|
|
and(cb, REG0, imm_opnd(~0x03));
|
|
|
|
// Load the local from the block
|
|
// val = *(vm_get_ep(GET_EP(), level) - idx);
|
|
int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
|
|
const int32_t offs = -(SIZEOF_VALUE * local_idx);
|
|
mov(cb, REG0, mem_opnd(64, REG0, offs));
|
|
|
|
// Write the local at SP
|
|
x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_top, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
/*
|
|
vm_env_write(const VALUE *ep, int index, VALUE v)
|
|
{
|
|
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
|
|
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
|
|
VM_STACK_ENV_WRITE(ep, index, v);
|
|
}
|
|
else {
|
|
vm_env_write_slowpath(ep, index, v);
|
|
}
|
|
}
|
|
*/
|
|
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
// flags & VM_ENV_FLAG_WB_REQUIRED
|
|
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
|
|
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Pop the value to write from the stack
|
|
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG1, stack_top);
|
|
|
|
// Write the value at the environment pointer
|
|
int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
|
|
const int32_t offs = -8 * local_idx;
|
|
mov(cb, mem_opnd(64, REG0, offs), REG1);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check that `self` is a pointer to an object on the GC heap
|
|
static void
|
|
guard_self_is_object(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
|
|
{
|
|
// `self` is constant throughout the entire region, so we only need to do this check once.
|
|
if (!ctx->self_is_object) {
|
|
test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, self_opnd, imm_opnd(Qfalse));
|
|
je_ptr(cb, side_exit);
|
|
cmp(cb, self_opnd, imm_opnd(Qnil));
|
|
je_ptr(cb, side_exit);
|
|
ctx->self_is_object = true;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
IVC ic = (IVC)jit_get_arg(jit, 1);
|
|
|
|
// Check that the inline cache has been set, slot index is known
|
|
if (!ic->entry)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// If the class uses the default allocator, instances should all be T_OBJECT
|
|
// NOTE: This assumes nobody changes the allocator of the class after allocation.
|
|
// Eventually, we can encode whether an object is T_OBJECT or not
|
|
// inside object shapes.
|
|
if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
uint32_t ivar_index = ic->entry->index;
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// Load self from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
guard_self_is_object(cb, REG0, side_exit, ctx);
|
|
|
|
// Bail if receiver class is different from compiled time call cache class
|
|
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
|
|
mov(cb, REG1, klass_opnd);
|
|
x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
|
|
cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
|
|
jne_ptr(cb, side_exit);
|
|
|
|
// Bail if the ivars are not on the extended table
|
|
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
|
|
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
|
|
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// check that the extended table is big enough
|
|
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1)
|
|
{
|
|
// Check that the slot is inside the extended table (num_slots > index)
|
|
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
|
|
cmp(cb, num_slots, imm_opnd(ivar_index));
|
|
jle_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Get a pointer to the extended table
|
|
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
|
|
mov(cb, REG0, tbl_opnd);
|
|
|
|
// Read the ivar from the extended table
|
|
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
|
|
mov(cb, REG0, ivar_opnd);
|
|
|
|
// Check that the ivar is not Qundef
|
|
cmp(cb, REG0, imm_opnd(Qundef));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Push the ivar on the stack
|
|
x86opnd_t out_opnd = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, out_opnd, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
IVC ic = (IVC)jit_get_arg(jit, 1);
|
|
|
|
// Check that the inline cache has been set, slot index is known
|
|
if (!ic->entry)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// If the class uses the default allocator, instances should all be T_OBJECT
|
|
// NOTE: This assumes nobody changes the allocator of the class after allocation.
|
|
// Eventually, we can encode whether an object is T_OBJECT or not
|
|
// inside object shapes.
|
|
if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
uint32_t ivar_index = ic->entry->index;
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// Load self from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
|
|
|
|
guard_self_is_object(cb, REG0, side_exit, ctx);
|
|
|
|
// Bail if receiver class is different from compiled time call cache class
|
|
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
|
|
mov(cb, REG1, klass_opnd);
|
|
x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
|
|
cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
|
|
jne_ptr(cb, side_exit);
|
|
|
|
// Bail if the ivars are not on the extended table
|
|
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
|
|
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
|
|
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// If we can't guarantee that the extended table is big enoughg
|
|
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1)
|
|
{
|
|
// Check that the slot is inside the extended table (num_slots > index)
|
|
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
|
|
cmp(cb, num_slots, imm_opnd(ivar_index));
|
|
jle_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Get a pointer to the extended table
|
|
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
|
|
mov(cb, REG0, tbl_opnd);
|
|
|
|
// Pop the value to write from the stack
|
|
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG1, stack_top);
|
|
|
|
// Bail if this is a heap object, because this needs a write barrier
|
|
test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jz_ptr(cb, side_exit);
|
|
|
|
// Write the ivar to the extended table
|
|
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
|
|
mov(cb, ivar_opnd, REG1);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Conditional move operation used by comparison operators
|
|
typedef void (*cmov_fn)(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
|
|
|
|
static bool
|
|
gen_fixnum_cmp(jitstate_t* jit, ctx_t* ctx, cmov_fn cmov_op)
|
|
{
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// TODO: make a helper function for guarding on op-not-redefined
|
|
// Make sure that minus isn't redefined for integers
|
|
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
|
|
test(
|
|
cb,
|
|
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_LT),
|
|
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
|
|
);
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
int arg1_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
int arg0_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// If not fixnums, fall back
|
|
if (arg0_type != T_FIXNUM) {
|
|
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
if (arg1_type != T_FIXNUM) {
|
|
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Compare the arguments
|
|
xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
|
|
mov(cb, REG1, arg0);
|
|
cmp(cb, REG1, arg1);
|
|
mov(cb, REG1, imm_opnd(Qtrue));
|
|
cmov_op(cb, REG0, REG1);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, dst, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_opt_lt(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovl);
|
|
}
|
|
|
|
static bool
|
|
gen_opt_le(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovle);
|
|
}
|
|
|
|
static bool
|
|
gen_opt_ge(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
return gen_fixnum_cmp(jit, ctx, cmovge);
|
|
}
|
|
|
|
static bool
|
|
gen_opt_aref(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
|
|
|
|
// Only JIT one arg calls like `ary[6]`
|
|
if (argc != 1) {
|
|
return false;
|
|
}
|
|
|
|
const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
|
|
|
|
// Bail if the inline cache has been filled. Currently, certain types
|
|
// (including arrays) don't use the inline cache, so if the inline cache
|
|
// has an entry, then this must be used by some other type.
|
|
if (cme) {
|
|
return false;
|
|
}
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// TODO: make a helper function for guarding on op-not-redefined
|
|
// Make sure that aref isn't redefined for arrays.
|
|
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
|
|
test(
|
|
cb,
|
|
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AREF),
|
|
imm_opnd(ARRAY_REDEFINED_OP_FLAG)
|
|
);
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Pop the stack operands
|
|
x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
|
|
mov(cb, REG0, recv_opnd);
|
|
|
|
// if (SPECIAL_CONST_P(recv)) {
|
|
// Bail if it's not a heap object
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qfalse));
|
|
je_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Bail if recv has a class other than ::Array.
|
|
// BOP_AREF check above is only good for ::Array.
|
|
mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
|
|
mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
|
|
cmp(cb, REG0, REG1);
|
|
jne_ptr(cb, side_exit);
|
|
|
|
// Bail if idx is not a FIXNUM
|
|
mov(cb, REG1, idx_opnd);
|
|
test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
|
|
// Save uJIT registers
|
|
ujit_save_regs(cb);
|
|
|
|
mov(cb, RDI, recv_opnd);
|
|
sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
|
|
mov(cb, RSI, REG1);
|
|
call_ptr(cb, REG0, (void *)rb_ary_entry_internal);
|
|
|
|
// Restore uJIT registers
|
|
ujit_load_regs(cb);
|
|
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_opt_and(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// TODO: make a helper function for guarding on op-not-redefined
|
|
// Make sure that plus isn't redefined for integers
|
|
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
|
|
test(
|
|
cb,
|
|
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AND),
|
|
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
|
|
);
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
int arg1_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
int arg0_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// If not fixnums, fall back
|
|
if (arg0_type != T_FIXNUM) {
|
|
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
if (arg1_type != T_FIXNUM) {
|
|
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Do the bitwise and arg0 & arg1
|
|
mov(cb, REG0, arg0);
|
|
and(cb, REG0, arg1);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_opt_minus(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// TODO: make a helper function for guarding on op-not-redefined
|
|
// Make sure that minus isn't redefined for integers
|
|
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
|
|
test(
|
|
cb,
|
|
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
|
|
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
|
|
);
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// If not fixnums, fall back
|
|
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
|
|
// Subtract arg0 - arg1 and test for overflow
|
|
mov(cb, REG0, arg0);
|
|
sub(cb, REG0, arg1);
|
|
jo_ptr(cb, side_exit);
|
|
add(cb, REG0, imm_opnd(1));
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_opt_plus(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Create a size-exit to fall back to the interpreter
|
|
// Note: we generate the side-exit before popping operands from the stack
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// TODO: make a helper function for guarding on op-not-redefined
|
|
// Make sure that plus isn't redefined for integers
|
|
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
|
|
test(
|
|
cb,
|
|
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_PLUS),
|
|
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
|
|
);
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Get the operands and destination from the stack
|
|
int arg1_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
|
|
int arg0_type = ctx_get_top_type(ctx);
|
|
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
|
|
|
|
// If not fixnums, fall back
|
|
if (arg0_type != T_FIXNUM) {
|
|
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
if (arg1_type != T_FIXNUM) {
|
|
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
|
|
jz_ptr(cb, side_exit);
|
|
}
|
|
|
|
// Add arg0 + arg1 and test for overflow
|
|
mov(cb, REG0, arg0);
|
|
sub(cb, REG0, imm_opnd(1));
|
|
add(cb, REG0, arg1);
|
|
jo_ptr(cb, side_exit);
|
|
|
|
// Push the output on the stack
|
|
x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
|
|
mov(cb, dst, REG0);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
gen_branchif_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
|
|
{
|
|
switch (shape)
|
|
{
|
|
case SHAPE_NEXT0:
|
|
jz_ptr(cb, target1);
|
|
break;
|
|
|
|
case SHAPE_NEXT1:
|
|
jnz_ptr(cb, target0);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jnz_ptr(cb, target0);
|
|
jmp_ptr(cb, target1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gen_branchif(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
|
|
// Check for interrupts
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Test if any bit (outside of the Qnil bit) is on
|
|
// RUBY_Qfalse /* ...0000 0000 */
|
|
// RUBY_Qnil /* ...0000 1000 */
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
test(cb, val_opnd, imm_opnd(~Qnil));
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t next_idx = jit_next_idx(jit);
|
|
uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
|
|
blockid_t next_block = { jit->iseq, next_idx };
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the branch instructions
|
|
gen_branch(
|
|
ctx,
|
|
jump_block,
|
|
ctx,
|
|
next_block,
|
|
ctx,
|
|
gen_branchif_branch
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
gen_branchunless_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
|
|
{
|
|
switch (shape)
|
|
{
|
|
case SHAPE_NEXT0:
|
|
jnz_ptr(cb, target1);
|
|
break;
|
|
|
|
case SHAPE_NEXT1:
|
|
jz_ptr(cb, target0);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
jz_ptr(cb, target0);
|
|
jmp_ptr(cb, target1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gen_branchunless(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
|
|
// Check for interrupts
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Test if any bit (outside of the Qnil bit) is on
|
|
// RUBY_Qfalse /* ...0000 0000 */
|
|
// RUBY_Qnil /* ...0000 1000 */
|
|
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
|
|
test(cb, val_opnd, imm_opnd(~Qnil));
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t next_idx = jit_next_idx(jit);
|
|
uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
|
|
blockid_t next_block = { jit->iseq, next_idx };
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the branch instructions
|
|
gen_branch(
|
|
ctx,
|
|
jump_block,
|
|
ctx,
|
|
next_block,
|
|
ctx,
|
|
gen_branchunless_branch
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_jump(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
|
|
// Check for interrupts
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Get the branch target instruction offsets
|
|
uint32_t jump_idx = jit_next_idx(jit) + (int32_t)jit_get_arg(jit, 0);
|
|
blockid_t jump_block = { jit->iseq, jump_idx };
|
|
|
|
// Generate the jump instruction
|
|
gen_direct_jump(
|
|
ctx,
|
|
jump_block
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_oswb_cfunc(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
|
|
{
|
|
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
|
|
|
|
// Don't JIT if the argument count doesn't match
|
|
if (cfunc->argc < 0 || cfunc->argc != argc)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Don't JIT functions that need C stack arguments for now
|
|
if (argc + 1 > NUM_C_ARG_REGS)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// Check for interrupts
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
mov(cb, REG0, recv);
|
|
|
|
// Callee method ID
|
|
//ID mid = vm_ci_mid(cd->ci);
|
|
//printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
|
|
//print_str(cb, "");
|
|
//print_str(cb, "calling CFUNC:");
|
|
//print_str(cb, rb_id2name(mid));
|
|
//print_str(cb, "recv");
|
|
//print_ptr(cb, recv);
|
|
|
|
// Check that the receiver is a heap object
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qfalse));
|
|
je_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Pointer to the klass field of the receiver &(recv->klass)
|
|
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
|
|
|
|
assume_method_lookup_stable(cd->cc, cme, jit->block);
|
|
|
|
// Bail if receiver class is different from compile-time call cache class
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
|
|
cmp(cb, klass_opnd, REG1);
|
|
jne_ptr(cb, side_exit);
|
|
|
|
// Store incremented PC into current control frame in case callee raises.
|
|
mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
|
|
mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
|
|
|
|
// If this function needs a Ruby stack frame
|
|
if (cfunc_needs_frame(cfunc))
|
|
{
|
|
// Stack overflow check
|
|
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
|
|
// REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + sizeof(rb_control_frame_t)));
|
|
cmp(cb, REG_CFP, REG0);
|
|
jle_ptr(cb, side_exit);
|
|
|
|
// Increment the stack pointer by 3 (in the callee)
|
|
// sp += 3
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));
|
|
|
|
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
|
|
// any cme we depend on become outdated. See rb_ujit_method_lookup_change().
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
|
|
// Write method entry at sp[-3]
|
|
// sp[-3] = me;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
|
|
|
|
// Write block handler at sp[-2]
|
|
// sp[-2] = block_handler;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
|
|
|
|
// Write env flags at sp[-1]
|
|
// sp[-1] = frame_type;
|
|
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
|
|
|
|
// Allocate a new CFP (ec->cfp--)
|
|
sub(
|
|
cb,
|
|
member_opnd(REG_EC, rb_execution_context_t, cfp),
|
|
imm_opnd(sizeof(rb_control_frame_t))
|
|
);
|
|
|
|
// Setup the new frame
|
|
// *cfp = (const struct rb_control_frame_struct) {
|
|
// .pc = 0,
|
|
// .sp = sp,
|
|
// .iseq = 0,
|
|
// .self = recv,
|
|
// .ep = sp - 1,
|
|
// .block_code = 0,
|
|
// .__bp__ = sp,
|
|
// };
|
|
mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
|
|
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
|
|
mov(cb, REG0, recv);
|
|
mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
|
|
}
|
|
|
|
// Verify that we are calling the right function
|
|
if (UJIT_CHECK_MODE > 0) {
|
|
// Save uJIT registers
|
|
ujit_save_regs(cb);
|
|
|
|
// Call check_cfunc_dispatch
|
|
mov(cb, RDI, recv);
|
|
jit_mov_gc_ptr(jit, cb, RSI, (VALUE)cd);
|
|
mov(cb, RDX, const_ptr_opnd((void *)cfunc->func));
|
|
jit_mov_gc_ptr(jit, cb, RCX, (VALUE)cme);
|
|
call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
|
|
|
|
// Load uJIT registers
|
|
ujit_load_regs(cb);
|
|
}
|
|
|
|
// Save uJIT registers
|
|
ujit_save_regs(cb);
|
|
|
|
// Copy SP into RAX because REG_SP will get overwritten
|
|
lea(cb, RAX, ctx_sp_opnd(ctx, 0));
|
|
|
|
// Copy the arguments from the stack to the C argument registers
|
|
// self is the 0th argument and is at index argc from the stack top
|
|
for (int32_t i = 0; i < argc + 1; ++i)
|
|
{
|
|
x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * 8);
|
|
x86opnd_t c_arg_reg = C_ARG_REGS[i];
|
|
mov(cb, c_arg_reg, stack_opnd);
|
|
}
|
|
|
|
// Pop the C function arguments from the stack (in the caller)
|
|
ctx_stack_pop(ctx, argc + 1);
|
|
|
|
// Call the C function
|
|
// VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
|
|
// cfunc comes from compile-time cme->def, which we assume to be stable.
|
|
// Invalidation logic is in rb_ujit_method_lookup_change()
|
|
call_ptr(cb, REG0, (void*)cfunc->func);
|
|
|
|
// Load uJIT registers
|
|
ujit_load_regs(cb);
|
|
|
|
// Push the return value on the Ruby stack
|
|
x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
|
|
mov(cb, stack_ret, RAX);
|
|
|
|
// If this function needs a Ruby stack frame
|
|
if (cfunc_needs_frame(cfunc))
|
|
{
|
|
// Pop the stack frame (ec->cfp++)
|
|
add(
|
|
cb,
|
|
member_opnd(REG_EC, rb_execution_context_t, cfp),
|
|
imm_opnd(sizeof(rb_control_frame_t))
|
|
);
|
|
}
|
|
|
|
// Jump (fall through) to the call continuation block
|
|
// We do this to end the current block after the call
|
|
blockid_t cont_block = { jit->iseq, jit_next_idx(jit) };
|
|
gen_direct_jump(
|
|
ctx,
|
|
cont_block
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool rb_simple_iseq_p(const rb_iseq_t *iseq);
|
|
|
|
static void
|
|
gen_return_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
|
|
{
|
|
switch (shape)
|
|
{
|
|
case SHAPE_NEXT0:
|
|
case SHAPE_NEXT1:
|
|
RUBY_ASSERT(false);
|
|
break;
|
|
|
|
case SHAPE_DEFAULT:
|
|
mov(cb, REG0, const_ptr_opnd(target0));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gen_oswb_iseq(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
|
|
{
|
|
const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
|
|
const VALUE* start_pc = iseq->body->iseq_encoded;
|
|
int num_params = iseq->body->param.size;
|
|
int num_locals = iseq->body->local_table_size - num_params;
|
|
|
|
if (num_params != argc) {
|
|
//fprintf(stderr, "param argc mismatch\n");
|
|
return false;
|
|
}
|
|
|
|
if (!rb_simple_iseq_p(iseq)) {
|
|
// Only handle iseqs that have simple parameters.
|
|
// See vm_callee_setup_arg().
|
|
return false;
|
|
}
|
|
|
|
if (vm_ci_flag(cd->ci) & VM_CALL_TAILCALL) {
|
|
// We can't handle tailcalls
|
|
return false;
|
|
}
|
|
|
|
rb_gc_register_mark_object((VALUE)iseq); // FIXME: intentional LEAK!
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// Check for interrupts
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Points to the receiver operand on the stack
|
|
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
|
|
mov(cb, REG0, recv);
|
|
|
|
// Callee method ID
|
|
//ID mid = vm_ci_mid(cd->ci);
|
|
//printf("JITting call to Ruby function \"%s\", argc: %d\n", rb_id2name(mid), argc);
|
|
//print_str(cb, "");
|
|
//print_str(cb, "recv");
|
|
//print_ptr(cb, recv);
|
|
|
|
// Check that the receiver is a heap object
|
|
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
|
|
jnz_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qfalse));
|
|
je_ptr(cb, side_exit);
|
|
cmp(cb, REG0, imm_opnd(Qnil));
|
|
je_ptr(cb, side_exit);
|
|
|
|
// Pointer to the klass field of the receiver &(recv->klass)
|
|
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
|
|
|
|
assume_method_lookup_stable(cd->cc, cme, jit->block);
|
|
|
|
// Bail if receiver class is different from compile-time call cache class
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
|
|
cmp(cb, klass_opnd, REG1);
|
|
jne_ptr(cb, side_exit);
|
|
|
|
// Store the updated SP on the current frame (pop arguments and receiver)
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
|
|
|
|
// Store the next PC i the current frame
|
|
mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
|
|
mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
|
|
|
|
// Stack overflow check
|
|
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + sizeof(rb_control_frame_t)));
|
|
cmp(cb, REG_CFP, REG0);
|
|
jle_ptr(cb, side_exit);
|
|
|
|
// Adjust the callee's stack pointer
|
|
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals)));
|
|
|
|
// Initialize local variables to Qnil
|
|
for (int i = 0; i < num_locals; i++) {
|
|
mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
|
|
}
|
|
|
|
// Put compile time cme into REG1. It's assumed to be valid because we are notified when
|
|
// any cme we depend on become outdated. See rb_ujit_method_lookup_change().
|
|
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
|
|
// Write method entry at sp[-3]
|
|
// sp[-3] = me;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
|
|
|
|
// Write block handler at sp[-2]
|
|
// sp[-2] = block_handler;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
|
|
|
|
// Write env flags at sp[-1]
|
|
// sp[-1] = frame_type;
|
|
uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
|
|
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
|
|
|
|
// Allocate a new CFP (ec->cfp--)
|
|
sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
|
|
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
|
|
|
|
// Setup the new frame
|
|
// *cfp = (const struct rb_control_frame_struct) {
|
|
// .pc = pc,
|
|
// .sp = sp,
|
|
// .iseq = iseq,
|
|
// .self = recv,
|
|
// .ep = sp - 1,
|
|
// .block_code = 0,
|
|
// .__bp__ = sp,
|
|
// };
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
|
|
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
|
|
mov(cb, REG0, recv);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG0);
|
|
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
|
|
mov(cb, REG0, const_ptr_opnd(start_pc));
|
|
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);
|
|
|
|
// Stub so we can return to JITted code
|
|
blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };
|
|
|
|
// Pop arguments and receiver in return context, push the return value
|
|
// After the return, the JIT and interpreter SP will match up
|
|
ctx_t return_ctx = *ctx;
|
|
ctx_stack_pop(&return_ctx, argc + 1);
|
|
ctx_stack_push(&return_ctx, T_NONE);
|
|
return_ctx.sp_offset = 0;
|
|
|
|
// Write the JIT return address on the callee frame
|
|
gen_branch(
|
|
ctx,
|
|
return_block,
|
|
&return_ctx,
|
|
return_block,
|
|
&return_ctx,
|
|
gen_return_branch
|
|
);
|
|
|
|
//print_str(cb, "calling Ruby func:");
|
|
//print_str(cb, rb_id2name(vm_ci_mid(cd->ci)));
|
|
|
|
// Load the updated SP
|
|
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
|
|
|
|
// Directly jump to the entry point of the callee
|
|
gen_direct_jump(
|
|
&DEFAULT_CTX,
|
|
(blockid_t){ iseq, 0 }
|
|
);
|
|
|
|
|
|
// TODO: create stub for call continuation
|
|
|
|
// TODO: need to pop args in the caller ctx
|
|
|
|
// TODO: stub so we can return to JITted code
|
|
//blockid_t cont_block = { jit->iseq, jit_next_insn_idx(jit) };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gen_opt_send_without_block(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Relevant definitions:
|
|
// rb_execution_context_t : vm_core.h
|
|
// invoker, cfunc logic : method.h, vm_method.c
|
|
// rb_callable_method_entry_t : method.h
|
|
// vm_call_cfunc_with_frame : vm_insnhelper.c
|
|
// rb_callcache : vm_callinfo.h
|
|
|
|
struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
|
|
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
|
|
|
|
// Don't JIT calls with keyword splat
|
|
if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Don't JIT calls that aren't simple
|
|
if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Don't JIT if the inline cache is not set
|
|
if (!cd->cc || !cd->cc->klass) {
|
|
return false;
|
|
}
|
|
|
|
const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
|
|
|
|
// Don't JIT if the method entry is out of date
|
|
if (METHOD_ENTRY_INVALIDATED(cme)) {
|
|
return false;
|
|
}
|
|
|
|
// We don't generate code to check protected method calls
|
|
if (METHOD_ENTRY_VISI(cme) == METHOD_VISI_PROTECTED) {
|
|
return false;
|
|
}
|
|
|
|
// If this is a C call
|
|
if (cme->def->type == VM_METHOD_TYPE_CFUNC)
|
|
{
|
|
return gen_oswb_cfunc(jit, ctx, cd, cme, argc);
|
|
}
|
|
|
|
// If this is a Ruby call
|
|
if (cme->def->type == VM_METHOD_TYPE_ISEQ)
|
|
{
|
|
return gen_oswb_iseq(jit, ctx, cd, cme, argc);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
gen_leave(jitstate_t* jit, ctx_t* ctx)
|
|
{
|
|
// Only the return value should be on the stack
|
|
RUBY_ASSERT(ctx->stack_size == 1);
|
|
|
|
// Create a size-exit to fall back to the interpreter
|
|
uint8_t* side_exit = ujit_side_exit(jit, ctx);
|
|
|
|
// Load environment pointer EP from CFP
|
|
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
|
|
|
|
// if (flags & VM_FRAME_FLAG_FINISH) != 0
|
|
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
|
|
test(cb, flags_opnd, imm_opnd(VM_FRAME_FLAG_FINISH));
|
|
jnz_ptr(cb, side_exit);
|
|
|
|
// Check for interrupts
|
|
ujit_check_ints(cb, side_exit);
|
|
|
|
// Load the return value
|
|
mov(cb, REG0, ctx_stack_pop(ctx, 1));
|
|
|
|
// Load the JIT return address
|
|
mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, jit_return));
|
|
|
|
// Pop the current frame (ec->cfp++)
|
|
// Note: the return PC is already in the previous CFP
|
|
add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
|
|
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
|
|
|
|
// Push the return value on the caller frame
|
|
// The SP points one above the topmost value
|
|
add(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), imm_opnd(SIZEOF_VALUE));
|
|
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
|
|
mov(cb, mem_opnd(64, REG_SP, -SIZEOF_VALUE), REG0);
|
|
|
|
// If the return address is NULL, fall back to the interpreter
|
|
int FALLBACK_LABEL = cb_new_label(cb, "FALLBACK");
|
|
cmp(cb, REG1, imm_opnd(0));
|
|
jz(cb, FALLBACK_LABEL);
|
|
|
|
// Jump to the JIT return address
|
|
jmp_rm(cb, REG1);
|
|
|
|
// Fall back to the interpreter
|
|
cb_write_label(cb, FALLBACK_LABEL);
|
|
cb_link_labels(cb);
|
|
cb_write_post_call_bytes(cb);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ujit_reg_op(int opcode, codegen_fn gen_fn, bool is_branch)
|
|
{
|
|
// Check that the op wasn't previously registered
|
|
st_data_t st_desc;
|
|
if (rb_st_lookup(gen_fns, opcode, &st_desc)) {
|
|
rb_bug("op already registered");
|
|
}
|
|
|
|
opdesc_t* p_desc = (opdesc_t*)malloc(sizeof(opdesc_t));
|
|
p_desc->gen_fn = gen_fn;
|
|
p_desc->is_branch = is_branch;
|
|
|
|
st_insert(gen_fns, (st_data_t)opcode, (st_data_t)p_desc);
|
|
}
|
|
|
|
void
|
|
ujit_init_codegen(void)
|
|
{
|
|
// Initialize the code blocks
|
|
uint32_t mem_size = 128 * 1024 * 1024;
|
|
uint8_t* mem_block = alloc_exec_mem(mem_size);
|
|
cb = █
|
|
cb_init(cb, mem_block, mem_size/2);
|
|
ocb = &outline_block;
|
|
cb_init(ocb, mem_block + mem_size/2, mem_size/2);
|
|
|
|
// Initialize the codegen function table
|
|
gen_fns = rb_st_init_numtable();
|
|
|
|
// Map YARV opcodes to the corresponding codegen functions
|
|
ujit_reg_op(BIN(dup), gen_dup, false);
|
|
ujit_reg_op(BIN(nop), gen_nop, false);
|
|
ujit_reg_op(BIN(pop), gen_pop, false);
|
|
ujit_reg_op(BIN(putnil), gen_putnil, false);
|
|
ujit_reg_op(BIN(putobject), gen_putobject, false);
|
|
ujit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix, false);
|
|
ujit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix, false);
|
|
ujit_reg_op(BIN(putself), gen_putself, false);
|
|
ujit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0, false);
|
|
ujit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1, false);
|
|
ujit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0, false);
|
|
ujit_reg_op(BIN(getinstancevariable), gen_getinstancevariable, false);
|
|
ujit_reg_op(BIN(setinstancevariable), gen_setinstancevariable, false);
|
|
ujit_reg_op(BIN(opt_lt), gen_opt_lt, false);
|
|
ujit_reg_op(BIN(opt_le), gen_opt_le, false);
|
|
ujit_reg_op(BIN(opt_ge), gen_opt_ge, false);
|
|
ujit_reg_op(BIN(opt_aref), gen_opt_aref, false);
|
|
ujit_reg_op(BIN(opt_and), gen_opt_and, false);
|
|
ujit_reg_op(BIN(opt_minus), gen_opt_minus, false);
|
|
ujit_reg_op(BIN(opt_plus), gen_opt_plus, false);
|
|
ujit_reg_op(BIN(branchif), gen_branchif, true);
|
|
ujit_reg_op(BIN(branchunless), gen_branchunless, true);
|
|
ujit_reg_op(BIN(jump), gen_jump, true);
|
|
ujit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block, true);
|
|
ujit_reg_op(BIN(leave), gen_leave, true);
|
|
}
|