mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	64bit CPU environment (sizeof(double) == sizeof(VALUE)). flonum technique enables to avoid double object creation if the double value d is in range about between 1.72723e-77 < |d| <= 1.15792e+77 or 0.0. flonum Float value is immediate and their lowest two bits are b10. If flonum is activated, then USE_FLONUM macro is 1. I'll write detailed in this technique on https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/Flonum_tech * benchmark/bmx_temp.rb: add an benchmark for simple Float calculation. * gc.c (id2ref, rb_obj_id): add flonum Float support. * include/ruby/intern.h: move decl of rb_float_new(double) to include/ruby/ruby.h. * insns.def, vm.c, vm_insnhelper.c: add flonum optimization and simplify source code. * vm_insnhelper.h (FLONUM_2_P): added. * marshal.c: support flonum output. * numeric.c (rb_float_new_in_heap): added. * parse.y: support flonum. * random.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36798 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			4249 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4249 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**********************************************************************
 | 
						|
 | 
						|
  gc.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
  created at: Tue Oct  5 09:44:46 JST 1993
 | 
						|
 | 
						|
  Copyright (C) 1993-2007 Yukihiro Matsumoto
 | 
						|
  Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
 | 
						|
  Copyright (C) 2000  Information-technology Promotion Agency, Japan
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
#include "ruby/ruby.h"
 | 
						|
#include "ruby/st.h"
 | 
						|
#include "ruby/re.h"
 | 
						|
#include "ruby/io.h"
 | 
						|
#include "ruby/thread.h"
 | 
						|
#include "ruby/util.h"
 | 
						|
#include "eval_intern.h"
 | 
						|
#include "vm_core.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "gc.h"
 | 
						|
#include "constant.h"
 | 
						|
#include "atomic.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include <setjmp.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#ifdef HAVE_SYS_TIME_H
 | 
						|
#include <sys/time.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_SYS_RESOURCE_H
 | 
						|
#include <sys/resource.h>
 | 
						|
#endif
 | 
						|
#if defined(__native_client__) && defined(NACL_NEWLIB)
 | 
						|
# include "nacl/resource.h"
 | 
						|
# undef HAVE_POSIX_MEMALIGN
 | 
						|
# undef HAVE_MEMALIGN
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined _WIN32 || defined __CYGWIN__
 | 
						|
#include <windows.h>
 | 
						|
#elif defined(HAVE_POSIX_MEMALIGN)
 | 
						|
#elif defined(HAVE_MEMALIGN)
 | 
						|
#include <malloc.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_VALGRIND_MEMCHECK_H
 | 
						|
# include <valgrind/memcheck.h>
 | 
						|
# ifndef VALGRIND_MAKE_MEM_DEFINED
 | 
						|
#  define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
 | 
						|
# endif
 | 
						|
# ifndef VALGRIND_MAKE_MEM_UNDEFINED
 | 
						|
#  define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
 | 
						|
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
 | 
						|
#endif
 | 
						|
 | 
						|
#define rb_setjmp(env) RUBY_SETJMP(env)
 | 
						|
#define rb_jmp_buf rb_jmpbuf_t
 | 
						|
 | 
						|
/* Make alloca work the best possible way.  */
 | 
						|
#ifdef __GNUC__
 | 
						|
# ifndef atarist
 | 
						|
#  ifndef alloca
 | 
						|
#   define alloca __builtin_alloca
 | 
						|
#  endif
 | 
						|
# endif /* atarist */
 | 
						|
#else
 | 
						|
# ifdef HAVE_ALLOCA_H
 | 
						|
#  include <alloca.h>
 | 
						|
# else
 | 
						|
#  ifdef _AIX
 | 
						|
 #pragma alloca
 | 
						|
#  else
 | 
						|
#   ifndef alloca /* predefined by HP cc +Olibcalls */
 | 
						|
void *alloca ();
 | 
						|
#   endif
 | 
						|
#  endif /* AIX */
 | 
						|
# endif /* HAVE_ALLOCA_H */
 | 
						|
#endif /* __GNUC__ */
 | 
						|
 | 
						|
#ifndef GC_MALLOC_LIMIT
 | 
						|
#define GC_MALLOC_LIMIT 8000000
 | 
						|
#endif
 | 
						|
#define HEAP_MIN_SLOTS 10000
 | 
						|
#define FREE_MIN  4096
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    unsigned int initial_malloc_limit;
 | 
						|
    unsigned int initial_heap_min_slots;
 | 
						|
    unsigned int initial_free_min;
 | 
						|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | 
						|
    int gc_stress;
 | 
						|
#endif
 | 
						|
} ruby_gc_params_t;
 | 
						|
 | 
						|
static ruby_gc_params_t initial_params = {
 | 
						|
    GC_MALLOC_LIMIT,
 | 
						|
    HEAP_MIN_SLOTS,
 | 
						|
    FREE_MIN,
 | 
						|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | 
						|
    FALSE,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
 | 
						|
 | 
						|
#define MARK_STACK_MAX 1024
 | 
						|
 | 
						|
#ifndef GC_PROFILE_MORE_DETAIL
 | 
						|
#define GC_PROFILE_MORE_DETAIL 0
 | 
						|
#endif
 | 
						|
 | 
						|
typedef struct gc_profile_record {
 | 
						|
    double gc_time;
 | 
						|
    double gc_mark_time;
 | 
						|
    double gc_sweep_time;
 | 
						|
    double gc_invoke_time;
 | 
						|
 | 
						|
    size_t heap_use_slots;
 | 
						|
    size_t heap_live_objects;
 | 
						|
    size_t heap_free_objects;
 | 
						|
    size_t heap_total_objects;
 | 
						|
    size_t heap_use_size;
 | 
						|
    size_t heap_total_size;
 | 
						|
 | 
						|
    int have_finalize;
 | 
						|
    int is_marked;
 | 
						|
 | 
						|
    size_t allocate_increase;
 | 
						|
    size_t allocate_limit;
 | 
						|
} gc_profile_record;
 | 
						|
 | 
						|
 | 
						|
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
 | 
						|
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
 | 
						|
#endif
 | 
						|
 | 
						|
typedef struct RVALUE {
 | 
						|
    union {
 | 
						|
	struct {
 | 
						|
	    VALUE flags;		/* always 0 for freed obj */
 | 
						|
	    struct RVALUE *next;
 | 
						|
	} free;
 | 
						|
	struct RBasic  basic;
 | 
						|
	struct RObject object;
 | 
						|
	struct RClass  klass;
 | 
						|
	struct RFloat  flonum;
 | 
						|
	struct RString string;
 | 
						|
	struct RArray  array;
 | 
						|
	struct RRegexp regexp;
 | 
						|
	struct RHash   hash;
 | 
						|
	struct RData   data;
 | 
						|
	struct RTypedData   typeddata;
 | 
						|
	struct RStruct rstruct;
 | 
						|
	struct RBignum bignum;
 | 
						|
	struct RFile   file;
 | 
						|
	struct RNode   node;
 | 
						|
	struct RMatch  match;
 | 
						|
	struct RRational rational;
 | 
						|
	struct RComplex complex;
 | 
						|
    } as;
 | 
						|
#ifdef GC_DEBUG
 | 
						|
    const char *file;
 | 
						|
    int   line;
 | 
						|
#endif
 | 
						|
} RVALUE;
 | 
						|
 | 
						|
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
 | 
						|
#pragma pack(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
struct heaps_slot {
 | 
						|
    void *membase;
 | 
						|
    RVALUE *slot;
 | 
						|
    size_t limit;
 | 
						|
    uintptr_t *bits;
 | 
						|
    RVALUE *freelist;
 | 
						|
    struct heaps_slot *next;
 | 
						|
    struct heaps_slot *prev;
 | 
						|
    struct heaps_slot *free_next;
 | 
						|
};
 | 
						|
 | 
						|
struct heaps_header {
 | 
						|
    struct heaps_slot *base;
 | 
						|
    uintptr_t *bits;
 | 
						|
};
 | 
						|
 | 
						|
struct sorted_heaps_slot {
 | 
						|
    RVALUE *start;
 | 
						|
    RVALUE *end;
 | 
						|
    struct heaps_slot *slot;
 | 
						|
};
 | 
						|
 | 
						|
struct heaps_free_bitmap {
 | 
						|
    struct heaps_free_bitmap *next;
 | 
						|
};
 | 
						|
 | 
						|
struct gc_list {
 | 
						|
    VALUE *varptr;
 | 
						|
    struct gc_list *next;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef CALC_EXACT_MALLOC_SIZE
 | 
						|
#define CALC_EXACT_MALLOC_SIZE 0
 | 
						|
#endif
 | 
						|
 | 
						|
typedef struct rb_objspace {
 | 
						|
    struct {
 | 
						|
	size_t limit;
 | 
						|
	size_t increase;
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
	size_t allocated_size;
 | 
						|
	size_t allocations;
 | 
						|
#endif
 | 
						|
    } malloc_params;
 | 
						|
    struct {
 | 
						|
	size_t increment;
 | 
						|
	struct heaps_slot *ptr;
 | 
						|
	struct heaps_slot *sweep_slots;
 | 
						|
	struct heaps_slot *free_slots;
 | 
						|
	struct sorted_heaps_slot *sorted;
 | 
						|
	size_t length;
 | 
						|
	size_t used;
 | 
						|
        struct heaps_free_bitmap *free_bitmap;
 | 
						|
	RVALUE *range[2];
 | 
						|
	RVALUE *freed;
 | 
						|
	size_t live_num;
 | 
						|
	size_t free_num;
 | 
						|
	size_t free_min;
 | 
						|
	size_t final_num;
 | 
						|
	size_t do_heap_free;
 | 
						|
    } heap;
 | 
						|
    struct {
 | 
						|
	int dont_gc;
 | 
						|
	int dont_lazy_sweep;
 | 
						|
	int during_gc;
 | 
						|
	rb_atomic_t finalizing;
 | 
						|
    } flags;
 | 
						|
    struct {
 | 
						|
	st_table *table;
 | 
						|
	RVALUE *deferred;
 | 
						|
    } final;
 | 
						|
    struct {
 | 
						|
	VALUE buffer[MARK_STACK_MAX];
 | 
						|
	VALUE *ptr;
 | 
						|
	int overflow;
 | 
						|
    } markstack;
 | 
						|
    struct {
 | 
						|
	int run;
 | 
						|
	gc_profile_record *record;
 | 
						|
	size_t count;
 | 
						|
	size_t size;
 | 
						|
	double invoke_time;
 | 
						|
    } profile;
 | 
						|
    struct gc_list *global_list;
 | 
						|
    size_t count;
 | 
						|
    int gc_stress;
 | 
						|
} rb_objspace_t;
 | 
						|
 | 
						|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | 
						|
#define rb_objspace (*GET_VM()->objspace)
 | 
						|
#define ruby_initial_gc_stress	initial_params.gc_stress
 | 
						|
int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
 | 
						|
#else
 | 
						|
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}};
 | 
						|
int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
 | 
						|
#endif
 | 
						|
#define malloc_limit		objspace->malloc_params.limit
 | 
						|
#define malloc_increase 	objspace->malloc_params.increase
 | 
						|
#define heaps			objspace->heap.ptr
 | 
						|
#define heaps_length		objspace->heap.length
 | 
						|
#define heaps_used		objspace->heap.used
 | 
						|
#define lomem			objspace->heap.range[0]
 | 
						|
#define himem			objspace->heap.range[1]
 | 
						|
#define heaps_inc		objspace->heap.increment
 | 
						|
#define heaps_freed		objspace->heap.freed
 | 
						|
#define dont_gc 		objspace->flags.dont_gc
 | 
						|
#define during_gc		objspace->flags.during_gc
 | 
						|
#define finalizing		objspace->flags.finalizing
 | 
						|
#define finalizer_table 	objspace->final.table
 | 
						|
#define deferred_final_list	objspace->final.deferred
 | 
						|
#define mark_stack		objspace->markstack.buffer
 | 
						|
#define mark_stack_ptr		objspace->markstack.ptr
 | 
						|
#define mark_stack_overflow	objspace->markstack.overflow
 | 
						|
#define global_List		objspace->global_list
 | 
						|
#define ruby_gc_stress		objspace->gc_stress
 | 
						|
#define initial_malloc_limit	initial_params.initial_malloc_limit
 | 
						|
#define initial_heap_min_slots	initial_params.initial_heap_min_slots
 | 
						|
#define initial_free_min	initial_params.initial_free_min
 | 
						|
 | 
						|
#define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0)
 | 
						|
 | 
						|
#define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
 | 
						|
 | 
						|
#define RANY(o) ((RVALUE*)(o))
 | 
						|
#define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist)
 | 
						|
 | 
						|
#define HEAP_HEADER(p) ((struct heaps_header *)(p))
 | 
						|
#define GET_HEAP_HEADER(x) (HEAP_HEADER((uintptr_t)(x) & ~(HEAP_ALIGN_MASK)))
 | 
						|
#define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base)
 | 
						|
#define GET_HEAP_BITMAP(x) (GET_HEAP_HEADER(x)->bits)
 | 
						|
#define NUM_IN_SLOT(p) (((uintptr_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
 | 
						|
#define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * 8))
 | 
						|
#define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * 8)-1))
 | 
						|
#define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & ((uintptr_t)1 << BITMAP_OFFSET(p)))
 | 
						|
 | 
						|
#ifndef HEAP_ALIGN_LOG
 | 
						|
/* default tiny heap size: 16KB */
 | 
						|
#define HEAP_ALIGN_LOG 14
 | 
						|
#endif
 | 
						|
 | 
						|
#define HEAP_ALIGN (1UL << HEAP_ALIGN_LOG)
 | 
						|
#define HEAP_ALIGN_MASK (~(~0UL << HEAP_ALIGN_LOG))
 | 
						|
#define REQUIRED_SIZE_BY_MALLOC (sizeof(size_t) * 5)
 | 
						|
#define HEAP_SIZE (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC)
 | 
						|
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
 | 
						|
 | 
						|
#define HEAP_OBJ_LIMIT (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE))
 | 
						|
#define HEAP_BITMAP_LIMIT CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t)*8)
 | 
						|
 | 
						|
int ruby_gc_debug_indent = 0;
 | 
						|
VALUE rb_mGC;
 | 
						|
extern st_table *rb_class_tbl;
 | 
						|
int ruby_disable_gc_stress = 0;
 | 
						|
 | 
						|
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
 | 
						|
static VALUE define_final0(VALUE obj, VALUE block);
 | 
						|
VALUE rb_define_final(VALUE obj, VALUE block);
 | 
						|
VALUE rb_undefine_final(VALUE obj);
 | 
						|
static void run_final(rb_objspace_t *objspace, VALUE obj);
 | 
						|
static void initial_expand_heap(rb_objspace_t *objspace);
 | 
						|
 | 
						|
static void negative_size_allocation_error(const char *);
 | 
						|
static void *aligned_malloc(size_t, size_t);
 | 
						|
static void aligned_free(void *);
 | 
						|
 | 
						|
static VALUE lazy_sweep_enable(void);
 | 
						|
static int garbage_collect(rb_objspace_t *);
 | 
						|
static int gc_lazy_sweep(rb_objspace_t *);
 | 
						|
static void mark_tbl(rb_objspace_t *, st_table *, int);
 | 
						|
static void rest_sweep(rb_objspace_t *);
 | 
						|
 | 
						|
static double getrusage_time(void);
 | 
						|
static inline void gc_prof_timer_start(rb_objspace_t *);
 | 
						|
static inline void gc_prof_timer_stop(rb_objspace_t *, int);
 | 
						|
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
 | 
						|
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
 | 
						|
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
 | 
						|
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
 | 
						|
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
 | 
						|
static inline void gc_prof_inc_live_num(rb_objspace_t *);
 | 
						|
static inline void gc_prof_dec_live_num(rb_objspace_t *);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  --------------------------- ObjectSpace -----------------------------
 | 
						|
*/
 | 
						|
 | 
						|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | 
						|
rb_objspace_t *
 | 
						|
rb_objspace_alloc(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
 | 
						|
    memset(objspace, 0, sizeof(*objspace));
 | 
						|
    malloc_limit = initial_malloc_limit;
 | 
						|
    ruby_gc_stress = ruby_initial_gc_stress;
 | 
						|
 | 
						|
    return objspace;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | 
						|
static void aligned_free(void *);
 | 
						|
 | 
						|
void
 | 
						|
rb_objspace_free(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    rest_sweep(objspace);
 | 
						|
    if (objspace->profile.record) {
 | 
						|
	free(objspace->profile.record);
 | 
						|
	objspace->profile.record = 0;
 | 
						|
    }
 | 
						|
    if (global_List) {
 | 
						|
	struct gc_list *list, *next;
 | 
						|
	for (list = global_List; list; list = next) {
 | 
						|
	    next = list->next;
 | 
						|
	    xfree(list);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (objspace->heap.free_bitmap) {
 | 
						|
        struct heaps_free_bitmap *list, *next;
 | 
						|
        for (list = objspace->heap.free_bitmap; list; list = next) {
 | 
						|
            next = list->next;
 | 
						|
            free(list);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (objspace->heap.sorted) {
 | 
						|
	size_t i;
 | 
						|
	for (i = 0; i < heaps_used; ++i) {
 | 
						|
            free(objspace->heap.sorted[i].slot->bits);
 | 
						|
	    aligned_free(objspace->heap.sorted[i].slot->membase);
 | 
						|
            free(objspace->heap.sorted[i].slot);
 | 
						|
	}
 | 
						|
	free(objspace->heap.sorted);
 | 
						|
	heaps_used = 0;
 | 
						|
	heaps = 0;
 | 
						|
    }
 | 
						|
    free(objspace);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void
 | 
						|
rb_global_variable(VALUE *var)
 | 
						|
{
 | 
						|
    rb_gc_register_address(var);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
 | 
						|
{
 | 
						|
    struct sorted_heaps_slot *p;
 | 
						|
    struct heaps_free_bitmap *bits;
 | 
						|
    size_t size, add, i;
 | 
						|
 | 
						|
    size = next_heaps_length*sizeof(struct sorted_heaps_slot);
 | 
						|
    add = next_heaps_length - heaps_used;
 | 
						|
 | 
						|
    if (heaps_used > 0) {
 | 
						|
	p = (struct sorted_heaps_slot *)realloc(objspace->heap.sorted, size);
 | 
						|
	if (p) objspace->heap.sorted = p;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	p = objspace->heap.sorted = (struct sorted_heaps_slot *)malloc(size);
 | 
						|
    }
 | 
						|
 | 
						|
    if (p == 0) {
 | 
						|
	during_gc = 0;
 | 
						|
	rb_memerror();
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < add; i++) {
 | 
						|
        bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
 | 
						|
        if (bits == 0) {
 | 
						|
            during_gc = 0;
 | 
						|
            rb_memerror();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        bits->next = objspace->heap.free_bitmap;
 | 
						|
        objspace->heap.free_bitmap = bits;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
 | 
						|
{
 | 
						|
    slot->free_next = objspace->heap.free_slots;
 | 
						|
    objspace->heap.free_slots = slot;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
 | 
						|
{
 | 
						|
    objspace->heap.free_slots = slot->free_next;
 | 
						|
    slot->free_next = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
assign_heap_slot(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    RVALUE *p, *pend, *membase;
 | 
						|
    struct heaps_slot *slot;
 | 
						|
    size_t hi, lo, mid;
 | 
						|
    size_t objs;
 | 
						|
 | 
						|
    objs = HEAP_OBJ_LIMIT;
 | 
						|
    p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
 | 
						|
    if (p == 0) {
 | 
						|
	during_gc = 0;
 | 
						|
	rb_memerror();
 | 
						|
    }
 | 
						|
    slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
 | 
						|
    if (slot == 0) {
 | 
						|
       aligned_free(p);
 | 
						|
       during_gc = 0;
 | 
						|
       rb_memerror();
 | 
						|
    }
 | 
						|
    MEMZERO((void*)slot, struct heaps_slot, 1);
 | 
						|
 | 
						|
    slot->next = heaps;
 | 
						|
    if (heaps) heaps->prev = slot;
 | 
						|
    heaps = slot;
 | 
						|
 | 
						|
    membase = p;
 | 
						|
    p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header));
 | 
						|
    if ((VALUE)p % sizeof(RVALUE) != 0) {
 | 
						|
       p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
 | 
						|
       objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE);
 | 
						|
    }
 | 
						|
 | 
						|
    lo = 0;
 | 
						|
    hi = heaps_used;
 | 
						|
    while (lo < hi) {
 | 
						|
	register RVALUE *mid_membase;
 | 
						|
	mid = (lo + hi) / 2;
 | 
						|
        mid_membase = objspace->heap.sorted[mid].slot->membase;
 | 
						|
	if (mid_membase < membase) {
 | 
						|
	    lo = mid + 1;
 | 
						|
	}
 | 
						|
	else if (mid_membase > membase) {
 | 
						|
	    hi = mid;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (hi < heaps_used) {
 | 
						|
	MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct sorted_heaps_slot, heaps_used - hi);
 | 
						|
    }
 | 
						|
    objspace->heap.sorted[hi].slot = slot;
 | 
						|
    objspace->heap.sorted[hi].start = p;
 | 
						|
    objspace->heap.sorted[hi].end = (p + objs);
 | 
						|
    heaps->membase = membase;
 | 
						|
    heaps->slot = p;
 | 
						|
    heaps->limit = objs;
 | 
						|
    assert(objspace->heap.free_bitmap != NULL);
 | 
						|
    heaps->bits = (uintptr_t *)objspace->heap.free_bitmap;
 | 
						|
    objspace->heap.free_bitmap = objspace->heap.free_bitmap->next;
 | 
						|
    HEAP_HEADER(membase)->base = heaps;
 | 
						|
    HEAP_HEADER(membase)->bits = heaps->bits;
 | 
						|
    memset(heaps->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
 | 
						|
    objspace->heap.free_num += objs;
 | 
						|
    pend = p + objs;
 | 
						|
    if (lomem == 0 || lomem > p) lomem = p;
 | 
						|
    if (himem < pend) himem = pend;
 | 
						|
    heaps_used++;
 | 
						|
 | 
						|
    while (p < pend) {
 | 
						|
	p->as.free.flags = 0;
 | 
						|
	p->as.free.next = heaps->freelist;
 | 
						|
	heaps->freelist = p;
 | 
						|
	p++;
 | 
						|
    }
 | 
						|
    link_free_heap_slot(objspace, heaps);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
add_heap_slots(rb_objspace_t *objspace, size_t add)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
    size_t next_heaps_length;
 | 
						|
 | 
						|
    next_heaps_length = heaps_used + add;
 | 
						|
 | 
						|
    if (next_heaps_length > heaps_length) {
 | 
						|
        allocate_sorted_heaps(objspace, next_heaps_length);
 | 
						|
        heaps_length = next_heaps_length;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < add; i++) {
 | 
						|
        assign_heap_slot(objspace);
 | 
						|
    }
 | 
						|
    heaps_inc = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
init_heap(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT);
 | 
						|
#ifdef USE_SIGALTSTACK
 | 
						|
    {
 | 
						|
	/* altstack of another threads are allocated in another place */
 | 
						|
	rb_thread_t *th = GET_THREAD();
 | 
						|
	void *tmp = th->altstack;
 | 
						|
	th->altstack = malloc(ALT_STACK_SIZE);
 | 
						|
	free(tmp); /* free previously allocated area */
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    objspace->profile.invoke_time = getrusage_time();
 | 
						|
    finalizer_table = st_init_numtable();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
initial_expand_heap(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT;
 | 
						|
 | 
						|
    if (min_size > heaps_used) {
 | 
						|
        add_heap_slots(objspace, min_size - heaps_used);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
set_heaps_increment(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    size_t next_heaps_length = (size_t)(heaps_used * 1.8);
 | 
						|
 | 
						|
    if (next_heaps_length == heaps_used) {
 | 
						|
        next_heaps_length++;
 | 
						|
    }
 | 
						|
 | 
						|
    heaps_inc = next_heaps_length - heaps_used;
 | 
						|
 | 
						|
    if (next_heaps_length > heaps_length) {
 | 
						|
	allocate_sorted_heaps(objspace, next_heaps_length);
 | 
						|
        heaps_length = next_heaps_length;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
heaps_increment(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (heaps_inc > 0) {
 | 
						|
        assign_heap_slot(objspace);
 | 
						|
	heaps_inc--;
 | 
						|
	return TRUE;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_newobj(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE obj;
 | 
						|
 | 
						|
    if (UNLIKELY(during_gc)) {
 | 
						|
	dont_gc = 1;
 | 
						|
	during_gc = 0;
 | 
						|
	rb_bug("object allocation during garbage collection phase");
 | 
						|
    }
 | 
						|
 | 
						|
    if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
 | 
						|
	if (!garbage_collect(objspace)) {
 | 
						|
	    during_gc = 0;
 | 
						|
	    rb_memerror();
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (UNLIKELY(!has_free_object)) {
 | 
						|
	if (!gc_lazy_sweep(objspace)) {
 | 
						|
	    during_gc = 0;
 | 
						|
	    rb_memerror();
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    obj = (VALUE)objspace->heap.free_slots->freelist;
 | 
						|
    objspace->heap.free_slots->freelist = RANY(obj)->as.free.next;
 | 
						|
    if (objspace->heap.free_slots->freelist == NULL) {
 | 
						|
        unlink_free_heap_slot(objspace, objspace->heap.free_slots);
 | 
						|
    }
 | 
						|
 | 
						|
    MEMZERO((void*)obj, RVALUE, 1);
 | 
						|
#ifdef GC_DEBUG
 | 
						|
    RANY(obj)->file = rb_sourcefile();
 | 
						|
    RANY(obj)->line = rb_sourceline();
 | 
						|
#endif
 | 
						|
    gc_prof_inc_live_num(objspace);
 | 
						|
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
NODE*
 | 
						|
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
 | 
						|
{
 | 
						|
    NODE *n = (NODE*)rb_newobj();
 | 
						|
 | 
						|
    n->flags |= T_NODE;
 | 
						|
    nd_set_type(n, type);
 | 
						|
 | 
						|
    n->u1.value = a0;
 | 
						|
    n->u2.value = a1;
 | 
						|
    n->u3.value = a2;
 | 
						|
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
 | 
						|
{
 | 
						|
    NEWOBJ(data, struct RData);
 | 
						|
    if (klass) Check_Type(klass, T_CLASS);
 | 
						|
    OBJSETUP(data, klass, T_DATA);
 | 
						|
    data->data = datap;
 | 
						|
    data->dfree = dfree;
 | 
						|
    data->dmark = dmark;
 | 
						|
 | 
						|
    return (VALUE)data;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
 | 
						|
{
 | 
						|
    NEWOBJ(data, struct RTypedData);
 | 
						|
 | 
						|
    if (klass) Check_Type(klass, T_CLASS);
 | 
						|
 | 
						|
    OBJSETUP(data, klass, T_DATA);
 | 
						|
 | 
						|
    data->data = datap;
 | 
						|
    data->typed_flag = 1;
 | 
						|
    data->type = type;
 | 
						|
 | 
						|
    return (VALUE)data;
 | 
						|
}
 | 
						|
 | 
						|
size_t
 | 
						|
rb_objspace_data_type_memsize(VALUE obj)
 | 
						|
{
 | 
						|
    if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
 | 
						|
	return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
const char *
 | 
						|
rb_objspace_data_type_name(VALUE obj)
 | 
						|
{
 | 
						|
    if (RTYPEDDATA_P(obj)) {
 | 
						|
	return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev);
 | 
						|
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev);
 | 
						|
 | 
						|
static inline int
 | 
						|
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
 | 
						|
{
 | 
						|
    register RVALUE *p = RANY(ptr);
 | 
						|
    register struct sorted_heaps_slot *heap;
 | 
						|
    register size_t hi, lo, mid;
 | 
						|
 | 
						|
    if (p < lomem || p > himem) return FALSE;
 | 
						|
    if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
 | 
						|
 | 
						|
    /* check if p looks like a pointer using bsearch*/
 | 
						|
    lo = 0;
 | 
						|
    hi = heaps_used;
 | 
						|
    while (lo < hi) {
 | 
						|
	mid = (lo + hi) / 2;
 | 
						|
	heap = &objspace->heap.sorted[mid];
 | 
						|
	if (heap->start <= p) {
 | 
						|
	    if (p < heap->end)
 | 
						|
		return TRUE;
 | 
						|
	    lo = mid + 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    hi = mid;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
 | 
						|
{
 | 
						|
    if (!me->mark) {
 | 
						|
	rb_free_method_entry(me);
 | 
						|
    }
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_free_m_table(st_table *tbl)
 | 
						|
{
 | 
						|
    st_foreach(tbl, free_method_entry_i, 0);
 | 
						|
    st_free_table(tbl);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
 | 
						|
{
 | 
						|
    xfree(ce);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_free_const_table(st_table *tbl)
 | 
						|
{
 | 
						|
    st_foreach(tbl, free_const_entry_i, 0);
 | 
						|
    st_free_table(tbl);
 | 
						|
}
 | 
						|
 | 
						|
static int obj_free(rb_objspace_t *, VALUE);
 | 
						|
 | 
						|
static inline struct heaps_slot *
 | 
						|
add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p)
 | 
						|
{
 | 
						|
    struct heaps_slot *slot;
 | 
						|
 | 
						|
    VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
 | 
						|
    p->as.free.flags = 0;
 | 
						|
    slot = GET_HEAP_SLOT(p);
 | 
						|
    p->as.free.next = slot->freelist;
 | 
						|
    slot->freelist = p;
 | 
						|
 | 
						|
    return slot;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
 | 
						|
{
 | 
						|
    if (slot->prev)
 | 
						|
        slot->prev->next = slot->next;
 | 
						|
    if (slot->next)
 | 
						|
        slot->next->prev = slot->prev;
 | 
						|
    if (heaps == slot)
 | 
						|
        heaps = slot->next;
 | 
						|
    if (objspace->heap.sweep_slots == slot)
 | 
						|
        objspace->heap.sweep_slots = slot->next;
 | 
						|
    slot->prev = NULL;
 | 
						|
    slot->next = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
free_unused_heaps(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    size_t i, j;
 | 
						|
    RVALUE *last = 0;
 | 
						|
 | 
						|
    for (i = j = 1; j < heaps_used; i++) {
 | 
						|
	if (objspace->heap.sorted[i].slot->limit == 0) {
 | 
						|
            struct heaps_slot* h = objspace->heap.sorted[i].slot;
 | 
						|
            ((struct heaps_free_bitmap *)(h->bits))->next =
 | 
						|
                objspace->heap.free_bitmap;
 | 
						|
            objspace->heap.free_bitmap = (struct heaps_free_bitmap *)h->bits;
 | 
						|
	    if (!last) {
 | 
						|
                last = objspace->heap.sorted[i].slot->membase;
 | 
						|
	    }
 | 
						|
	    else {
 | 
						|
		aligned_free(objspace->heap.sorted[i].slot->membase);
 | 
						|
	    }
 | 
						|
            free(objspace->heap.sorted[i].slot);
 | 
						|
	    heaps_used--;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    if (i != j) {
 | 
						|
		objspace->heap.sorted[j] = objspace->heap.sorted[i];
 | 
						|
	    }
 | 
						|
	    j++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (last) {
 | 
						|
	if (last < heaps_freed) {
 | 
						|
	    aligned_free(heaps_freed);
 | 
						|
	    heaps_freed = last;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    aligned_free(last);
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
static inline void
 | 
						|
make_deferred(RVALUE *p)
 | 
						|
{
 | 
						|
    p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE;
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
make_io_deferred(RVALUE *p)
 | 
						|
{
 | 
						|
    rb_io_t *fptr = p->as.file.fptr;
 | 
						|
    make_deferred(p);
 | 
						|
    p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
 | 
						|
    p->as.data.data = fptr;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
obj_free(rb_objspace_t *objspace, VALUE obj)
 | 
						|
{
 | 
						|
    switch (BUILTIN_TYPE(obj)) {
 | 
						|
      case T_NIL:
 | 
						|
      case T_FIXNUM:
 | 
						|
      case T_TRUE:
 | 
						|
      case T_FALSE:
 | 
						|
	rb_bug("obj_free() called for broken object");
 | 
						|
	break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FL_TEST(obj, FL_EXIVAR)) {
 | 
						|
	rb_free_generic_ivar((VALUE)obj);
 | 
						|
	FL_UNSET(obj, FL_EXIVAR);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (BUILTIN_TYPE(obj)) {
 | 
						|
      case T_OBJECT:
 | 
						|
	if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
 | 
						|
            RANY(obj)->as.object.as.heap.ivptr) {
 | 
						|
	    xfree(RANY(obj)->as.object.as.heap.ivptr);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_MODULE:
 | 
						|
      case T_CLASS:
 | 
						|
	rb_clear_cache_by_class((VALUE)obj);
 | 
						|
        if (RCLASS_M_TBL(obj)) {
 | 
						|
            rb_free_m_table(RCLASS_M_TBL(obj));
 | 
						|
        }
 | 
						|
	if (RCLASS_IV_TBL(obj)) {
 | 
						|
	    st_free_table(RCLASS_IV_TBL(obj));
 | 
						|
	}
 | 
						|
	if (RCLASS_CONST_TBL(obj)) {
 | 
						|
	    rb_free_const_table(RCLASS_CONST_TBL(obj));
 | 
						|
	}
 | 
						|
	if (RCLASS_IV_INDEX_TBL(obj)) {
 | 
						|
	    st_free_table(RCLASS_IV_INDEX_TBL(obj));
 | 
						|
	}
 | 
						|
        xfree(RANY(obj)->as.klass.ptr);
 | 
						|
	break;
 | 
						|
      case T_STRING:
 | 
						|
	rb_str_free(obj);
 | 
						|
	break;
 | 
						|
      case T_ARRAY:
 | 
						|
	rb_ary_free(obj);
 | 
						|
	break;
 | 
						|
      case T_HASH:
 | 
						|
	if (RANY(obj)->as.hash.ntbl) {
 | 
						|
	    st_free_table(RANY(obj)->as.hash.ntbl);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_REGEXP:
 | 
						|
	if (RANY(obj)->as.regexp.ptr) {
 | 
						|
	    onig_free(RANY(obj)->as.regexp.ptr);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_DATA:
 | 
						|
	if (DATA_PTR(obj)) {
 | 
						|
	    if (RTYPEDDATA_P(obj)) {
 | 
						|
		RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
 | 
						|
	    }
 | 
						|
	    if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
 | 
						|
		xfree(DATA_PTR(obj));
 | 
						|
	    }
 | 
						|
	    else if (RANY(obj)->as.data.dfree) {
 | 
						|
		make_deferred(RANY(obj));
 | 
						|
		return 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_MATCH:
 | 
						|
	if (RANY(obj)->as.match.rmatch) {
 | 
						|
            struct rmatch *rm = RANY(obj)->as.match.rmatch;
 | 
						|
	    onig_region_free(&rm->regs, 0);
 | 
						|
            if (rm->char_offset)
 | 
						|
		xfree(rm->char_offset);
 | 
						|
	    xfree(rm);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_FILE:
 | 
						|
	if (RANY(obj)->as.file.fptr) {
 | 
						|
	    make_io_deferred(RANY(obj));
 | 
						|
	    return 1;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_RATIONAL:
 | 
						|
      case T_COMPLEX:
 | 
						|
	break;
 | 
						|
      case T_ICLASS:
 | 
						|
	/* iClass shares table with the module */
 | 
						|
	xfree(RANY(obj)->as.klass.ptr);
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_FLOAT:
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_BIGNUM:
 | 
						|
	if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
 | 
						|
	    xfree(RBIGNUM_DIGITS(obj));
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      case T_NODE:
 | 
						|
	switch (nd_type(obj)) {
 | 
						|
	  case NODE_SCOPE:
 | 
						|
	    if (RANY(obj)->as.node.u1.tbl) {
 | 
						|
		xfree(RANY(obj)->as.node.u1.tbl);
 | 
						|
	    }
 | 
						|
	    break;
 | 
						|
	  case NODE_ARGS:
 | 
						|
	    if (RANY(obj)->as.node.u3.args) {
 | 
						|
		xfree(RANY(obj)->as.node.u3.args);
 | 
						|
	    }
 | 
						|
	    break;
 | 
						|
	  case NODE_ALLOCA:
 | 
						|
	    xfree(RANY(obj)->as.node.u1.node);
 | 
						|
	    break;
 | 
						|
	}
 | 
						|
	break;			/* no need to free iv_tbl */
 | 
						|
 | 
						|
      case T_STRUCT:
 | 
						|
	if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
 | 
						|
	    RANY(obj)->as.rstruct.as.heap.ptr) {
 | 
						|
	    xfree(RANY(obj)->as.rstruct.as.heap.ptr);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      default:
 | 
						|
	rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
 | 
						|
	       BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Init_heap(void)
 | 
						|
{
 | 
						|
    init_heap(&rb_objspace);
 | 
						|
}
 | 
						|
 | 
						|
typedef int each_obj_callback(void *, void *, size_t, void *);
 | 
						|
 | 
						|
struct each_obj_args {
 | 
						|
    each_obj_callback *callback;
 | 
						|
    void *data;
 | 
						|
};
 | 
						|
 | 
						|
static VALUE
 | 
						|
objspace_each_objects(VALUE arg)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
    RVALUE *membase = 0;
 | 
						|
    RVALUE *pstart, *pend;
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    struct each_obj_args *args = (struct each_obj_args *)arg;
 | 
						|
    volatile VALUE v;
 | 
						|
 | 
						|
    i = 0;
 | 
						|
    while (i < heaps_used) {
 | 
						|
	while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1].slot->membase)
 | 
						|
	    i--;
 | 
						|
	while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i].slot->membase <= (uintptr_t)membase)
 | 
						|
	    i++;
 | 
						|
	if (heaps_used <= i)
 | 
						|
	  break;
 | 
						|
	membase = objspace->heap.sorted[i].slot->membase;
 | 
						|
 | 
						|
	pstart = objspace->heap.sorted[i].slot->slot;
 | 
						|
	pend = pstart + objspace->heap.sorted[i].slot->limit;
 | 
						|
 | 
						|
	for (; pstart != pend; pstart++) {
 | 
						|
	    if (pstart->as.basic.flags) {
 | 
						|
		v = (VALUE)pstart; /* acquire to save this object */
 | 
						|
		break;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (pstart != pend) {
 | 
						|
	    if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
 | 
						|
		break;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    RB_GC_GUARD(v);
 | 
						|
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * rb_objspace_each_objects() is special C API to walk through
 | 
						|
 * Ruby object space.  This C API is too difficult to use it.
 | 
						|
 * To be frank, you should not use it. Or you need to read the
 | 
						|
 * source code of this function and understand what this function does.
 | 
						|
 *
 | 
						|
 * 'callback' will be called several times (the number of heap slot,
 | 
						|
 * at current implementation) with:
 | 
						|
 *   vstart: a pointer to the first living object of the heap_slot.
 | 
						|
 *   vend: a pointer to next to the valid heap_slot area.
 | 
						|
 *   stride: a distance to next VALUE.
 | 
						|
 *
 | 
						|
 * If callback() returns non-zero, the iteration will be stopped.
 | 
						|
 *
 | 
						|
 * This is a sample callback code to iterate liveness objects:
 | 
						|
 *
 | 
						|
 *   int
 | 
						|
 *   sample_callback(void *vstart, void *vend, int stride, void *data) {
 | 
						|
 *     VALUE v = (VALUE)vstart;
 | 
						|
 *     for (; v != (VALUE)vend; v += stride) {
 | 
						|
 *       if (RBASIC(v)->flags) { // liveness check
 | 
						|
 *       // do something with live object 'v'
 | 
						|
 *     }
 | 
						|
 *     return 0; // continue to iteration
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * Note: 'vstart' is not a top of heap_slot.  This point the first
 | 
						|
 *       living object to grasp at least one object to avoid GC issue.
 | 
						|
 *       This means that you can not walk through all Ruby object slot
 | 
						|
 *       including freed object slot.
 | 
						|
 *
 | 
						|
 * Note: On this implementation, 'stride' is same as sizeof(RVALUE).
 | 
						|
 *       However, there are possibilities to pass variable values with
 | 
						|
 *       'stride' with some reasons.  You must use stride instead of
 | 
						|
 *       use some constant value in the iteration.
 | 
						|
 */
 | 
						|
void
 | 
						|
rb_objspace_each_objects(each_obj_callback *callback, void *data)
 | 
						|
{
 | 
						|
    struct each_obj_args args;
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
 | 
						|
    rest_sweep(objspace);
 | 
						|
    objspace->flags.dont_lazy_sweep = TRUE;
 | 
						|
 | 
						|
    args.callback = callback;
 | 
						|
    args.data = data;
 | 
						|
    rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
 | 
						|
}
 | 
						|
 | 
						|
struct os_each_struct {
 | 
						|
    size_t num;
 | 
						|
    VALUE of;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
 | 
						|
{
 | 
						|
    struct os_each_struct *oes = (struct os_each_struct *)data;
 | 
						|
    RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
 | 
						|
    volatile VALUE v;
 | 
						|
 | 
						|
    for (; p != pend; p++) {
 | 
						|
	if (p->as.basic.flags) {
 | 
						|
	    switch (BUILTIN_TYPE(p)) {
 | 
						|
	      case T_NONE:
 | 
						|
	      case T_ICLASS:
 | 
						|
	      case T_NODE:
 | 
						|
	      case T_ZOMBIE:
 | 
						|
		continue;
 | 
						|
	      case T_CLASS:
 | 
						|
		if (FL_TEST(p, FL_SINGLETON))
 | 
						|
		    continue;
 | 
						|
	      default:
 | 
						|
		if (!p->as.basic.klass) continue;
 | 
						|
		v = (VALUE)p;
 | 
						|
		if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
 | 
						|
		    rb_yield(v);
 | 
						|
		    oes->num++;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
os_obj_of(VALUE of)
 | 
						|
{
 | 
						|
    struct os_each_struct oes;
 | 
						|
 | 
						|
    oes.num = 0;
 | 
						|
    oes.of = of;
 | 
						|
    rb_objspace_each_objects(os_obj_of_i, &oes);
 | 
						|
    return SIZET2NUM(oes.num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
 | 
						|
 *     ObjectSpace.each_object([module])              -> an_enumerator
 | 
						|
 *
 | 
						|
 *  Calls the block once for each living, nonimmediate object in this
 | 
						|
 *  Ruby process. If <i>module</i> is specified, calls the block
 | 
						|
 *  for only those classes or modules that match (or are a subclass of)
 | 
						|
 *  <i>module</i>. Returns the number of objects found. Immediate
 | 
						|
 *  objects (<code>Fixnum</code>s, <code>Symbol</code>s
 | 
						|
 *  <code>true</code>, <code>false</code>, and <code>nil</code>) are
 | 
						|
 *  never returned. In the example below, <code>each_object</code>
 | 
						|
 *  returns both the numbers we defined and several constants defined in
 | 
						|
 *  the <code>Math</code> module.
 | 
						|
 *
 | 
						|
 *  If no block is given, an enumerator is returned instead.
 | 
						|
 *
 | 
						|
 *     a = 102.7
 | 
						|
 *     b = 95       # Won't be returned
 | 
						|
 *     c = 12345678987654321
 | 
						|
 *     count = ObjectSpace.each_object(Numeric) {|x| p x }
 | 
						|
 *     puts "Total count: #{count}"
 | 
						|
 *
 | 
						|
 *  <em>produces:</em>
 | 
						|
 *
 | 
						|
 *     12345678987654321
 | 
						|
 *     102.7
 | 
						|
 *     2.71828182845905
 | 
						|
 *     3.14159265358979
 | 
						|
 *     2.22044604925031e-16
 | 
						|
 *     1.7976931348623157e+308
 | 
						|
 *     2.2250738585072e-308
 | 
						|
 *     Total count: 7
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
os_each_obj(int argc, VALUE *argv, VALUE os)
 | 
						|
{
 | 
						|
    VALUE of;
 | 
						|
 | 
						|
    rb_secure(4);
 | 
						|
    if (argc == 0) {
 | 
						|
	of = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &of);
 | 
						|
    }
 | 
						|
    RETURN_ENUMERATOR(os, 1, &of);
 | 
						|
    return os_obj_of(of);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     ObjectSpace.undefine_finalizer(obj)
 | 
						|
 *
 | 
						|
 *  Removes all finalizers for <i>obj</i>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
undefine_final(VALUE os, VALUE obj)
 | 
						|
{
 | 
						|
    return rb_undefine_final(obj);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_undefine_final(VALUE obj)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    st_data_t data = obj;
 | 
						|
    rb_check_frozen(obj);
 | 
						|
    st_delete(finalizer_table, &data, 0);
 | 
						|
    FL_UNSET(obj, FL_FINALIZE);
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     ObjectSpace.define_finalizer(obj, aProc=proc())
 | 
						|
 *
 | 
						|
 *  Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
 | 
						|
 *  was destroyed.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
define_final(int argc, VALUE *argv, VALUE os)
 | 
						|
{
 | 
						|
    VALUE obj, block;
 | 
						|
 | 
						|
    rb_scan_args(argc, argv, "11", &obj, &block);
 | 
						|
    rb_check_frozen(obj);
 | 
						|
    if (argc == 1) {
 | 
						|
	block = rb_block_proc();
 | 
						|
    }
 | 
						|
    else if (!rb_respond_to(block, rb_intern("call"))) {
 | 
						|
	rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
 | 
						|
		 rb_obj_classname(block));
 | 
						|
    }
 | 
						|
    return define_final0(obj, block);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
define_final0(VALUE obj, VALUE block)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE table;
 | 
						|
    st_data_t data;
 | 
						|
 | 
						|
    if (!FL_ABLE(obj)) {
 | 
						|
	rb_raise(rb_eArgError, "cannot define finalizer for %s",
 | 
						|
		 rb_obj_classname(obj));
 | 
						|
    }
 | 
						|
    RBASIC(obj)->flags |= FL_FINALIZE;
 | 
						|
 | 
						|
    block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
 | 
						|
    OBJ_FREEZE(block);
 | 
						|
 | 
						|
    if (st_lookup(finalizer_table, obj, &data)) {
 | 
						|
	table = (VALUE)data;
 | 
						|
	rb_ary_push(table, block);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	table = rb_ary_new3(1, block);
 | 
						|
	RBASIC(table)->klass = 0;
 | 
						|
	st_add_direct(finalizer_table, obj, table);
 | 
						|
    }
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_define_final(VALUE obj, VALUE block)
 | 
						|
{
 | 
						|
    rb_check_frozen(obj);
 | 
						|
    if (!rb_respond_to(block, rb_intern("call"))) {
 | 
						|
	rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
 | 
						|
		 rb_obj_classname(block));
 | 
						|
    }
 | 
						|
    return define_final0(obj, block);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE table;
 | 
						|
    st_data_t data;
 | 
						|
 | 
						|
    if (!FL_TEST(obj, FL_FINALIZE)) return;
 | 
						|
    if (st_lookup(finalizer_table, obj, &data)) {
 | 
						|
	table = (VALUE)data;
 | 
						|
	st_insert(finalizer_table, dest, table);
 | 
						|
    }
 | 
						|
    FL_SET(dest, FL_FINALIZE);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
run_single_final(VALUE arg)
 | 
						|
{
 | 
						|
    VALUE *args = (VALUE *)arg;
 | 
						|
    rb_eval_cmd(args[0], args[1], (int)args[2]);
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
 | 
						|
{
 | 
						|
    long i;
 | 
						|
    int status;
 | 
						|
    VALUE args[3];
 | 
						|
    VALUE objid = nonspecial_obj_id(obj);
 | 
						|
 | 
						|
    if (RARRAY_LEN(table) > 0) {
 | 
						|
	args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	args[1] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    args[2] = (VALUE)rb_safe_level();
 | 
						|
    for (i=0; i<RARRAY_LEN(table); i++) {
 | 
						|
	VALUE final = RARRAY_PTR(table)[i];
 | 
						|
	args[0] = RARRAY_PTR(final)[1];
 | 
						|
	args[2] = FIX2INT(RARRAY_PTR(final)[0]);
 | 
						|
	status = 0;
 | 
						|
	rb_protect(run_single_final, (VALUE)args, &status);
 | 
						|
	if (status)
 | 
						|
	    rb_set_errinfo(Qnil);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
run_final(rb_objspace_t *objspace, VALUE obj)
 | 
						|
{
 | 
						|
    RUBY_DATA_FUNC free_func = 0;
 | 
						|
    st_data_t key, table;
 | 
						|
 | 
						|
    objspace->heap.final_num--;
 | 
						|
 | 
						|
    RBASIC(obj)->klass = 0;
 | 
						|
 | 
						|
    if (RTYPEDDATA_P(obj)) {
 | 
						|
	free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	free_func = RDATA(obj)->dfree;
 | 
						|
    }
 | 
						|
    if (free_func) {
 | 
						|
	(*free_func)(DATA_PTR(obj));
 | 
						|
    }
 | 
						|
 | 
						|
    key = (st_data_t)obj;
 | 
						|
    if (st_delete(finalizer_table, &key, &table)) {
 | 
						|
	run_finalizer(objspace, obj, (VALUE)table);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
finalize_list(rb_objspace_t *objspace, RVALUE *p)
 | 
						|
{
 | 
						|
    while (p) {
 | 
						|
	RVALUE *tmp = p->as.free.next;
 | 
						|
	run_final(objspace, (VALUE)p);
 | 
						|
	if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
 | 
						|
            add_slot_local_freelist(objspace, p);
 | 
						|
            if (!is_lazy_sweeping(objspace)) {
 | 
						|
                gc_prof_dec_live_num(objspace);
 | 
						|
            }
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
 | 
						|
	    slot->limit--;
 | 
						|
	}
 | 
						|
	p = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
finalize_deferred(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    RVALUE *p = deferred_final_list;
 | 
						|
    deferred_final_list = 0;
 | 
						|
 | 
						|
    if (p) {
 | 
						|
	finalize_list(objspace, p);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_finalize_deferred(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    if (ATOMIC_EXCHANGE(finalizing, 1)) return;
 | 
						|
    finalize_deferred(objspace);
 | 
						|
    ATOMIC_SET(finalizing, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
chain_finalized_object(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    RVALUE *p = (RVALUE *)key, **final_list = (RVALUE **)arg;
 | 
						|
    if ((p->as.basic.flags & FL_FINALIZE) == FL_FINALIZE &&
 | 
						|
        !MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
 | 
						|
	if (BUILTIN_TYPE(p) != T_ZOMBIE) {
 | 
						|
	    p->as.free.flags = T_ZOMBIE;
 | 
						|
	    RDATA(p)->dfree = 0;
 | 
						|
	}
 | 
						|
	p->as.free.next = *final_list;
 | 
						|
	*final_list = p;
 | 
						|
    }
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
struct force_finalize_list {
 | 
						|
    VALUE obj;
 | 
						|
    VALUE table;
 | 
						|
    struct force_finalize_list *next;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    struct force_finalize_list **prev = (struct force_finalize_list **)arg;
 | 
						|
    struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
 | 
						|
    curr->obj = key;
 | 
						|
    curr->table = val;
 | 
						|
    curr->next = *prev;
 | 
						|
    *prev = curr;
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_call_finalizer_at_exit(void)
 | 
						|
{
 | 
						|
    rb_objspace_call_finalizer(&rb_objspace);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
rb_objspace_call_finalizer(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    RVALUE *p, *pend;
 | 
						|
    RVALUE *final_list = 0;
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    /* run finalizers */
 | 
						|
    rest_sweep(objspace);
 | 
						|
 | 
						|
    if (ATOMIC_EXCHANGE(finalizing, 1)) return;
 | 
						|
 | 
						|
    do {
 | 
						|
	/* XXX: this loop will make no sense */
 | 
						|
	/* because mark will not be removed */
 | 
						|
	finalize_deferred(objspace);
 | 
						|
	mark_tbl(objspace, finalizer_table, 0);
 | 
						|
	st_foreach(finalizer_table, chain_finalized_object,
 | 
						|
		   (st_data_t)&deferred_final_list);
 | 
						|
    } while (deferred_final_list);
 | 
						|
    /* force to run finalizer */
 | 
						|
    while (finalizer_table->num_entries) {
 | 
						|
	struct force_finalize_list *list = 0;
 | 
						|
	st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
 | 
						|
	while (list) {
 | 
						|
	    struct force_finalize_list *curr = list;
 | 
						|
	    st_data_t obj = (st_data_t)curr->obj;
 | 
						|
	    run_finalizer(objspace, curr->obj, curr->table);
 | 
						|
	    st_delete(finalizer_table, &obj, 0);
 | 
						|
	    list = curr->next;
 | 
						|
	    xfree(curr);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* finalizers are part of garbage collection */
 | 
						|
    during_gc++;
 | 
						|
 | 
						|
    /* run data object's finalizers */
 | 
						|
    for (i = 0; i < heaps_used; i++) {
 | 
						|
	p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | 
						|
	while (p < pend) {
 | 
						|
	    if (BUILTIN_TYPE(p) == T_DATA &&
 | 
						|
		DATA_PTR(p) && RANY(p)->as.data.dfree &&
 | 
						|
		!rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) &&
 | 
						|
		!rb_obj_is_fiber((VALUE)p)) {
 | 
						|
		p->as.free.flags = 0;
 | 
						|
		if (RTYPEDDATA_P(p)) {
 | 
						|
		    RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
 | 
						|
		}
 | 
						|
		if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
 | 
						|
		    xfree(DATA_PTR(p));
 | 
						|
		}
 | 
						|
		else if (RANY(p)->as.data.dfree) {
 | 
						|
		    make_deferred(RANY(p));
 | 
						|
		    RANY(p)->as.free.next = final_list;
 | 
						|
		    final_list = p;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    else if (BUILTIN_TYPE(p) == T_FILE) {
 | 
						|
		if (RANY(p)->as.file.fptr) {
 | 
						|
		    make_io_deferred(RANY(p));
 | 
						|
		    RANY(p)->as.free.next = final_list;
 | 
						|
		    final_list = p;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    p++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    during_gc = 0;
 | 
						|
    if (final_list) {
 | 
						|
	finalize_list(objspace, final_list);
 | 
						|
    }
 | 
						|
 | 
						|
    st_free_table(finalizer_table);
 | 
						|
    finalizer_table = 0;
 | 
						|
    ATOMIC_SET(finalizing, 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
is_id_value(rb_objspace_t *objspace, VALUE ptr)
 | 
						|
{
 | 
						|
    if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
 | 
						|
    if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
 | 
						|
    if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
is_dead_object(rb_objspace_t *objspace, VALUE ptr)
 | 
						|
{
 | 
						|
    struct heaps_slot *slot = objspace->heap.sweep_slots;
 | 
						|
    if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_BITMAP(ptr), ptr))
 | 
						|
	return FALSE;
 | 
						|
    while (slot) {
 | 
						|
	if ((VALUE)slot->slot <= ptr && ptr < (VALUE)(slot->slot + slot->limit))
 | 
						|
	    return TRUE;
 | 
						|
	slot = slot->next;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
is_live_object(rb_objspace_t *objspace, VALUE ptr)
 | 
						|
{
 | 
						|
    if (BUILTIN_TYPE(ptr) == 0) return FALSE;
 | 
						|
    if (RBASIC(ptr)->klass == 0) return FALSE;
 | 
						|
    if (is_dead_object(objspace, ptr)) return FALSE;
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     ObjectSpace._id2ref(object_id) -> an_object
 | 
						|
 *
 | 
						|
 *  Converts an object id to a reference to the object. May not be
 | 
						|
 *  called on an object id passed as a parameter to a finalizer.
 | 
						|
 *
 | 
						|
 *     s = "I am a string"                    #=> "I am a string"
 | 
						|
 *     r = ObjectSpace._id2ref(s.object_id)   #=> "I am a string"
 | 
						|
 *     r == s                                 #=> true
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
id2ref(VALUE obj, VALUE objid)
 | 
						|
{
 | 
						|
#if SIZEOF_LONG == SIZEOF_VOIDP
 | 
						|
#define NUM2PTR(x) NUM2ULONG(x)
 | 
						|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
 | 
						|
#define NUM2PTR(x) NUM2ULL(x)
 | 
						|
#endif
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE ptr;
 | 
						|
    void *p0;
 | 
						|
 | 
						|
    rb_secure(4);
 | 
						|
    ptr = NUM2PTR(objid);
 | 
						|
    p0 = (void *)ptr;
 | 
						|
 | 
						|
    if (ptr == Qtrue) return Qtrue;
 | 
						|
    if (ptr == Qfalse) return Qfalse;
 | 
						|
    if (ptr == Qnil) return Qnil;
 | 
						|
    if (FIXNUM_P(ptr)) return (VALUE)ptr;
 | 
						|
    if (FLONUM_P(ptr)) return (VALUE)ptr;
 | 
						|
    ptr = objid ^ FIXNUM_FLAG;	/* unset FIXNUM_FLAG */
 | 
						|
 | 
						|
    if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
 | 
						|
        ID symid = ptr / sizeof(RVALUE);
 | 
						|
        if (rb_id2name(symid) == 0)
 | 
						|
	    rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
 | 
						|
	return ID2SYM(symid);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!is_id_value(objspace, ptr)) {
 | 
						|
	rb_raise(rb_eRangeError, "%p is not id value", p0);
 | 
						|
    }
 | 
						|
    if (!is_live_object(objspace, ptr)) {
 | 
						|
	rb_raise(rb_eRangeError, "%p is recycled object", p0);
 | 
						|
    }
 | 
						|
    return (VALUE)ptr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Document-method: __id__
 | 
						|
 *  Document-method: object_id
 | 
						|
 *
 | 
						|
 *  call-seq:
 | 
						|
 *     obj.__id__       -> fixnum
 | 
						|
 *     obj.object_id    -> fixnum
 | 
						|
 *
 | 
						|
 *  Returns an integer identifier for <i>obj</i>. The same number will
 | 
						|
 *  be returned on all calls to <code>id</code> for a given object, and
 | 
						|
 *  no two active objects will share an id.
 | 
						|
 *  <code>Object#object_id</code> is a different concept from the
 | 
						|
 *  <code>:name</code> notation, which returns the symbol id of
 | 
						|
 *  <code>name</code>. Replaces the deprecated <code>Object#id</code>.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     obj.hash    -> fixnum
 | 
						|
 *
 | 
						|
 *  Generates a <code>Fixnum</code> hash value for this object. This
 | 
						|
 *  function must have the property that <code>a.eql?(b)</code> implies
 | 
						|
 *  <code>a.hash == b.hash</code>. The hash value is used by class
 | 
						|
 *  <code>Hash</code>. Any hash value that exceeds the capacity of a
 | 
						|
 *  <code>Fixnum</code> will be truncated before being used.
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_obj_id(VALUE obj)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     *                32-bit VALUE space
 | 
						|
     *          MSB ------------------------ LSB
 | 
						|
     *  false   00000000000000000000000000000000
 | 
						|
     *  true    00000000000000000000000000000010
 | 
						|
     *  nil     00000000000000000000000000000100
 | 
						|
     *  undef   00000000000000000000000000000110
 | 
						|
     *  symbol  ssssssssssssssssssssssss00001110
 | 
						|
     *  object  oooooooooooooooooooooooooooooo00        = 0 (mod sizeof(RVALUE))
 | 
						|
     *  fixnum  fffffffffffffffffffffffffffffff1
 | 
						|
     *
 | 
						|
     *                    object_id space
 | 
						|
     *                                       LSB
 | 
						|
     *  false   00000000000000000000000000000000
 | 
						|
     *  true    00000000000000000000000000000010
 | 
						|
     *  nil     00000000000000000000000000000100
 | 
						|
     *  undef   00000000000000000000000000000110
 | 
						|
     *  symbol   000SSSSSSSSSSSSSSSSSSSSSSSSSSS0        S...S % A = 4 (S...S = s...s * A + 4)
 | 
						|
     *  object   oooooooooooooooooooooooooooooo0        o...o % A = 0
 | 
						|
     *  fixnum  fffffffffffffffffffffffffffffff1        bignum if required
 | 
						|
     *
 | 
						|
     *  where A = sizeof(RVALUE)/4
 | 
						|
     *
 | 
						|
     *  sizeof(RVALUE) is
 | 
						|
     *  20 if 32-bit, double is 4-byte aligned
 | 
						|
     *  24 if 32-bit, double is 8-byte aligned
 | 
						|
     *  40 if 64-bit
 | 
						|
     */
 | 
						|
    if (SYMBOL_P(obj)) {
 | 
						|
        return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
 | 
						|
    }
 | 
						|
    else if (FLONUM_P(obj)) {
 | 
						|
#if SIZEOF_LONG == SIZEOF_VOIDP
 | 
						|
	return LONG2NUM((SIGNED_VALUE)obj);
 | 
						|
#else
 | 
						|
	return LL2NUM((SIGNED_VALUE)obj);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else if (SPECIAL_CONST_P(obj)) {
 | 
						|
	return LONG2NUM((SIGNED_VALUE)obj);
 | 
						|
    }
 | 
						|
    return nonspecial_obj_id(obj);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
set_zero(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    VALUE k = (VALUE)key;
 | 
						|
    VALUE hash = (VALUE)arg;
 | 
						|
    rb_hash_aset(hash, k, INT2FIX(0));
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     ObjectSpace.count_objects([result_hash]) -> hash
 | 
						|
 *
 | 
						|
 *  Counts objects for each type.
 | 
						|
 *
 | 
						|
 *  It returns a hash as:
 | 
						|
 *  {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
 | 
						|
 *
 | 
						|
 *  If the optional argument, result_hash, is given,
 | 
						|
 *  it is overwritten and returned.
 | 
						|
 *  This is intended to avoid probe effect.
 | 
						|
 *
 | 
						|
 *  The contents of the returned hash is implementation defined.
 | 
						|
 *  It may be changed in future.
 | 
						|
 *
 | 
						|
 *  This method is not expected to work except C Ruby.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
count_objects(int argc, VALUE *argv, VALUE os)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    size_t counts[T_MASK+1];
 | 
						|
    size_t freed = 0;
 | 
						|
    size_t total = 0;
 | 
						|
    size_t i;
 | 
						|
    VALUE hash;
 | 
						|
 | 
						|
    if (rb_scan_args(argc, argv, "01", &hash) == 1) {
 | 
						|
        if (!RB_TYPE_P(hash, T_HASH))
 | 
						|
            rb_raise(rb_eTypeError, "non-hash given");
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i <= T_MASK; i++) {
 | 
						|
        counts[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < heaps_used; i++) {
 | 
						|
        RVALUE *p, *pend;
 | 
						|
 | 
						|
        p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | 
						|
        for (;p < pend; p++) {
 | 
						|
            if (p->as.basic.flags) {
 | 
						|
                counts[BUILTIN_TYPE(p)]++;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                freed++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        total += objspace->heap.sorted[i].slot->limit;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hash == Qnil) {
 | 
						|
        hash = rb_hash_new();
 | 
						|
    }
 | 
						|
    else if (!RHASH_EMPTY_P(hash)) {
 | 
						|
        st_foreach(RHASH_TBL(hash), set_zero, hash);
 | 
						|
    }
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
 | 
						|
 | 
						|
    for (i = 0; i <= T_MASK; i++) {
 | 
						|
        VALUE type;
 | 
						|
        switch (i) {
 | 
						|
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
 | 
						|
	    COUNT_TYPE(T_NONE);
 | 
						|
	    COUNT_TYPE(T_OBJECT);
 | 
						|
	    COUNT_TYPE(T_CLASS);
 | 
						|
	    COUNT_TYPE(T_MODULE);
 | 
						|
	    COUNT_TYPE(T_FLOAT);
 | 
						|
	    COUNT_TYPE(T_STRING);
 | 
						|
	    COUNT_TYPE(T_REGEXP);
 | 
						|
	    COUNT_TYPE(T_ARRAY);
 | 
						|
	    COUNT_TYPE(T_HASH);
 | 
						|
	    COUNT_TYPE(T_STRUCT);
 | 
						|
	    COUNT_TYPE(T_BIGNUM);
 | 
						|
	    COUNT_TYPE(T_FILE);
 | 
						|
	    COUNT_TYPE(T_DATA);
 | 
						|
	    COUNT_TYPE(T_MATCH);
 | 
						|
	    COUNT_TYPE(T_COMPLEX);
 | 
						|
	    COUNT_TYPE(T_RATIONAL);
 | 
						|
	    COUNT_TYPE(T_NIL);
 | 
						|
	    COUNT_TYPE(T_TRUE);
 | 
						|
	    COUNT_TYPE(T_FALSE);
 | 
						|
	    COUNT_TYPE(T_SYMBOL);
 | 
						|
	    COUNT_TYPE(T_FIXNUM);
 | 
						|
	    COUNT_TYPE(T_UNDEF);
 | 
						|
	    COUNT_TYPE(T_NODE);
 | 
						|
	    COUNT_TYPE(T_ICLASS);
 | 
						|
	    COUNT_TYPE(T_ZOMBIE);
 | 
						|
#undef COUNT_TYPE
 | 
						|
          default:              type = INT2NUM(i); break;
 | 
						|
        }
 | 
						|
        if (counts[i])
 | 
						|
            rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
 | 
						|
    }
 | 
						|
 | 
						|
    return hash;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  ------------------------ Garbage Collection ------------------------
 | 
						|
*/
 | 
						|
 | 
						|
/* Sweeping */
 | 
						|
 | 
						|
static VALUE
 | 
						|
lazy_sweep_enable(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
 | 
						|
    objspace->flags.dont_lazy_sweep = FALSE;
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_clear_slot_bits(struct heaps_slot *slot)
 | 
						|
{
 | 
						|
    memset(GET_HEAP_BITMAP(slot->slot), 0,
 | 
						|
           HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
 | 
						|
{
 | 
						|
    size_t free_num = 0, final_num = 0;
 | 
						|
    RVALUE *p, *pend;
 | 
						|
    RVALUE *final = deferred_final_list;
 | 
						|
    int deferred;
 | 
						|
    uintptr_t *bits;
 | 
						|
 | 
						|
    p = sweep_slot->slot; pend = p + sweep_slot->limit;
 | 
						|
    bits = GET_HEAP_BITMAP(p);
 | 
						|
    while (p < pend) {
 | 
						|
        if ((!(MARKED_IN_BITMAP(bits, p))) && BUILTIN_TYPE(p) != T_ZOMBIE) {
 | 
						|
            if (p->as.basic.flags) {
 | 
						|
                if ((deferred = obj_free(objspace, (VALUE)p)) ||
 | 
						|
                    (FL_TEST(p, FL_FINALIZE))) {
 | 
						|
                    if (!deferred) {
 | 
						|
                        p->as.free.flags = T_ZOMBIE;
 | 
						|
                        RDATA(p)->dfree = 0;
 | 
						|
                    }
 | 
						|
                    p->as.free.next = deferred_final_list;
 | 
						|
                    deferred_final_list = p;
 | 
						|
                    assert(BUILTIN_TYPE(p) == T_ZOMBIE);
 | 
						|
                    final_num++;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
 | 
						|
                    p->as.free.flags = 0;
 | 
						|
                    p->as.free.next = sweep_slot->freelist;
 | 
						|
                    sweep_slot->freelist = p;
 | 
						|
                    free_num++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                free_num++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
    gc_clear_slot_bits(sweep_slot);
 | 
						|
    if (final_num + free_num == sweep_slot->limit &&
 | 
						|
        objspace->heap.free_num > objspace->heap.do_heap_free) {
 | 
						|
        RVALUE *pp;
 | 
						|
 | 
						|
        for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
 | 
						|
	    RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
 | 
						|
            pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
 | 
						|
        }
 | 
						|
        sweep_slot->limit = final_num;
 | 
						|
        unlink_heap_slot(objspace, sweep_slot);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (free_num > 0) {
 | 
						|
            link_free_heap_slot(objspace, sweep_slot);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            sweep_slot->free_next = NULL;
 | 
						|
        }
 | 
						|
        objspace->heap.free_num += free_num;
 | 
						|
    }
 | 
						|
    objspace->heap.final_num += final_num;
 | 
						|
 | 
						|
    if (deferred_final_list && !finalizing) {
 | 
						|
        rb_thread_t *th = GET_THREAD();
 | 
						|
        if (th) {
 | 
						|
            RUBY_VM_SET_FINALIZER_INTERRUPT(th);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ready_to_gc(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (dont_gc || during_gc) {
 | 
						|
	if (!has_free_object) {
 | 
						|
            if (!heaps_increment(objspace)) {
 | 
						|
                set_heaps_increment(objspace);
 | 
						|
                heaps_increment(objspace);
 | 
						|
            }
 | 
						|
	}
 | 
						|
	return FALSE;
 | 
						|
    }
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
before_gc_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
 | 
						|
    objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT)  * 0.2);
 | 
						|
    if (objspace->heap.free_min < initial_free_min) {
 | 
						|
	objspace->heap.do_heap_free = heaps_used * HEAP_OBJ_LIMIT;
 | 
						|
        objspace->heap.free_min = initial_free_min;
 | 
						|
    }
 | 
						|
    objspace->heap.sweep_slots = heaps;
 | 
						|
    objspace->heap.free_num = 0;
 | 
						|
    objspace->heap.free_slots = NULL;
 | 
						|
 | 
						|
    /* sweep unlinked method entries */
 | 
						|
    if (GET_VM()->unlinked_method_entry_list) {
 | 
						|
	rb_sweep_method_entry(GET_VM());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
after_gc_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    size_t inc;
 | 
						|
 | 
						|
    gc_prof_set_malloc_info(objspace);
 | 
						|
    if (objspace->heap.free_num < objspace->heap.free_min) {
 | 
						|
        set_heaps_increment(objspace);
 | 
						|
        heaps_increment(objspace);
 | 
						|
    }
 | 
						|
 | 
						|
    inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
 | 
						|
    if (inc > malloc_limit) {
 | 
						|
	malloc_limit += (size_t)((inc - malloc_limit) * (double)objspace->heap.live_num / (heaps_used * HEAP_OBJ_LIMIT));
 | 
						|
	if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit;
 | 
						|
    }
 | 
						|
 | 
						|
    free_unused_heaps(objspace);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
lazy_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    struct heaps_slot *next;
 | 
						|
 | 
						|
    heaps_increment(objspace);
 | 
						|
    while (objspace->heap.sweep_slots) {
 | 
						|
        next = objspace->heap.sweep_slots->next;
 | 
						|
	slot_sweep(objspace, objspace->heap.sweep_slots);
 | 
						|
        objspace->heap.sweep_slots = next;
 | 
						|
        if (has_free_object) {
 | 
						|
            during_gc = 0;
 | 
						|
            return TRUE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
rest_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->heap.sweep_slots) {
 | 
						|
	while (objspace->heap.sweep_slots) {
 | 
						|
	    lazy_sweep(objspace);
 | 
						|
	}
 | 
						|
	after_gc_sweep(objspace);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void gc_marks(rb_objspace_t *objspace);
 | 
						|
 | 
						|
static int
 | 
						|
gc_lazy_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (objspace->flags.dont_lazy_sweep)
 | 
						|
        return garbage_collect(objspace);
 | 
						|
 | 
						|
 | 
						|
    if (!ready_to_gc(objspace)) return TRUE;
 | 
						|
 | 
						|
    during_gc++;
 | 
						|
    gc_prof_timer_start(objspace);
 | 
						|
    gc_prof_sweep_timer_start(objspace);
 | 
						|
 | 
						|
    if (objspace->heap.sweep_slots) {
 | 
						|
        res = lazy_sweep(objspace);
 | 
						|
        if (res) {
 | 
						|
            gc_prof_sweep_timer_stop(objspace);
 | 
						|
            gc_prof_set_malloc_info(objspace);
 | 
						|
            gc_prof_timer_stop(objspace, Qfalse);
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        after_gc_sweep(objspace);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (heaps_increment(objspace)) {
 | 
						|
            during_gc = 0;
 | 
						|
            return TRUE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    gc_marks(objspace);
 | 
						|
 | 
						|
    before_gc_sweep(objspace);
 | 
						|
    if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.live_num)) {
 | 
						|
	set_heaps_increment(objspace);
 | 
						|
    }
 | 
						|
 | 
						|
    gc_prof_sweep_timer_start(objspace);
 | 
						|
    if (!(res = lazy_sweep(objspace))) {
 | 
						|
        after_gc_sweep(objspace);
 | 
						|
        if (has_free_object) {
 | 
						|
            res = TRUE;
 | 
						|
            during_gc = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    gc_prof_sweep_timer_stop(objspace);
 | 
						|
 | 
						|
    gc_prof_timer_stop(objspace, Qtrue);
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_sweep(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    struct heaps_slot *next;
 | 
						|
 | 
						|
    before_gc_sweep(objspace);
 | 
						|
 | 
						|
    while (objspace->heap.sweep_slots) {
 | 
						|
        next = objspace->heap.sweep_slots->next;
 | 
						|
	slot_sweep(objspace, objspace->heap.sweep_slots);
 | 
						|
        objspace->heap.sweep_slots = next;
 | 
						|
    }
 | 
						|
 | 
						|
    after_gc_sweep(objspace);
 | 
						|
 | 
						|
    during_gc = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Marking */
 | 
						|
 | 
						|
#define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | ((uintptr_t)1 << BITMAP_OFFSET(p)))
 | 
						|
 | 
						|
 | 
						|
#ifdef __ia64
 | 
						|
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
 | 
						|
#else
 | 
						|
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
 | 
						|
#endif
 | 
						|
 | 
						|
#define STACK_START (th->machine_stack_start)
 | 
						|
#define STACK_END (th->machine_stack_end)
 | 
						|
#define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
 | 
						|
 | 
						|
#if STACK_GROW_DIRECTION < 0
 | 
						|
# define STACK_LENGTH  (size_t)(STACK_START - STACK_END)
 | 
						|
#elif STACK_GROW_DIRECTION > 0
 | 
						|
# define STACK_LENGTH  (size_t)(STACK_END - STACK_START + 1)
 | 
						|
#else
 | 
						|
# define STACK_LENGTH  ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
 | 
						|
			: (size_t)(STACK_END - STACK_START + 1))
 | 
						|
#endif
 | 
						|
#if !STACK_GROW_DIRECTION
 | 
						|
int ruby_stack_grow_direction;
 | 
						|
int
 | 
						|
ruby_get_stack_grow_direction(volatile VALUE *addr)
 | 
						|
{
 | 
						|
    VALUE *end;
 | 
						|
    SET_MACHINE_STACK_END(&end);
 | 
						|
 | 
						|
    if (end > addr) return ruby_stack_grow_direction = 1;
 | 
						|
    return ruby_stack_grow_direction = -1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#define GC_LEVEL_MAX 250
 | 
						|
#define STACKFRAME_FOR_GC_MARK (GC_LEVEL_MAX * GC_MARK_STACKFRAME_WORD)
 | 
						|
 | 
						|
size_t
 | 
						|
ruby_stack_length(VALUE **p)
 | 
						|
{
 | 
						|
    rb_thread_t *th = GET_THREAD();
 | 
						|
    SET_STACK_END;
 | 
						|
    if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
 | 
						|
    return STACK_LENGTH;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
stack_check(int water_mark)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    rb_thread_t *th = GET_THREAD();
 | 
						|
    SET_STACK_END;
 | 
						|
    ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
 | 
						|
#ifdef __ia64
 | 
						|
    if (!ret) {
 | 
						|
        ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
 | 
						|
              th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define STACKFRAME_FOR_CALL_CFUNC 512
 | 
						|
 | 
						|
int
 | 
						|
ruby_stack_check(void)
 | 
						|
{
 | 
						|
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
 | 
						|
    return 0;
 | 
						|
#else
 | 
						|
    return stack_check(STACKFRAME_FOR_CALL_CFUNC);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
init_mark_stack(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    mark_stack_overflow = 0;
 | 
						|
    mark_stack_ptr = mark_stack;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
 | 
						|
{
 | 
						|
    VALUE v;
 | 
						|
    while (n--) {
 | 
						|
        v = *x;
 | 
						|
        VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
 | 
						|
	if (is_pointer_to_heap(objspace, (void *)v)) {
 | 
						|
	    gc_mark(objspace, v, 0);
 | 
						|
	}
 | 
						|
	x++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
 | 
						|
{
 | 
						|
    long n;
 | 
						|
 | 
						|
    if (end <= start) return;
 | 
						|
    n = end - start;
 | 
						|
    mark_locations_array(objspace, start, n);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_mark_locations(VALUE *start, VALUE *end)
 | 
						|
{
 | 
						|
    gc_mark_locations(&rb_objspace, start, end);
 | 
						|
}
 | 
						|
 | 
						|
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
 | 
						|
 | 
						|
struct mark_tbl_arg {
 | 
						|
    rb_objspace_t *objspace;
 | 
						|
    int lev;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
mark_entry(st_data_t key, st_data_t value, st_data_t data)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg *arg = (void*)data;
 | 
						|
    gc_mark(arg->objspace, (VALUE)value, arg->lev);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg arg;
 | 
						|
    if (!tbl || tbl->num_entries == 0) return;
 | 
						|
    arg.objspace = objspace;
 | 
						|
    arg.lev = lev;
 | 
						|
    st_foreach(tbl, mark_entry, (st_data_t)&arg);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mark_key(st_data_t key, st_data_t value, st_data_t data)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg *arg = (void*)data;
 | 
						|
    gc_mark(arg->objspace, (VALUE)key, arg->lev);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_set(rb_objspace_t *objspace, st_table *tbl, int lev)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg arg;
 | 
						|
    if (!tbl) return;
 | 
						|
    arg.objspace = objspace;
 | 
						|
    arg.lev = lev;
 | 
						|
    st_foreach(tbl, mark_key, (st_data_t)&arg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_mark_set(st_table *tbl)
 | 
						|
{
 | 
						|
    mark_set(&rb_objspace, tbl, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg *arg = (void*)data;
 | 
						|
    gc_mark(arg->objspace, (VALUE)key, arg->lev);
 | 
						|
    gc_mark(arg->objspace, (VALUE)value, arg->lev);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_hash(rb_objspace_t *objspace, st_table *tbl, int lev)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg arg;
 | 
						|
    if (!tbl) return;
 | 
						|
    arg.objspace = objspace;
 | 
						|
    arg.lev = lev;
 | 
						|
    st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_mark_hash(st_table *tbl)
 | 
						|
{
 | 
						|
    mark_hash(&rb_objspace, tbl, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me, int lev)
 | 
						|
{
 | 
						|
    const rb_method_definition_t *def = me->def;
 | 
						|
 | 
						|
    gc_mark(objspace, me->klass, lev);
 | 
						|
    if (!def) return;
 | 
						|
    switch (def->type) {
 | 
						|
      case VM_METHOD_TYPE_ISEQ:
 | 
						|
	gc_mark(objspace, def->body.iseq->self, lev);
 | 
						|
	break;
 | 
						|
      case VM_METHOD_TYPE_BMETHOD:
 | 
						|
	gc_mark(objspace, def->body.proc, lev);
 | 
						|
	break;
 | 
						|
      case VM_METHOD_TYPE_ATTRSET:
 | 
						|
      case VM_METHOD_TYPE_IVAR:
 | 
						|
	gc_mark(objspace, def->body.attr.location, lev);
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	break; /* ignore */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_mark_method_entry(const rb_method_entry_t *me)
 | 
						|
{
 | 
						|
    mark_method_entry(&rb_objspace, me, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg *arg = (void*)data;
 | 
						|
    mark_method_entry(arg->objspace, me, arg->lev);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_m_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg arg;
 | 
						|
    if (!tbl) return;
 | 
						|
    arg.objspace = objspace;
 | 
						|
    arg.lev = lev;
 | 
						|
    st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg *arg = (void*)data;
 | 
						|
    gc_mark(arg->objspace, ce->value, arg->lev);
 | 
						|
    gc_mark(arg->objspace, ce->file, arg->lev);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
 | 
						|
{
 | 
						|
    struct mark_tbl_arg arg;
 | 
						|
    if (!tbl) return;
 | 
						|
    arg.objspace = objspace;
 | 
						|
    arg.lev = lev;
 | 
						|
    st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
 | 
						|
}
 | 
						|
 | 
						|
#if STACK_GROW_DIRECTION < 0
 | 
						|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
 | 
						|
#elif STACK_GROW_DIRECTION > 0
 | 
						|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
 | 
						|
#else
 | 
						|
#define GET_STACK_BOUNDS(start, end, appendix) \
 | 
						|
    ((STACK_END < STACK_START) ? \
 | 
						|
     ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
 | 
						|
#endif
 | 
						|
 | 
						|
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
 | 
						|
 | 
						|
static void
 | 
						|
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
 | 
						|
{
 | 
						|
    union {
 | 
						|
	rb_jmp_buf j;
 | 
						|
	VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
 | 
						|
    } save_regs_gc_mark;
 | 
						|
    VALUE *stack_start, *stack_end;
 | 
						|
 | 
						|
    FLUSH_REGISTER_WINDOWS;
 | 
						|
    /* This assumes that all registers are saved into the jmp_buf (and stack) */
 | 
						|
    rb_setjmp(save_regs_gc_mark.j);
 | 
						|
 | 
						|
    SET_STACK_END;
 | 
						|
    GET_STACK_BOUNDS(stack_start, stack_end, 1);
 | 
						|
 | 
						|
    mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
 | 
						|
 | 
						|
    rb_gc_mark_locations(stack_start, stack_end);
 | 
						|
#ifdef __ia64
 | 
						|
    rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
 | 
						|
#endif
 | 
						|
#if defined(__mc68000__)
 | 
						|
    mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
 | 
						|
			 (STACK_START - STACK_END));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_mark_machine_stack(rb_thread_t *th)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE *stack_start, *stack_end;
 | 
						|
 | 
						|
    GET_STACK_BOUNDS(stack_start, stack_end, 0);
 | 
						|
    rb_gc_mark_locations(stack_start, stack_end);
 | 
						|
#ifdef __ia64
 | 
						|
    rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_mark_tbl(st_table *tbl)
 | 
						|
{
 | 
						|
    mark_tbl(&rb_objspace, tbl, 0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_mark_maybe(VALUE obj)
 | 
						|
{
 | 
						|
    if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
 | 
						|
	gc_mark(&rb_objspace, obj, 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
 | 
						|
{
 | 
						|
    register uintptr_t *bits = GET_HEAP_BITMAP(ptr);
 | 
						|
    if (MARKED_IN_BITMAP(bits, ptr)) return 0;
 | 
						|
    MARK_IN_BITMAP(bits, ptr);
 | 
						|
    objspace->heap.live_num++;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev)
 | 
						|
{
 | 
						|
    register RVALUE *obj;
 | 
						|
 | 
						|
    obj = RANY(ptr);
 | 
						|
    if (rb_special_const_p(ptr)) return; /* special const not marked */
 | 
						|
    if (obj->as.basic.flags == 0) return;       /* free cell */
 | 
						|
    if (!gc_mark_ptr(objspace, ptr)) return;	/* already marked */
 | 
						|
 | 
						|
    if (lev > GC_LEVEL_MAX || (lev == 0 && stack_check(STACKFRAME_FOR_GC_MARK))) {
 | 
						|
	if (!mark_stack_overflow) {
 | 
						|
	    if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) {
 | 
						|
		*mark_stack_ptr = ptr;
 | 
						|
		mark_stack_ptr++;
 | 
						|
	    }
 | 
						|
	    else {
 | 
						|
		mark_stack_overflow = 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
    gc_mark_children(objspace, ptr, lev+1);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_mark(VALUE ptr)
 | 
						|
{
 | 
						|
    gc_mark(&rb_objspace, ptr, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev)
 | 
						|
{
 | 
						|
    register RVALUE *obj = RANY(ptr);
 | 
						|
 | 
						|
    goto marking;		/* skip */
 | 
						|
 | 
						|
  again:
 | 
						|
    obj = RANY(ptr);
 | 
						|
    if (rb_special_const_p(ptr)) return; /* special const not marked */
 | 
						|
    if (obj->as.basic.flags == 0) return;       /* free cell */
 | 
						|
    if (!gc_mark_ptr(objspace, ptr)) return;  /* already marked */
 | 
						|
 | 
						|
  marking:
 | 
						|
    if (FL_TEST(obj, FL_EXIVAR)) {
 | 
						|
	rb_mark_generic_ivar(ptr);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (BUILTIN_TYPE(obj)) {
 | 
						|
      case T_NIL:
 | 
						|
      case T_FIXNUM:
 | 
						|
	rb_bug("rb_gc_mark() called for broken object");
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_NODE:
 | 
						|
	switch (nd_type(obj)) {
 | 
						|
	  case NODE_IF:		/* 1,2,3 */
 | 
						|
	  case NODE_FOR:
 | 
						|
	  case NODE_ITER:
 | 
						|
	  case NODE_WHEN:
 | 
						|
	  case NODE_MASGN:
 | 
						|
	  case NODE_RESCUE:
 | 
						|
	  case NODE_RESBODY:
 | 
						|
	  case NODE_CLASS:
 | 
						|
	  case NODE_BLOCK_PASS:
 | 
						|
	    gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
 | 
						|
	    /* fall through */
 | 
						|
	  case NODE_BLOCK:	/* 1,3 */
 | 
						|
	  case NODE_OPTBLOCK:
 | 
						|
	  case NODE_ARRAY:
 | 
						|
	  case NODE_DSTR:
 | 
						|
	  case NODE_DXSTR:
 | 
						|
	  case NODE_DREGX:
 | 
						|
	  case NODE_DREGX_ONCE:
 | 
						|
	  case NODE_ENSURE:
 | 
						|
	  case NODE_CALL:
 | 
						|
	  case NODE_DEFS:
 | 
						|
	  case NODE_OP_ASGN1:
 | 
						|
	    gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | 
						|
	    /* fall through */
 | 
						|
	  case NODE_SUPER:	/* 3 */
 | 
						|
	  case NODE_FCALL:
 | 
						|
	  case NODE_DEFN:
 | 
						|
	  case NODE_ARGS_AUX:
 | 
						|
	    ptr = (VALUE)obj->as.node.u3.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_WHILE:	/* 1,2 */
 | 
						|
	  case NODE_UNTIL:
 | 
						|
	  case NODE_AND:
 | 
						|
	  case NODE_OR:
 | 
						|
	  case NODE_CASE:
 | 
						|
	  case NODE_SCLASS:
 | 
						|
	  case NODE_DOT2:
 | 
						|
	  case NODE_DOT3:
 | 
						|
	  case NODE_FLIP2:
 | 
						|
	  case NODE_FLIP3:
 | 
						|
	  case NODE_MATCH2:
 | 
						|
	  case NODE_MATCH3:
 | 
						|
	  case NODE_OP_ASGN_OR:
 | 
						|
	  case NODE_OP_ASGN_AND:
 | 
						|
	  case NODE_MODULE:
 | 
						|
	  case NODE_ALIAS:
 | 
						|
	  case NODE_VALIAS:
 | 
						|
	  case NODE_ARGSCAT:
 | 
						|
	    gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | 
						|
	    /* fall through */
 | 
						|
	  case NODE_GASGN:	/* 2 */
 | 
						|
	  case NODE_LASGN:
 | 
						|
	  case NODE_DASGN:
 | 
						|
	  case NODE_DASGN_CURR:
 | 
						|
	  case NODE_IASGN:
 | 
						|
	  case NODE_IASGN2:
 | 
						|
	  case NODE_CVASGN:
 | 
						|
	  case NODE_COLON3:
 | 
						|
	  case NODE_OPT_N:
 | 
						|
	  case NODE_EVSTR:
 | 
						|
	  case NODE_UNDEF:
 | 
						|
	  case NODE_POSTEXE:
 | 
						|
	    ptr = (VALUE)obj->as.node.u2.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_HASH:	/* 1 */
 | 
						|
	  case NODE_LIT:
 | 
						|
	  case NODE_STR:
 | 
						|
	  case NODE_XSTR:
 | 
						|
	  case NODE_DEFINED:
 | 
						|
	  case NODE_MATCH:
 | 
						|
	  case NODE_RETURN:
 | 
						|
	  case NODE_BREAK:
 | 
						|
	  case NODE_NEXT:
 | 
						|
	  case NODE_YIELD:
 | 
						|
	  case NODE_COLON2:
 | 
						|
	  case NODE_SPLAT:
 | 
						|
	  case NODE_TO_ARY:
 | 
						|
	    ptr = (VALUE)obj->as.node.u1.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_SCOPE:	/* 2,3 */
 | 
						|
	  case NODE_CDECL:
 | 
						|
	  case NODE_OPT_ARG:
 | 
						|
	    gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
 | 
						|
	    ptr = (VALUE)obj->as.node.u2.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_ARGS:	/* custom */
 | 
						|
	    {
 | 
						|
		struct rb_args_info *args = obj->as.node.u3.args;
 | 
						|
		if (args) {
 | 
						|
		    if (args->pre_init)    gc_mark(objspace, (VALUE)args->pre_init, lev);
 | 
						|
		    if (args->post_init)   gc_mark(objspace, (VALUE)args->post_init, lev);
 | 
						|
		    if (args->opt_args)    gc_mark(objspace, (VALUE)args->opt_args, lev);
 | 
						|
		    if (args->kw_args)     gc_mark(objspace, (VALUE)args->kw_args, lev);
 | 
						|
		    if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg, lev);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    ptr = (VALUE)obj->as.node.u2.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_ZARRAY:	/* - */
 | 
						|
	  case NODE_ZSUPER:
 | 
						|
	  case NODE_VCALL:
 | 
						|
	  case NODE_GVAR:
 | 
						|
	  case NODE_LVAR:
 | 
						|
	  case NODE_DVAR:
 | 
						|
	  case NODE_IVAR:
 | 
						|
	  case NODE_CVAR:
 | 
						|
	  case NODE_NTH_REF:
 | 
						|
	  case NODE_BACK_REF:
 | 
						|
	  case NODE_REDO:
 | 
						|
	  case NODE_RETRY:
 | 
						|
	  case NODE_SELF:
 | 
						|
	  case NODE_NIL:
 | 
						|
	  case NODE_TRUE:
 | 
						|
	  case NODE_FALSE:
 | 
						|
	  case NODE_ERRINFO:
 | 
						|
	  case NODE_BLOCK_ARG:
 | 
						|
	    break;
 | 
						|
	  case NODE_ALLOCA:
 | 
						|
	    mark_locations_array(objspace,
 | 
						|
				 (VALUE*)obj->as.node.u1.value,
 | 
						|
				 obj->as.node.u3.cnt);
 | 
						|
	    ptr = (VALUE)obj->as.node.u2.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  case NODE_CREF:
 | 
						|
	    gc_mark(objspace, obj->as.node.nd_omod, lev);
 | 
						|
	    gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | 
						|
	    ptr = (VALUE)obj->as.node.u3.node;
 | 
						|
	    goto again;
 | 
						|
 | 
						|
	  default:		/* unlisted NODE */
 | 
						|
	    if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) {
 | 
						|
		gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | 
						|
	    }
 | 
						|
	    if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) {
 | 
						|
		gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
 | 
						|
	    }
 | 
						|
	    if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) {
 | 
						|
		gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return;			/* no need to mark class. */
 | 
						|
    }
 | 
						|
 | 
						|
    gc_mark(objspace, obj->as.basic.klass, lev);
 | 
						|
    switch (BUILTIN_TYPE(obj)) {
 | 
						|
      case T_ICLASS:
 | 
						|
      case T_CLASS:
 | 
						|
      case T_MODULE:
 | 
						|
	mark_m_tbl(objspace, RCLASS_M_TBL(obj), lev);
 | 
						|
	if (!RCLASS_EXT(obj)) break;
 | 
						|
	mark_tbl(objspace, RCLASS_IV_TBL(obj), lev);
 | 
						|
	mark_const_tbl(objspace, RCLASS_CONST_TBL(obj), lev);
 | 
						|
	ptr = RCLASS_SUPER(obj);
 | 
						|
	goto again;
 | 
						|
 | 
						|
      case T_ARRAY:
 | 
						|
	if (FL_TEST(obj, ELTS_SHARED)) {
 | 
						|
	    ptr = obj->as.array.as.heap.aux.shared;
 | 
						|
	    goto again;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    long i, len = RARRAY_LEN(obj);
 | 
						|
	    VALUE *ptr = RARRAY_PTR(obj);
 | 
						|
	    for (i=0; i < len; i++) {
 | 
						|
		gc_mark(objspace, *ptr++, lev);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_HASH:
 | 
						|
	mark_hash(objspace, obj->as.hash.ntbl, lev);
 | 
						|
	ptr = obj->as.hash.ifnone;
 | 
						|
	goto again;
 | 
						|
 | 
						|
      case T_STRING:
 | 
						|
#define STR_ASSOC FL_USER3   /* copied from string.c */
 | 
						|
	if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
 | 
						|
	    ptr = obj->as.string.as.heap.aux.shared;
 | 
						|
	    goto again;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_DATA:
 | 
						|
	if (RTYPEDDATA_P(obj)) {
 | 
						|
	    RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
 | 
						|
	    if (mark_func) (*mark_func)(DATA_PTR(obj));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_OBJECT:
 | 
						|
        {
 | 
						|
            long i, len = ROBJECT_NUMIV(obj);
 | 
						|
	    VALUE *ptr = ROBJECT_IVPTR(obj);
 | 
						|
            for (i  = 0; i < len; i++) {
 | 
						|
		gc_mark(objspace, *ptr++, lev);
 | 
						|
            }
 | 
						|
        }
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_FILE:
 | 
						|
        if (obj->as.file.fptr) {
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->pathv, lev);
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing, lev);
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat, lev);
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts, lev);
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->encs.ecopts, lev);
 | 
						|
            gc_mark(objspace, obj->as.file.fptr->write_lock, lev);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case T_REGEXP:
 | 
						|
        gc_mark(objspace, obj->as.regexp.src, lev);
 | 
						|
        break;
 | 
						|
 | 
						|
      case T_FLOAT:
 | 
						|
      case T_BIGNUM:
 | 
						|
      case T_ZOMBIE:
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_MATCH:
 | 
						|
	gc_mark(objspace, obj->as.match.regexp, lev);
 | 
						|
	if (obj->as.match.str) {
 | 
						|
	    ptr = obj->as.match.str;
 | 
						|
	    goto again;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_RATIONAL:
 | 
						|
	gc_mark(objspace, obj->as.rational.num, lev);
 | 
						|
	gc_mark(objspace, obj->as.rational.den, lev);
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_COMPLEX:
 | 
						|
	gc_mark(objspace, obj->as.complex.real, lev);
 | 
						|
	gc_mark(objspace, obj->as.complex.imag, lev);
 | 
						|
	break;
 | 
						|
 | 
						|
      case T_STRUCT:
 | 
						|
	{
 | 
						|
	    long len = RSTRUCT_LEN(obj);
 | 
						|
	    VALUE *ptr = RSTRUCT_PTR(obj);
 | 
						|
 | 
						|
	    while (len--) {
 | 
						|
		gc_mark(objspace, *ptr++, lev);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      default:
 | 
						|
	rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
 | 
						|
	       BUILTIN_TYPE(obj), (void *)obj,
 | 
						|
	       is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_mark_all(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    RVALUE *p, *pend;
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    init_mark_stack(objspace);
 | 
						|
    for (i = 0; i < heaps_used; i++) {
 | 
						|
	p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | 
						|
	while (p < pend) {
 | 
						|
	    if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p) &&
 | 
						|
		p->as.basic.flags) {
 | 
						|
		gc_mark_children(objspace, (VALUE)p, 0);
 | 
						|
	    }
 | 
						|
	    p++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gc_mark_rest(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    VALUE tmp_arry[MARK_STACK_MAX];
 | 
						|
    VALUE *p;
 | 
						|
 | 
						|
    p = (mark_stack_ptr - mark_stack) + tmp_arry;
 | 
						|
    MEMCPY(tmp_arry, mark_stack, VALUE, p - tmp_arry);
 | 
						|
 | 
						|
    init_mark_stack(objspace);
 | 
						|
    while (p != tmp_arry) {
 | 
						|
	p--;
 | 
						|
	gc_mark_children(objspace, *p, 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
 | 
						|
 | 
						|
static void
 | 
						|
gc_marks(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    struct gc_list *list;
 | 
						|
    rb_thread_t *th = GET_THREAD();
 | 
						|
    gc_prof_mark_timer_start(objspace);
 | 
						|
 | 
						|
    objspace->heap.live_num = 0;
 | 
						|
    objspace->count++;
 | 
						|
 | 
						|
 | 
						|
    SET_STACK_END;
 | 
						|
 | 
						|
    init_mark_stack(objspace);
 | 
						|
 | 
						|
    th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
 | 
						|
 | 
						|
    mark_tbl(objspace, finalizer_table, 0);
 | 
						|
    mark_current_machine_context(objspace, th);
 | 
						|
 | 
						|
    rb_gc_mark_symbols();
 | 
						|
    rb_gc_mark_encodings();
 | 
						|
 | 
						|
    /* mark protected global variables */
 | 
						|
    for (list = global_List; list; list = list->next) {
 | 
						|
	rb_gc_mark_maybe(*list->varptr);
 | 
						|
    }
 | 
						|
    rb_mark_end_proc();
 | 
						|
    rb_gc_mark_global_tbl();
 | 
						|
 | 
						|
    mark_tbl(objspace, rb_class_tbl, 0);
 | 
						|
 | 
						|
    /* mark generic instance variables for special constants */
 | 
						|
    rb_mark_generic_ivar_tbl();
 | 
						|
 | 
						|
    rb_gc_mark_parser();
 | 
						|
 | 
						|
    rb_gc_mark_unlinked_live_method_entries(th->vm);
 | 
						|
 | 
						|
    /* gc_mark objects whose marking are not completed*/
 | 
						|
    while (!MARK_STACK_EMPTY) {
 | 
						|
	if (mark_stack_overflow) {
 | 
						|
	    gc_mark_all(objspace);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    gc_mark_rest(objspace);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    gc_prof_mark_timer_stop(objspace);
 | 
						|
}
 | 
						|
 | 
						|
/* GC */
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_force_recycle(VALUE p)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    struct heaps_slot *slot;
 | 
						|
 | 
						|
    if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
 | 
						|
        add_slot_local_freelist(objspace, (RVALUE *)p);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        gc_prof_dec_live_num(objspace);
 | 
						|
        slot = add_slot_local_freelist(objspace, (RVALUE *)p);
 | 
						|
        if (slot->free_next == NULL) {
 | 
						|
            link_free_heap_slot(objspace, slot);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_register_mark_object(VALUE obj)
 | 
						|
{
 | 
						|
    VALUE ary = GET_THREAD()->vm->mark_object_ary;
 | 
						|
    rb_ary_push(ary, obj);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_register_address(VALUE *addr)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    struct gc_list *tmp;
 | 
						|
 | 
						|
    tmp = ALLOC(struct gc_list);
 | 
						|
    tmp->next = global_List;
 | 
						|
    tmp->varptr = addr;
 | 
						|
    global_List = tmp;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_unregister_address(VALUE *addr)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    struct gc_list *tmp = global_List;
 | 
						|
 | 
						|
    if (tmp->varptr == addr) {
 | 
						|
	global_List = tmp->next;
 | 
						|
	xfree(tmp);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
    while (tmp->next) {
 | 
						|
	if (tmp->next->varptr == addr) {
 | 
						|
	    struct gc_list *t = tmp->next;
 | 
						|
 | 
						|
	    tmp->next = tmp->next->next;
 | 
						|
	    xfree(t);
 | 
						|
	    break;
 | 
						|
	}
 | 
						|
	tmp = tmp->next;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define GC_NOTIFY 0
 | 
						|
 | 
						|
static int
 | 
						|
garbage_collect(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (GC_NOTIFY) printf("start garbage_collect()\n");
 | 
						|
 | 
						|
    if (!heaps) {
 | 
						|
	return FALSE;
 | 
						|
    }
 | 
						|
    if (!ready_to_gc(objspace)) {
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
 | 
						|
    gc_prof_timer_start(objspace);
 | 
						|
 | 
						|
    rest_sweep(objspace);
 | 
						|
 | 
						|
    during_gc++;
 | 
						|
    gc_marks(objspace);
 | 
						|
 | 
						|
    gc_prof_sweep_timer_start(objspace);
 | 
						|
    gc_sweep(objspace);
 | 
						|
    gc_prof_sweep_timer_stop(objspace);
 | 
						|
 | 
						|
    gc_prof_timer_stop(objspace, Qtrue);
 | 
						|
    if (GC_NOTIFY) printf("end garbage_collect()\n");
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
gc_with_gvl(void *ptr)
 | 
						|
{
 | 
						|
    return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
garbage_collect_with_gvl(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (dont_gc) return TRUE;
 | 
						|
    if (ruby_thread_has_gvl_p()) {
 | 
						|
	return garbage_collect(objspace);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	if (ruby_native_thread_p()) {
 | 
						|
	    return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    /* no ruby thread */
 | 
						|
	    fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | 
						|
	    exit(EXIT_FAILURE);
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_garbage_collect(void)
 | 
						|
{
 | 
						|
    return garbage_collect(&rb_objspace);
 | 
						|
}
 | 
						|
 | 
						|
#undef Init_stack
 | 
						|
 | 
						|
void
 | 
						|
Init_stack(volatile VALUE *addr)
 | 
						|
{
 | 
						|
    ruby_init_stack(addr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.start                     -> nil
 | 
						|
 *     gc.garbage_collect           -> nil
 | 
						|
 *     ObjectSpace.garbage_collect  -> nil
 | 
						|
 *
 | 
						|
 *  Initiates garbage collection, unless manually disabled.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_gc_start(void)
 | 
						|
{
 | 
						|
    rb_gc();
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    garbage_collect(objspace);
 | 
						|
    if (!finalizing) finalize_deferred(objspace);
 | 
						|
    free_unused_heaps(objspace);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_during_gc(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    return during_gc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.count -> Integer
 | 
						|
 *
 | 
						|
 *  The number of times GC occurred.
 | 
						|
 *
 | 
						|
 *  It returns the number of times GC occurred since the process started.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_count(VALUE self)
 | 
						|
{
 | 
						|
    return UINT2NUM(rb_objspace.count);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.stat -> Hash
 | 
						|
 *
 | 
						|
 *  Returns a Hash containing information about the GC.
 | 
						|
 *
 | 
						|
 *  The hash includes information about internal statistics about GC such as:
 | 
						|
 *
 | 
						|
 *    {
 | 
						|
 *      :count          => 18,
 | 
						|
 *      :heap_used      => 77,
 | 
						|
 *      :heap_length    => 77,
 | 
						|
 *      :heap_increment => 0,
 | 
						|
 *      :heap_live_num  => 23287,
 | 
						|
 *      :heap_free_num  => 8115,
 | 
						|
 *      :heap_final_num => 0,
 | 
						|
 *    }
 | 
						|
 *
 | 
						|
 *  The contents of the hash are implementation defined and may be changed in
 | 
						|
 *  the future.
 | 
						|
 *
 | 
						|
 *  This method is only expected to work on C Ruby.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_stat(int argc, VALUE *argv, VALUE self)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE hash;
 | 
						|
 | 
						|
    if (rb_scan_args(argc, argv, "01", &hash) == 1) {
 | 
						|
        if (!RB_TYPE_P(hash, T_HASH))
 | 
						|
            rb_raise(rb_eTypeError, "non-hash given");
 | 
						|
    }
 | 
						|
 | 
						|
    if (hash == Qnil) {
 | 
						|
        hash = rb_hash_new();
 | 
						|
    }
 | 
						|
 | 
						|
    rest_sweep(objspace);
 | 
						|
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("count")), SIZET2NUM(objspace->count));
 | 
						|
 | 
						|
    /* implementation dependent counters */
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_used")), SIZET2NUM(objspace->heap.used));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_length")), SIZET2NUM(objspace->heap.length));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_increment")), SIZET2NUM(objspace->heap.increment));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_live_num")), SIZET2NUM(objspace->heap.live_num));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_free_num")), SIZET2NUM(objspace->heap.free_num));
 | 
						|
    rb_hash_aset(hash, ID2SYM(rb_intern("heap_final_num")), SIZET2NUM(objspace->heap.final_num));
 | 
						|
    return hash;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC.stress                 -> true or false
 | 
						|
 *
 | 
						|
 *  returns current status of GC stress mode.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_stress_get(VALUE self)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    return ruby_gc_stress ? Qtrue : Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC.stress = bool          -> bool
 | 
						|
 *
 | 
						|
 *  Updates the GC stress mode.
 | 
						|
 *
 | 
						|
 *  When stress mode is enabled the GC is invoked at every GC opportunity:
 | 
						|
 *  all memory and object allocations.
 | 
						|
 *
 | 
						|
 *  Enabling stress mode makes Ruby very slow, it is only for debugging.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_stress_set(VALUE self, VALUE flag)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    rb_secure(2);
 | 
						|
    ruby_gc_stress = RTEST(flag);
 | 
						|
    return flag;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.enable    -> true or false
 | 
						|
 *
 | 
						|
 *  Enables garbage collection, returning <code>true</code> if garbage
 | 
						|
 *  collection was previously disabled.
 | 
						|
 *
 | 
						|
 *     GC.disable   #=> false
 | 
						|
 *     GC.enable    #=> true
 | 
						|
 *     GC.enable    #=> false
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_gc_enable(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    int old = dont_gc;
 | 
						|
 | 
						|
    dont_gc = FALSE;
 | 
						|
    return old ? Qtrue : Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.disable    -> true or false
 | 
						|
 *
 | 
						|
 *  Disables garbage collection, returning <code>true</code> if garbage
 | 
						|
 *  collection was already disabled.
 | 
						|
 *
 | 
						|
 *     GC.disable   #=> false
 | 
						|
 *     GC.disable   #=> true
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_gc_disable(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    int old = dont_gc;
 | 
						|
 | 
						|
    dont_gc = TRUE;
 | 
						|
    return old ? Qtrue : Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gc_set_params(void)
 | 
						|
{
 | 
						|
    char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr;
 | 
						|
 | 
						|
    if (rb_safe_level() > 0) return;
 | 
						|
 | 
						|
    malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
 | 
						|
    if (malloc_limit_ptr != NULL) {
 | 
						|
	int malloc_limit_i = atoi(malloc_limit_ptr);
 | 
						|
	if (RTEST(ruby_verbose))
 | 
						|
	    fprintf(stderr, "malloc_limit=%d (%d)\n",
 | 
						|
		    malloc_limit_i, initial_malloc_limit);
 | 
						|
	if (malloc_limit_i > 0) {
 | 
						|
	    initial_malloc_limit = malloc_limit_i;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
 | 
						|
    if (heap_min_slots_ptr != NULL) {
 | 
						|
	int heap_min_slots_i = atoi(heap_min_slots_ptr);
 | 
						|
	if (RTEST(ruby_verbose))
 | 
						|
	    fprintf(stderr, "heap_min_slots=%d (%d)\n",
 | 
						|
		    heap_min_slots_i, initial_heap_min_slots);
 | 
						|
	if (heap_min_slots_i > 0) {
 | 
						|
	    initial_heap_min_slots = heap_min_slots_i;
 | 
						|
            initial_expand_heap(&rb_objspace);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    free_min_ptr = getenv("RUBY_FREE_MIN");
 | 
						|
    if (free_min_ptr != NULL) {
 | 
						|
	int free_min_i = atoi(free_min_ptr);
 | 
						|
	if (RTEST(ruby_verbose))
 | 
						|
	    fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min);
 | 
						|
	if (free_min_i > 0) {
 | 
						|
	    initial_free_min = free_min_i;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  ------------------------ Extended allocator ------------------------
 | 
						|
*/
 | 
						|
 | 
						|
static void vm_xfree(rb_objspace_t *objspace, void *ptr);
 | 
						|
 | 
						|
static void *
 | 
						|
negative_size_allocation_error_with_gvl(void *ptr)
 | 
						|
{
 | 
						|
    rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
 | 
						|
    return 0; /* should not be reached */
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
negative_size_allocation_error(const char *msg)
 | 
						|
{
 | 
						|
    if (ruby_thread_has_gvl_p()) {
 | 
						|
	rb_raise(rb_eNoMemError, "%s", msg);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	if (ruby_native_thread_p()) {
 | 
						|
	    rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    fprintf(stderr, "[FATAL] %s\n", msg);
 | 
						|
	    exit(EXIT_FAILURE);
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
ruby_memerror_body(void *dummy)
 | 
						|
{
 | 
						|
    rb_memerror();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ruby_memerror(void)
 | 
						|
{
 | 
						|
    if (ruby_thread_has_gvl_p()) {
 | 
						|
	rb_memerror();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	if (ruby_native_thread_p()) {
 | 
						|
	    rb_thread_call_with_gvl(ruby_memerror_body, 0);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    /* no ruby thread */
 | 
						|
	    fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | 
						|
	    exit(EXIT_FAILURE);
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_memerror(void)
 | 
						|
{
 | 
						|
    rb_thread_t *th = GET_THREAD();
 | 
						|
    if (!nomem_error ||
 | 
						|
	(rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
 | 
						|
	fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | 
						|
	exit(EXIT_FAILURE);
 | 
						|
    }
 | 
						|
    if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
 | 
						|
	rb_thread_raised_clear(th);
 | 
						|
	GET_THREAD()->errinfo = nomem_error;
 | 
						|
	JUMP_TAG(TAG_RAISE);
 | 
						|
    }
 | 
						|
    rb_thread_raised_set(th, RAISED_NOMEMORY);
 | 
						|
    rb_exc_raise(nomem_error);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
aligned_malloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    void *res;
 | 
						|
 | 
						|
#if defined __MINGW32__
 | 
						|
    res = __mingw_aligned_malloc(size, alignment);
 | 
						|
#elif defined _WIN32 && !defined __CYGWIN__
 | 
						|
    res = _aligned_malloc(size, alignment);
 | 
						|
#elif defined(HAVE_POSIX_MEMALIGN)
 | 
						|
    if (posix_memalign(&res, alignment, size) == 0) {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
#elif defined(HAVE_MEMALIGN)
 | 
						|
    res = memalign(alignment, size);
 | 
						|
#else
 | 
						|
    char* aligned;
 | 
						|
    res = malloc(alignment + size + sizeof(void*));
 | 
						|
    aligned = (char*)res + alignment + sizeof(void*);
 | 
						|
    aligned -= ((VALUE)aligned & (alignment - 1));
 | 
						|
    ((void**)aligned)[-1] = res;
 | 
						|
    res = (void*)aligned;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_DEBUG) || defined(GC_DEBUG)
 | 
						|
    /* alignment must be a power of 2 */
 | 
						|
    assert((alignment - 1) & alignment == 0);
 | 
						|
    assert(alignment % sizeof(void*) == 0);
 | 
						|
#endif
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
aligned_free(void *ptr)
 | 
						|
{
 | 
						|
#if defined __MINGW32__
 | 
						|
    __mingw_aligned_free(ptr);
 | 
						|
#elif defined _WIN32 && !defined __CYGWIN__
 | 
						|
    _aligned_free(ptr);
 | 
						|
#elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
 | 
						|
    free(ptr);
 | 
						|
#else
 | 
						|
    free(((void**)ptr)[-1]);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline size_t
 | 
						|
vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
 | 
						|
{
 | 
						|
    if ((ssize_t)size < 0) {
 | 
						|
	negative_size_allocation_error("negative allocation size (or too big)");
 | 
						|
    }
 | 
						|
    if (size == 0) size = 1;
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    size += sizeof(size_t);
 | 
						|
#endif
 | 
						|
 | 
						|
    if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
 | 
						|
	(malloc_increase+size) > malloc_limit) {
 | 
						|
	garbage_collect_with_gvl(objspace);
 | 
						|
    }
 | 
						|
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *
 | 
						|
vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
 | 
						|
{
 | 
						|
    ATOMIC_SIZE_ADD(malloc_increase, size);
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size);
 | 
						|
    ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
 | 
						|
    ((size_t *)mem)[0] = size;
 | 
						|
    mem = (size_t *)mem + 1;
 | 
						|
#endif
 | 
						|
 | 
						|
    return mem;
 | 
						|
}
 | 
						|
 | 
						|
#define TRY_WITH_GC(alloc) do { \
 | 
						|
	if (!(alloc) && \
 | 
						|
	    (!garbage_collect_with_gvl(objspace) || \
 | 
						|
	     !(alloc))) { \
 | 
						|
	    ruby_memerror(); \
 | 
						|
	} \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
static void *
 | 
						|
vm_xmalloc(rb_objspace_t *objspace, size_t size)
 | 
						|
{
 | 
						|
    void *mem;
 | 
						|
 | 
						|
    size = vm_malloc_prepare(objspace, size);
 | 
						|
    TRY_WITH_GC(mem = malloc(size));
 | 
						|
    return vm_malloc_fixup(objspace, mem, size);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
 | 
						|
{
 | 
						|
    void *mem;
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    size_t oldsize;
 | 
						|
#endif
 | 
						|
 | 
						|
    if ((ssize_t)size < 0) {
 | 
						|
	negative_size_allocation_error("negative re-allocation size");
 | 
						|
    }
 | 
						|
    if (!ptr) return vm_xmalloc(objspace, size);
 | 
						|
    if (size == 0) {
 | 
						|
	vm_xfree(objspace, ptr);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (ruby_gc_stress && !ruby_disable_gc_stress)
 | 
						|
	garbage_collect_with_gvl(objspace);
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    size += sizeof(size_t);
 | 
						|
    ptr = (size_t *)ptr - 1;
 | 
						|
    oldsize = ((size_t *)ptr)[0];
 | 
						|
#endif
 | 
						|
 | 
						|
    mem = realloc(ptr, size);
 | 
						|
    if (!mem) {
 | 
						|
	if (garbage_collect_with_gvl(objspace)) {
 | 
						|
	    mem = realloc(ptr, size);
 | 
						|
	}
 | 
						|
	if (!mem) {
 | 
						|
	    ruby_memerror();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ATOMIC_SIZE_ADD(malloc_increase, size);
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size - oldsize);
 | 
						|
    ((size_t *)mem)[0] = size;
 | 
						|
    mem = (size_t *)mem + 1;
 | 
						|
#endif
 | 
						|
 | 
						|
    return mem;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
vm_xfree(rb_objspace_t *objspace, void *ptr)
 | 
						|
{
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    size_t size;
 | 
						|
    ptr = ((size_t *)ptr) - 1;
 | 
						|
    size = ((size_t*)ptr)[0];
 | 
						|
    if (size) {
 | 
						|
	ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, size);
 | 
						|
	ATOMIC_SIZE_DEC(objspace->malloc_params.allocations);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    free(ptr);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ruby_xmalloc(size_t size)
 | 
						|
{
 | 
						|
    return vm_xmalloc(&rb_objspace, size);
 | 
						|
}
 | 
						|
 | 
						|
static inline size_t
 | 
						|
xmalloc2_size(size_t n, size_t size)
 | 
						|
{
 | 
						|
    size_t len = size * n;
 | 
						|
    if (n != 0 && size != len / n) {
 | 
						|
	rb_raise(rb_eArgError, "malloc: possible integer overflow");
 | 
						|
    }
 | 
						|
    return len;
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ruby_xmalloc2(size_t n, size_t size)
 | 
						|
{
 | 
						|
    return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
 | 
						|
{
 | 
						|
    void *mem;
 | 
						|
    size_t size;
 | 
						|
 | 
						|
    size = xmalloc2_size(count, elsize);
 | 
						|
    size = vm_malloc_prepare(objspace, size);
 | 
						|
 | 
						|
    TRY_WITH_GC(mem = calloc(1, size));
 | 
						|
    return vm_malloc_fixup(objspace, mem, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ruby_xcalloc(size_t n, size_t size)
 | 
						|
{
 | 
						|
    return vm_xcalloc(&rb_objspace, n, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ruby_xrealloc(void *ptr, size_t size)
 | 
						|
{
 | 
						|
    return vm_xrealloc(&rb_objspace, ptr, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ruby_xrealloc2(void *ptr, size_t n, size_t size)
 | 
						|
{
 | 
						|
    size_t len = size * n;
 | 
						|
    if (n != 0 && size != len / n) {
 | 
						|
	rb_raise(rb_eArgError, "realloc: possible integer overflow");
 | 
						|
    }
 | 
						|
    return ruby_xrealloc(ptr, len);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ruby_xfree(void *x)
 | 
						|
{
 | 
						|
    if (x)
 | 
						|
	vm_xfree(&rb_objspace, x);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Mimic ruby_xmalloc, but need not rb_objspace.
 | 
						|
 * should return pointer suitable for ruby_xfree
 | 
						|
 */
 | 
						|
void *
 | 
						|
ruby_mimmalloc(size_t size)
 | 
						|
{
 | 
						|
    void *mem;
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    size += sizeof(size_t);
 | 
						|
#endif
 | 
						|
    mem = malloc(size);
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    /* set 0 for consistency of allocated_size/allocations */
 | 
						|
    ((size_t *)mem)[0] = 0;
 | 
						|
    mem = (size_t *)mem + 1;
 | 
						|
#endif
 | 
						|
    return mem;
 | 
						|
}
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.malloc_allocated_size -> Integer
 | 
						|
 *
 | 
						|
 *  Returns the size of memory allocated by malloc().  Only available if ruby
 | 
						|
 *  was built with CALC_EXACT_MALLOC_SIZE.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_malloc_allocated_size(VALUE self)
 | 
						|
{
 | 
						|
    return UINT2NUM(rb_objspace.malloc_params.allocated_size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC.malloc_allocations -> Integer
 | 
						|
 *
 | 
						|
 *  Returns the number of malloc() allocations.  Only available if ruby was
 | 
						|
 *  built with CALC_EXACT_MALLOC_SIZE.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_malloc_allocations(VALUE self)
 | 
						|
{
 | 
						|
    return UINT2NUM(rb_objspace.malloc_params.allocations);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
  ------------------------------ WeakMap ------------------------------
 | 
						|
*/
 | 
						|
 | 
						|
struct weakmap {
 | 
						|
    st_table *obj2wmap;		/* obj -> [ref,...] */
 | 
						|
    st_table *wmap2obj;		/* ref -> obj */
 | 
						|
    VALUE final;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
wmap_mark(void *ptr)
 | 
						|
{
 | 
						|
    struct weakmap *w = ptr;
 | 
						|
    st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
 | 
						|
    rb_gc_mark(w->final);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    rb_ary_resize((VALUE)val, 0);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
wmap_free(void *ptr)
 | 
						|
{
 | 
						|
    struct weakmap *w = ptr;
 | 
						|
    st_foreach(w->obj2wmap, wmap_free_map, 0);
 | 
						|
    st_free_table(w->obj2wmap);
 | 
						|
    st_free_table(w->wmap2obj);
 | 
						|
}
 | 
						|
 | 
						|
size_t rb_ary_memsize(VALUE ary);
 | 
						|
static int
 | 
						|
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
 | 
						|
{
 | 
						|
    *(size_t *)arg += rb_ary_memsize((VALUE)val);
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
wmap_memsize(const void *ptr)
 | 
						|
{
 | 
						|
    size_t size;
 | 
						|
    const struct weakmap *w = ptr;
 | 
						|
    if (!w) return 0;
 | 
						|
    size = sizeof(*w);
 | 
						|
    size += st_memsize(w->obj2wmap);
 | 
						|
    size += st_memsize(w->wmap2obj);
 | 
						|
    st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
static const rb_data_type_t weakmap_type = {
 | 
						|
    "weakmap",
 | 
						|
    {
 | 
						|
	wmap_mark,
 | 
						|
	wmap_free,
 | 
						|
	wmap_memsize,
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static VALUE
 | 
						|
wmap_allocate(VALUE klass)
 | 
						|
{
 | 
						|
    struct weakmap *w;
 | 
						|
    VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
 | 
						|
    w->obj2wmap = st_init_numtable();
 | 
						|
    w->wmap2obj = st_init_numtable();
 | 
						|
    w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
 | 
						|
{
 | 
						|
    VALUE obj, ary;
 | 
						|
    if (!existing) return ST_STOP;
 | 
						|
    obj = (VALUE)*key, ary = (VALUE)*value;
 | 
						|
    rb_ary_delete(ary, obj);
 | 
						|
    if (!RARRAY_LEN(ary)) return ST_DELETE;
 | 
						|
    return ST_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
wmap_finalize(VALUE self, VALUE obj)
 | 
						|
{
 | 
						|
    st_data_t data;
 | 
						|
    VALUE rids;
 | 
						|
    long i;
 | 
						|
    struct weakmap *w;
 | 
						|
 | 
						|
    TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
 | 
						|
    obj = NUM2PTR(obj);
 | 
						|
 | 
						|
    data = (st_data_t)obj;
 | 
						|
    if (st_delete(w->obj2wmap, &data, &data)) {
 | 
						|
	rids = (VALUE)data;
 | 
						|
	for (i = 0; i < RARRAY_LEN(rids); ++i) {
 | 
						|
	    data = (st_data_t)RARRAY_PTR(rids)[i];
 | 
						|
	    st_delete(w->wmap2obj, &data, NULL);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    data = (st_data_t)obj;
 | 
						|
    if (st_delete(w->wmap2obj, &data, &data)) {
 | 
						|
	st_update(w->obj2wmap, (st_data_t)obj, wmap_final_func, 0);
 | 
						|
    }
 | 
						|
    return self;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
wmap_aset(VALUE self, VALUE wmap, VALUE orig)
 | 
						|
{
 | 
						|
    st_data_t data;
 | 
						|
    VALUE rids;
 | 
						|
    struct weakmap *w;
 | 
						|
 | 
						|
    TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
 | 
						|
    rb_define_final(orig, w->final);
 | 
						|
    rb_define_final(wmap, w->final);
 | 
						|
    if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) {
 | 
						|
	rids = (VALUE)data;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rids = rb_ary_tmp_new(1);
 | 
						|
	st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids);
 | 
						|
    }
 | 
						|
    rb_ary_push(rids, orig);
 | 
						|
    st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
 | 
						|
    return nonspecial_obj_id(orig);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
wmap_aref(VALUE self, VALUE wmap)
 | 
						|
{
 | 
						|
    st_data_t data;
 | 
						|
    VALUE obj;
 | 
						|
    struct weakmap *w;
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
 | 
						|
    TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
 | 
						|
    if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
 | 
						|
    obj = (VALUE)data;
 | 
						|
    if (!is_id_value(objspace, obj)) return Qnil;
 | 
						|
    if (!is_live_object(objspace, obj)) return Qnil;
 | 
						|
    return obj;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  ------------------------------ GC profiler ------------------------------
 | 
						|
*/
 | 
						|
 | 
						|
static inline void gc_prof_set_heap_info(rb_objspace_t *, gc_profile_record *);
 | 
						|
 | 
						|
static double
 | 
						|
getrusage_time(void)
 | 
						|
{
 | 
						|
#ifdef RUSAGE_SELF
 | 
						|
    struct rusage usage;
 | 
						|
    struct timeval time;
 | 
						|
    getrusage(RUSAGE_SELF, &usage);
 | 
						|
    time = usage.ru_utime;
 | 
						|
    return time.tv_sec + time.tv_usec * 1e-6;
 | 
						|
#elif defined _WIN32
 | 
						|
    FILETIME creation_time, exit_time, kernel_time, user_time;
 | 
						|
    ULARGE_INTEGER ui;
 | 
						|
    LONG_LONG q;
 | 
						|
    double t;
 | 
						|
 | 
						|
    if (GetProcessTimes(GetCurrentProcess(),
 | 
						|
			&creation_time, &exit_time, &kernel_time, &user_time) == 0)
 | 
						|
    {
 | 
						|
	return 0.0;
 | 
						|
    }
 | 
						|
    memcpy(&ui, &user_time, sizeof(FILETIME));
 | 
						|
    q = ui.QuadPart / 10L;
 | 
						|
    t = (DWORD)(q % 1000000L) * 1e-6;
 | 
						|
    q /= 1000000L;
 | 
						|
#ifdef __GNUC__
 | 
						|
    t += q;
 | 
						|
#else
 | 
						|
    t += (double)(DWORD)(q >> 16) * (1 << 16);
 | 
						|
    t += (DWORD)q & ~(~0 << 16);
 | 
						|
#endif
 | 
						|
    return t;
 | 
						|
#else
 | 
						|
    return 0.0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_timer_start(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        size_t count = objspace->profile.count;
 | 
						|
 | 
						|
        if (!objspace->profile.record) {
 | 
						|
            objspace->profile.size = 1000;
 | 
						|
            objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);
 | 
						|
        }
 | 
						|
        if (count >= objspace->profile.size) {
 | 
						|
            objspace->profile.size += 1000;
 | 
						|
            objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
 | 
						|
        }
 | 
						|
        if (!objspace->profile.record) {
 | 
						|
            rb_bug("gc_profile malloc or realloc miss");
 | 
						|
        }
 | 
						|
        MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);
 | 
						|
        objspace->profile.record[count].gc_time = getrusage_time();
 | 
						|
        objspace->profile.record[objspace->profile.count].gc_invoke_time =
 | 
						|
            objspace->profile.record[count].gc_time - objspace->profile.invoke_time;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_timer_stop(rb_objspace_t *objspace, int marked)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        double gc_time = 0;
 | 
						|
        size_t count = objspace->profile.count;
 | 
						|
        gc_profile_record *record = &objspace->profile.record[count];
 | 
						|
 | 
						|
        gc_time = getrusage_time() - record->gc_time;
 | 
						|
        if (gc_time < 0) gc_time = 0;
 | 
						|
        record->gc_time = gc_time;
 | 
						|
        record->is_marked = !!(marked);
 | 
						|
        gc_prof_set_heap_info(objspace, record);
 | 
						|
        objspace->profile.count++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if !GC_PROFILE_MORE_DETAIL
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_mark_timer_start(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_set_malloc_info(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
 | 
						|
{
 | 
						|
    size_t live = objspace->heap.live_num;
 | 
						|
    size_t total = heaps_used * HEAP_OBJ_LIMIT;
 | 
						|
 | 
						|
    record->heap_total_objects = total;
 | 
						|
    record->heap_use_size = live * sizeof(RVALUE);
 | 
						|
    record->heap_total_size = total * sizeof(RVALUE);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_inc_live_num(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_dec_live_num(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_mark_timer_start(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        size_t count = objspace->profile.count;
 | 
						|
 | 
						|
        objspace->profile.record[count].gc_mark_time = getrusage_time();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        double mark_time = 0;
 | 
						|
        size_t count = count;
 | 
						|
        gc_profile_record *record = &objspace->profile.record[count];
 | 
						|
 | 
						|
        mark_time = getrusage_time() - record->gc_mark_time;
 | 
						|
        if (mark_time < 0) mark_time = 0;
 | 
						|
        record->gc_mark_time = mark_time;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        size_t count = objspace->profile.count;
 | 
						|
 | 
						|
        objspace->profile.record[count].gc_sweep_time = getrusage_time();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        double sweep_time = 0;
 | 
						|
        size_t count = objspace->profile.count;
 | 
						|
        gc_profile_record *record = &objspace->profile.record[count];
 | 
						|
 | 
						|
        sweep_time = getrusage_time() - record->gc_sweep_time;\
 | 
						|
        if (sweep_time < 0) sweep_time = 0;\
 | 
						|
        record->gc_sweep_time = sweep_time;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_set_malloc_info(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    if (objspace->profile.run) {
 | 
						|
        gc_profile_record *record = &objspace->profile.record[objspace->profile.count];
 | 
						|
        if (record) {
 | 
						|
            record->allocate_increase = malloc_increase;
 | 
						|
            record->allocate_limit = malloc_limit;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
 | 
						|
{
 | 
						|
    size_t live = objspace->heap.live_num;
 | 
						|
    size_t total = heaps_used * HEAP_OBJ_LIMIT;
 | 
						|
 | 
						|
    record->heap_use_slots = heaps_used;
 | 
						|
    record->heap_live_objects = live;
 | 
						|
    record->heap_free_objects = total - live;
 | 
						|
    record->heap_total_objects = total;
 | 
						|
    record->have_finalize = deferred_final_list ? Qtrue : Qfalse;
 | 
						|
    record->heap_use_size = live * sizeof(RVALUE);
 | 
						|
    record->heap_total_size = total * sizeof(RVALUE);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_inc_live_num(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    objspace->heap.live_num++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
gc_prof_dec_live_num(rb_objspace_t *objspace)
 | 
						|
{
 | 
						|
    objspace->heap.live_num--;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !GC_PROFILE_MORE_DETAIL */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC::Profiler.clear          -> nil
 | 
						|
 *
 | 
						|
 *  Clears the GC profiler data.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_clear(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
 | 
						|
    objspace->profile.count = 0;
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC::Profiler.raw_data -> [Hash, ...]
 | 
						|
 *
 | 
						|
 *  Returns an Array of individual raw profile data Hashes ordered
 | 
						|
 *  from earliest to latest by <tt>:GC_INVOKE_TIME</tt>.  For example:
 | 
						|
 *
 | 
						|
 *    [{:GC_TIME=>1.3000000000000858e-05,
 | 
						|
 *      :GC_INVOKE_TIME=>0.010634999999999999,
 | 
						|
 *      :HEAP_USE_SIZE=>289640,
 | 
						|
 *      :HEAP_TOTAL_SIZE=>588960,
 | 
						|
 *      :HEAP_TOTAL_OBJECTS=>14724,
 | 
						|
 *      :GC_IS_MARKED=>false},
 | 
						|
 *      ...
 | 
						|
 *    ]
 | 
						|
 *
 | 
						|
 *  The keys mean:
 | 
						|
 *
 | 
						|
 *  +:GC_TIME+:: Time taken for this run in milliseconds
 | 
						|
 *  +:GC_INVOKE_TIME+:: Time the GC was invoked since startup in seconds
 | 
						|
 *  +:HEAP_USE_SIZE+:: Bytes of heap used
 | 
						|
 *  +:HEAP_TOTAL_SIZE+:: Size of heap in bytes
 | 
						|
 *  +:HEAP_TOTAL_OBJECTS+:: Number of objects
 | 
						|
 *  +:GC_IS_MARKED+:: Is the GC in the mark phase
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_record_get(void)
 | 
						|
{
 | 
						|
    VALUE prof;
 | 
						|
    VALUE gc_profile = rb_ary_new();
 | 
						|
    size_t i;
 | 
						|
    rb_objspace_t *objspace = (&rb_objspace);
 | 
						|
 | 
						|
    if (!objspace->profile.run) {
 | 
						|
	return Qnil;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i =0; i < objspace->profile.count; i++) {
 | 
						|
	prof = rb_hash_new();
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked);
 | 
						|
#if GC_PROFILE_MORE_DETAIL
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects));
 | 
						|
        rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize);
 | 
						|
#endif
 | 
						|
	rb_ary_push(gc_profile, prof);
 | 
						|
    }
 | 
						|
 | 
						|
    return gc_profile;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC::Profiler.result -> String
 | 
						|
 *
 | 
						|
 *  Returns a profile data report such as:
 | 
						|
 *
 | 
						|
 *    GC 1 invokes.
 | 
						|
 *    Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC time(ms)
 | 
						|
 *        1               0.012               159240               212940                10647         0.00000000000001530000
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_result(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    VALUE record;
 | 
						|
    VALUE result;
 | 
						|
    int i, index;
 | 
						|
 | 
						|
    record = gc_profile_record_get();
 | 
						|
    if (objspace->profile.run && objspace->profile.count) {
 | 
						|
	result = rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0)));
 | 
						|
        index = 1;
 | 
						|
	rb_str_cat2(result, "Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC Time(ms)\n");
 | 
						|
	for (i = 0; i < (int)RARRAY_LEN(record); i++) {
 | 
						|
	    VALUE r = RARRAY_PTR(record)[i];
 | 
						|
#if !GC_PROFILE_MORE_DETAIL
 | 
						|
            if (rb_hash_aref(r, ID2SYM(rb_intern("GC_IS_MARKED")))) {
 | 
						|
#endif
 | 
						|
	    rb_str_catf(result, "%5d %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
 | 
						|
			index++, NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_INVOKE_TIME")))),
 | 
						|
			(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SIZE")))),
 | 
						|
			(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))),
 | 
						|
			(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))),
 | 
						|
			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_TIME"))))*1000);
 | 
						|
#if !GC_PROFILE_MORE_DETAIL
 | 
						|
            }
 | 
						|
#endif
 | 
						|
	}
 | 
						|
#if GC_PROFILE_MORE_DETAIL
 | 
						|
	rb_str_cat2(result, "\n\n");
 | 
						|
	rb_str_cat2(result, "More detail.\n");
 | 
						|
	rb_str_cat2(result, "Index Allocate Increase    Allocate Limit  Use Slot  Have Finalize             Mark Time(ms)            Sweep Time(ms)\n");
 | 
						|
        index = 1;
 | 
						|
	for (i = 0; i < (int)RARRAY_LEN(record); i++) {
 | 
						|
	    VALUE r = RARRAY_PTR(record)[i];
 | 
						|
	    rb_str_catf(result, "%5d %17"PRIuSIZE" %17"PRIuSIZE" %9"PRIuSIZE" %14s %25.20f %25.20f\n",
 | 
						|
			index++, (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_INCREASE")))),
 | 
						|
			(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_LIMIT")))),
 | 
						|
			(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SLOTS")))),
 | 
						|
			rb_hash_aref(r, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false",
 | 
						|
			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_MARK_TIME"))))*1000,
 | 
						|
			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*1000);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	result = rb_str_new2("");
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC::Profiler.report
 | 
						|
 *     GC::Profiler.report io
 | 
						|
 *
 | 
						|
 *  Writes the GC::Profiler#result to <tt>$stdout</tt> or the given IO object.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_report(int argc, VALUE *argv, VALUE self)
 | 
						|
{
 | 
						|
    VALUE out;
 | 
						|
 | 
						|
    if (argc == 0) {
 | 
						|
	out = rb_stdout;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_scan_args(argc, argv, "01", &out);
 | 
						|
    }
 | 
						|
    rb_io_write(out, gc_profile_result());
 | 
						|
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     GC::Profiler.total_time -> float
 | 
						|
 *
 | 
						|
 *  The total time used for garbage collection in milliseconds
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_total_time(VALUE self)
 | 
						|
{
 | 
						|
    double time = 0;
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    if (objspace->profile.run && objspace->profile.count) {
 | 
						|
	for (i = 0; i < objspace->profile.count; i++) {
 | 
						|
	    time += objspace->profile.record[i].gc_time;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return DBL2NUM(time);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC::Profiler.enable?                 -> true or false
 | 
						|
 *
 | 
						|
 *  The current status of GC profile mode.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_enable_get(VALUE self)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
    return objspace->profile.run ? Qtrue : Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC::Profiler.enable          -> nil
 | 
						|
 *
 | 
						|
 *  Starts the GC profiler.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_enable(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
 | 
						|
    objspace->profile.run = TRUE;
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    GC::Profiler.disable          -> nil
 | 
						|
 *
 | 
						|
 *  Stops the GC profiler.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
gc_profile_disable(void)
 | 
						|
{
 | 
						|
    rb_objspace_t *objspace = &rb_objspace;
 | 
						|
 | 
						|
    objspace->profile.run = FALSE;
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Document-class: ObjectSpace
 | 
						|
 *
 | 
						|
 *  The <code>ObjectSpace</code> module contains a number of routines
 | 
						|
 *  that interact with the garbage collection facility and allow you to
 | 
						|
 *  traverse all living objects with an iterator.
 | 
						|
 *
 | 
						|
 *  <code>ObjectSpace</code> also provides support for object
 | 
						|
 *  finalizers, procs that will be called when a specific object is
 | 
						|
 *  about to be destroyed by garbage collection.
 | 
						|
 *
 | 
						|
 *     include ObjectSpace
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *     a = "A"
 | 
						|
 *     b = "B"
 | 
						|
 *     c = "C"
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *     define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
 | 
						|
 *     define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
 | 
						|
 *     define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
 | 
						|
 *
 | 
						|
 *  <em>produces:</em>
 | 
						|
 *
 | 
						|
 *     Finalizer three on 537763470
 | 
						|
 *     Finalizer one on 537763480
 | 
						|
 *     Finalizer two on 537763480
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  Document-class: ObjectSpace::WeakMap
 | 
						|
 *
 | 
						|
 *  An <code>ObjectSpace::WeakMap</code> object holds references to
 | 
						|
 *  any objects, but those objects can get disposed by GC.
 | 
						|
 */
 | 
						|
 | 
						|
/*  Document-class: GC::Profiler
 | 
						|
 *
 | 
						|
 *  The GC profiler provides access to information on GC runs including time,
 | 
						|
 *  length and object space size.
 | 
						|
 *
 | 
						|
 *  Example:
 | 
						|
 *
 | 
						|
 *    GC::Profiler.enable
 | 
						|
 *
 | 
						|
 *    require 'rdoc/rdoc'
 | 
						|
 *
 | 
						|
 *    puts GC::Profiler.result
 | 
						|
 *
 | 
						|
 *    GC::Profiler.disable
 | 
						|
 *
 | 
						|
 *  See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  The <code>GC</code> module provides an interface to Ruby's mark and
 | 
						|
 *  sweep garbage collection mechanism. Some of the underlying methods
 | 
						|
 *  are also available via the ObjectSpace module.
 | 
						|
 *
 | 
						|
 *  You may obtain information about the operation of the GC through
 | 
						|
 *  GC::Profiler.
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
Init_GC(void)
 | 
						|
{
 | 
						|
    VALUE rb_mObSpace;
 | 
						|
    VALUE rb_mProfiler;
 | 
						|
 | 
						|
    rb_mGC = rb_define_module("GC");
 | 
						|
    rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
 | 
						|
    rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
 | 
						|
    rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
 | 
						|
 | 
						|
    rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
 | 
						|
    rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
 | 
						|
 | 
						|
    rb_mObSpace = rb_define_module("ObjectSpace");
 | 
						|
    rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
 | 
						|
    rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
 | 
						|
 | 
						|
    rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
 | 
						|
    rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
 | 
						|
 | 
						|
    rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
 | 
						|
 | 
						|
    nomem_error = rb_exc_new3(rb_eNoMemError,
 | 
						|
			      rb_obj_freeze(rb_str_new2("failed to allocate memory")));
 | 
						|
    OBJ_TAINT(nomem_error);
 | 
						|
    OBJ_FREEZE(nomem_error);
 | 
						|
 | 
						|
    rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
 | 
						|
    rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
 | 
						|
 | 
						|
    rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
 | 
						|
 | 
						|
    {
 | 
						|
	VALUE rb_cWeakMap = rb_define_class_under(rb_mObSpace, "WeakMap", rb_cObject);
 | 
						|
	rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
 | 
						|
	rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
 | 
						|
	rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
 | 
						|
	rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
 | 
						|
    }
 | 
						|
 | 
						|
#if CALC_EXACT_MALLOC_SIZE
 | 
						|
    rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
 | 
						|
    rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
 | 
						|
#endif
 | 
						|
}
 |