mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 81cc3b2655
			
		
	
	
		81cc3b2655
		
	
	
	
	
		
			
			was called, because rb_sweep_method_entry() free live unlinked method entries. [ruby-core:31169] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@28689 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			3420 lines
		
	
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3420 lines
		
	
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   gc.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Tue Oct  5 09:44:46 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
|   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
 | |
|   Copyright (C) 2000  Information-technology Promotion Agency, Japan
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/ruby.h"
 | |
| #include "ruby/st.h"
 | |
| #include "ruby/re.h"
 | |
| #include "ruby/io.h"
 | |
| #include "ruby/util.h"
 | |
| #include "eval_intern.h"
 | |
| #include "vm_core.h"
 | |
| #include "gc.h"
 | |
| #include <stdio.h>
 | |
| #include <setjmp.h>
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #ifdef HAVE_SYS_TIME_H
 | |
| #include <sys/time.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_SYS_RESOURCE_H
 | |
| #include <sys/resource.h>
 | |
| #endif
 | |
| 
 | |
| #if defined _WIN32 || defined __CYGWIN__
 | |
| #include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_VALGRIND_MEMCHECK_H
 | |
| # include <valgrind/memcheck.h>
 | |
| # ifndef VALGRIND_MAKE_MEM_DEFINED
 | |
| #  define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE(p, n)
 | |
| # endif
 | |
| # ifndef VALGRIND_MAKE_MEM_UNDEFINED
 | |
| #  define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE(p, n)
 | |
| # endif
 | |
| #else
 | |
| # define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
 | |
| # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
 | |
| #endif
 | |
| 
 | |
| int rb_io_fptr_finalize(struct rb_io_t*);
 | |
| 
 | |
| #define rb_setjmp(env) RUBY_SETJMP(env)
 | |
| #define rb_jmp_buf rb_jmpbuf_t
 | |
| 
 | |
| /* Make alloca work the best possible way.  */
 | |
| #ifdef __GNUC__
 | |
| # ifndef atarist
 | |
| #  ifndef alloca
 | |
| #   define alloca __builtin_alloca
 | |
| #  endif
 | |
| # endif /* atarist */
 | |
| #else
 | |
| # ifdef HAVE_ALLOCA_H
 | |
| #  include <alloca.h>
 | |
| # else
 | |
| #  ifdef _AIX
 | |
|  #pragma alloca
 | |
| #  else
 | |
| #   ifndef alloca /* predefined by HP cc +Olibcalls */
 | |
| void *alloca ();
 | |
| #   endif
 | |
| #  endif /* AIX */
 | |
| # endif /* HAVE_ALLOCA_H */
 | |
| #endif /* __GNUC__ */
 | |
| 
 | |
| #ifndef GC_MALLOC_LIMIT
 | |
| #define GC_MALLOC_LIMIT 8000000
 | |
| #endif
 | |
| 
 | |
| #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
 | |
| 
 | |
| #define MARK_STACK_MAX 1024
 | |
| 
 | |
| int ruby_gc_debug_indent = 0;
 | |
| 
 | |
| /* for GC profile */
 | |
| #define GC_PROFILE_MORE_DETAIL 0
 | |
| typedef struct gc_profile_record {
 | |
|     double gc_time;
 | |
|     double gc_mark_time;
 | |
|     double gc_sweep_time;
 | |
|     double gc_invoke_time;
 | |
| 
 | |
|     size_t heap_use_slots;
 | |
|     size_t heap_live_objects;
 | |
|     size_t heap_free_objects;
 | |
|     size_t heap_total_objects;
 | |
|     size_t heap_use_size;
 | |
|     size_t heap_total_size;
 | |
| 
 | |
|     int have_finalize;
 | |
|     int is_marked;
 | |
| 
 | |
|     size_t allocate_increase;
 | |
|     size_t allocate_limit;
 | |
| } gc_profile_record;
 | |
| 
 | |
| static double
 | |
| getrusage_time(void)
 | |
| {
 | |
| #ifdef RUSAGE_SELF
 | |
|     struct rusage usage;
 | |
|     struct timeval time;
 | |
|     getrusage(RUSAGE_SELF, &usage);
 | |
|     time = usage.ru_utime;
 | |
|     return time.tv_sec + time.tv_usec * 1e-6;
 | |
| #elif defined _WIN32
 | |
|     FILETIME creation_time, exit_time, kernel_time, user_time;
 | |
|     ULARGE_INTEGER ui;
 | |
|     LONG_LONG q;
 | |
|     double t;
 | |
| 
 | |
|     if (GetProcessTimes(GetCurrentProcess(),
 | |
| 			&creation_time, &exit_time, &kernel_time, &user_time) == 0)
 | |
|     {
 | |
| 	return 0.0;
 | |
|     }
 | |
|     memcpy(&ui, &user_time, sizeof(FILETIME));
 | |
|     q = ui.QuadPart / 10L;
 | |
|     t = (DWORD)(q % 1000000L) * 1e-6;
 | |
|     q /= 1000000L;
 | |
| #ifdef __GNUC__
 | |
|     t += q;
 | |
| #else
 | |
|     t += (double)(DWORD)(q >> 16) * (1 << 16);
 | |
|     t += (DWORD)q & ~(~0 << 16);
 | |
| #endif
 | |
|     return t;
 | |
| #else
 | |
|     return 0.0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define GC_PROF_TIMER_START do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    if (!objspace->profile.record) {\
 | |
| 		objspace->profile.size = 1000;\
 | |
| 		objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);\
 | |
| 	    }\
 | |
| 	    if (count >= objspace->profile.size) {\
 | |
| 		objspace->profile.size += 1000;\
 | |
| 		objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);\
 | |
| 	    }\
 | |
| 	    if (!objspace->profile.record) {\
 | |
| 		rb_bug("gc_profile malloc or realloc miss");\
 | |
| 	    }\
 | |
| 	    MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);\
 | |
| 	    gc_time = getrusage_time();\
 | |
| 	    objspace->profile.record[count].gc_invoke_time = gc_time - objspace->profile.invoke_time;\
 | |
| 	}\
 | |
|     } while(0)
 | |
| 
 | |
| #define GC_PROF_TIMER_STOP(marked) do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    gc_time = getrusage_time() - gc_time;\
 | |
| 	    if (gc_time < 0) gc_time = 0;\
 | |
| 	    objspace->profile.record[count].gc_time = gc_time;\
 | |
| 	    objspace->profile.record[count].is_marked = !!(marked);\
 | |
| 	    GC_PROF_SET_HEAP_INFO(objspace->profile.record[count]);\
 | |
| 	    objspace->profile.count++;\
 | |
| 	}\
 | |
|     } while(0)
 | |
| 
 | |
| #if GC_PROFILE_MORE_DETAIL
 | |
| #define INIT_GC_PROF_PARAMS double gc_time = 0, sweep_time = 0;\
 | |
|     size_t count = objspace->profile.count, total = 0, live = 0
 | |
| 
 | |
| #define GC_PROF_MARK_TIMER_START double mark_time = 0;\
 | |
|     do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    mark_time = getrusage_time();\
 | |
| 	}\
 | |
|     } while(0)
 | |
| 
 | |
| #define GC_PROF_MARK_TIMER_STOP do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    mark_time = getrusage_time() - mark_time;\
 | |
| 	    if (mark_time < 0) mark_time = 0;\
 | |
| 	    objspace->profile.record[objspace->profile.count].gc_mark_time = mark_time;\
 | |
| 	}\
 | |
|     } while(0)
 | |
| 
 | |
| #define GC_PROF_SWEEP_TIMER_START do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    sweep_time = getrusage_time();\
 | |
| 	}\
 | |
|     } while(0)
 | |
| 
 | |
| #define GC_PROF_SWEEP_TIMER_STOP do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    sweep_time = getrusage_time() - sweep_time;\
 | |
| 	    if (sweep_time < 0) sweep_time = 0;\
 | |
| 	    objspace->profile.record[count].gc_sweep_time = sweep_time;\
 | |
| 	}\
 | |
|     } while(0)
 | |
| #define GC_PROF_SET_MALLOC_INFO do {\
 | |
| 	if (objspace->profile.run) {\
 | |
| 	    gc_profile_record *record = &objspace->profile.record[objspace->profile.count];\
 | |
| 	    record->allocate_increase = malloc_increase;\
 | |
| 	    record->allocate_limit = malloc_limit; \
 | |
| 	}\
 | |
|     } while(0)
 | |
| #define GC_PROF_SET_HEAP_INFO(record) do {\
 | |
|         live = objspace->heap.live_num;\
 | |
|         total = heaps_used * HEAP_OBJ_LIMIT;\
 | |
|         record.heap_use_slots = heaps_used;\
 | |
|         record.heap_live_objects = live;\
 | |
|         record.heap_free_objects = total - live;\
 | |
|         record.heap_total_objects = total;\
 | |
|         record.have_finalize = deferred_final_list ? Qtrue : Qfalse;\
 | |
|         record.heap_use_size = live * sizeof(RVALUE);\
 | |
|         record.heap_total_size = total * sizeof(RVALUE);\
 | |
|     } while(0)
 | |
| #define GC_PROF_INC_LIVE_NUM objspace->heap.live_num++
 | |
| #define GC_PROF_DEC_LIVE_NUM objspace->heap.live_num--
 | |
| #else
 | |
| #define INIT_GC_PROF_PARAMS double gc_time = 0;\
 | |
|     size_t count = objspace->profile.count, total = 0, live = 0
 | |
| #define GC_PROF_MARK_TIMER_START
 | |
| #define GC_PROF_MARK_TIMER_STOP
 | |
| #define GC_PROF_SWEEP_TIMER_START
 | |
| #define GC_PROF_SWEEP_TIMER_STOP
 | |
| #define GC_PROF_SET_MALLOC_INFO
 | |
| #define GC_PROF_SET_HEAP_INFO(record) do {\
 | |
|         live = objspace->heap.live_num;\
 | |
|         total = heaps_used * HEAP_OBJ_LIMIT;\
 | |
|         record.heap_total_objects = total;\
 | |
|         record.heap_use_size = live * sizeof(RVALUE);\
 | |
|         record.heap_total_size = total * sizeof(RVALUE);\
 | |
|     } while(0)
 | |
| #define GC_PROF_INC_LIVE_NUM
 | |
| #define GC_PROF_DEC_LIVE_NUM
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
 | |
| #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
 | |
| #endif
 | |
| 
 | |
| typedef struct RVALUE {
 | |
|     union {
 | |
| 	struct {
 | |
| 	    VALUE flags;		/* always 0 for freed obj */
 | |
| 	    struct RVALUE *next;
 | |
| 	} free;
 | |
| 	struct RBasic  basic;
 | |
| 	struct RObject object;
 | |
| 	struct RClass  klass;
 | |
| 	struct RFloat  flonum;
 | |
| 	struct RString string;
 | |
| 	struct RArray  array;
 | |
| 	struct RRegexp regexp;
 | |
| 	struct RHash   hash;
 | |
| 	struct RData   data;
 | |
| 	struct RTypedData   typeddata;
 | |
| 	struct RStruct rstruct;
 | |
| 	struct RBignum bignum;
 | |
| 	struct RFile   file;
 | |
| 	struct RNode   node;
 | |
| 	struct RMatch  match;
 | |
| 	struct RRational rational;
 | |
| 	struct RComplex complex;
 | |
|     } as;
 | |
| #ifdef GC_DEBUG
 | |
|     const char *file;
 | |
|     int   line;
 | |
| #endif
 | |
| } RVALUE;
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
 | |
| #pragma pack(pop)
 | |
| #endif
 | |
| 
 | |
| struct heaps_slot {
 | |
|     void *membase;
 | |
|     RVALUE *slot;
 | |
|     size_t limit;
 | |
|     struct heaps_slot *next;
 | |
|     struct heaps_slot *prev;
 | |
| };
 | |
| 
 | |
| struct sorted_heaps_slot {
 | |
|     RVALUE *start;
 | |
|     RVALUE *end;
 | |
|     struct heaps_slot *slot;
 | |
| };
 | |
| 
 | |
| #define HEAP_MIN_SLOTS 10000
 | |
| #define FREE_MIN  4096
 | |
| 
 | |
| struct gc_list {
 | |
|     VALUE *varptr;
 | |
|     struct gc_list *next;
 | |
| };
 | |
| 
 | |
| #define CALC_EXACT_MALLOC_SIZE 0
 | |
| 
 | |
| typedef struct rb_objspace {
 | |
|     struct {
 | |
| 	size_t limit;
 | |
| 	size_t increase;
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
| 	size_t allocated_size;
 | |
| 	size_t allocations;
 | |
| #endif
 | |
|     } malloc_params;
 | |
|     struct {
 | |
| 	size_t increment;
 | |
| 	struct heaps_slot *ptr;
 | |
| 	struct heaps_slot *sweep_slots;
 | |
| 	struct sorted_heaps_slot *sorted;
 | |
| 	size_t length;
 | |
| 	size_t used;
 | |
| 	RVALUE *freelist;
 | |
| 	RVALUE *range[2];
 | |
| 	RVALUE *freed;
 | |
| 	size_t live_num;
 | |
| 	size_t free_num;
 | |
| 	size_t free_min;
 | |
| 	size_t do_heap_free;
 | |
|     } heap;
 | |
|     struct {
 | |
| 	int dont_gc;
 | |
| 	int during_gc;
 | |
|     } flags;
 | |
|     struct {
 | |
| 	st_table *table;
 | |
| 	RVALUE *deferred;
 | |
|     } final;
 | |
|     struct {
 | |
| 	VALUE buffer[MARK_STACK_MAX];
 | |
| 	VALUE *ptr;
 | |
| 	int overflow;
 | |
|     } markstack;
 | |
|     struct {
 | |
| 	int run;
 | |
| 	gc_profile_record *record;
 | |
| 	size_t count;
 | |
| 	size_t size;
 | |
| 	double invoke_time;
 | |
|     } profile;
 | |
|     struct gc_list *global_list;
 | |
|     unsigned int count;
 | |
|     int gc_stress;
 | |
| } rb_objspace_t;
 | |
| 
 | |
| #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | |
| #define rb_objspace (*GET_VM()->objspace)
 | |
| static int ruby_initial_gc_stress = 0;
 | |
| int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
 | |
| #else
 | |
| static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}, {HEAP_MIN_SLOTS}};
 | |
| int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
 | |
| #endif
 | |
| #define malloc_limit		objspace->malloc_params.limit
 | |
| #define malloc_increase 	objspace->malloc_params.increase
 | |
| #define heaps			objspace->heap.ptr
 | |
| #define heaps_length		objspace->heap.length
 | |
| #define heaps_used		objspace->heap.used
 | |
| #define freelist		objspace->heap.freelist
 | |
| #define lomem			objspace->heap.range[0]
 | |
| #define himem			objspace->heap.range[1]
 | |
| #define heaps_inc		objspace->heap.increment
 | |
| #define heaps_freed		objspace->heap.freed
 | |
| #define dont_gc 		objspace->flags.dont_gc
 | |
| #define during_gc		objspace->flags.during_gc
 | |
| #define finalizer_table 	objspace->final.table
 | |
| #define deferred_final_list	objspace->final.deferred
 | |
| #define mark_stack		objspace->markstack.buffer
 | |
| #define mark_stack_ptr		objspace->markstack.ptr
 | |
| #define mark_stack_overflow	objspace->markstack.overflow
 | |
| #define global_List		objspace->global_list
 | |
| #define ruby_gc_stress		objspace->gc_stress
 | |
| 
 | |
| #define need_call_final 	(finalizer_table && finalizer_table->num_entries)
 | |
| 
 | |
| static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
 | |
| 
 | |
| #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | |
| rb_objspace_t *
 | |
| rb_objspace_alloc(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
 | |
|     memset(objspace, 0, sizeof(*objspace));
 | |
|     malloc_limit = GC_MALLOC_LIMIT;
 | |
|     ruby_gc_stress = ruby_initial_gc_stress;
 | |
| 
 | |
|     return objspace;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_objspace_free(rb_objspace_t *objspace)
 | |
| {
 | |
|     rb_objspace_call_finalizer(objspace);
 | |
|     if (objspace->profile.record) {
 | |
| 	free(objspace->profile.record);
 | |
| 	objspace->profile.record = 0;
 | |
|     }
 | |
|     if (global_List) {
 | |
| 	struct gc_list *list, *next;
 | |
| 	for (list = global_List; list; list = next) {
 | |
| 	    next = list->next;
 | |
| 	    free(list);
 | |
| 	}
 | |
|     }
 | |
|     if (objspace->heap.sorted) {
 | |
| 	size_t i;
 | |
| 	for (i = 0; i < heaps_used; ++i) {
 | |
| 	    free(objspace->heap.sorted[i].slot->membase);
 | |
| 	    free(objspace->heap.sorted[i].slot);
 | |
| 	}
 | |
| 	free(objspace->heap.sorted);
 | |
| 	heaps_used = 0;
 | |
| 	heaps = 0;
 | |
|     }
 | |
|     free(objspace);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* tiny heap size */
 | |
| /* 32KB */
 | |
| /*#define HEAP_SIZE 0x8000 */
 | |
| /* 128KB */
 | |
| /*#define HEAP_SIZE 0x20000 */
 | |
| /* 64KB */
 | |
| /*#define HEAP_SIZE 0x10000 */
 | |
| /* 16KB */
 | |
| #define HEAP_SIZE 0x4000
 | |
| /* 8KB */
 | |
| /*#define HEAP_SIZE 0x2000 */
 | |
| /* 4KB */
 | |
| /*#define HEAP_SIZE 0x1000 */
 | |
| /* 2KB */
 | |
| /*#define HEAP_SIZE 0x800 */
 | |
| 
 | |
| #define HEAP_OBJ_LIMIT (HEAP_SIZE / sizeof(struct RVALUE))
 | |
| 
 | |
| extern VALUE rb_cMutex;
 | |
| extern st_table *rb_class_tbl;
 | |
| 
 | |
| int ruby_disable_gc_stress = 0;
 | |
| 
 | |
| static void run_final(rb_objspace_t *objspace, VALUE obj);
 | |
| static int garbage_collect(rb_objspace_t *objspace);
 | |
| static int gc_lazy_sweep(rb_objspace_t *objspace);
 | |
| 
 | |
| void
 | |
| rb_global_variable(VALUE *var)
 | |
| {
 | |
|     rb_gc_register_address(var);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| ruby_memerror_body(void *dummy)
 | |
| {
 | |
|     rb_memerror();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ruby_memerror(void)
 | |
| {
 | |
|     if (ruby_thread_has_gvl_p()) {
 | |
| 	rb_memerror();
 | |
|     }
 | |
|     else {
 | |
| 	if (ruby_native_thread_p()) {
 | |
| 	    rb_thread_call_with_gvl(ruby_memerror_body, 0);
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* no ruby thread */
 | |
| 	    fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | |
| 	    exit(EXIT_FAILURE);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_memerror(void)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     if (!nomem_error ||
 | |
| 	(rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
 | |
| 	fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | |
| 	exit(EXIT_FAILURE);
 | |
|     }
 | |
|     if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
 | |
| 	rb_thread_raised_clear(th);
 | |
| 	GET_THREAD()->errinfo = nomem_error;
 | |
| 	JUMP_TAG(TAG_RAISE);
 | |
|     }
 | |
|     rb_thread_raised_set(th, RAISED_NOMEMORY);
 | |
|     rb_exc_raise(nomem_error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC.stress                 -> true or false
 | |
|  *
 | |
|  *  returns current status of GC stress mode.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_stress_get(VALUE self)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     return ruby_gc_stress ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC.stress = bool          -> bool
 | |
|  *
 | |
|  *  updates GC stress mode.
 | |
|  *
 | |
|  *  When GC.stress = true, GC is invoked for all GC opportunity:
 | |
|  *  all memory and object allocation.
 | |
|  *
 | |
|  *  Since it makes Ruby very slow, it is only for debugging.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_stress_set(VALUE self, VALUE flag)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     rb_secure(2);
 | |
|     ruby_gc_stress = RTEST(flag);
 | |
|     return flag;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC::Profiler.enable?                 -> true or false
 | |
|  *
 | |
|  *  returns current status of GC profile mode.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_enable_get(VALUE self)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     return objspace->profile.run;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC::Profiler.enable          -> nil
 | |
|  *
 | |
|  *  updates GC profile mode.
 | |
|  *  start profiler for GC.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_enable(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
| 
 | |
|     objspace->profile.run = TRUE;
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC::Profiler.disable          -> nil
 | |
|  *
 | |
|  *  updates GC profile mode.
 | |
|  *  stop profiler for GC.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_disable(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
| 
 | |
|     objspace->profile.run = FALSE;
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *    GC::Profiler.clear          -> nil
 | |
|  *
 | |
|  *  clear before profile data.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_clear(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
 | |
|     objspace->profile.count = 0;
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| negative_size_allocation_error_with_gvl(void *ptr)
 | |
| {
 | |
|     rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
 | |
|     return 0; /* should not be reached */
 | |
| }
 | |
| 
 | |
| static void
 | |
| negative_size_allocation_error(const char *msg)
 | |
| {
 | |
|     if (ruby_thread_has_gvl_p()) {
 | |
| 	rb_raise(rb_eNoMemError, "%s", msg);
 | |
|     }
 | |
|     else {
 | |
| 	if (ruby_native_thread_p()) {
 | |
| 	    rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
 | |
| 	}
 | |
| 	else {
 | |
| 	    fprintf(stderr, "[FATAL] %s\n", msg);
 | |
| 	    exit(EXIT_FAILURE);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void *
 | |
| gc_with_gvl(void *ptr)
 | |
| {
 | |
|     return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr);
 | |
| }
 | |
| 
 | |
| static int
 | |
| garbage_collect_with_gvl(rb_objspace_t *objspace)
 | |
| {
 | |
|     if (dont_gc) return TRUE;
 | |
|     if (ruby_thread_has_gvl_p()) {
 | |
| 	return garbage_collect(objspace);
 | |
|     }
 | |
|     else {
 | |
| 	if (ruby_native_thread_p()) {
 | |
| 	    return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace);
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* no ruby thread */
 | |
| 	    fprintf(stderr, "[FATAL] failed to allocate memory\n");
 | |
| 	    exit(EXIT_FAILURE);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void vm_xfree(rb_objspace_t *objspace, void *ptr);
 | |
| 
 | |
| static void *
 | |
| vm_xmalloc(rb_objspace_t *objspace, size_t size)
 | |
| {
 | |
|     void *mem;
 | |
| 
 | |
|     if ((ssize_t)size < 0) {
 | |
| 	negative_size_allocation_error("negative allocation size (or too big)");
 | |
|     }
 | |
|     if (size == 0) size = 1;
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     size += sizeof(size_t);
 | |
| #endif
 | |
| 
 | |
|     if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
 | |
| 	(malloc_increase+size) > malloc_limit) {
 | |
| 	garbage_collect_with_gvl(objspace);
 | |
|     }
 | |
|     mem = malloc(size);
 | |
|     if (!mem) {
 | |
| 	if (garbage_collect_with_gvl(objspace)) {
 | |
| 	    mem = malloc(size);
 | |
| 	}
 | |
| 	if (!mem) {
 | |
| 	    ruby_memerror();
 | |
| 	}
 | |
|     }
 | |
|     malloc_increase += size;
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     objspace->malloc_params.allocated_size += size;
 | |
|     objspace->malloc_params.allocations++;
 | |
|     ((size_t *)mem)[0] = size;
 | |
|     mem = (size_t *)mem + 1;
 | |
| #endif
 | |
| 
 | |
|     return mem;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
 | |
| {
 | |
|     void *mem;
 | |
| 
 | |
|     if ((ssize_t)size < 0) {
 | |
| 	negative_size_allocation_error("negative re-allocation size");
 | |
|     }
 | |
|     if (!ptr) return vm_xmalloc(objspace, size);
 | |
|     if (size == 0) {
 | |
| 	vm_xfree(objspace, ptr);
 | |
| 	return 0;
 | |
|     }
 | |
|     if (ruby_gc_stress && !ruby_disable_gc_stress)
 | |
| 	garbage_collect_with_gvl(objspace);
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     size += sizeof(size_t);
 | |
|     objspace->malloc_params.allocated_size -= size;
 | |
|     ptr = (size_t *)ptr - 1;
 | |
| #endif
 | |
| 
 | |
|     mem = realloc(ptr, size);
 | |
|     if (!mem) {
 | |
| 	if (garbage_collect_with_gvl(objspace)) {
 | |
| 	    mem = realloc(ptr, size);
 | |
| 	}
 | |
| 	if (!mem) {
 | |
| 	    ruby_memerror();
 | |
|         }
 | |
|     }
 | |
|     malloc_increase += size;
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     objspace->malloc_params.allocated_size += size;
 | |
|     ((size_t *)mem)[0] = size;
 | |
|     mem = (size_t *)mem + 1;
 | |
| #endif
 | |
| 
 | |
|     return mem;
 | |
| }
 | |
| 
 | |
| static void
 | |
| vm_xfree(rb_objspace_t *objspace, void *ptr)
 | |
| {
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     size_t size;
 | |
|     ptr = ((size_t *)ptr) - 1;
 | |
|     size = ((size_t*)ptr)[0];
 | |
|     objspace->malloc_params.allocated_size -= size;
 | |
|     objspace->malloc_params.allocations--;
 | |
| #endif
 | |
| 
 | |
|     free(ptr);
 | |
| }
 | |
| 
 | |
| void *
 | |
| ruby_xmalloc(size_t size)
 | |
| {
 | |
|     return vm_xmalloc(&rb_objspace, size);
 | |
| }
 | |
| 
 | |
| void *
 | |
| ruby_xmalloc2(size_t n, size_t size)
 | |
| {
 | |
|     size_t len = size * n;
 | |
|     if (n != 0 && size != len / n) {
 | |
| 	rb_raise(rb_eArgError, "malloc: possible integer overflow");
 | |
|     }
 | |
|     return vm_xmalloc(&rb_objspace, len);
 | |
| }
 | |
| 
 | |
| void *
 | |
| ruby_xcalloc(size_t n, size_t size)
 | |
| {
 | |
|     void *mem = ruby_xmalloc2(n, size);
 | |
|     memset(mem, 0, n * size);
 | |
| 
 | |
|     return mem;
 | |
| }
 | |
| 
 | |
| void *
 | |
| ruby_xrealloc(void *ptr, size_t size)
 | |
| {
 | |
|     return vm_xrealloc(&rb_objspace, ptr, size);
 | |
| }
 | |
| 
 | |
| void *
 | |
| ruby_xrealloc2(void *ptr, size_t n, size_t size)
 | |
| {
 | |
|     size_t len = size * n;
 | |
|     if (n != 0 && size != len / n) {
 | |
| 	rb_raise(rb_eArgError, "realloc: possible integer overflow");
 | |
|     }
 | |
|     return ruby_xrealloc(ptr, len);
 | |
| }
 | |
| 
 | |
| void
 | |
| ruby_xfree(void *x)
 | |
| {
 | |
|     if (x)
 | |
| 	vm_xfree(&rb_objspace, x);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.enable    -> true or false
 | |
|  *
 | |
|  *  Enables garbage collection, returning <code>true</code> if garbage
 | |
|  *  collection was previously disabled.
 | |
|  *
 | |
|  *     GC.disable   #=> false
 | |
|  *     GC.enable    #=> true
 | |
|  *     GC.enable    #=> false
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_gc_enable(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     int old = dont_gc;
 | |
| 
 | |
|     dont_gc = FALSE;
 | |
|     return old ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.disable    -> true or false
 | |
|  *
 | |
|  *  Disables garbage collection, returning <code>true</code> if garbage
 | |
|  *  collection was already disabled.
 | |
|  *
 | |
|  *     GC.disable   #=> false
 | |
|  *     GC.disable   #=> true
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_gc_disable(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     int old = dont_gc;
 | |
| 
 | |
|     dont_gc = TRUE;
 | |
|     return old ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| VALUE rb_mGC;
 | |
| 
 | |
| void
 | |
| rb_gc_register_mark_object(VALUE obj)
 | |
| {
 | |
|     VALUE ary = GET_THREAD()->vm->mark_object_ary;
 | |
|     rb_ary_push(ary, obj);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_register_address(VALUE *addr)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     struct gc_list *tmp;
 | |
| 
 | |
|     tmp = ALLOC(struct gc_list);
 | |
|     tmp->next = global_List;
 | |
|     tmp->varptr = addr;
 | |
|     global_List = tmp;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_unregister_address(VALUE *addr)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     struct gc_list *tmp = global_List;
 | |
| 
 | |
|     if (tmp->varptr == addr) {
 | |
| 	global_List = tmp->next;
 | |
| 	xfree(tmp);
 | |
| 	return;
 | |
|     }
 | |
|     while (tmp->next) {
 | |
| 	if (tmp->next->varptr == addr) {
 | |
| 	    struct gc_list *t = tmp->next;
 | |
| 
 | |
| 	    tmp->next = tmp->next->next;
 | |
| 	    xfree(t);
 | |
| 	    break;
 | |
| 	}
 | |
| 	tmp = tmp->next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
 | |
| {
 | |
|     struct sorted_heaps_slot *p;
 | |
|     size_t size;
 | |
| 
 | |
|     size = next_heaps_length*sizeof(struct sorted_heaps_slot);
 | |
| 
 | |
|     if (heaps_used > 0) {
 | |
| 	p = (struct sorted_heaps_slot *)realloc(objspace->heap.sorted, size);
 | |
| 	if (p) objspace->heap.sorted = p;
 | |
|     }
 | |
|     else {
 | |
| 	p = objspace->heap.sorted = (struct sorted_heaps_slot *)malloc(size);
 | |
|     }
 | |
| 
 | |
|     if (p == 0) {
 | |
| 	during_gc = 0;
 | |
| 	rb_memerror();
 | |
|     }
 | |
|     heaps_length = next_heaps_length;
 | |
| }
 | |
| 
 | |
| static void
 | |
| assign_heap_slot(rb_objspace_t *objspace)
 | |
| {
 | |
|     RVALUE *p, *pend, *membase;
 | |
|     struct heaps_slot *slot;
 | |
|     size_t hi, lo, mid;
 | |
|     size_t objs;
 | |
| 
 | |
|     objs = HEAP_OBJ_LIMIT;
 | |
|     p = (RVALUE*)malloc(HEAP_SIZE);
 | |
|     slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
 | |
|     MEMZERO((void*)slot, struct heaps_slot, 1);
 | |
| 
 | |
|     if (p == 0 || slot == 0) {
 | |
| 	during_gc = 0;
 | |
| 	rb_memerror();
 | |
|     }
 | |
| 
 | |
|     slot->next = heaps;
 | |
|     if (heaps) heaps->prev = slot;
 | |
|     heaps = slot;
 | |
| 
 | |
|     membase = p;
 | |
|     if ((VALUE)p % sizeof(RVALUE) != 0) {
 | |
| 	p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
 | |
| 	if ((HEAP_SIZE - HEAP_OBJ_LIMIT * sizeof(RVALUE)) < (size_t)((char*)p - (char*)membase)) {
 | |
| 	    objs--;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     lo = 0;
 | |
|     hi = heaps_used;
 | |
|     while (lo < hi) {
 | |
| 	register RVALUE *mid_membase;
 | |
| 	mid = (lo + hi) / 2;
 | |
| 	mid_membase = objspace->heap.sorted[mid].slot->membase;
 | |
| 	if (mid_membase < membase) {
 | |
| 	    lo = mid + 1;
 | |
| 	}
 | |
| 	else if (mid_membase > membase) {
 | |
| 	    hi = mid;
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
 | |
| 	}
 | |
|     }
 | |
|     if (hi < heaps_used) {
 | |
| 	MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct sorted_heaps_slot, heaps_used - hi);
 | |
|     }
 | |
|     objspace->heap.sorted[hi].slot = slot;
 | |
|     objspace->heap.sorted[hi].start = p;
 | |
|     objspace->heap.sorted[hi].end = (p + objs);
 | |
|     heaps->membase = membase;
 | |
|     heaps->slot = p;
 | |
|     heaps->limit = objs;
 | |
|     objspace->heap.free_num += objs;
 | |
|     pend = p + objs;
 | |
|     if (lomem == 0 || lomem > p) lomem = p;
 | |
|     if (himem < pend) himem = pend;
 | |
|     heaps_used++;
 | |
| 
 | |
|     while (p < pend) {
 | |
| 	p->as.free.flags = 0;
 | |
| 	p->as.free.next = freelist;
 | |
| 	freelist = p;
 | |
| 	p++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_heap(rb_objspace_t *objspace)
 | |
| {
 | |
|     size_t add, i;
 | |
| 
 | |
|     add = HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT;
 | |
| 
 | |
|     if (!add) {
 | |
|         add = 1;
 | |
|     }
 | |
| 
 | |
|     if ((heaps_used + add) > heaps_length) {
 | |
|         allocate_sorted_heaps(objspace, heaps_used + add);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < add; i++) {
 | |
|         assign_heap_slot(objspace);
 | |
|     }
 | |
|     heaps_inc = 0;
 | |
|     objspace->profile.invoke_time = getrusage_time();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| set_heaps_increment(rb_objspace_t *objspace)
 | |
| {
 | |
|     size_t next_heaps_length = (size_t)(heaps_used * 1.8);
 | |
| 
 | |
|     if (next_heaps_length == heaps_used) {
 | |
|         next_heaps_length++;
 | |
|     }
 | |
| 
 | |
|     heaps_inc = next_heaps_length - heaps_used;
 | |
| 
 | |
|     if (next_heaps_length > heaps_length) {
 | |
| 	allocate_sorted_heaps(objspace, next_heaps_length);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| heaps_increment(rb_objspace_t *objspace)
 | |
| {
 | |
|     if (heaps_inc > 0) {
 | |
|         assign_heap_slot(objspace);
 | |
| 	heaps_inc--;
 | |
| 	return TRUE;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| #define RANY(o) ((RVALUE*)(o))
 | |
| 
 | |
| static VALUE
 | |
| rb_newobj_from_heap(rb_objspace_t *objspace)
 | |
| {
 | |
|     VALUE obj;
 | |
| 
 | |
|     if ((ruby_gc_stress && !ruby_disable_gc_stress) || !freelist) {
 | |
| 	if (!gc_lazy_sweep(objspace)) {
 | |
| 	    during_gc = 0;
 | |
| 	    rb_memerror();
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     obj = (VALUE)freelist;
 | |
|     freelist = freelist->as.free.next;
 | |
| 
 | |
|     MEMZERO((void*)obj, RVALUE, 1);
 | |
| #ifdef GC_DEBUG
 | |
|     RANY(obj)->file = rb_sourcefile();
 | |
|     RANY(obj)->line = rb_sourceline();
 | |
| #endif
 | |
|     GC_PROF_INC_LIVE_NUM;
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| #if USE_VALUE_CACHE
 | |
| static VALUE
 | |
| rb_fill_value_cache(rb_thread_t *th)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     int i;
 | |
|     VALUE rv;
 | |
| 
 | |
|     /* LOCK */
 | |
|     for (i=0; i<RUBY_VM_VALUE_CACHE_SIZE; i++) {
 | |
| 	VALUE v = rb_newobj_from_heap(objspace);
 | |
| 
 | |
| 	th->value_cache[i] = v;
 | |
| 	RBASIC(v)->flags = FL_MARK;
 | |
|     }
 | |
|     th->value_cache_ptr = &th->value_cache[0];
 | |
|     rv = rb_newobj_from_heap(objspace);
 | |
|     /* UNLOCK */
 | |
|     return rv;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int
 | |
| rb_during_gc(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     return during_gc;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_newobj(void)
 | |
| {
 | |
| #if USE_VALUE_CACHE || (defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE)
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| #endif
 | |
| #if USE_VALUE_CACHE
 | |
|     VALUE v = *th->value_cache_ptr;
 | |
| #endif
 | |
| #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
 | |
|     rb_objspace_t *objspace = th->vm->objspace;
 | |
| #else
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
| #endif
 | |
| 
 | |
|     if (during_gc) {
 | |
| 	dont_gc = 1;
 | |
| 	during_gc = 0;
 | |
| 	rb_bug("object allocation during garbage collection phase");
 | |
|     }
 | |
| 
 | |
| #if USE_VALUE_CACHE
 | |
|     if (v) {
 | |
| 	RBASIC(v)->flags = 0;
 | |
| 	th->value_cache_ptr++;
 | |
|     }
 | |
|     else {
 | |
| 	v = rb_fill_value_cache(th);
 | |
|     }
 | |
| 
 | |
| #if defined(GC_DEBUG)
 | |
|     printf("cache index: %d, v: %p, th: %p\n",
 | |
| 	   th->value_cache_ptr - th->value_cache, v, th);
 | |
| #endif
 | |
|     return v;
 | |
| #else
 | |
|     return rb_newobj_from_heap(objspace);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| NODE*
 | |
| rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
 | |
| {
 | |
|     NODE *n = (NODE*)rb_newobj();
 | |
| 
 | |
|     n->flags |= T_NODE;
 | |
|     nd_set_type(n, type);
 | |
| 
 | |
|     n->u1.value = a0;
 | |
|     n->u2.value = a1;
 | |
|     n->u3.value = a2;
 | |
| 
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
 | |
| {
 | |
|     NEWOBJ(data, struct RData);
 | |
|     if (klass) Check_Type(klass, T_CLASS);
 | |
|     OBJSETUP(data, klass, T_DATA);
 | |
|     data->data = datap;
 | |
|     data->dfree = dfree;
 | |
|     data->dmark = dmark;
 | |
| 
 | |
|     return (VALUE)data;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
 | |
| {
 | |
|     NEWOBJ(data, struct RTypedData);
 | |
| 
 | |
|     if (klass) Check_Type(klass, T_CLASS);
 | |
| 
 | |
|     OBJSETUP(data, klass, T_DATA);
 | |
| 
 | |
|     data->data = datap;
 | |
|     data->typed_flag = 1;
 | |
|     data->type = type;
 | |
| 
 | |
|     return (VALUE)data;
 | |
| }
 | |
| 
 | |
| size_t
 | |
| rb_objspace_data_type_memsize(VALUE obj)
 | |
| {
 | |
|     if (RTYPEDDATA_P(obj)) {
 | |
| 	return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
 | |
|     }
 | |
|     else {
 | |
| 	return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char *
 | |
| rb_objspace_data_type_name(VALUE obj)
 | |
| {
 | |
|     if (RTYPEDDATA_P(obj)) {
 | |
| 	return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
 | |
|     }
 | |
|     else {
 | |
| 	return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef __ia64
 | |
| #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
 | |
| #else
 | |
| #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
 | |
| #endif
 | |
| 
 | |
| #define STACK_START (th->machine_stack_start)
 | |
| #define STACK_END (th->machine_stack_end)
 | |
| #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
 | |
| 
 | |
| #if STACK_GROW_DIRECTION < 0
 | |
| # define STACK_LENGTH  (size_t)(STACK_START - STACK_END)
 | |
| #elif STACK_GROW_DIRECTION > 0
 | |
| # define STACK_LENGTH  (size_t)(STACK_END - STACK_START + 1)
 | |
| #else
 | |
| # define STACK_LENGTH  ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
 | |
| 			: (size_t)(STACK_END - STACK_START + 1))
 | |
| #endif
 | |
| #if !STACK_GROW_DIRECTION
 | |
| int ruby_stack_grow_direction;
 | |
| int
 | |
| ruby_get_stack_grow_direction(volatile VALUE *addr)
 | |
| {
 | |
|     VALUE *end;
 | |
|     SET_MACHINE_STACK_END(&end);
 | |
| 
 | |
|     if (end > addr) return ruby_stack_grow_direction = 1;
 | |
|     return ruby_stack_grow_direction = -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define GC_WATER_MARK 512
 | |
| 
 | |
| size_t
 | |
| ruby_stack_length(VALUE **p)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     SET_STACK_END;
 | |
|     if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
 | |
|     return STACK_LENGTH;
 | |
| }
 | |
| 
 | |
| static int
 | |
| stack_check(void)
 | |
| {
 | |
|     int ret;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     SET_STACK_END;
 | |
|     ret = STACK_LENGTH > STACK_LEVEL_MAX - GC_WATER_MARK;
 | |
| #ifdef __ia64
 | |
|     if (!ret) {
 | |
|         ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
 | |
|               th->machine_register_stack_maxsize/sizeof(VALUE) - GC_WATER_MARK;
 | |
|     }
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| ruby_stack_check(void)
 | |
| {
 | |
| #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
 | |
|     return 0;
 | |
| #else
 | |
|     return stack_check();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_mark_stack(rb_objspace_t *objspace)
 | |
| {
 | |
|     mark_stack_overflow = 0;
 | |
|     mark_stack_ptr = mark_stack;
 | |
| }
 | |
| 
 | |
| #define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
 | |
| 
 | |
| static void gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev);
 | |
| static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev);
 | |
| 
 | |
| static void
 | |
| gc_mark_all(rb_objspace_t *objspace)
 | |
| {
 | |
|     RVALUE *p, *pend;
 | |
|     size_t i;
 | |
| 
 | |
|     init_mark_stack(objspace);
 | |
|     for (i = 0; i < heaps_used; i++) {
 | |
| 	p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | |
| 	while (p < pend) {
 | |
| 	    if ((p->as.basic.flags & FL_MARK) &&
 | |
| 		(p->as.basic.flags != FL_MARK)) {
 | |
| 		gc_mark_children(objspace, (VALUE)p, 0);
 | |
| 	    }
 | |
| 	    p++;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_mark_rest(rb_objspace_t *objspace)
 | |
| {
 | |
|     VALUE tmp_arry[MARK_STACK_MAX];
 | |
|     VALUE *p;
 | |
| 
 | |
|     p = (mark_stack_ptr - mark_stack) + tmp_arry;
 | |
|     MEMCPY(tmp_arry, mark_stack, VALUE, p - tmp_arry);
 | |
| 
 | |
|     init_mark_stack(objspace);
 | |
|     while (p != tmp_arry) {
 | |
| 	p--;
 | |
| 	gc_mark_children(objspace, *p, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
 | |
| {
 | |
|     register RVALUE *p = RANY(ptr);
 | |
|     register struct sorted_heaps_slot *heap;
 | |
|     register size_t hi, lo, mid;
 | |
| 
 | |
|     if (p < lomem || p > himem) return FALSE;
 | |
|     if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
 | |
| 
 | |
|     /* check if p looks like a pointer using bsearch*/
 | |
|     lo = 0;
 | |
|     hi = heaps_used;
 | |
|     while (lo < hi) {
 | |
| 	mid = (lo + hi) / 2;
 | |
| 	heap = &objspace->heap.sorted[mid];
 | |
| 	if (heap->start <= p) {
 | |
| 	    if (p < heap->end)
 | |
| 		return TRUE;
 | |
| 	    lo = mid + 1;
 | |
| 	}
 | |
| 	else {
 | |
| 	    hi = mid;
 | |
| 	}
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
 | |
| {
 | |
|     VALUE v;
 | |
|     while (n--) {
 | |
|         v = *x;
 | |
|         VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
 | |
| 	if (is_pointer_to_heap(objspace, (void *)v)) {
 | |
| 	    gc_mark(objspace, v, 0);
 | |
| 	}
 | |
| 	x++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
 | |
| {
 | |
|     long n;
 | |
| 
 | |
|     if (end <= start) return;
 | |
|     n = end - start;
 | |
|     mark_locations_array(objspace, start, n);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_mark_locations(VALUE *start, VALUE *end)
 | |
| {
 | |
|     gc_mark_locations(&rb_objspace, start, end);
 | |
| }
 | |
| 
 | |
| #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, start, end)
 | |
| 
 | |
| struct mark_tbl_arg {
 | |
|     rb_objspace_t *objspace;
 | |
|     int lev;
 | |
| };
 | |
| 
 | |
| static int
 | |
| mark_entry(ID key, VALUE value, st_data_t data)
 | |
| {
 | |
|     struct mark_tbl_arg *arg = (void*)data;
 | |
|     gc_mark(arg->objspace, value, arg->lev);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
 | |
| {
 | |
|     struct mark_tbl_arg arg;
 | |
|     if (!tbl) return;
 | |
|     arg.objspace = objspace;
 | |
|     arg.lev = lev;
 | |
|     st_foreach(tbl, mark_entry, (st_data_t)&arg);
 | |
| }
 | |
| 
 | |
| static int
 | |
| mark_key(VALUE key, VALUE value, st_data_t data)
 | |
| {
 | |
|     struct mark_tbl_arg *arg = (void*)data;
 | |
|     gc_mark(arg->objspace, key, arg->lev);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_set(rb_objspace_t *objspace, st_table *tbl, int lev)
 | |
| {
 | |
|     struct mark_tbl_arg arg;
 | |
|     if (!tbl) return;
 | |
|     arg.objspace = objspace;
 | |
|     arg.lev = lev;
 | |
|     st_foreach(tbl, mark_key, (st_data_t)&arg);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_mark_set(st_table *tbl)
 | |
| {
 | |
|     mark_set(&rb_objspace, tbl, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| mark_keyvalue(VALUE key, VALUE value, st_data_t data)
 | |
| {
 | |
|     struct mark_tbl_arg *arg = (void*)data;
 | |
|     gc_mark(arg->objspace, key, arg->lev);
 | |
|     gc_mark(arg->objspace, value, arg->lev);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_hash(rb_objspace_t *objspace, st_table *tbl, int lev)
 | |
| {
 | |
|     struct mark_tbl_arg arg;
 | |
|     if (!tbl) return;
 | |
|     arg.objspace = objspace;
 | |
|     arg.lev = lev;
 | |
|     st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_mark_hash(st_table *tbl)
 | |
| {
 | |
|     mark_hash(&rb_objspace, tbl, 0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me, int lev)
 | |
| {
 | |
|     const rb_method_definition_t *def = me->def;
 | |
| 
 | |
|     gc_mark(objspace, me->klass, lev);
 | |
|     if (!def) return;
 | |
|     switch (def->type) {
 | |
|       case VM_METHOD_TYPE_ISEQ:
 | |
| 	gc_mark(objspace, def->body.iseq->self, lev);
 | |
| 	break;
 | |
|       case VM_METHOD_TYPE_BMETHOD:
 | |
| 	gc_mark(objspace, def->body.proc, lev);
 | |
| 	break;
 | |
|       case VM_METHOD_TYPE_ATTRSET:
 | |
|       case VM_METHOD_TYPE_IVAR:
 | |
| 	gc_mark(objspace, def->body.attr.location, lev);
 | |
| 	break;
 | |
|       default:
 | |
| 	break; /* ignore */
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_mark_method_entry(const rb_method_entry_t *me)
 | |
| {
 | |
|     mark_method_entry(&rb_objspace, me, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
 | |
| {
 | |
|     struct mark_tbl_arg *arg = (void*)data;
 | |
|     mark_method_entry(arg->objspace, me, arg->lev);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mark_m_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
 | |
| {
 | |
|     struct mark_tbl_arg arg;
 | |
|     if (!tbl) return;
 | |
|     arg.objspace = objspace;
 | |
|     arg.lev = lev;
 | |
|     st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
 | |
| }
 | |
| 
 | |
| static int
 | |
| free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
 | |
| {
 | |
|     rb_free_method_entry(me);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_free_m_table(st_table *tbl)
 | |
| {
 | |
|     st_foreach(tbl, free_method_entry_i, 0);
 | |
|     st_free_table(tbl);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_mark_tbl(st_table *tbl)
 | |
| {
 | |
|     mark_tbl(&rb_objspace, tbl, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_mark_maybe(VALUE obj)
 | |
| {
 | |
|     if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
 | |
| 	gc_mark(&rb_objspace, obj, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define GC_LEVEL_MAX 250
 | |
| 
 | |
| static void
 | |
| gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev)
 | |
| {
 | |
|     register RVALUE *obj;
 | |
| 
 | |
|     obj = RANY(ptr);
 | |
|     if (rb_special_const_p(ptr)) return; /* special const not marked */
 | |
|     if (obj->as.basic.flags == 0) return;       /* free cell */
 | |
|     if (obj->as.basic.flags & FL_MARK) return;  /* already marked */
 | |
|     obj->as.basic.flags |= FL_MARK;
 | |
|     objspace->heap.live_num++;
 | |
| 
 | |
|     if (lev > GC_LEVEL_MAX || (lev == 0 && stack_check())) {
 | |
| 	if (!mark_stack_overflow) {
 | |
| 	    if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) {
 | |
| 		*mark_stack_ptr = ptr;
 | |
| 		mark_stack_ptr++;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		mark_stack_overflow = 1;
 | |
| 	    }
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
|     gc_mark_children(objspace, ptr, lev+1);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_mark(VALUE ptr)
 | |
| {
 | |
|     gc_mark(&rb_objspace, ptr, 0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev)
 | |
| {
 | |
|     register RVALUE *obj = RANY(ptr);
 | |
| 
 | |
|     goto marking;		/* skip */
 | |
| 
 | |
|   again:
 | |
|     obj = RANY(ptr);
 | |
|     if (rb_special_const_p(ptr)) return; /* special const not marked */
 | |
|     if (obj->as.basic.flags == 0) return;       /* free cell */
 | |
|     if (obj->as.basic.flags & FL_MARK) return;  /* already marked */
 | |
|     obj->as.basic.flags |= FL_MARK;
 | |
|     objspace->heap.live_num++;
 | |
| 
 | |
|   marking:
 | |
|     if (FL_TEST(obj, FL_EXIVAR)) {
 | |
| 	rb_mark_generic_ivar(ptr);
 | |
|     }
 | |
| 
 | |
|     switch (BUILTIN_TYPE(obj)) {
 | |
|       case T_NIL:
 | |
|       case T_FIXNUM:
 | |
| 	rb_bug("rb_gc_mark() called for broken object");
 | |
| 	break;
 | |
| 
 | |
|       case T_NODE:
 | |
| 	switch (nd_type(obj)) {
 | |
| 	  case NODE_IF:		/* 1,2,3 */
 | |
| 	  case NODE_FOR:
 | |
| 	  case NODE_ITER:
 | |
| 	  case NODE_WHEN:
 | |
| 	  case NODE_MASGN:
 | |
| 	  case NODE_RESCUE:
 | |
| 	  case NODE_RESBODY:
 | |
| 	  case NODE_CLASS:
 | |
| 	  case NODE_BLOCK_PASS:
 | |
| 	    gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
 | |
| 	    /* fall through */
 | |
| 	  case NODE_BLOCK:	/* 1,3 */
 | |
| 	  case NODE_OPTBLOCK:
 | |
| 	  case NODE_ARRAY:
 | |
| 	  case NODE_DSTR:
 | |
| 	  case NODE_DXSTR:
 | |
| 	  case NODE_DREGX:
 | |
| 	  case NODE_DREGX_ONCE:
 | |
| 	  case NODE_ENSURE:
 | |
| 	  case NODE_CALL:
 | |
| 	  case NODE_DEFS:
 | |
| 	  case NODE_OP_ASGN1:
 | |
| 	  case NODE_ARGS:
 | |
| 	    gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | |
| 	    /* fall through */
 | |
| 	  case NODE_SUPER:	/* 3 */
 | |
| 	  case NODE_FCALL:
 | |
| 	  case NODE_DEFN:
 | |
| 	  case NODE_ARGS_AUX:
 | |
| 	    ptr = (VALUE)obj->as.node.u3.node;
 | |
| 	    goto again;
 | |
| 
 | |
| 	  case NODE_WHILE:	/* 1,2 */
 | |
| 	  case NODE_UNTIL:
 | |
| 	  case NODE_AND:
 | |
| 	  case NODE_OR:
 | |
| 	  case NODE_CASE:
 | |
| 	  case NODE_SCLASS:
 | |
| 	  case NODE_DOT2:
 | |
| 	  case NODE_DOT3:
 | |
| 	  case NODE_FLIP2:
 | |
| 	  case NODE_FLIP3:
 | |
| 	  case NODE_MATCH2:
 | |
| 	  case NODE_MATCH3:
 | |
| 	  case NODE_OP_ASGN_OR:
 | |
| 	  case NODE_OP_ASGN_AND:
 | |
| 	  case NODE_MODULE:
 | |
| 	  case NODE_ALIAS:
 | |
| 	  case NODE_VALIAS:
 | |
| 	  case NODE_ARGSCAT:
 | |
| 	    gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | |
| 	    /* fall through */
 | |
| 	  case NODE_GASGN:	/* 2 */
 | |
| 	  case NODE_LASGN:
 | |
| 	  case NODE_DASGN:
 | |
| 	  case NODE_DASGN_CURR:
 | |
| 	  case NODE_IASGN:
 | |
| 	  case NODE_IASGN2:
 | |
| 	  case NODE_CVASGN:
 | |
| 	  case NODE_COLON3:
 | |
| 	  case NODE_OPT_N:
 | |
| 	  case NODE_EVSTR:
 | |
| 	  case NODE_UNDEF:
 | |
| 	  case NODE_POSTEXE:
 | |
| 	    ptr = (VALUE)obj->as.node.u2.node;
 | |
| 	    goto again;
 | |
| 
 | |
| 	  case NODE_HASH:	/* 1 */
 | |
| 	  case NODE_LIT:
 | |
| 	  case NODE_STR:
 | |
| 	  case NODE_XSTR:
 | |
| 	  case NODE_DEFINED:
 | |
| 	  case NODE_MATCH:
 | |
| 	  case NODE_RETURN:
 | |
| 	  case NODE_BREAK:
 | |
| 	  case NODE_NEXT:
 | |
| 	  case NODE_YIELD:
 | |
| 	  case NODE_COLON2:
 | |
| 	  case NODE_SPLAT:
 | |
| 	  case NODE_TO_ARY:
 | |
| 	    ptr = (VALUE)obj->as.node.u1.node;
 | |
| 	    goto again;
 | |
| 
 | |
| 	  case NODE_SCOPE:	/* 2,3 */
 | |
| 	  case NODE_CDECL:
 | |
| 	  case NODE_OPT_ARG:
 | |
| 	    gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
 | |
| 	    ptr = (VALUE)obj->as.node.u2.node;
 | |
| 	    goto again;
 | |
| 
 | |
| 	  case NODE_ZARRAY:	/* - */
 | |
| 	  case NODE_ZSUPER:
 | |
| 	  case NODE_VCALL:
 | |
| 	  case NODE_GVAR:
 | |
| 	  case NODE_LVAR:
 | |
| 	  case NODE_DVAR:
 | |
| 	  case NODE_IVAR:
 | |
| 	  case NODE_CVAR:
 | |
| 	  case NODE_NTH_REF:
 | |
| 	  case NODE_BACK_REF:
 | |
| 	  case NODE_REDO:
 | |
| 	  case NODE_RETRY:
 | |
| 	  case NODE_SELF:
 | |
| 	  case NODE_NIL:
 | |
| 	  case NODE_TRUE:
 | |
| 	  case NODE_FALSE:
 | |
| 	  case NODE_ERRINFO:
 | |
| 	  case NODE_BLOCK_ARG:
 | |
| 	    break;
 | |
| 	  case NODE_ALLOCA:
 | |
| 	    mark_locations_array(objspace,
 | |
| 				 (VALUE*)obj->as.node.u1.value,
 | |
| 				 obj->as.node.u3.cnt);
 | |
| 	    ptr = (VALUE)obj->as.node.u2.node;
 | |
| 	    goto again;
 | |
| 
 | |
| 	  default:		/* unlisted NODE */
 | |
| 	    if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) {
 | |
| 		gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
 | |
| 	    }
 | |
| 	    if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) {
 | |
| 		gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
 | |
| 	    }
 | |
| 	    if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) {
 | |
| 		gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
 | |
| 	    }
 | |
| 	}
 | |
| 	return;			/* no need to mark class. */
 | |
|     }
 | |
| 
 | |
|     gc_mark(objspace, obj->as.basic.klass, lev);
 | |
|     switch (BUILTIN_TYPE(obj)) {
 | |
|       case T_ICLASS:
 | |
|       case T_CLASS:
 | |
|       case T_MODULE:
 | |
| 	mark_m_tbl(objspace, RCLASS_M_TBL(obj), lev);
 | |
| 	mark_tbl(objspace, RCLASS_IV_TBL(obj), lev);
 | |
| 	ptr = RCLASS_SUPER(obj);
 | |
| 	goto again;
 | |
| 
 | |
|       case T_ARRAY:
 | |
| 	if (FL_TEST(obj, ELTS_SHARED)) {
 | |
| 	    ptr = obj->as.array.as.heap.aux.shared;
 | |
| 	    goto again;
 | |
| 	}
 | |
| 	else {
 | |
| 	    long i, len = RARRAY_LEN(obj);
 | |
| 	    VALUE *ptr = RARRAY_PTR(obj);
 | |
| 	    for (i=0; i < len; i++) {
 | |
| 		gc_mark(objspace, *ptr++, lev);
 | |
| 	    }
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case T_HASH:
 | |
| 	mark_hash(objspace, obj->as.hash.ntbl, lev);
 | |
| 	ptr = obj->as.hash.ifnone;
 | |
| 	goto again;
 | |
| 
 | |
|       case T_STRING:
 | |
| #define STR_ASSOC FL_USER3   /* copied from string.c */
 | |
| 	if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
 | |
| 	    ptr = obj->as.string.as.heap.aux.shared;
 | |
| 	    goto again;
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case T_DATA:
 | |
| 	if (RTYPEDDATA_P(obj)) {
 | |
| 	    RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
 | |
| 	    if (mark_func) (*mark_func)(DATA_PTR(obj));
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case T_OBJECT:
 | |
|         {
 | |
|             long i, len = ROBJECT_NUMIV(obj);
 | |
| 	    VALUE *ptr = ROBJECT_IVPTR(obj);
 | |
|             for (i  = 0; i < len; i++) {
 | |
| 		gc_mark(objspace, *ptr++, lev);
 | |
|             }
 | |
|         }
 | |
| 	break;
 | |
| 
 | |
|       case T_FILE:
 | |
|         if (obj->as.file.fptr) {
 | |
|             gc_mark(objspace, obj->as.file.fptr->pathv, lev);
 | |
|             gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing, lev);
 | |
|             gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat, lev);
 | |
|             gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts, lev);
 | |
|             gc_mark(objspace, obj->as.file.fptr->encs.ecopts, lev);
 | |
|             gc_mark(objspace, obj->as.file.fptr->write_lock, lev);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case T_REGEXP:
 | |
|         gc_mark(objspace, obj->as.regexp.src, lev);
 | |
|         break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
|       case T_BIGNUM:
 | |
|       case T_ZOMBIE:
 | |
| 	break;
 | |
| 
 | |
|       case T_MATCH:
 | |
| 	gc_mark(objspace, obj->as.match.regexp, lev);
 | |
| 	if (obj->as.match.str) {
 | |
| 	    ptr = obj->as.match.str;
 | |
| 	    goto again;
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case T_RATIONAL:
 | |
| 	gc_mark(objspace, obj->as.rational.num, lev);
 | |
| 	gc_mark(objspace, obj->as.rational.den, lev);
 | |
| 	break;
 | |
| 
 | |
|       case T_COMPLEX:
 | |
| 	gc_mark(objspace, obj->as.complex.real, lev);
 | |
| 	gc_mark(objspace, obj->as.complex.imag, lev);
 | |
| 	break;
 | |
| 
 | |
|       case T_STRUCT:
 | |
| 	{
 | |
| 	    long len = RSTRUCT_LEN(obj);
 | |
| 	    VALUE *ptr = RSTRUCT_PTR(obj);
 | |
| 
 | |
| 	    while (len--) {
 | |
| 		gc_mark(objspace, *ptr++, lev);
 | |
| 	    }
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
 | |
| 	       BUILTIN_TYPE(obj), (void *)obj,
 | |
| 	       is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int obj_free(rb_objspace_t *, VALUE);
 | |
| 
 | |
| static inline void
 | |
| add_freelist(rb_objspace_t *objspace, RVALUE *p)
 | |
| {
 | |
|     VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
 | |
|     p->as.free.flags = 0;
 | |
|     p->as.free.next = freelist;
 | |
|     freelist = p;
 | |
| }
 | |
| 
 | |
| static void
 | |
| finalize_list(rb_objspace_t *objspace, RVALUE *p)
 | |
| {
 | |
|     while (p) {
 | |
| 	RVALUE *tmp = p->as.free.next;
 | |
| 	run_final(objspace, (VALUE)p);
 | |
| 	if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
 | |
|             if (objspace->heap.sweep_slots) {
 | |
|                 p->as.free.flags = 0;
 | |
|             }
 | |
|             else {
 | |
|                 GC_PROF_DEC_LIVE_NUM;
 | |
|                 add_freelist(objspace, p);
 | |
|             }
 | |
| 	}
 | |
| 	else {
 | |
| 	    struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
 | |
| 	    slot->limit--;
 | |
| 	}
 | |
| 	p = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
 | |
| {
 | |
|     if (slot->prev)
 | |
|         slot->prev->next = slot->next;
 | |
|     if (slot->next)
 | |
|         slot->next->prev = slot->prev;
 | |
|     if (heaps == slot)
 | |
|         heaps = slot->next;
 | |
|     if (objspace->heap.sweep_slots == slot)
 | |
|         objspace->heap.sweep_slots = slot->next;
 | |
|     slot->prev = NULL;
 | |
|     slot->next = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| free_unused_heaps(rb_objspace_t *objspace)
 | |
| {
 | |
|     size_t i, j;
 | |
|     RVALUE *last = 0;
 | |
| 
 | |
|     for (i = j = 1; j < heaps_used; i++) {
 | |
| 	if (objspace->heap.sorted[i].slot->limit == 0) {
 | |
| 	    if (!last) {
 | |
| 		last = objspace->heap.sorted[i].slot->membase;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		free(objspace->heap.sorted[i].slot->membase);
 | |
| 	    }
 | |
|             free(objspace->heap.sorted[i].slot);
 | |
| 	    heaps_used--;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (i != j) {
 | |
| 		objspace->heap.sorted[j] = objspace->heap.sorted[i];
 | |
| 	    }
 | |
| 	    j++;
 | |
| 	}
 | |
|     }
 | |
|     if (last) {
 | |
| 	if (last < heaps_freed) {
 | |
| 	    free(heaps_freed);
 | |
| 	    heaps_freed = last;
 | |
| 	}
 | |
| 	else {
 | |
| 	    free(last);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
 | |
| {
 | |
|     size_t free_num = 0, final_num = 0;
 | |
|     RVALUE *p, *pend;
 | |
|     RVALUE *free = freelist, *final = deferred_final_list;
 | |
|     int deferred;
 | |
| 
 | |
|     p = sweep_slot->slot; pend = p + sweep_slot->limit;
 | |
|     while (p < pend) {
 | |
|         if (!(p->as.basic.flags & FL_MARK)) {
 | |
|             if (p->as.basic.flags &&
 | |
|                 ((deferred = obj_free(objspace, (VALUE)p)) ||
 | |
|                  ((FL_TEST(p, FL_FINALIZE)) && need_call_final))) {
 | |
|                 if (!deferred) {
 | |
|                     p->as.free.flags = T_ZOMBIE;
 | |
|                     RDATA(p)->dfree = 0;
 | |
|                 }
 | |
|                 p->as.free.flags |= FL_MARK;
 | |
|                 p->as.free.next = deferred_final_list;
 | |
|                 deferred_final_list = p;
 | |
|                 final_num++;
 | |
|             }
 | |
|             else {
 | |
|                 add_freelist(objspace, p);
 | |
|                 free_num++;
 | |
|             }
 | |
|         }
 | |
|         else if (BUILTIN_TYPE(p) == T_ZOMBIE) {
 | |
|             /* objects to be finalized */
 | |
|             /* do nothing remain marked */
 | |
|         }
 | |
|         else {
 | |
|             RBASIC(p)->flags &= ~FL_MARK;
 | |
|         }
 | |
|         p++;
 | |
|     }
 | |
|     if (final_num + free_num == sweep_slot->limit &&
 | |
|         objspace->heap.free_num > objspace->heap.do_heap_free) {
 | |
|         RVALUE *pp;
 | |
| 
 | |
|         for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
 | |
| 	    RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
 | |
|             pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
 | |
|         }
 | |
|         sweep_slot->limit = final_num;
 | |
|         freelist = free;	/* cancel this page from freelist */
 | |
|         unlink_heap_slot(objspace, sweep_slot);
 | |
|     }
 | |
|     else {
 | |
|         objspace->heap.free_num += free_num;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| ready_to_gc(rb_objspace_t *objspace)
 | |
| {
 | |
|     if (dont_gc || during_gc) {
 | |
| 	if (!freelist) {
 | |
|             if (!heaps_increment(objspace)) {
 | |
|                 set_heaps_increment(objspace);
 | |
|                 heaps_increment(objspace);
 | |
|             }
 | |
| 	}
 | |
| 	return FALSE;
 | |
|     }
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| before_gc_sweep(rb_objspace_t *objspace)
 | |
| {
 | |
|     freelist = 0;
 | |
|     objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
 | |
|     objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT)  * 0.2);
 | |
|     if (objspace->heap.free_min < FREE_MIN) {
 | |
| 	objspace->heap.do_heap_free = heaps_used * HEAP_OBJ_LIMIT;
 | |
|         objspace->heap.free_min = FREE_MIN;
 | |
|     }
 | |
|     objspace->heap.sweep_slots = heaps;
 | |
|     objspace->heap.free_num = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| after_gc_sweep(rb_objspace_t *objspace)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     GC_PROF_SET_MALLOC_INFO;
 | |
| 
 | |
|     if (objspace->heap.free_num < objspace->heap.free_min) {
 | |
|         set_heaps_increment(objspace);
 | |
|         heaps_increment(objspace);
 | |
|     }
 | |
| 
 | |
|     if (malloc_increase > malloc_limit) {
 | |
| 	malloc_limit += (size_t)((malloc_increase - malloc_limit) * (double)objspace->heap.live_num / (heaps_used * HEAP_OBJ_LIMIT));
 | |
| 	if (malloc_limit < GC_MALLOC_LIMIT) malloc_limit = GC_MALLOC_LIMIT;
 | |
|     }
 | |
|     malloc_increase = 0;
 | |
| 
 | |
|     if (deferred_final_list) {
 | |
|         /* clear finalization list */
 | |
| 	RUBY_VM_SET_FINALIZER_INTERRUPT(GET_THREAD());
 | |
|     }
 | |
|     else{
 | |
| 	free_unused_heaps(objspace);
 | |
|     }
 | |
| 
 | |
|     /* sweep unlinked method entries */
 | |
|     if (th->vm->unlinked_method_entry_list) {
 | |
| 	rb_sweep_method_entry(th->vm);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| lazy_sweep(rb_objspace_t *objspace)
 | |
| {
 | |
|     struct heaps_slot *next;
 | |
| 
 | |
|     heaps_increment(objspace);
 | |
|     while (objspace->heap.sweep_slots) {
 | |
|         next = objspace->heap.sweep_slots->next;
 | |
| 	slot_sweep(objspace, objspace->heap.sweep_slots);
 | |
|         objspace->heap.sweep_slots = next;
 | |
|         if (freelist) {
 | |
|             during_gc = 0;
 | |
|             return TRUE;
 | |
|         }
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| static void gc_marks(rb_objspace_t *objspace);
 | |
| 
 | |
| static int
 | |
| gc_lazy_sweep(rb_objspace_t *objspace)
 | |
| {
 | |
|     int res;
 | |
| 
 | |
|     INIT_GC_PROF_PARAMS;
 | |
| 
 | |
|     if (!ready_to_gc(objspace)) return TRUE;
 | |
| 
 | |
|     during_gc++;
 | |
|     GC_PROF_TIMER_START;
 | |
|     GC_PROF_SWEEP_TIMER_START;
 | |
| 
 | |
|     if (objspace->heap.sweep_slots) {
 | |
|         res = lazy_sweep(objspace);
 | |
|         if (res) {
 | |
|             GC_PROF_SWEEP_TIMER_STOP;
 | |
|             GC_PROF_SET_MALLOC_INFO;
 | |
|             GC_PROF_TIMER_STOP(Qfalse);
 | |
|             return res;
 | |
|         }
 | |
|         after_gc_sweep(objspace);
 | |
|     }
 | |
| 
 | |
|     gc_marks(objspace);
 | |
| 
 | |
|     before_gc_sweep(objspace);
 | |
|     if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.live_num)) {
 | |
| 	set_heaps_increment(objspace);
 | |
|     }
 | |
| 
 | |
|     GC_PROF_SWEEP_TIMER_START;
 | |
|     if(!(res = lazy_sweep(objspace))) {
 | |
|         after_gc_sweep(objspace);
 | |
|         if(freelist) {
 | |
|             res = TRUE;
 | |
|             during_gc = 0;
 | |
|         }
 | |
|     }
 | |
|     GC_PROF_SWEEP_TIMER_STOP;
 | |
| 
 | |
|     GC_PROF_TIMER_STOP(Qtrue);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_sweep(rb_objspace_t *objspace)
 | |
| {
 | |
|     struct heaps_slot *next;
 | |
| 
 | |
|     before_gc_sweep(objspace);
 | |
| 
 | |
|     while (objspace->heap.sweep_slots) {
 | |
|         next = objspace->heap.sweep_slots->next;
 | |
| 	slot_sweep(objspace, objspace->heap.sweep_slots);
 | |
|         objspace->heap.sweep_slots = next;
 | |
|     }
 | |
| 
 | |
|     after_gc_sweep(objspace);
 | |
| 
 | |
|     during_gc = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_force_recycle(VALUE p)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     GC_PROF_DEC_LIVE_NUM;
 | |
|     if (RBASIC(p)->flags & FL_MARK) {
 | |
|         RANY(p)->as.free.flags = 0;
 | |
|     }
 | |
|     else {
 | |
|         add_freelist(objspace, (RVALUE *)p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| make_deferred(RVALUE *p)
 | |
| {
 | |
|     p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| make_io_deferred(RVALUE *p)
 | |
| {
 | |
|     rb_io_t *fptr = p->as.file.fptr;
 | |
|     make_deferred(p);
 | |
|     p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
 | |
|     p->as.data.data = fptr;
 | |
| }
 | |
| 
 | |
| static int
 | |
| obj_free(rb_objspace_t *objspace, VALUE obj)
 | |
| {
 | |
|     switch (BUILTIN_TYPE(obj)) {
 | |
|       case T_NIL:
 | |
|       case T_FIXNUM:
 | |
|       case T_TRUE:
 | |
|       case T_FALSE:
 | |
| 	rb_bug("obj_free() called for broken object");
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     if (FL_TEST(obj, FL_EXIVAR)) {
 | |
| 	rb_free_generic_ivar((VALUE)obj);
 | |
| 	FL_UNSET(obj, FL_EXIVAR);
 | |
|     }
 | |
| 
 | |
|     switch (BUILTIN_TYPE(obj)) {
 | |
|       case T_OBJECT:
 | |
| 	if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
 | |
|             RANY(obj)->as.object.as.heap.ivptr) {
 | |
| 	    xfree(RANY(obj)->as.object.as.heap.ivptr);
 | |
| 	}
 | |
| 	break;
 | |
|       case T_MODULE:
 | |
|       case T_CLASS:
 | |
| 	rb_clear_cache_by_class((VALUE)obj);
 | |
| 	rb_free_m_table(RCLASS_M_TBL(obj));
 | |
| 	if (RCLASS_IV_TBL(obj)) {
 | |
| 	    st_free_table(RCLASS_IV_TBL(obj));
 | |
| 	}
 | |
| 	if (RCLASS_IV_INDEX_TBL(obj)) {
 | |
| 	    st_free_table(RCLASS_IV_INDEX_TBL(obj));
 | |
| 	}
 | |
|         xfree(RANY(obj)->as.klass.ptr);
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	rb_str_free(obj);
 | |
| 	break;
 | |
|       case T_ARRAY:
 | |
| 	rb_ary_free(obj);
 | |
| 	break;
 | |
|       case T_HASH:
 | |
| 	if (RANY(obj)->as.hash.ntbl) {
 | |
| 	    st_free_table(RANY(obj)->as.hash.ntbl);
 | |
| 	}
 | |
| 	break;
 | |
|       case T_REGEXP:
 | |
| 	if (RANY(obj)->as.regexp.ptr) {
 | |
| 	    onig_free(RANY(obj)->as.regexp.ptr);
 | |
| 	}
 | |
| 	break;
 | |
|       case T_DATA:
 | |
| 	if (DATA_PTR(obj)) {
 | |
| 	    if (RTYPEDDATA_P(obj)) {
 | |
| 		RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
 | |
| 	    }
 | |
| 	    if ((long)RANY(obj)->as.data.dfree == -1) {
 | |
| 		xfree(DATA_PTR(obj));
 | |
| 	    }
 | |
| 	    else if (RANY(obj)->as.data.dfree) {
 | |
| 		make_deferred(RANY(obj));
 | |
| 		return 1;
 | |
| 	    }
 | |
| 	}
 | |
| 	break;
 | |
|       case T_MATCH:
 | |
| 	if (RANY(obj)->as.match.rmatch) {
 | |
|             struct rmatch *rm = RANY(obj)->as.match.rmatch;
 | |
| 	    onig_region_free(&rm->regs, 0);
 | |
|             if (rm->char_offset)
 | |
| 		xfree(rm->char_offset);
 | |
| 	    xfree(rm);
 | |
| 	}
 | |
| 	break;
 | |
|       case T_FILE:
 | |
| 	if (RANY(obj)->as.file.fptr) {
 | |
| 	    make_io_deferred(RANY(obj));
 | |
| 	    return 1;
 | |
| 	}
 | |
| 	break;
 | |
|       case T_RATIONAL:
 | |
|       case T_COMPLEX:
 | |
| 	break;
 | |
|       case T_ICLASS:
 | |
| 	/* iClass shares table with the module */
 | |
| 	xfree(RANY(obj)->as.klass.ptr);
 | |
| 	break;
 | |
| 
 | |
|       case T_FLOAT:
 | |
| 	break;
 | |
| 
 | |
|       case T_BIGNUM:
 | |
| 	if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
 | |
| 	    xfree(RBIGNUM_DIGITS(obj));
 | |
| 	}
 | |
| 	break;
 | |
|       case T_NODE:
 | |
| 	switch (nd_type(obj)) {
 | |
| 	  case NODE_SCOPE:
 | |
| 	    if (RANY(obj)->as.node.u1.tbl) {
 | |
| 		xfree(RANY(obj)->as.node.u1.tbl);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case NODE_ALLOCA:
 | |
| 	    xfree(RANY(obj)->as.node.u1.node);
 | |
| 	    break;
 | |
| 	}
 | |
| 	break;			/* no need to free iv_tbl */
 | |
| 
 | |
|       case T_STRUCT:
 | |
| 	if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
 | |
| 	    RANY(obj)->as.rstruct.as.heap.ptr) {
 | |
| 	    xfree(RANY(obj)->as.rstruct.as.heap.ptr);
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	rb_bug("gc_sweep(): unknown data type 0x%x(%p)",
 | |
| 	       BUILTIN_TYPE(obj), (void*)obj);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define GC_NOTIFY 0
 | |
| 
 | |
| void rb_vm_mark(void *ptr);
 | |
| 
 | |
| #if STACK_GROW_DIRECTION < 0
 | |
| #define GET_STACK_BOUNDS(start, end, appendix) (start = STACK_END, end = STACK_START)
 | |
| #elif STACK_GROW_DIRECTION > 0
 | |
| #define GET_STACK_BOUNDS(start, end, appendix) (start = STACK_START, end = STACK_END+appendix)
 | |
| #else
 | |
| #define GET_STACK_BOUNDS(start, end, appendix) \
 | |
|     ((STACK_END < STACK_START) ? \
 | |
|      (start = STACK_END, end = STACK_START) : (start = STACK_START, end = STACK_END+appendix))
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
 | |
| {
 | |
|     rb_jmp_buf save_regs_gc_mark;
 | |
|     VALUE *stack_start, *stack_end;
 | |
| 
 | |
|     FLUSH_REGISTER_WINDOWS;
 | |
|     /* This assumes that all registers are saved into the jmp_buf (and stack) */
 | |
|     rb_setjmp(save_regs_gc_mark);
 | |
| 
 | |
|     SET_STACK_END;
 | |
|     GET_STACK_BOUNDS(stack_start, stack_end, 1);
 | |
| 
 | |
|     mark_locations_array(objspace,
 | |
| 			 (VALUE*)save_regs_gc_mark,
 | |
| 			 sizeof(save_regs_gc_mark) / sizeof(VALUE));
 | |
| 
 | |
|     rb_gc_mark_locations(stack_start, stack_end);
 | |
| #ifdef __ia64
 | |
|     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
 | |
| #endif
 | |
| #if defined(__mc68000__)
 | |
|     mark_locations_array((VALUE*)((char*)STACK_END + 2),
 | |
| 			 (STACK_START - STACK_END));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void rb_gc_mark_encodings(void);
 | |
| 
 | |
| static void
 | |
| gc_clear_mark_on_sweep_slots(rb_objspace_t *objspace)
 | |
| {
 | |
|     struct heaps_slot *scan;
 | |
|     RVALUE *p, *pend;
 | |
| 
 | |
|     if (objspace->heap.sweep_slots) {
 | |
|         while (objspace->heap.sweep_slots) {
 | |
|             scan = objspace->heap.sweep_slots;
 | |
|             p = scan->slot; pend = p + scan->limit;
 | |
|             while (p < pend) {
 | |
|                 if (p->as.free.flags & FL_MARK && BUILTIN_TYPE(p) != T_ZOMBIE) {
 | |
|                     p->as.basic.flags &= ~FL_MARK;
 | |
|                 }
 | |
|                 p++;
 | |
|             }
 | |
|             objspace->heap.sweep_slots = objspace->heap.sweep_slots->next;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_marks(rb_objspace_t *objspace)
 | |
| {
 | |
|     struct gc_list *list;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     GC_PROF_MARK_TIMER_START;
 | |
| 
 | |
|     objspace->heap.live_num = 0;
 | |
|     objspace->count++;
 | |
| 
 | |
| 
 | |
|     gc_clear_mark_on_sweep_slots(objspace);
 | |
| 
 | |
|     SET_STACK_END;
 | |
| 
 | |
|     init_mark_stack(objspace);
 | |
| 
 | |
|     th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
 | |
| 
 | |
|     if (finalizer_table) {
 | |
| 	mark_tbl(objspace, finalizer_table, 0);
 | |
|     }
 | |
| 
 | |
|     mark_current_machine_context(objspace, th);
 | |
| 
 | |
|     rb_gc_mark_threads();
 | |
|     rb_gc_mark_symbols();
 | |
|     rb_gc_mark_encodings();
 | |
| 
 | |
|     /* mark protected global variables */
 | |
|     for (list = global_List; list; list = list->next) {
 | |
| 	rb_gc_mark_maybe(*list->varptr);
 | |
|     }
 | |
|     rb_mark_end_proc();
 | |
|     rb_gc_mark_global_tbl();
 | |
| 
 | |
|     mark_tbl(objspace, rb_class_tbl, 0);
 | |
| 
 | |
|     /* mark generic instance variables for special constants */
 | |
|     rb_mark_generic_ivar_tbl();
 | |
| 
 | |
|     rb_gc_mark_parser();
 | |
| 
 | |
|     /* gc_mark objects whose marking are not completed*/
 | |
|     while (!MARK_STACK_EMPTY) {
 | |
| 	if (mark_stack_overflow) {
 | |
| 	    gc_mark_all(objspace);
 | |
| 	}
 | |
| 	else {
 | |
| 	    gc_mark_rest(objspace);
 | |
| 	}
 | |
|     }
 | |
|     GC_PROF_MARK_TIMER_STOP;
 | |
| }
 | |
| 
 | |
| static int
 | |
| garbage_collect(rb_objspace_t *objspace)
 | |
| {
 | |
|     INIT_GC_PROF_PARAMS;
 | |
| 
 | |
|     if (GC_NOTIFY) printf("start garbage_collect()\n");
 | |
| 
 | |
|     if (!heaps) {
 | |
| 	return FALSE;
 | |
|     }
 | |
|     if (!ready_to_gc(objspace)) {
 | |
|         return TRUE;
 | |
|     }
 | |
| 
 | |
|     GC_PROF_TIMER_START;
 | |
| 
 | |
|     during_gc++;
 | |
|     gc_marks(objspace);
 | |
| 
 | |
|     GC_PROF_SWEEP_TIMER_START;
 | |
|     gc_sweep(objspace);
 | |
|     GC_PROF_SWEEP_TIMER_STOP;
 | |
| 
 | |
|     GC_PROF_TIMER_STOP(Qtrue);
 | |
|     if (GC_NOTIFY) printf("end garbage_collect()\n");
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_garbage_collect(void)
 | |
| {
 | |
|     return garbage_collect(&rb_objspace);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_mark_machine_stack(rb_thread_t *th)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     VALUE *stack_start, *stack_end;
 | |
| 
 | |
|     GET_STACK_BOUNDS(stack_start, stack_end, 0);
 | |
|     rb_gc_mark_locations(stack_start, stack_end);
 | |
| #ifdef __ia64
 | |
|     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.start                     -> nil
 | |
|  *     gc.garbage_collect           -> nil
 | |
|  *     ObjectSpace.garbage_collect  -> nil
 | |
|  *
 | |
|  *  Initiates garbage collection, unless manually disabled.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_gc_start(void)
 | |
| {
 | |
|     rb_gc();
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| #undef Init_stack
 | |
| 
 | |
| void
 | |
| Init_stack(volatile VALUE *addr)
 | |
| {
 | |
|     ruby_init_stack(addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: ObjectSpace
 | |
|  *
 | |
|  *  The <code>ObjectSpace</code> module contains a number of routines
 | |
|  *  that interact with the garbage collection facility and allow you to
 | |
|  *  traverse all living objects with an iterator.
 | |
|  *
 | |
|  *  <code>ObjectSpace</code> also provides support for object
 | |
|  *  finalizers, procs that will be called when a specific object is
 | |
|  *  about to be destroyed by garbage collection.
 | |
|  *
 | |
|  *     include ObjectSpace
 | |
|  *
 | |
|  *
 | |
|  *     a = "A"
 | |
|  *     b = "B"
 | |
|  *     c = "C"
 | |
|  *
 | |
|  *
 | |
|  *     define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
 | |
|  *     define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
 | |
|  *     define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     Finalizer three on 537763470
 | |
|  *     Finalizer one on 537763480
 | |
|  *     Finalizer two on 537763480
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_heap(void)
 | |
| {
 | |
|     init_heap(&rb_objspace);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rb_objspace_each_objects() is special C API to walk through
 | |
|  * Ruby object space.  This C API is too difficult to use it.
 | |
|  * To be frank, you should not use it. Or you need to read the
 | |
|  * source code of this function and understand what this function does.
 | |
|  *
 | |
|  * 'callback' will be called several times (the number of heap slot,
 | |
|  * at current implementation) with:
 | |
|  *   vstart: a pointer to the first living object of the heap_slot.
 | |
|  *   vend: a pointer to next to the valid heap_slot area.
 | |
|  *   stride: a distance to next VALUE.
 | |
|  *
 | |
|  * If callback() returns non-zero, the iteration will be stopped.
 | |
|  *
 | |
|  * This is a sample callback code to iterate liveness objects:
 | |
|  *
 | |
|  *   int
 | |
|  *   sample_callback(void *vstart, void *vend, int stride, void *data) {
 | |
|  *     VALUE v = (VALUE)vstart;
 | |
|  *     for (; v != (VALUE)vend; v += stride) {
 | |
|  *       if (RBASIC(v)->flags) { // liveness check
 | |
|  *       // do something with live object 'v'
 | |
|  *     }
 | |
|  *     return 0; // continue to iteration
 | |
|  *   }
 | |
|  *
 | |
|  * Note: 'vstart' is not a top of heap_slot.  This point the first
 | |
|  *       living object to grasp at least one object to avoid GC issue.
 | |
|  *       This means that you can not walk through all Ruby object slot
 | |
|  *       including freed object slot.
 | |
|  *
 | |
|  * Note: On this implementation, 'stride' is same as sizeof(RVALUE).
 | |
|  *       However, there are possibilities to pass variable values with
 | |
|  *       'stride' with some reasons.  You must use stride instead of
 | |
|  *       use some constant value in the iteration.
 | |
|  */
 | |
| void
 | |
| rb_objspace_each_objects(int (*callback)(void *vstart, void *vend,
 | |
| 					 size_t stride, void *d),
 | |
| 			 void *data)
 | |
| {
 | |
|     size_t i;
 | |
|     RVALUE *membase = 0;
 | |
|     RVALUE *pstart, *pend;
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     volatile VALUE v;
 | |
| 
 | |
|     i = 0;
 | |
|     while (i < heaps_used) {
 | |
| 	while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1].slot->membase)
 | |
| 	    i--;
 | |
| 	while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i].slot->membase <= (uintptr_t)membase )
 | |
| 	    i++;
 | |
| 	if (heaps_used <= i)
 | |
| 	  break;
 | |
| 	membase = objspace->heap.sorted[i].slot->membase;
 | |
| 
 | |
| 	pstart = objspace->heap.sorted[i].slot->slot;
 | |
| 	pend = pstart + objspace->heap.sorted[i].slot->limit;
 | |
| 
 | |
| 	for (; pstart != pend; pstart++) {
 | |
| 	    if (pstart->as.basic.flags) {
 | |
| 		v = (VALUE)pstart; /* acquire to save this object */
 | |
| 		break;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (pstart != pend) {
 | |
| 	    if ((*callback)(pstart, pend, sizeof(RVALUE), data)) {
 | |
| 		return;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| struct os_each_struct {
 | |
|     size_t num;
 | |
|     VALUE of;
 | |
| };
 | |
| 
 | |
| static int
 | |
| os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
 | |
| {
 | |
|     struct os_each_struct *oes = (struct os_each_struct *)data;
 | |
|     RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
 | |
|     volatile VALUE v;
 | |
| 
 | |
|     for (; p != pend; p++) {
 | |
| 	if (p->as.basic.flags) {
 | |
| 	    switch (BUILTIN_TYPE(p)) {
 | |
| 	      case T_NONE:
 | |
| 	      case T_ICLASS:
 | |
| 	      case T_NODE:
 | |
| 	      case T_ZOMBIE:
 | |
| 		continue;
 | |
| 	      case T_CLASS:
 | |
| 		if (FL_TEST(p, FL_SINGLETON))
 | |
| 		  continue;
 | |
| 	      default:
 | |
| 		if (!p->as.basic.klass) continue;
 | |
| 		v = (VALUE)p;
 | |
| 		if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
 | |
| 		    rb_yield(v);
 | |
| 		    oes->num++;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| os_obj_of(VALUE of)
 | |
| {
 | |
|     struct os_each_struct oes;
 | |
| 
 | |
|     oes.num = 0;
 | |
|     oes.of = of;
 | |
|     rb_objspace_each_objects(os_obj_of_i, &oes);
 | |
|     return SIZET2NUM(oes.num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
 | |
|  *     ObjectSpace.each_object([module])              -> an_enumerator
 | |
|  *
 | |
|  *  Calls the block once for each living, nonimmediate object in this
 | |
|  *  Ruby process. If <i>module</i> is specified, calls the block
 | |
|  *  for only those classes or modules that match (or are a subclass of)
 | |
|  *  <i>module</i>. Returns the number of objects found. Immediate
 | |
|  *  objects (<code>Fixnum</code>s, <code>Symbol</code>s
 | |
|  *  <code>true</code>, <code>false</code>, and <code>nil</code>) are
 | |
|  *  never returned. In the example below, <code>each_object</code>
 | |
|  *  returns both the numbers we defined and several constants defined in
 | |
|  *  the <code>Math</code> module.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = 102.7
 | |
|  *     b = 95       # Won't be returned
 | |
|  *     c = 12345678987654321
 | |
|  *     count = ObjectSpace.each_object(Numeric) {|x| p x }
 | |
|  *     puts "Total count: #{count}"
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     12345678987654321
 | |
|  *     102.7
 | |
|  *     2.71828182845905
 | |
|  *     3.14159265358979
 | |
|  *     2.22044604925031e-16
 | |
|  *     1.7976931348623157e+308
 | |
|  *     2.2250738585072e-308
 | |
|  *     Total count: 7
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| os_each_obj(int argc, VALUE *argv, VALUE os)
 | |
| {
 | |
|     VALUE of;
 | |
| 
 | |
|     rb_secure(4);
 | |
|     if (argc == 0) {
 | |
| 	of = 0;
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "01", &of);
 | |
|     }
 | |
|     RETURN_ENUMERATOR(os, 1, &of);
 | |
|     return os_obj_of(of);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ObjectSpace.undefine_finalizer(obj)
 | |
|  *
 | |
|  *  Removes all finalizers for <i>obj</i>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| undefine_final(VALUE os, VALUE obj)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     if (OBJ_FROZEN(obj)) rb_error_frozen("object");
 | |
|     if (finalizer_table) {
 | |
| 	st_delete(finalizer_table, (st_data_t*)&obj, 0);
 | |
|     }
 | |
|     FL_UNSET(obj, FL_FINALIZE);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ObjectSpace.define_finalizer(obj, aProc=proc())
 | |
|  *
 | |
|  *  Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
 | |
|  *  was destroyed.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| define_final(int argc, VALUE *argv, VALUE os)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     VALUE obj, block, table;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &obj, &block);
 | |
|     if (OBJ_FROZEN(obj)) rb_error_frozen("object");
 | |
|     if (argc == 1) {
 | |
| 	block = rb_block_proc();
 | |
|     }
 | |
|     else if (!rb_respond_to(block, rb_intern("call"))) {
 | |
| 	rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
 | |
| 		 rb_obj_classname(block));
 | |
|     }
 | |
|     if (!FL_ABLE(obj)) {
 | |
| 	rb_raise(rb_eArgError, "cannot define finalizer for %s",
 | |
| 		 rb_obj_classname(obj));
 | |
|     }
 | |
|     RBASIC(obj)->flags |= FL_FINALIZE;
 | |
| 
 | |
|     block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
 | |
|     OBJ_FREEZE(block);
 | |
| 
 | |
|     if (!finalizer_table) {
 | |
| 	finalizer_table = st_init_numtable();
 | |
|     }
 | |
|     if (st_lookup(finalizer_table, obj, &table)) {
 | |
| 	rb_ary_push(table, block);
 | |
|     }
 | |
|     else {
 | |
| 	table = rb_ary_new3(1, block);
 | |
| 	RBASIC(table)->klass = 0;
 | |
| 	st_add_direct(finalizer_table, obj, table);
 | |
|     }
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_copy_finalizer(VALUE dest, VALUE obj)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     VALUE table;
 | |
| 
 | |
|     if (!finalizer_table) return;
 | |
|     if (!FL_TEST(obj, FL_FINALIZE)) return;
 | |
|     if (st_lookup(finalizer_table, obj, &table)) {
 | |
| 	st_insert(finalizer_table, dest, table);
 | |
|     }
 | |
|     FL_SET(dest, FL_FINALIZE);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| run_single_final(VALUE arg)
 | |
| {
 | |
|     VALUE *args = (VALUE *)arg;
 | |
|     rb_eval_cmd(args[0], args[1], (int)args[2]);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE objid, VALUE table)
 | |
| {
 | |
|     long i;
 | |
|     int status;
 | |
|     VALUE args[3];
 | |
| 
 | |
|     args[1] = 0;
 | |
|     args[2] = (VALUE)rb_safe_level();
 | |
|     if (!args[1] && RARRAY_LEN(table) > 0) {
 | |
| 	args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
 | |
|     }
 | |
|     for (i=0; i<RARRAY_LEN(table); i++) {
 | |
| 	VALUE final = RARRAY_PTR(table)[i];
 | |
| 	args[0] = RARRAY_PTR(final)[1];
 | |
| 	args[2] = FIX2INT(RARRAY_PTR(final)[0]);
 | |
| 	rb_protect(run_single_final, (VALUE)args, &status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| run_final(rb_objspace_t *objspace, VALUE obj)
 | |
| {
 | |
|     VALUE table, objid;
 | |
|     RUBY_DATA_FUNC free_func = 0;
 | |
| 
 | |
|     objid = rb_obj_id(obj);	/* make obj into id */
 | |
|     RBASIC(obj)->klass = 0;
 | |
| 
 | |
|     if (RTYPEDDATA_P(obj)) {
 | |
| 	free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
 | |
|     }
 | |
|     else {
 | |
| 	free_func = RDATA(obj)->dfree;
 | |
|     }
 | |
|     if (free_func) {
 | |
| 	(*free_func)(DATA_PTR(obj));
 | |
|     }
 | |
| 
 | |
|     if (finalizer_table &&
 | |
| 	st_delete(finalizer_table, (st_data_t*)&obj, &table)) {
 | |
| 	run_finalizer(objspace, obj, objid, table);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| finalize_deferred(rb_objspace_t *objspace)
 | |
| {
 | |
|     RVALUE *p = deferred_final_list;
 | |
|     deferred_final_list = 0;
 | |
| 
 | |
|     if (p) {
 | |
| 	finalize_list(objspace, p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_finalize_deferred(rb_objspace_t *objspace)
 | |
| {
 | |
|     finalize_deferred(objspace);
 | |
|     free_unused_heaps(objspace);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_finalize_deferred(void)
 | |
| {
 | |
|     gc_finalize_deferred(&rb_objspace);
 | |
| }
 | |
| 
 | |
| static int
 | |
| chain_finalized_object(st_data_t key, st_data_t val, st_data_t arg)
 | |
| {
 | |
|     RVALUE *p = (RVALUE *)key, **final_list = (RVALUE **)arg;
 | |
|     if ((p->as.basic.flags & (FL_FINALIZE|FL_MARK)) == FL_FINALIZE) {
 | |
| 	if (BUILTIN_TYPE(p) != T_ZOMBIE) {
 | |
| 	    p->as.free.flags = FL_MARK | T_ZOMBIE; /* remain marked */
 | |
| 	    RDATA(p)->dfree = 0;
 | |
| 	}
 | |
| 	p->as.free.next = *final_list;
 | |
| 	*final_list = p;
 | |
|     }
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| struct force_finalize_list {
 | |
|     VALUE obj;
 | |
|     VALUE table;
 | |
|     struct force_finalize_list *next;
 | |
| };
 | |
| 
 | |
| static int
 | |
| force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
 | |
| {
 | |
|     struct force_finalize_list **prev = (struct force_finalize_list **)arg;
 | |
|     struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
 | |
|     curr->obj = key;
 | |
|     curr->table = val;
 | |
|     curr->next = *prev;
 | |
|     *prev = curr;
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc_call_finalizer_at_exit(void)
 | |
| {
 | |
|     rb_objspace_call_finalizer(&rb_objspace);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_objspace_call_finalizer(rb_objspace_t *objspace)
 | |
| {
 | |
|     RVALUE *p, *pend;
 | |
|     RVALUE *final_list = 0;
 | |
|     size_t i;
 | |
| 
 | |
|     /* run finalizers */
 | |
|     if (finalizer_table) {
 | |
|         gc_clear_mark_on_sweep_slots(objspace);
 | |
| 	do {
 | |
| 	    /* XXX: this loop will make no sense */
 | |
| 	    /* because mark will not be removed */
 | |
| 	    finalize_deferred(objspace);
 | |
| 	    mark_tbl(objspace, finalizer_table, 0);
 | |
| 	    st_foreach(finalizer_table, chain_finalized_object,
 | |
| 		       (st_data_t)&deferred_final_list);
 | |
| 	} while (deferred_final_list);
 | |
| 	/* force to run finalizer */
 | |
| 	while (finalizer_table->num_entries) {
 | |
| 	    struct force_finalize_list *list = 0;
 | |
| 	    st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
 | |
| 	    while (list) {
 | |
| 		struct force_finalize_list *curr = list;
 | |
| 		run_finalizer(objspace, curr->obj, rb_obj_id(curr->obj), curr->table);
 | |
| 		st_delete(finalizer_table, (st_data_t*)&curr->obj, 0);
 | |
| 		list = curr->next;
 | |
| 		xfree(curr);
 | |
| 	    }
 | |
| 	}
 | |
| 	st_free_table(finalizer_table);
 | |
| 	finalizer_table = 0;
 | |
|     }
 | |
|     /* finalizers are part of garbage collection */
 | |
|     during_gc++;
 | |
|     /* run data object's finalizers */
 | |
|     for (i = 0; i < heaps_used; i++) {
 | |
| 	p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | |
| 	while (p < pend) {
 | |
| 	    if (BUILTIN_TYPE(p) == T_DATA &&
 | |
| 		DATA_PTR(p) && RANY(p)->as.data.dfree &&
 | |
| 		RANY(p)->as.basic.klass != rb_cThread && RANY(p)->as.basic.klass != rb_cMutex) {
 | |
| 		p->as.free.flags = 0;
 | |
| 		if (RTYPEDDATA_P(p)) {
 | |
| 		    RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
 | |
| 		}
 | |
| 		if ((long)RANY(p)->as.data.dfree == -1) {
 | |
| 		    xfree(DATA_PTR(p));
 | |
| 		}
 | |
| 		else if (RANY(p)->as.data.dfree) {
 | |
| 		    make_deferred(RANY(p));
 | |
| 		    RANY(p)->as.free.next = final_list;
 | |
| 		    final_list = p;
 | |
| 		}
 | |
| 	    }
 | |
| 	    else if (BUILTIN_TYPE(p) == T_FILE) {
 | |
| 		if (RANY(p)->as.file.fptr) {
 | |
| 		    make_io_deferred(RANY(p));
 | |
| 		    RANY(p)->as.free.next = final_list;
 | |
| 		    final_list = p;
 | |
| 		}
 | |
| 	    }
 | |
| 	    p++;
 | |
| 	}
 | |
|     }
 | |
|     during_gc = 0;
 | |
|     if (final_list) {
 | |
| 	finalize_list(objspace, final_list);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_gc(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     garbage_collect(objspace);
 | |
|     gc_finalize_deferred(objspace);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ObjectSpace._id2ref(object_id) -> an_object
 | |
|  *
 | |
|  *  Converts an object id to a reference to the object. May not be
 | |
|  *  called on an object id passed as a parameter to a finalizer.
 | |
|  *
 | |
|  *     s = "I am a string"                    #=> "I am a string"
 | |
|  *     r = ObjectSpace._id2ref(s.object_id)   #=> "I am a string"
 | |
|  *     r == s                                 #=> true
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| id2ref(VALUE obj, VALUE objid)
 | |
| {
 | |
| #if SIZEOF_LONG == SIZEOF_VOIDP
 | |
| #define NUM2PTR(x) NUM2ULONG(x)
 | |
| #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
 | |
| #define NUM2PTR(x) NUM2ULL(x)
 | |
| #endif
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     VALUE ptr;
 | |
|     void *p0;
 | |
| 
 | |
|     rb_secure(4);
 | |
|     ptr = NUM2PTR(objid);
 | |
|     p0 = (void *)ptr;
 | |
| 
 | |
|     if (ptr == Qtrue) return Qtrue;
 | |
|     if (ptr == Qfalse) return Qfalse;
 | |
|     if (ptr == Qnil) return Qnil;
 | |
|     if (FIXNUM_P(ptr)) return (VALUE)ptr;
 | |
|     ptr = objid ^ FIXNUM_FLAG;	/* unset FIXNUM_FLAG */
 | |
| 
 | |
|     if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
 | |
|         ID symid = ptr / sizeof(RVALUE);
 | |
|         if (rb_id2name(symid) == 0)
 | |
| 	    rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
 | |
| 	return ID2SYM(symid);
 | |
|     }
 | |
| 
 | |
|     if (!is_pointer_to_heap(objspace, (void *)ptr) ||
 | |
| 	BUILTIN_TYPE(ptr) > T_FIXNUM || BUILTIN_TYPE(ptr) == T_ICLASS) {
 | |
| 	rb_raise(rb_eRangeError, "%p is not id value", p0);
 | |
|     }
 | |
|     if (BUILTIN_TYPE(ptr) == 0 || RBASIC(ptr)->klass == 0) {
 | |
| 	rb_raise(rb_eRangeError, "%p is recycled object", p0);
 | |
|     }
 | |
|     return (VALUE)ptr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: __id__
 | |
|  *  Document-method: object_id
 | |
|  *
 | |
|  *  call-seq:
 | |
|  *     obj.__id__       -> fixnum
 | |
|  *     obj.object_id    -> fixnum
 | |
|  *
 | |
|  *  Returns an integer identifier for <i>obj</i>. The same number will
 | |
|  *  be returned on all calls to <code>id</code> for a given object, and
 | |
|  *  no two active objects will share an id.
 | |
|  *  <code>Object#object_id</code> is a different concept from the
 | |
|  *  <code>:name</code> notation, which returns the symbol id of
 | |
|  *  <code>name</code>. Replaces the deprecated <code>Object#id</code>.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.hash    -> fixnum
 | |
|  *
 | |
|  *  Generates a <code>Fixnum</code> hash value for this object. This
 | |
|  *  function must have the property that <code>a.eql?(b)</code> implies
 | |
|  *  <code>a.hash == b.hash</code>. The hash value is used by class
 | |
|  *  <code>Hash</code>. Any hash value that exceeds the capacity of a
 | |
|  *  <code>Fixnum</code> will be truncated before being used.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_id(VALUE obj)
 | |
| {
 | |
|     /*
 | |
|      *                32-bit VALUE space
 | |
|      *          MSB ------------------------ LSB
 | |
|      *  false   00000000000000000000000000000000
 | |
|      *  true    00000000000000000000000000000010
 | |
|      *  nil     00000000000000000000000000000100
 | |
|      *  undef   00000000000000000000000000000110
 | |
|      *  symbol  ssssssssssssssssssssssss00001110
 | |
|      *  object  oooooooooooooooooooooooooooooo00        = 0 (mod sizeof(RVALUE))
 | |
|      *  fixnum  fffffffffffffffffffffffffffffff1
 | |
|      *
 | |
|      *                    object_id space
 | |
|      *                                       LSB
 | |
|      *  false   00000000000000000000000000000000
 | |
|      *  true    00000000000000000000000000000010
 | |
|      *  nil     00000000000000000000000000000100
 | |
|      *  undef   00000000000000000000000000000110
 | |
|      *  symbol   000SSSSSSSSSSSSSSSSSSSSSSSSSSS0        S...S % A = 4 (S...S = s...s * A + 4)
 | |
|      *  object   oooooooooooooooooooooooooooooo0        o...o % A = 0
 | |
|      *  fixnum  fffffffffffffffffffffffffffffff1        bignum if required
 | |
|      *
 | |
|      *  where A = sizeof(RVALUE)/4
 | |
|      *
 | |
|      *  sizeof(RVALUE) is
 | |
|      *  20 if 32-bit, double is 4-byte aligned
 | |
|      *  24 if 32-bit, double is 8-byte aligned
 | |
|      *  40 if 64-bit
 | |
|      */
 | |
|     if (SYMBOL_P(obj)) {
 | |
|         return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
 | |
|     }
 | |
|     if (SPECIAL_CONST_P(obj)) {
 | |
|         return LONG2NUM((SIGNED_VALUE)obj);
 | |
|     }
 | |
|     return (VALUE)((SIGNED_VALUE)obj|FIXNUM_FLAG);
 | |
| }
 | |
| 
 | |
| static int
 | |
| set_zero(st_data_t key, st_data_t val, st_data_t arg)
 | |
| {
 | |
|     VALUE k = (VALUE)key;
 | |
|     VALUE hash = (VALUE)arg;
 | |
|     rb_hash_aset(hash, k, INT2FIX(0));
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ObjectSpace.count_objects([result_hash]) -> hash
 | |
|  *
 | |
|  *  Counts objects for each type.
 | |
|  *
 | |
|  *  It returns a hash as:
 | |
|  *  {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
 | |
|  *
 | |
|  *  If the optional argument, result_hash, is given,
 | |
|  *  it is overwritten and returned.
 | |
|  *  This is intended to avoid probe effect.
 | |
|  *
 | |
|  *  The contents of the returned hash is implementation defined.
 | |
|  *  It may be changed in future.
 | |
|  *
 | |
|  *  This method is not expected to work except C Ruby.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| count_objects(int argc, VALUE *argv, VALUE os)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     size_t counts[T_MASK+1];
 | |
|     size_t freed = 0;
 | |
|     size_t total = 0;
 | |
|     size_t i;
 | |
|     VALUE hash;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "01", &hash) == 1) {
 | |
|         if (TYPE(hash) != T_HASH)
 | |
|             rb_raise(rb_eTypeError, "non-hash given");
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i <= T_MASK; i++) {
 | |
|         counts[i] = 0;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < heaps_used; i++) {
 | |
|         RVALUE *p, *pend;
 | |
| 
 | |
|         p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
 | |
|         for (;p < pend; p++) {
 | |
|             if (p->as.basic.flags) {
 | |
|                 counts[BUILTIN_TYPE(p)]++;
 | |
|             }
 | |
|             else {
 | |
|                 freed++;
 | |
|             }
 | |
|         }
 | |
|         total += objspace->heap.sorted[i].slot->limit;
 | |
|     }
 | |
| 
 | |
|     if (hash == Qnil) {
 | |
|         hash = rb_hash_new();
 | |
|     }
 | |
|     else if (!RHASH_EMPTY_P(hash)) {
 | |
|         st_foreach(RHASH_TBL(hash), set_zero, hash);
 | |
|     }
 | |
|     rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
 | |
|     rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
 | |
| 
 | |
|     for (i = 0; i <= T_MASK; i++) {
 | |
|         VALUE type;
 | |
|         switch (i) {
 | |
| #define COUNT_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
 | |
| 	    COUNT_TYPE(T_NONE);
 | |
| 	    COUNT_TYPE(T_OBJECT);
 | |
| 	    COUNT_TYPE(T_CLASS);
 | |
| 	    COUNT_TYPE(T_MODULE);
 | |
| 	    COUNT_TYPE(T_FLOAT);
 | |
| 	    COUNT_TYPE(T_STRING);
 | |
| 	    COUNT_TYPE(T_REGEXP);
 | |
| 	    COUNT_TYPE(T_ARRAY);
 | |
| 	    COUNT_TYPE(T_HASH);
 | |
| 	    COUNT_TYPE(T_STRUCT);
 | |
| 	    COUNT_TYPE(T_BIGNUM);
 | |
| 	    COUNT_TYPE(T_FILE);
 | |
| 	    COUNT_TYPE(T_DATA);
 | |
| 	    COUNT_TYPE(T_MATCH);
 | |
| 	    COUNT_TYPE(T_COMPLEX);
 | |
| 	    COUNT_TYPE(T_RATIONAL);
 | |
| 	    COUNT_TYPE(T_NIL);
 | |
| 	    COUNT_TYPE(T_TRUE);
 | |
| 	    COUNT_TYPE(T_FALSE);
 | |
| 	    COUNT_TYPE(T_SYMBOL);
 | |
| 	    COUNT_TYPE(T_FIXNUM);
 | |
| 	    COUNT_TYPE(T_UNDEF);
 | |
| 	    COUNT_TYPE(T_NODE);
 | |
| 	    COUNT_TYPE(T_ICLASS);
 | |
| 	    COUNT_TYPE(T_ZOMBIE);
 | |
| #undef COUNT_TYPE
 | |
|           default:              type = INT2NUM(i); break;
 | |
|         }
 | |
|         if (counts[i])
 | |
|             rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
 | |
|     }
 | |
| 
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.count -> Integer
 | |
|  *
 | |
|  *  The number of times GC occurred.
 | |
|  *
 | |
|  *  It returns the number of times GC occurred since the process started.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_count(VALUE self)
 | |
| {
 | |
|     return UINT2NUM((&rb_objspace)->count);
 | |
| }
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.malloc_allocated_size -> Integer
 | |
|  *
 | |
|  *  The allocated size by malloc().
 | |
|  *
 | |
|  *  It returns the allocated size by malloc().
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_malloc_allocated_size(VALUE self)
 | |
| {
 | |
|     return UINT2NUM((&rb_objspace)->malloc_params.allocated_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC.malloc_allocations -> Integer
 | |
|  *
 | |
|  *  The number of allocated memory object by malloc().
 | |
|  *
 | |
|  *  It returns the number of allocated memory object by malloc().
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_malloc_allocations(VALUE self)
 | |
| {
 | |
|     return UINT2NUM((&rb_objspace)->malloc_params.allocations);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_record_get(void)
 | |
| {
 | |
|     VALUE prof;
 | |
|     VALUE gc_profile = rb_ary_new();
 | |
|     size_t i;
 | |
|     rb_objspace_t *objspace = (&rb_objspace);
 | |
| 
 | |
|     if (!objspace->profile.run) {
 | |
| 	return Qnil;
 | |
|     }
 | |
| 
 | |
|     for (i =0; i < objspace->profile.count; i++) {
 | |
| 	prof = rb_hash_new();
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), rb_uint2inum(objspace->profile.record[i].heap_use_size));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), rb_uint2inum(objspace->profile.record[i].heap_total_size));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), rb_uint2inum(objspace->profile.record[i].heap_total_objects));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked);
 | |
| #if GC_PROFILE_MORE_DETAIL
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), rb_uint2inum(objspace->profile.record[i].allocate_increase));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), rb_uint2inum(objspace->profile.record[i].allocate_limit));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), rb_uint2inum(objspace->profile.record[i].heap_use_slots));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), rb_uint2inum(objspace->profile.record[i].heap_live_objects));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), rb_uint2inum(objspace->profile.record[i].heap_free_objects));
 | |
|         rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize);
 | |
| #endif
 | |
| 	rb_ary_push(gc_profile, prof);
 | |
|     }
 | |
| 
 | |
|     return gc_profile;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC::Profiler.result -> string
 | |
|  *
 | |
|  *  Report profile data to string.
 | |
|  *
 | |
|  *  It returns a string as:
 | |
|  *   GC 1 invokes.
 | |
|  *   Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC time(ms)
 | |
|  *       1               0.012               159240               212940                10647         0.00000000000001530000
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_result(void)
 | |
| {
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     VALUE record;
 | |
|     VALUE result;
 | |
|     int i, index;
 | |
| 
 | |
|     record = gc_profile_record_get();
 | |
|     if (objspace->profile.run && objspace->profile.count) {
 | |
| 	result = rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0)));
 | |
|         index = 0;
 | |
| 	rb_str_cat2(result, "Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC Time(ms)\n");
 | |
| 	for (i = 0; i < (int)RARRAY_LEN(record); i++) {
 | |
| 	    VALUE r = RARRAY_PTR(record)[i];
 | |
| #if !GC_PROFILE_MORE_DETAIL
 | |
|             if (rb_hash_aref(r, ID2SYM(rb_intern("GC_IS_MARKED")))) {
 | |
| #endif
 | |
| 	    rb_str_catf(result, "%5d %19.3f %20d %20d %20d %30.20f\n",
 | |
| 			index++, NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_INVOKE_TIME")))),
 | |
| 			NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SIZE")))),
 | |
| 			NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))),
 | |
| 			NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))),
 | |
| 			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_TIME"))))*1000);
 | |
| #if !GC_PROFILE_MORE_DETAIL
 | |
|             }
 | |
| #endif
 | |
| 	}
 | |
| #if GC_PROFILE_MORE_DETAIL
 | |
| 	rb_str_cat2(result, "\n\n");
 | |
| 	rb_str_cat2(result, "More detail.\n");
 | |
| 	rb_str_cat2(result, "Index Allocate Increase    Allocate Limit  Use Slot  Have Finalize             Mark Time(ms)            Sweep Time(ms)\n");
 | |
|         index = 0;
 | |
| 	for (i = 0; i < (int)RARRAY_LEN(record); i++) {
 | |
| 	    VALUE r = RARRAY_PTR(record)[i];
 | |
| 	    rb_str_catf(result, "%5d %17d %17d %9d %14s %25.20f %25.20f\n",
 | |
| 			index++, NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_INCREASE")))),
 | |
| 			NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_LIMIT")))),
 | |
| 			NUM2INT(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SLOTS")))),
 | |
| 			rb_hash_aref(r, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false",
 | |
| 			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_MARK_TIME"))))*1000,
 | |
| 			NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*1000);
 | |
| 	}
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	result = rb_str_new2("");
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC::Profiler.report
 | |
|  *
 | |
|  *  GC::Profiler.result display
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_report(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE out;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	out = rb_stdout;
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "01", &out);
 | |
|     }
 | |
|     rb_io_write(out, gc_profile_result());
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     GC::Profiler.total_time -> float
 | |
|  *
 | |
|  *  return total time that GC used. (msec)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| gc_profile_total_time(VALUE self)
 | |
| {
 | |
|     double time = 0;
 | |
|     rb_objspace_t *objspace = &rb_objspace;
 | |
|     size_t i;
 | |
| 
 | |
|     if (objspace->profile.run && objspace->profile.count) {
 | |
| 	for (i = 0; i < objspace->profile.count; i++) {
 | |
| 	    time += objspace->profile.record[i].gc_time;
 | |
| 	}
 | |
|     }
 | |
|     return DBL2NUM(time);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  The <code>GC</code> module provides an interface to Ruby's mark and
 | |
|  *  sweep garbage collection mechanism. Some of the underlying methods
 | |
|  *  are also available via the <code>ObjectSpace</code> module.
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_GC(void)
 | |
| {
 | |
|     VALUE rb_mObSpace;
 | |
|     VALUE rb_mProfiler;
 | |
| 
 | |
|     rb_mGC = rb_define_module("GC");
 | |
|     rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
 | |
|     rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
 | |
|     rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
 | |
|     rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
 | |
|     rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
 | |
|     rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
 | |
|     rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
 | |
| 
 | |
|     rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
 | |
|     rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
 | |
|     rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
 | |
|     rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
 | |
|     rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
 | |
|     rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
 | |
|     rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
 | |
|     rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
 | |
| 
 | |
|     rb_mObSpace = rb_define_module("ObjectSpace");
 | |
|     rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
 | |
|     rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
 | |
| 
 | |
|     rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
 | |
|     rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
 | |
| 
 | |
|     rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
 | |
| 
 | |
|     nomem_error = rb_exc_new3(rb_eNoMemError,
 | |
| 			      rb_obj_freeze(rb_str_new2("failed to allocate memory")));
 | |
|     OBJ_TAINT(nomem_error);
 | |
|     OBJ_FREEZE(nomem_error);
 | |
| 
 | |
|     rb_define_method(rb_mKernel, "__id__", rb_obj_id, 0);
 | |
|     rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
 | |
| 
 | |
|     rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
 | |
| 
 | |
| #if CALC_EXACT_MALLOC_SIZE
 | |
|     rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
 | |
|     rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
 | |
| #endif
 | |
| }
 |